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The entire code of Scalasca v2 is licensed under the BSD-style license agreement given
below, except for the third-party code distributed in the 'vendor/' subdirectory. Please
see the corresponding COPYING files in the subdirectories of 'vendor/' included in the
distribution tarball for details.

Scalasca v2 License Agreement

Copyright © 1998–2021 Forschungszentrum Jülich GmbH, Germany
Copyright © 2009–2015 German Research School for Simulation Sciences GmbH,

Jülich/Aachen, Germany
Copyright © 2014–2021 RWTH Aachen University, Germany
Copyright © 2003–2008 University of Tennessee, Knoxville, USA
Copyright © 2006 Technische Universität Dresden, Germany

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

• Neither the names of

– the Forschungszentrum Jülich GmbH,

– the German Research School for Simulation Sciences GmbH,

– the RWTH Aachen University,

– the University of Tennessee,

– the Technische Universität Dresden,

nor the names of their contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
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1 Introduction

Supercomputing is a key technology of modern science and engineering, indispensable
to solve critical problems of high complexity. However, since the number of cores on
modern supercomputers is increasing from generation to generation, HPC applications are
required to harness much higher degrees of parallelism to satisfy their growing demand for
computing power. Therefore—as a prerequisite for the productive use of today's large-scale
computing systems—the HPC community needs powerful and robust performance analysis
tools that make the optimization of parallel applications both more effective and more
efficient.

The Scalasca Trace Tools developed at the Jülich Supercomputing Centre are a collection
of trace-based performance analysis tools that have been specifically designed for use on
large-scale systems featuring hundreds of thousands of CPU cores, but also suitable for
smaller HPC platforms. A distinctive feature of the Scalasca Trace Tools is its scalable
automatic trace-analysis component which provides the ability to identify wait states that
occur, for example, as a result of unevenly distributed workloads [6]. Especially when trying
to scale communication intensive applications to large process counts, such wait states can
present severe challenges to achieving good performance. Besides merely identifying wait
states, the trace analyzer is also able to pinpoint their root causes (i.e., delays) [3], and to
identify the activities on the critical path of the target application [2], highlighting those
routines which determine the length of the program execution and therefore constitute the
best candidates for optimization.

The current focus of the Scalasca Trace Tools analyses is on applications using MPI [11],
OpenMP [15], POSIX threads [7], or hybrid MPI+OpenMP/Pthreads parallelization. While
traces from applications using CUDA [13], OpenCL [8], or OpenACC [14] parallelization can
be handled as long as they do not contain any device activities (i.e., only host-side events
have been measured), no specific support for those paradigms has been implemented
yet. Thus, analysis results from such traces need to be interpreted with care, but may
nevertheless provide useful insights. We intend to add better support for those accelerator
programming models in the future.

Unlike previous versions of the Scalasca toolset—which used a custom measurement
system and trace data format—the Scalasca Trace Tools 2.x release series is based on
the community-driven instrumentation and measurement infrastructure Score-P [10]. The
Score-P software is jointly developed by a consortium of partners from Germany and the
US, and supports a number of complementary performance analysis tools through the use
of the common data formats CUBE4 for profiles and the Open Trace Format 2 (OTF2) [5] for
event trace data. This significantly improves interoperability between Scalasca and other
performance analysis tool suites such as Vampir [9] and TAU [18]. Nevertheless, backward
compatibility to Scalasca 1.x is maintained where possible. For example, the Scalasca trace
analyzer is still able to process trace measurements generated by the measurement system
of the Scalasca 1.x release series.
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1 Introduction

This user guide is intended to address the needs of users which are new to Scalasca as
well as those already familiar with previous versions of the Scalasca toolset. For both user
groups, it is recommended to work through Chapter 2 to get familiar with the intended
Scalasca analysis workflow in general, and to learn about the changes compared to the
Scalasca 1.x release series which are highlighted when appropriate. Later chapters then
provide more in-depth reference information for the individual Scalasca commands and
tools, and can be consulted when necessary.
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2 Getting started

This chapter provides an introduction to the use of the Scalasca Trace Tools on the basis of
the analysis of an example application. The most prominent features are addressed, and at
times a reference to later chapters with more in-depth information on the corresponding
topic is given.

Use of the Scalasca Trace Tools involves three phases: instrumentation of the target
application, execution measurement collection and analysis, and examination of the analysis
report. For instrumentation and measurement, the Scalasca Trace Tools 2.x release series
leverages the Score-P infrastructure, while the Cube graphical user interface is used
for analysis report examination. The Scalasca Trace Tools complement the functionality
provided by Score-P and Cube with scalable automatic trace-analysis components, as well
as convenience commands for controlling execution measurement collection and analysis,
and analysis report post-processing.

Most of Scalasca's functionality can be accessed through the scalasca command, which
provides action options that in turn invoke the corresponding underlying commands scorep,
scan and square. These actions are:

1. scalasca -instrument

(or short skin) familiar to users of the Scalasca 1.x series is deprecated and only
provided for backward compatibility. It tries to map the command-line options of
the Scalasca 1.x instrumenter onto corresponding options of Score-P's instrumenter
command scorep—as far as this is possible. However, to take full advantage of
the functionality provided by Score-P, users are strongly encouraged to use the
scorep instrumenter command directly. To assist in transitioning existing mea-
surement configurations to Score-P, the Scalasca instrumentation wrapper prints the
converted command that is actually executed to standard output.

2. scalasca -analyze

(or short scan) is used to control the Score-P measurement environment during the
execution of the target application—supporting both runtime summarization and/or
event trace collection, optionally including hardware-counter information—and to
automatically initiate Scalasca's trace analysis after measurement completion if
tracing was requested.

3. scalasca -examine

(or short square) is used to post-process the analysis report generated by a Score-P
profiling measurement and/or Scalasca's automatic post-mortem trace analysis, and
to start the Cube graphical user interface for analysis report examination.

To get a brief usage summary, call the scalasca command without arguments, or use
scalasca --quickref to open the Scalasca Quick Reference (with a suitable PDF viewer).
See also Section 3.1 for a complete reference of the scalasca command.
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2 Getting started

Note:
Under the hood, the Scalasca convenience commands leverage a number of other
commands provided by Score-P as well as the CubeLib and CubeGUI components.
Therefore, it is generally advisable to include the executable directories of appropriate
installations of all those components in the shell search path ($PATH).

The following three sections provide a quick overview of each of these actions and how to
use them during the corresponding step of the performance analysis, before a tutorial-style
full workflow example is presented in Section 2.4.

2.1 Instrumentation

To generate measurements which can be used as input for the Scalasca Trace Tools, user
application programs first need to be instrumented. That is, special measurement calls
have to be inserted into the program code which are then executed at specific important
points (events) during the application run. Unlike previous versions of Scalasca which
used a custom measurement system, this task is now accomplished by the community
instrumentation and measurement infrastructure Score-P.

As already mentioned in the previous section, use of the scalasca -instrument and skin
commands is discouraged, and therefore not discussed in this guide. Instead, all the
necessary instrumentation of user routines, OpenMP constructs, MPI functions, etc. should
be handled by the Score-P instrumenter, which is accessed through the scorep command.
Therefore, the compile and link commands to build the application that is to be analyzed
should be prefixed with scorep (e.g., in a Makefile).

For example, to instrument the MPI application executable myapp generated from the two
Fortran source files foo.f90 and bar.f90, the following compile and link commands

$ mpif90 -c foo.f90
$ mpif90 -c bar.f90
$ mpif90 -o myapp foo.o bar.o

have to be replaced by corresponding commands involving the Score-P instrumenter:

$ scorep mpif90 -c foo.f90
$ scorep mpif90 -c bar.f90
$ scorep mpif90 -o myapp foo.o bar.o

This will automatically instrument every routine entry and exit seen by the compiler,
intercept MPI function calls to gather message-passing information, and link the necessary
Score-P measurement libraries to the application executable.

Alternatively, the Score-P compiler wrapper commands (e.g., scorep-mpif90) can be used
as a compiler replacement. These commands allow to control instrumentation via an
environment variable, which may be required during the configuration step with certain
build systems such as CMake or GNU Autotools. Please refer to the Section "Score-P
Compiler Wrapper Usage" in the Score-P User Manual [17] for details.
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2.2 Runtime measurement collection & analysis

Attention:
The Score-P instrumenter commands (scorep prefix or compiler wrapper)
must be used with the link command to ensure that all required Score-P measure-
ment libraries are linked with the executable. However, not all object files need to be
instrumented, thereby avoiding measurements and data collection for routines and
OpenMP constructs defined in those files. Nevertheless, for the Scalasca trace analy-
sis to work correctly, instrumenting files defining OpenMP parallel regions is
essential.

Although generally most convenient, automatic compiler-based function instrumentation as
used by default may result in too many and/or too disruptive measurements, which can be
addressed by selective instrumentation and measurement filtering. While the most basic
steps will be briefly covered in Section 2.4.4, please also consult the Score-P manual [17]
for details on the available instrumentation and filtering options.

2.2 Runtime measurement collection & analysis

While applications instrumented by Score-P can be executed directly with a measurement
configuration defined via environment variables, the scalasca -analyze (or short scan)
convenience command provided by Scalasca can be used to control certain aspects of
the Score-P measurement environment during the execution of the target application.
To produce a performance measurement using an instrumented executable, the target
application execution command is prefixed with the scalasca -analyze (or short scan)
command:

$ scalasca -analyze [options] \
[<launch_cmd> [<launch_flags>]] <target> [<target_args>]

For pure MPI or hybrid MPI+OpenMP/Pthreads applications, launch_cmd is typically
the MPI execution command such as mpirun or mpiexec, with launch_flags being the
corresponding command-line arguments as used for uninstrumented runs, for example,
to specify the number of compute nodes or MPI ranks. For non-MPI (i.e., serial and pure
multi-threaded) applications, the launch command and flags can usually be omitted.

In case of the example MPI application executable myapp introduced in the previous section,
a measurement command starting the application with four MPI ranks could therefore be:

$ scalasca -analyze mpiexec -n 4 ./myapp

Attention:
A unique directory is used for each measurement experiment, which (by default)
must not already exist when measurement starts: otherwise measurement is aborted
immediately.

A default name for the experiment directory is composed of the prefix "scorep_", the
target application executable name, the run configuration (e.g., number of MPI ranks
and/or OpenMP threads), and a few other parameters of the measurement configuration.
For example, a measurement of the myapp application as outlined above will produce a
measurement experiment directory named "scorep_myapp_4_sum".
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2 Getting started

Note:
A number of settings regarding the measurement configuration can be specified
in different ways. See the scan command reference in Section 3.2 for details and
available configuration options.

When measurement has completed, the measurement experiment directory contains various
log files and one or more analysis reports. By default, runtime summarization is used to
provide a summary report of the number of visits and time spent on each callpath by each
process/thread, as well as hardware counter metrics (if configured). For MPI or hybrid
MPI+OpenMP/Pthreads applications, MPI message statistics are also included.

Event trace data can also be collected as part of a measurement. This measurement
mode can be enabled by passing the -t option to the scalasca -analyze command (or
alternatively by setting the environment variable SCOREP_ENABLE_TRACING to either "1",
"true", or "yes").

Note:
Enabling event trace collection does not automatically turn off summarization mode
(i.e., both a summary profile and event traces are collected). It has to be explicitly
disabled when this behavior is undesired.

When collecting a trace measurement, experiment trace analysis is automatically initiated
after measurement is complete to quantify wait states that cannot be detected with runtime
summarization, to determine their root causes, and to identify the critical path of the
application. In addition to examining the trace-analysis report, the generated event traces
can also be visualized with a third-party graphical trace browser such as Vampir [9].

Warning:

Traces can easily become extremely large and unwieldy, and uncoordinated
intermediate trace buffer flushes may result in cascades of distortion, which renders
such traces to be of little value. It is therefore extremely important to set up an
adequate measurement configuration before initiating trace collection and
analysis! Please see Section 2.4.4 as well as the Score-P User Manual [17] for
more details on how to set up a filtering file and adjust Score-P's internal memory
management.

2.3 Analysis report examination

The results of the runtime summarization and/or the automatic trace analysis are stored in
one or more reports (i.e., CUBE4 files) in the measurement experiment directory. These
reports can be post-processed and examined using the scalasca -examine (or short
square) command, providing an experiment directory name as argument:

$ scalasca -examine [options] <experiment_name>

Post-processing is performed leveraging commands provided by the CubeLib component
the first time an experiment is examined, before launching the Cube analysis report browser
(CubeGUI). If the scalasca -examine command is provided with an already processed
experiment directory, or with a CUBE4 file specified as argument, the viewer is launched
immediately.
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2.4 A full workflow example

Instead of interactively examining the measurement analysis results, a textual score report
can also be obtained using the -s option (see Section 3.3 for further command-line options)
without launching the viewer:

$ scalasca -examine -s <experiment_name>

This score report is generated by Score-P's scorep-score utility and provides a breakdown
of the different types of regions included in the measurement and their estimated associated
trace buffer capacity requirements, aggregate trace size, and largest process trace buffer
size, which can be used to set up a filtering file and to determine an appropriate setting for
SCOREP_TOTAL_MEMORY to be used for subsequent trace measurements. See Section 2.4.4
for more details.

The Cube viewer can also be directly used on an experiment archive—opening a dialog
window to choose one of the contained CUBE4 files—or an individual CUBE4 file as shown
below:

$ cube <experiment_name>
$ cube <file>.cubex

However, keep in mind that no post-processing is performed in this case, so that only a
subset of Scalasca's analyses and metrics may be shown.

2.4 A full workflow example

While the previous sections introduced the three basic actions supported by the Scalasca
Trace Tools based on an abstract example, this section will now guide through the typical
analysis workflow using a moderately complex, MPI-based benchmark code: BT from
the NAS Parallel Benchmarks (NPB-MPI 3.3.1) [12]. The BT benchmark implements a
simulated computational fluid dynamics (CFD) application using a block-tridiagonal solver
for a synthetic system of nonlinear partial differential equations and consists of about
20 Fortran 77 source code files. Although BT does not exhibit significant performance
bottlenecks—after all, it is a highly optimized benchmark—it serves as a good example to
demonstrate the overall workflow, including typical configuration steps and how to avoid
common pitfalls.

The example measurements shown in this section were carried out using the Scalasca
Trace Tools v2.5 in conjunction with Score-P v5.0, CubeLib v4.4.3, and CubeGUI v4.4.3
on the JURECA cluster at Jülich Supercomputing Centre. JURECA's compute nodes are
equipped with two Intel Xeon E5-2680 v3 (Haswell) 12-core CPUs running at 2.5 GHz,
and connected via an EDR InfiniBand fat-tree network. The BT benchmark code was
compiled using Intel compilers and linked against ParTec ParaStation MPI (which is based
on MPICH). The example commands shown below should therefore be representative for
using the Scalasca Trace Tools in a typical HPC cluster environment. For convenience,
the resulting post-processed Cube files are also available for download on the Scalasca
documentation web page [16].
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2 Getting started

Note:
In the following, it is assumed that all Scalasca commands are available in the shell's
search path ($PATH), for example, after loading site-specific environment modules.
Also, remember that the Scalasca convenience commands use other executables
provided by Score-P, CubeLib, and CubeGUI, which therefore need to be available in
the search path as well.

2.4.1 Preparing a reference execution

As a first step of every performance analysis, a reference execution using an uninstrumented
executable should be performed. First, this step verifies that the code executes cleanly
and produces correct results. Second, it later allows to assess the run-time overhead
introduced by instrumentation and measurement. And finally, it provides a baseline to
compare with after applying some code optimizations. At this stage an appropriate test
configuration should be chosen, such that it is both repeatable and long enough to be
representative. (Note that excessively long execution durations can make measurement
analysis inconvenient or even prohibitive, and therefore should be avoided.)

After unpacking the NPB-MPI source archive, the build system has to be adjusted to the
respective environment. For the NAS benchmarks, this is accomplished by a Makefile
snippet defining a number of variables used by a generic Makefile. This snippet is called
make.def and has to reside in the config/ subdirectory, which already contains a template
file that can be copied and adjusted appropriately. In particular, the MPI Fortran compiler
wrapper and flags need to be specified, for example:

MPIF77 = mpifort
FFLAGS = -O2
FLINKFLAGS = -O2

Note that the MPI C compiler wrapper and flags are not used for building BT, but may also
be set in the config/make.def file accordingly to experiment with other NPB benchmarks.

Next, the benchmark can be built from the top-level directory by running make, specifying
the number of MPI ranks to use via the NPROCS variable—for BT, this is required to be a
square number—as well as the problem size via the CLASS variable on the command line.
Valid problem classes (of increasing size) are W, S, A, B, C, D, and E, and can be used to
adjust the benchmark runtime to the execution environment. For example, class W or S is
appropriate for execution on a laptop with 4 MPI ranks, while the other problem sizes are
more suitable for "real" configurations. For the example run on JURECA, 144 MPI ranks
and problem class D have been chosen:

$ make bt NPROCS=144 CLASS=D
=========================================
= NAS Parallel Benchmarks 3.3 =
= MPI/F77/C =
=========================================

cd BT; make NPROCS=144 CLASS=D SUBTYPE= VERSION=
make[1]: Entering directory ‘/tmp/NPB3.3-MPI/BT’
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2.4 A full workflow example

make[2]: Entering directory ‘/tmp/NPB3.3-MPI/sys’
cc -g -o setparams setparams.c
make[2]: Leaving directory ‘/tmp/NPB3.3-MPI/sys’
../sys/setparams bt 144 D
make[2]: Entering directory ‘/tmp/NPB3.3-MPI/BT’
mpifort -c -O2 bt.f
mpifort -c -O2 make_set.f
mpifort -c -O2 initialize.f
mpifort -c -O2 exact_solution.f
mpifort -c -O2 exact_rhs.f
mpifort -c -O2 set_constants.f
mpifort -c -O2 adi.f
mpifort -c -O2 define.f
mpifort -c -O2 copy_faces.f
mpifort -c -O2 rhs.f
mpifort -c -O2 solve_subs.f
mpifort -c -O2 x_solve.f
mpifort -c -O2 y_solve.f
mpifort -c -O2 z_solve.f
mpifort -c -O2 add.f
mpifort -c -O2 error.f
mpifort -c -O2 verify.f
mpifort -c -O2 setup_mpi.f
cd ../common; mpifort -c -O2 print_results.f
cd ../common; mpifort -c -O2 timers.f
make[3]: Entering directory ‘/tmp/NPB3.3-MPI/BT’
mpifort -c -O2 btio.f
mpifort -O2 -o ../bin/bt.D.144 bt.o make_set.o initialize.o exact_solution.o \

exact_rhs.o set_constants.o adi.o define.o copy_faces.o rhs.o solve_subs.o \
x_solve.o y_solve.o z_solve.o add.o error.o verify.o setup_mpi.o \
../common/print_results.o ../common/timers.o btio.o

make[3]: Leaving directory ‘/tmp/NPB3.3-MPI/BT’
make[2]: Leaving directory ‘/tmp/NPB3.3-MPI/BT’
make[1]: Leaving directory ‘/tmp/NPB3.3-MPI/BT’

The resulting executable encodes the benchmark configuration in its name and is placed
into the bin/ subdirectory. For the example make command above, it is named bt.D.144.
This binary can now be executed, either via submitting an appropriate batch job (which is
beyond the scope of this user guide) or directly in an interactive session.

$ cd bin
$ mpiexec -n 144 ./bt.D.144

NAS Parallel Benchmarks 3.3 -- BT Benchmark

No input file inputbt.data. Using compiled defaults
Size: 408x 408x 408
Iterations: 250 dt: 0.0000200
Number of active processes: 144

Time step 1
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2 Getting started

Time step 20
Time step 40
Time step 60
Time step 80
Time step 100
Time step 120
Time step 140
Time step 160
Time step 180
Time step 200
Time step 220
Time step 240
Time step 250
Verification being performed for class D
accuracy setting for epsilon = 0.1000000000000E-07
Comparison of RMS-norms of residual

1 0.2533188551738E+05 0.2533188551738E+05 0.1497879774166E-12
2 0.2346393716980E+04 0.2346393716980E+04 0.8488743310506E-13
3 0.6294554366904E+04 0.6294554366904E+04 0.3034271788588E-14
4 0.5352565376030E+04 0.5352565376030E+04 0.8308967344119E-13
5 0.3905864038618E+05 0.3905864038618E+05 0.6650300273080E-13

Comparison of RMS-norms of solution error
1 0.3100009377557E+03 0.3100009377557E+03 0.1373406191445E-12
2 0.2424086324913E+02 0.2424086324913E+02 0.1600422929406E-12
3 0.7782212022645E+02 0.7782212022645E+02 0.4090394153928E-13
4 0.6835623860116E+02 0.6835623860116E+02 0.3617356324816E-13
5 0.6065737200368E+03 0.6065737200368E+03 0.2605201960010E-13

Verification Successful

BT Benchmark Completed.
Class = D
Size = 408x 408x 408
Iterations = 250
Time in seconds = 216.00
Total processes = 144
Compiled procs = 144
Mop/s total = 270070.08
Mop/s/process = 1875.49
Operation type = floating point
Verification = SUCCESSFUL
Version = 3.3.1
Compile date = 18 Mar 2019

Compile options:
MPIF77 = mpifort
FLINK = $(MPIF77)
FMPI_LIB = (none)
FMPI_INC = (none)
FFLAGS = -O2
FLINKFLAGS = -O2
RAND = (none)
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2.4 A full workflow example

Please send feedbacks and/or the results of this run to:

NPB Development Team
Internet: npb@nas.nasa.gov

In the selected configuration, the BT benchmark executes 250 iterations of the time step
loop, and then verifies that the result matches the expected outcome. Before exiting, the
benchmark also reports some configuration details, as well as the wall-clock execution time
(216.00 seconds) for the core computation.

2.4.2 Instrumenting the application code

Now that the reference execution was successful, it is time to prepare an instrumented
executable using Score-P to perform an initial measurement. By default, Score-P leverages
the compiler to automatically instrument every function entry and exit. This is usually
the best first approach if one does not have detailed knowledge about the application
and needs to identify the hotspots in the code. For BT, using Score-P for instrumentation
is simply accomplished by prefixing the compile and link commands specified in the
config/make.def Makefile snippet by the Score-P instrumenter command scorep:

MPIF77 = scorep mpifort

Note that the linker specification variable FLINK in config/make.def defaults to the value
of MPIF77, that is, no further modifications are necessary in this case.

Recompilation of the BT source code in the top-level directory now creates an instrumented
executable, overwriting the uninstrumented binary (for archiving purposes, one may
consider renaming it before recompiling):

$ cd ..
$ make clean
rm -f core
rm -f *~ */core */*~ */*.o */npbparams.h */*.obj */*.exe
rm -f MPI_dummy/test MPI_dummy/libmpi.a
rm -f sys/setparams sys/makesuite sys/setparams.h
rm -f btio.*.out*

$ make bt NPROCS=144 CLASS=D
=========================================
= NAS Parallel Benchmarks 3.3 =
= MPI/F77/C =
=========================================

cd BT; make NPROCS=144 CLASS=D SUBTYPE= VERSION=
make[1]: Entering directory ‘/tmp/NPB3.3-MPI/BT’
make[2]: Entering directory ‘/tmp/NPB3.3-MPI/sys’
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2 Getting started

cc -g -o setparams setparams.c
make[2]: Leaving directory ‘/tmp/NPB3.3-MPI/sys’
../sys/setparams bt 144 D
make[2]: Entering directory ‘/tmp/NPB3.3-MPI/BT’
scorep mpifort -c -O2 bt.f
scorep mpifort -c -O2 make_set.f
scorep mpifort -c -O2 initialize.f
scorep mpifort -c -O2 exact_solution.f
scorep mpifort -c -O2 exact_rhs.f
scorep mpifort -c -O2 set_constants.f
scorep mpifort -c -O2 adi.f
scorep mpifort -c -O2 define.f
scorep mpifort -c -O2 copy_faces.f
scorep mpifort -c -O2 rhs.f
scorep mpifort -c -O2 solve_subs.f
scorep mpifort -c -O2 x_solve.f
scorep mpifort -c -O2 y_solve.f
scorep mpifort -c -O2 z_solve.f
scorep mpifort -c -O2 add.f
scorep mpifort -c -O2 error.f
scorep mpifort -c -O2 verify.f
scorep mpifort -c -O2 setup_mpi.f
cd ../common; scorep mpifort -c -O2 print_results.f
cd ../common; scorep mpifort -c -O2 timers.f
make[3]: Entering directory ‘/tmp/NPB3.3-MPI/BT’
scorep mpifort -c -O2 btio.f
scorep mpifort -O2 -o ../bin/bt.D.144 bt.o make_set.o initialize.o \

exact_solution.o exact_rhs.o set_constants.o adi.o define.o copy_faces.o \
rhs.o solve_subs.o x_solve.o y_solve.o z_solve.o add.o error.o verify.o \
setup_mpi.o ../common/print_results.o ../common/timers.o btio.o

make[3]: Leaving directory ‘/tmp/NPB3.3-MPI/BT’
make[2]: Leaving directory ‘/tmp/NPB3.3-MPI/BT’
make[1]: Leaving directory ‘/tmp/NPB3.3-MPI/BT’

2.4.3 Initial summary measurement

The instrumented executable prepared in the previous step can now be executed under
the control of the scalasca -analyze (or short scan) convenience command to perform
an initial summary measurement:

$ cd bin
$ scalasca -analyze mpiexec -n 144 ./bt.D.144
S=C=A=N: Scalasca 2.5 runtime summarization
S=C=A=N: ./scorep_bt_144_sum experiment archive
S=C=A=N: Mon Mar 18 13:44:46 2019: Collect start
mpiexec -n 144 ./bt.D.144

NAS Parallel Benchmarks 3.3 -- BT Benchmark

No input file inputbt.data. Using compiled defaults
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Size: 408x 408x 408
Iterations: 250 dt: 0.0000200
Number of active processes: 144

Time step 1
Time step 20
Time step 40
Time step 60
Time step 80
Time step 100
Time step 120
Time step 140
Time step 160
Time step 180
Time step 200
Time step 220
Time step 240
Time step 250
Verification being performed for class D
accuracy setting for epsilon = 0.1000000000000E-07
Comparison of RMS-norms of residual

1 0.2533188551738E+05 0.2533188551738E+05 0.1499315900507E-12
2 0.2346393716980E+04 0.2346393716980E+04 0.8546885387975E-13
3 0.6294554366904E+04 0.6294554366904E+04 0.2745293523008E-14
4 0.5352565376030E+04 0.5352565376030E+04 0.8376934357159E-13
5 0.3905864038618E+05 0.3905864038618E+05 0.6650300273080E-13

Comparison of RMS-norms of solution error
1 0.3100009377557E+03 0.3100009377557E+03 0.1373406191445E-12
2 0.2424086324913E+02 0.2424086324913E+02 0.1600422929406E-12
3 0.7782212022645E+02 0.7782212022645E+02 0.4090394153928E-13
4 0.6835623860116E+02 0.6835623860116E+02 0.3596566920650E-13
5 0.6065737200368E+03 0.6065737200368E+03 0.2605201960010E-13

Verification Successful

BT Benchmark Completed.
Class = D
Size = 408x 408x 408
Iterations = 250
Time in seconds = 413.25
Total processes = 144
Compiled procs = 144
Mop/s total = 141162.75
Mop/s/process = 980.30
Operation type = floating point
Verification = SUCCESSFUL
Version = 3.3.1
Compile date = 18 Mar 2019

Compile options:
MPIF77 = scorep mpifort
FLINK = $(MPIF77)
FMPI_LIB = (none)
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FMPI_INC = (none)
FFLAGS = -O2
FLINKFLAGS = -O2
RAND = (none)

Please send feedbacks and/or the results of this run to:

NPB Development Team
Internet: npb@nas.nasa.gov

S=C=A=N: Mon Mar 18 13:51:47 2019: Collect done (status=0) 421s
S=C=A=N: ./scorep_bt_144_sum complete.

$ ls scorep_bt_144_sum
MANIFEST.md profile.cubex scorep.cfg scorep.log

As can be seen, the measurement run successfully produced an experiment directory
named scorep_bt_144_sum containing

• a text file MANIFEST.md briefly describing the directory contents produced by the
Score-P measurement system,

• the runtime summary result file profile.cubex,

• a copy of the measurement configuration in scorep.cfg, and

• the measurement log file scorep.log.

However, application execution took almost twice as long as the reference run (413.25
vs. 216.00 seconds). That is, instrumentation and associated measurements introduced a
non-negligible amount of run-time overhead. While it is possible to interactively examine
the generated summary result file using the Cube report browser, this should only be done
with great caution since the substantial overhead negatively impacts the accuracy of the
measurement. Therefore, such measurements can easily be misleading.

2.4.4 Optimizing the measurement configuration

To avoid drawing wrong conclusions based on skewed performance data due to excessive
measurement overhead, it is often necessary to optimize the measurement configuration
before conducting any additional experiments. This can be achieved in various ways, for
example, using runtime filtering, selective recording, or manual instrumentation controlling
measurement. Please consult the Score-P Manual [17] for details on the available options.
However, in many cases it is already sufficient to filter a small number of frequently
executed but computationally inexpensive user functions to reduce the measurement
overhead to an acceptable level. In this context, filtering means that those functions are
still executed, but no measurements are taken and recorded for them. Therefore, filtered
functions no longer show up in the measurement report, and the associated execution
time is attributed to the parent function from which they are called (similar to inlining
performed by the compiler). The selection of the routines to be filtered has to be done with
care, though, as it affects the granularity of the measurement and too aggressive filtering
might "blur" the location of important hotspots.
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To assist in identifying candidate functions for runtime filtering, the initial summary report
can be scored using the -s option of the scalasca -examine command:

$ scalasca -examine -s scorep_bt_144_sum
INFO: Post-processing runtime summarization report (profile.cubex)...
scorep-score -r ./scorep_bt_144_sum/profile.cubex \

> ./scorep_bt_144_sum/scorep.score
INFO: Score report written to ./scorep_bt_144_sum/scorep.score

$ head -n 25 scorep_bt_144_sum/scorep.score

Estimated aggregate size of event trace: 3701GB
Estimated requirements for largest trace buffer (max_buf): 26GB
Estimated memory requirements (SCOREP_TOTAL_MEMORY): 26GB
(warning: The memory requirements cannot be satisfied by Score-P to avoid
intermediate flushes when tracing. Set SCOREP_TOTAL_MEMORY=4G to get the
maximum supported memory or reduce requirements using USR regions filters.)

flt type max_buf[B] visits time[s] time[%] time/ region
visit[us]

ALL 27,597,828,625 152,806,258,921 60341.59 100.0 0.39 ALL
USR 27,592,847,542 152,791,289,689 50827.11 84.2 0.33 USR
MPI 4,086,824 10,016,496 9177.48 15.2 916.24 MPI
COM 894,218 4,952,592 336.80 0.6 68.01 COM

SCOREP 41 144 0.19 0.0 1305.21 SCOREP

USR 9,123,406,734 50,517,453,756 4716.33 7.8 0.09 matvec_sub_

USR 9,123,406,734 50,517,453,756 8774.13 14.5 0.17 binvcrhs_

USR 9,123,406,734 50,517,453,756 6520.04 10.8 0.13 matmul_sub_

USR 200,157,360 1,108,440,240 89.94 0.1 0.08 exact_solution_

USR 22,632,168 124,121,508 13.43 0.0 0.11 binvrhs_

MPI 1,608,942 2,603,232 9.57 0.0 3.68 MPI_Irecv
MPI 1,608,942 2,603,232 14.83 0.0 5.70 MPI_Isend
MPI 861,432 4,771,008 7936.43 13.2 1663.47 MPI_Wait
USR 234,936 1,301,184 3.24 0.0 2.49 lhsabinit_

USR 78,312 433,728 6213.68 10.3 14326.21 x_solve_cell_

As can be seen from the top of the score report, the estimated size for an event trace
measurement without filtering applied is approximately 3.7 TiB, with the process-local
maximum across all ranks being roughly 26 GiB. Considering the 128 GiB of main memory
available on JURECA's compute nodes, the 24 MPI ranks per node, and the fact that
Score-P's internal memory buffer is limited to 4 GiB per process, a tracing experiment with
this configuration is clearly prohibitive if disruptive intermediate trace buffer flushes are
to be avoided.

The next section of the score output provides a table which shows how the trace memory
requirements of a single process (column max_buf) as well as the overall number of visits
and CPU allocation time are distributed among certain function groups. For traces that
can be handled by the Scalasca Trace Tools, the most relevant groups are:

• MPI: MPI API functions.

• OMP: OpenMP constructs and API functions.
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• PTHREAD: POSIX threads API functions.

• COM: User functions/regions that appear on a call path to a parallelization API call
or construct (MPI/OpenMP/POSIX threads). These functions provide the context of
parallelization API usage and should therefore only be filtered with care.

• USR: User functions/regions that do not appear on a call path to a parallelization API
call or construct (MPI/OpenMP/POSIX threads).

• SCOREP: Artificial regions generated by the Score-P measurement system.

The detailed breakdown by region below the summary provides a classification according
to these function groups (column type) for each region found in the summary report.
Investigation of this part of the score report reveals that most of the trace data would be
generated by about 50 billion calls to each of the three routines matvec_sub, binvcrhs
and matmul_sub, which are classified as USR. And although the percentage of time spent in
these routines at first glance suggest that they are important, the average time per visit is
below 170 nanoseconds (column time/visit). That is, the relative measurement overhead
for these functions is substantial, and thus a significant amount of the reported time is
very likely spent in the Score-P measurement system rather than in the application itself.
Therefore, these routines constitute good candidates for being filtered (like they are good
candidates for being inlined by the compiler). Additionally selecting the exact_solution
routine, which generates about 200 MiB of event data on a single rank with very little
runtime impact, a reasonable Score-P filtering file would therefore look like this:

SCOREP_REGION_NAMES_BEGIN
EXCLUDE

binvcrhs_

matvec_sub_

matmul_sub_

exact_solution_

SCOREP_REGION_NAMES_END

Please refer to the Score-P User Manual [17] for a detailed description of the filter file
format, how to filter based on file names, define (and combine) blacklists and whitelists,
and how to use wildcards for convenience. Also note that the run-time filtering approach
used in this example only affects routines in the USR and COM groups. Measurements for
other groups can—to certain degrees—be controlled by other means, as the generated
events have to meet various consistency requirements.

The effectiveness of this filter—in terms of generated trace data—can be examined by
scoring the initial summary report again, this time also specifying the filter file using the
-f option of the scalasca -examine command. This way a filter file can be incrementally
developed, avoiding the need to conduct many measurements to step-by-step investigate
the effect of filtering individual functions.

$ scalasca -examine -s -f npb-bt.filt scorep_bt_144_sum
scorep-score -f npb-bt.filt -r ./scorep_bt_144_sum/profile.cubex \

> ./scorep_bt_144_sum/scorep.score_npb-bt.filt
INFO: Score report written to ./scorep_bt_144_sum/scorep.score_npb-bt.filt

$ head -n 25 scorep_bt_144_sum/scorep.score_npb-bt.filt
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Estimated aggregate size of event trace: 3920MB
Estimated requirements for largest trace buffer (max_buf): 28MB
Estimated memory requirements (SCOREP_TOTAL_MEMORY): 30MB
(hint: When tracing set SCOREP_TOTAL_MEMORY=30MB to avoid intermediate flushes
or reduce requirements using USR regions filters.)

flt type max_buf[B] visits time[s] time[%] time/ region
visit[us]

- ALL 27,597,828,625 152,806,258,921 60341.59 100.0 0.39 ALL
- USR 27,592,847,542 152,791,289,689 50827.11 84.2 0.33 USR
- MPI 4,086,824 10,016,496 9177.48 15.2 916.24 MPI
- COM 894,218 4,952,592 336.80 0.6 68.01 COM
- SCOREP 41 144 0.19 0.0 1305.21 SCOREP

* ALL 28,762,789 145,457,413 40241.14 66.7 276.65 ALL-FLT
+ FLT 27,570,377,562 152,660,801,508 20100.44 33.3 0.13 FLT

* USR 23,781,706 130,488,181 30726.67 50.9 235.47 USR-FLT
- MPI 4,086,824 10,016,496 9177.48 15.2 916.24 MPI-FLT

* COM 894,218 4,952,592 336.80 0.6 68.01 COM-FLT
- SCOREP 41 144 0.19 0.0 1305.21 SCOREP-FLT

+ USR 9,123,406,734 50,517,453,756 4716.33 7.8 0.09 matvec_sub_

+ USR 9,123,406,734 50,517,453,756 8774.13 14.5 0.17 binvcrhs_

+ USR 9,123,406,734 50,517,453,756 6520.04 10.8 0.13 matmul_sub_

+ USR 200,157,360 1,108,440,240 89.94 0.1 0.08 exact_solution_

- USR 22,632,168 124,121,508 13.43 0.0 0.11 binvrhs_

- MPI 1,608,942 2,603,232 9.57 0.0 3.68 MPI_Irecv
- MPI 1,608,942 2,603,232 14.83 0.0 5.70 MPI_Isend
- MPI 861,432 4,771,008 7936.43 13.2 1663.47 MPI_Wait
- USR 234,936 1,301,184 3.24 0.0 2.49 lhsabinit_

Below the (original) function group summary, the score report now also includes a second
summary with the filter applied. Here, an additional group FLT is added, which subsumes
all filtered regions. Moreover, the column flt indicates whether a region/function group
is filtered ("+"), not filtered ("-"), or possibly partially filtered ("∗", only used for function
groups).

As expected, the estimate for the aggregate event trace size drops down to 3.9 GiB, and
the process-local maximum across all ranks is reduced to 28 MiB. Since the Score-P
measurement system also creates a number of internal data structures (e.g., to track
MPI requests and communicators), the suggested setting for the SCOREP_TOTAL_MEMORY
environment variable to adjust the maximum amount of memory used by the Score-P
memory management is 30 MiB when tracing is configured (see Section 2.4.6).

2.4.5 Summary measurement & examination

The filtering file prepared in Section 2.4.4 can now be applied to produce a new summary
measurement, ideally with reduced measurement overhead to improve accuracy. This can
be accomplished by providing the filter file name to scalasca -analyze via the -f option.
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Attention:
Before re-analyzing the application, the unfiltered summary experiment should be
renamed (or removed), since scalasca -analyze will by default not overwrite the
existing experiment directory and abort immediately.

$ mv scorep_bt_144_sum scorep_bt_144_sum.nofilt
$ scalasca -analyze -f npb-bt.filt mpiexec -n 144 ./bt.D.144
S=C=A=N: Scalasca 2.5 runtime summarization
S=C=A=N: ./scorep_bt_144_sum experiment archive
S=C=A=N: Mon Mar 18 13:52:32 2019: Collect start
mpiexec -n 144 ./bt.D.144

NAS Parallel Benchmarks 3.3 -- BT Benchmark

No input file inputbt.data. Using compiled defaults
Size: 408x 408x 408
Iterations: 250 dt: 0.0000200
Number of active processes: 144

Time step 1
Time step 20
Time step 40
Time step 60
Time step 80
Time step 100
Time step 120
Time step 140
Time step 160
Time step 180
Time step 200
Time step 220
Time step 240
Time step 250
Verification being performed for class D
accuracy setting for epsilon = 0.1000000000000E-07
Comparison of RMS-norms of residual

1 0.2533188551738E+05 0.2533188551738E+05 0.1499315900507E-12
2 0.2346393716980E+04 0.2346393716980E+04 0.8546885387975E-13
3 0.6294554366904E+04 0.6294554366904E+04 0.2745293523008E-14
4 0.5352565376030E+04 0.5352565376030E+04 0.8376934357159E-13
5 0.3905864038618E+05 0.3905864038618E+05 0.6650300273080E-13

Comparison of RMS-norms of solution error
1 0.3100009377557E+03 0.3100009377557E+03 0.1373406191445E-12
2 0.2424086324913E+02 0.2424086324913E+02 0.1600422929406E-12
3 0.7782212022645E+02 0.7782212022645E+02 0.4090394153928E-13
4 0.6835623860116E+02 0.6835623860116E+02 0.3596566920650E-13
5 0.6065737200368E+03 0.6065737200368E+03 0.2605201960010E-13

Verification Successful

BT Benchmark Completed.
Class = D
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Size = 408x 408x 408
Iterations = 250
Time in seconds = 228.02
Total processes = 144
Compiled procs = 144
Mop/s total = 255839.13
Mop/s/process = 1776.66
Operation type = floating point
Verification = SUCCESSFUL
Version = 3.3.1
Compile date = 18 Mar 2019

Compile options:
MPIF77 = scorep mpifort
FLINK = $(MPIF77)
FMPI_LIB = (none)
FMPI_INC = (none)
FFLAGS = -O2
FLINKFLAGS = -O2
RAND = (none)

Please send feedbacks and/or the results of this run to:

NPB Development Team
Internet: npb@nas.nasa.gov

S=C=A=N: Mon Mar 18 13:56:24 2019: Collect done (status=0) 232s
S=C=A=N: ./scorep_bt_144_sum complete.

$ ls scorep_bt_144_sum
MANIFEST.md scorep.cfg scorep.log
profile.cubex scorep.filter summary.cubex

This new measurement produced an experiment directory containing one additional file
compared to the initial run: a copy of the measurement filter in scorep.filter. Notice
that applying the runtime filtering reduced the measurement overhead significantly, down
to now only 5.5% (228.02 seconds vs. 216.00 seconds for the reference run). This new
measurement with the optimized configuration should therefore quite accurately represent
the real runtime behavior of the BT application, and can now be post-processed and
interactively explored using the Cube result browser. These two steps can be conveniently
initiated using the scalasca -examine command:

$ scalasca -examine scorep_bt_144_sum
INFO: Post-processing runtime summarization report (profile.cubex)...
INFO: Displaying ./scorep_bt_144_sum/summary.cubex...

Examination of the summary result (see Figure 2.1 for a screenshot and Section 2.4.5.1
for a brief summary of how to use the Cube browser) shows that 96.5% of the overall CPU
allocation time is spent in computations, while 3% of the time is spent in MPI point-to-point
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communication functions and the remainder scattered across other activities. The point-
to-point time is almost entirely spent in MPI_Wait calls inside the three solver functions
x_solve, y_solve and z_solve, as well as an MPI_Waitall in the boundary exchange
routine copy_faces. Computation time is also mostly spent in the solver routines and
the boundary exchange, however, inside the different solve_cell, backsubstitute and
compute_rhs functions. While the aggregated time spent in the computational routines
seems to be relatively balanced across the different MPI ranks (determined using the box
plot view in the right pane), there is quite some variation for the MPI_Wait / MPI_Waitall
calls.

Figure 2.1: Screenshot of a summary experiment result in the Cube report browser.

2.4.5.1 Using the Cube browser

The following paragraphs provide a very brief introduction to the usage of the Cube analysis
report browser. To make effective use of the GUI, however, please also consult the CubeGUI
User Guide [4].

Cube is a generic user interface for presenting and browsing performance and debugging
information from parallel applications. The underlying data model is independent from
particular performance properties to be displayed. The Cube main window (see Figure 2.1)
consists of three panels containing tree displays or alternate graphical views of analysis
reports. The left panel shows performance properties of the execution, such as time or the
number of visits. The middle pane shows the call tree or a flat profile of the application.
The right pane either shows the system hierarchy consisting of, for example, machines,
compute nodes, processes, and threads, or various graphical representations such as a
topological view of the application's processes and threads (if available), or a box/violin
plot view showing the statistical distribution of values across the system. All tree nodes are
labeled with a metric value and a color-coded box which can help in identifying hotspots.
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The metric value color is determined from the proportion of the total (root) value or some
other specified reference value, using the color scale at the bottom of the window.

A click on a performance property or a call path selects the corresponding node. This has
the effect that the metric value held by this node (such as execution time) will be further
broken down into its constituents in the panels right of the selected node. For example,
after selecting a performance property, the middle panel shows its distribution across the
call tree. After selecting a call path (i.e., a node in the call tree), the system tree shows
the distribution of the performance property in that call path across the system locations.
A click on the icon to the left of a node in each tree expands or collapses that node. By
expanding or collapsing nodes in each of the three trees, the analysis results can be viewed
on different levels of granularity (inclusive vs. exclusive values).

All tree displays support a context menu, which is accessible using the right mouse button
and provides further options. For example, to obtain the exact definition of a performance
property, select "Documentation" in the context menu associated with each performance
property. A brief description can also be obtained from the menu option "Info".

2.4.6 Trace collection and analysis

While summary profiles only provide process- or thread-local data aggregated over time,
event traces contain detailed time-stamped event data which also allows to reconstruct the
dynamic behavior of an application. This enables tools such as the Scalasca trace analyzer
to provide even more insights into the performance behavior of an application, for example,
whether the time spent in MPI communication is real message processing time or incurs
significant wait states (i.e., intervals where a process sits idle without doing useful work
waiting for data from other processes to arrive).

Trace collection and subsequent automatic analysis by the Scalasca trace analyzer can
be enabled using the -t option of scalasca -analyze. Since this option enables trace
collection in addition to collecting a summary measurement, it is often used in conjunction
with the -q option which turns off measurement entirely. (Note that the order in which
these two options are specified matters: First turn off measurement using -q, then enable
tracing with -t.)

Attention:
Do not forget to specify an appropriate measurement configuration (i.e., a
filtering file and SCOREP_TOTAL_MEMORY setting)! Otherwise, you may easily fill up
your disks and suffer from uncoordinated intermediate trace buffer flushes, which
typically render such traces to be of little (or no) value!

For our example measurement, scoring of the initial summary report in Section 2.4.4 with
the filter applied estimated a total memory requirement of 30 MiB per process (which could
be verified by re-scoring the filtered summary measurement). As this exceeds the default
SCOREP_TOTAL_MEMORY setting of 16 MiB, use of the prepared filtering file alone is not yet
sufficient to avoid intermediate trace buffer flushes. In addition, the SCOREP_TOTAL_MEMORY
setting has to be adjusted accordingly before starting the trace collection and analysis. For
the example measurement shown below, a slightly larger memory buffer of 32 MiB is used,
although this is not strictly necessary. As an alternative, the filtering file could be extended
to also exclude additional routines from measurement (e.g., binvrhs) to further reduce the
trace buffer requirements at the expense of loosing details.
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With this setting in place, a trace measurement can now be collected and subsequently
analyzed by the Scalasca trace analyzer. Note that renaming or removing the summary
experiment directory is not necessary, as trace experiments are created with suffix "trace".

$ export SCOREP_TOTAL_MEMORY=32M
$ scalasca -analyze -q -t -f npb-bt.filt mpiexec -n 144 ./bt.D.144
S=C=A=N: Scalasca 2.5 trace collection and analysis
S=C=A=N: ./scorep_bt_144_trace experiment archive
S=C=A=N: Mon Mar 18 13:57:08 2019: Collect start
mpiexec -n 144 ./bt.D.144

NAS Parallel Benchmarks 3.3 -- BT Benchmark

No input file inputbt.data. Using compiled defaults
Size: 408x 408x 408
Iterations: 250 dt: 0.0000200
Number of active processes: 144

Time step 1
Time step 20
Time step 40
Time step 60
Time step 80
Time step 100
Time step 120
Time step 140
Time step 160
Time step 180
Time step 200
Time step 220
Time step 240
Time step 250
Verification being performed for class D
accuracy setting for epsilon = 0.1000000000000E-07
Comparison of RMS-norms of residual

1 0.2533188551738E+05 0.2533188551738E+05 0.1499315900507E-12
2 0.2346393716980E+04 0.2346393716980E+04 0.8546885387975E-13
3 0.6294554366904E+04 0.6294554366904E+04 0.2745293523008E-14
4 0.5352565376030E+04 0.5352565376030E+04 0.8376934357159E-13
5 0.3905864038618E+05 0.3905864038618E+05 0.6650300273080E-13

Comparison of RMS-norms of solution error
1 0.3100009377557E+03 0.3100009377557E+03 0.1373406191445E-12
2 0.2424086324913E+02 0.2424086324913E+02 0.1600422929406E-12
3 0.7782212022645E+02 0.7782212022645E+02 0.4090394153928E-13
4 0.6835623860116E+02 0.6835623860116E+02 0.3596566920650E-13
5 0.6065737200368E+03 0.6065737200368E+03 0.2605201960010E-13

Verification Successful

BT Benchmark Completed.
Class = D
Size = 408x 408x 408
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Iterations = 250
Time in seconds = 227.78
Total processes = 144
Compiled procs = 144
Mop/s total = 256110.17
Mop/s/process = 1778.54
Operation type = floating point
Verification = SUCCESSFUL
Version = 3.3.1
Compile date = 18 Mar 2019

Compile options:
MPIF77 = scorep mpifort
FLINK = $(MPIF77)
FMPI_LIB = (none)
FMPI_INC = (none)
FFLAGS = -O2
FLINKFLAGS = -O2
RAND = (none)

Please send feedbacks and/or the results of this run to:

NPB Development Team
Internet: npb@nas.nasa.gov

S=C=A=N: Mon Mar 18 14:01:04 2019: Collect done (status=0) 236s
S=C=A=N: Mon Mar 18 14:01:04 2019: Analyze start
mpiexec -n 144 scout.mpi ./scorep_bt_144_trace/traces.otf2
SCOUT (Scalasca 2.5)
Copyright (c) 1998-2019 Forschungszentrum Juelich GmbH
Copyright (c) 2009-2014 German Research School for Simulation Sciences GmbH

Analyzing experiment archive ./scorep_bt_144_trace/traces.otf2

Opening experiment archive ... done (0.008s).
Reading definition data ... done (0.017s).
Reading event trace data ... done (0.280s).
Preprocessing ... done (0.366s).
Analyzing trace data ... done (2.511s).
Writing analysis report ... done (0.104s).

Max. memory usage : 170.812MB

*** WARNING ***
40472 clock condition violations detected:

Point-to-point: 40472
Collective : 0

This usually leads to inconsistent analysis results.

Try running the analyzer using the ’--time-correct’ command-line
option to apply a correction algorithm.
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Total processing time : 3.383s
S=C=A=N: Mon Mar 18 14:01:09 2019: Analyze done (status=0) 5s
Warning: 3.686GB of analyzed trace data retained in ./scorep_bt_144_trace/traces!
S=C=A=N: ./scorep_bt_144_trace complete.

$ ls scorep_bt_144_trace
MANIFEST.md scorep.filter scout.cubex trace.cubex traces.def trace.stat
scorep.cfg scorep.log scout.log traces traces.otf2

As can be seen, the scalasca -analyze convenience command automatically initiates
the trace analysis after successful trace collection. Besides the already known files
MANIFEST.md, scorep.cfg, scorep.filter, and scorep.log, the generated experiment
directory scorep_bt_144_trace now contains artifacts related to trace measurement and
analysis:

• an OTF2 trace archive consisting of the anchor file traces.otf2, the global definitions
file traces.def, and the per-process data in the traces/ directory,

• the trace analysis log file scout.log, and finally

• the trace analysis reports scout.cubex and trace.stat.

The Scalasca trace analyzer also warned about a number of point-to-point clock condition
violations it detected. A clock condition violation is a violation of the logical event order
that can occur when the local clocks of the individual compute nodes are insufficiently
synchronized. For example, based on the measured timestamps, a receive operation may
appear to have finished before the corresponding send operation started—something that
is obviously not possible. The Scalasca trace analyzer includes a correction algorithm [1]
that can be applied in such cases to restore the logical event order, while trying to preserve
the length of intervals between local events in the vicinity of the violation.

To enable this correction algorithm, the --time-correct command-line option has to
be passed to the Scalasca trace analyzer. However, since the analyzer is implicitly
started through the scalasca -analyze command, this option has to be set using
the SCAN_ANALYZE_OPTS environment variable, which holds command-line options that
scalasca -analyze should forward to the trace analyzer. Instead of collecting and
analyzing a new experiment, an existing trace measurement can also be re-analyzed using
the -a option of the scalasca -analyze command:

$ export SCAN_ANALYZE_OPTS="--time-correct"
$ scalasca -analyze -a mpiexec -n 144 ./bt.D.144
S=C=A=N: Scalasca 2.5 trace analysis
S=C=A=N: ./scorep_bt_144_trace experiment archive
S=C=A=N: Mon Mar 18 14:02:57 2019: Analyze start
mpiexec -n 144 scout.mpi --time-correct ./scorep_bt_144_trace/traces.otf2
SCOUT (Scalasca 2.5)
Copyright (c) 1998-2019 Forschungszentrum Juelich GmbH
Copyright (c) 2009-2014 German Research School for Simulation Sciences GmbH

Analyzing experiment archive ./scorep_bt_144_trace/traces.otf2

Opening experiment archive ... done (0.013s).
Reading definition data ... done (0.023s).
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Reading event trace data ... done (0.615s).
Preprocessing ... done (0.478s).
Timestamp correction ... done (0.463s).
Analyzing trace data ... done (2.653s).
Writing analysis report ... done (0.106s).

Max. memory usage : 174.000MB

# passes : 1
# violated : 9450
# corrected : 23578735
# reversed-p2p : 9450
# reversed-coll : 0
# reversed-omp : 0
# events : 301330922
max. error : 0.000048 [s]
error at final. : 0.000000 [%]
Max slope : 0.394363334

Total processing time : 4.448s
S=C=A=N: Mon Mar 18 14:03:07 2019: Analyze done (status=0) 10s
Warning: 3.686GB of analyzed trace data retained in ./scorep_bt_144_trace/traces!
S=C=A=N: ./scorep_bt_144_trace complete.

Note:
The additional time required to execute the timestamp correction algorithm is typi-
cally small compared to the trace data I/O time and waiting times in the batch queue
for starting a second analysis job. On platforms where clock condition violations are
likely to occur (i.e., clusters), it is therefore often convenient to enable the timestamp
correction algorithm by default.

Similar to the summary report, the trace analysis report can finally be post-processed and
interactively explored using the Cube report browser, again using the scalasca -examine
convenience command:

$ scalasca -examine scorep_bt_144_trace
INFO: Post-processing trace analysis report (scout.cubex)...
INFO: Displaying ./scorep_bt_144_trace/trace.cubex...

The report generated by the Scalasca trace analyzer is again a profile in CUBE4 format,
however, enriched with additional performance properties. Examination shows that about
two-thirds of the time spent in MPI point-to-point communication is waiting time, split into
roughly 60% in Late Sender and 40% in Late Receiver wait states (see Figure 2.2). While
the execution time in the solve_cell routines looked relatively balanced in the summary
profile, examination of the Critical path imbalance metric shows that these routines in fact
exhibit a small amount of imbalance, which is likely to cause the wait states at the next
synchronization point. This can be verified using the Late Sender delay costs metric, which
confirms that the solve_cells as well as the y_backsubstitute and z_backsubstitute
routines are responsible for almost all of the Late Sender wait states. Likewise, the Late
Receiver delay costs metric shows that the majority of the Late Receiver wait states are
caused by the solve_cells routines as well as the MPI_Wait calls in the solver routines,
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where the latter indicates a communication imbalance or an inefficient communication
pattern.

Figure 2.2: Screenshot of a trace analysis result in the Cube report browser.
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3 Command reference

This chapter provides a detailed reference for the most commonly used commands provided
by the Scalasca Trace Tools package. For each command, it explains its purpose, usage,
options, and configuration possibilities following a man-page style. Corresponding man
pages are also installed under <prefix>/share/man (unless configured differently) which
can be made available to the man command by adding the path to the $MANPATH environment
variable.

27



3 Command reference

3.1 scalasca – Scalasca information and proxy

command

SYNOPSIS

scalasca [OPTIONS]
scalasca [OPTIONS] ACTION ACTION_ARGS

DESCRIPTION

The scalasca command allows to query information about a Scalasca Trace Tools installa-
tion, but can also be used as a proxy command for measurement, analysis, post-processing,
and report examination tasks.

When used without an ACTION argument, the scalasca command provides various OP-
TIONS to query and display information about the Scalasca Trace Tools installation, such
as the version number, the configuration summary report, or installation-dependent path
information. It is also possible to display a quick reference guide (if a suitable PDF viewer
is found on the system).

By contrast, if an ACTION argument is given, the scalasca command acts as a proxy
which simply delegates the requested operation to the underlying specific command. It
can therefore be considered a single-entry-point convenience command that is easy to
remember.

ACTIONS

Since ACTION arguments enable the delegation of operations, please refer to the docu-
mentation of the respective underlying command for possible ACTION_ARGS. Also, note
that ACTION_ARGS have to be provided after the ACTION argument.

-a, --analyze, --analyse
Run application under the control of the Scalasca measurement collection and analysis
nexus scan(1).

-e, --examine
Examine measurement analysis report using the Scalasca analysis report explorer
square(1).

Deprecated actions

-i, -inst, --instrument
Prepare application objects and executable for measurement using the Score-P
instrumenter. This action only exists for backward compatibility with the Scalasca 1.x
release series.
Users are strongly encouraged to use the 'scorep' instrumenter command
directly to take full advantage of its improved functionality.

28



3.1 scalasca – Scalasca information and proxy command

OPTIONS

-c, --show-config
Print configuration summary, then exit.

-h, --help
Print a brief usage summary, then exit.

-n, --dry-run
Print the command(s) to be launched, but do not execute them.

--quickref
Display quick reference guide, then exit.

--remap-specfile
Show path to remapper specification file used for trace-analysis report post-
processing, then exit.

-v, --verbose
Enable verbose mode.

-V, --version
Print version information, then exit.

EXIT STATUS

scalasca exits with status 0 on success, and greater than 0 if errors occur.

EXAMPLES

scalasca --version
Displays the Scalasca Trace Tools version number.

scalasca --analyze mpiexec -n 4 foo args
Execute the instrumented MPI program foo with command-line arguments args, collecting
a runtime summary (default). Results in an experiment directory scorep_foo_4_sum.

scalasca --examine -s -f filter scorep_foo_4_sum
Post-process measurement reports in scorep_foo_4_sum and generate a score report with
the run-time measurement filter rules from the file filter applied.

SEE ALSO

scan(1), square(1)
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3.2 scan – Scalasca measurement collection and

analysis nexus

SYNOPSIS

scan [OPTIONS] [LAUNCHER [LAUNCHER_ARGS]] TARGET [TARGET_ARGS]

DESCRIPTION

scan, the Scalasca measurement collection and analysis nexus, manages the configuration
and processing of performance experiments with an executable TARGET. TARGET needs to
be instrumented beforehand using the Score-P instrumentation and measurement system.
In particular, scan integrates the following steps:

• Measurement configuration

• Application execution using any given arguments TARGET_ARGS

• Collection of measured data

• Automatic post-mortem trace analysis (if configured)

Many different experiments can typically be performed with a single instrumented exe-
cutable without needing to re-instrument, by using different measurement and analysis
configurations. The default runtime summarization mode directly produces an analysis
report for examination, whereas event trace collection and analysis are automatically done
in two steps to produce a profile augmented with additional metrics.

Serial and multi-threaded programs are typically launched directly, whereas MPI and hybrid
MPI+X programs usually require a special LAUNCHER command such as mpiexec, which
may need additional arguments LAUNCHER_ARGS (e.g., to specify the number of processes
to be created). scan automatically recognizes many MPI launchers, but if not, the MPI
launcher name can be specified using the environment variable SCAN_MPI_LAUNCHER
(see ENVIRONMENT).

scan examines the executable TARGET to determine whether Score-P instrumentation
is present; otherwise the measurement is aborted. The number of MPI processes and
OpenMP threads are determined from LAUNCHER_ARGS and/or the environment. If the
target executable is not specified as one of the launcher arguments, it is expected to be the
immediately following part of the command line. It may be necessary to use a double-dash
specification (--) to explicitly separate the target from the preceding launcher specification.
If there is an imposter executable or script, e.g., often used to specify placement/thread
binding, that precedes the instrumented TARGET, it may be necessary to explicitly identify
the target with the environment variable SCAN_TARGET (see ENVIRONMENT).

A unique directory is created for each measurement experiment, which must not already
exist when measurement starts unless SCAN_OVERWRITE is enabled (see ENVIRON-
MENT); otherwise measurement is aborted. A default name for each measurement archive
directory is created from a 'scorep_' prefix, the name of the executable TARGET, the run
configuration (e.g., number of processes specified), and the measurement configuration.
This default name can be overwritten using the SCOREP_EXPERIMENT_DIRECTORY
environment variable (see ENVIRONMENT) or the -e command-line option.
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When measurement has completed, the measurement archive directory contains all artifacts
produced by the measurement and subsequent trace analysis (if configured). In particular,
the following files are produced independent from the selected measurement mode:

• MANIFEST.md: a text file briefly describing the directory contents produced by the
Score-P measurement system

• scorep.cfg: a copy of the measurement configuration

• scorep.log: the measurement log file

• scorep.filter: a copy of the measurement filter (if provided)

In runtime summarization mode, the archive directory additionally contains:

• profile.cubex: the runtime summary result

In trace collection and analysis mode, the following additional files are generated:

• an OTF2 trace archive consisting of

– the anchor file traces.otf2,

– the global definitions file traces.def, and

– the per-process data files in the traces/ directory

• scout.log: the trace analysis log file

• scout.cubex: the trace analysis result

• trace.stat: trace analysis pattern statistics

In multi-run mode, the results of the individual runs are stored in subdirectories inside the
top-level measurement archive directory. In addition, the following file will be archived:

• scalasca_run.cfg: a (possibly auto-generated) copy of the multi-run configuration
specification file

OPTIONS

The scan command accepts the following command-line options. Note that configuration
settings specified on the command line take precedence over those specified via environ-
ment variables (see ENVIRONMENT). Also, see MULTI-RUN EXPERIMENTS below for
details on interactions with configuration file settings.

-h
Print a brief usage summary, then exit.

-v
Increase verbosity.

-n
Print the command(s) to be launched, but do not execute them.

-q
Quiescent execution with neither summarization nor tracing enabled. Sets both
SCOREP_ENABLE_PROFILING and SCOREP_ENABLE_TRACING to 'false'.

-s
Enable runtime summarization mode. Sets SCOREP_ENABLE_PROFILING to 'true'.
This is the default.
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-t
Enable trace collection and analysis. Sets SCOREP_ENABLE_TRACING to 'true'.

-a
Skip measurement step to (re-)analyze an existing trace.

-e experiment_dir
Override default experiment archive name to generate and/or analyze experiment_dir.
Sets SCOREP_EXPERIMENT_DIRECTORY.

-f filter_file
Use the measurement filter rules from filter_file. Sets SCOREP_FILTERING_FILE.

-l lock_file
Block start of measurement while lock_file exists.

-R num_runs
Specifies the number measurement runs per configuration (default=1).

-M config_file
Allows to specify a configuration file describing multi-run experiment settings. See
MULTI-RUN EXPERIMENTS below for details.

-P preset
Specify a preset for a multi-run measurement, e.g., 'pop'. See MULTI-RUN EXPERI-
MENTS below for details.

-L
List all available multi-run presets.

-D config_file
Checks a multi-run config file for validity, if successful dumps the processed configu-
ration for comparison, and exits.

ENVIRONMENT

Environment variables with the 'SCAN_' prefix may be used to configure the scan nexus
itself (which is a serial workflow manager process), rather than the instrumented applica-
tion process(es) which will be measured, which can also be configured via environment
variables. Configuration specified on the nexus command-line takes precedence over that
specified via environment variables. See MULTI-RUN EXPERIMENTS below for details
on interactions with configuration file settings.

Environment variables controlling scan

SCAN_ANALYZE_OPTS
Specifies trace analyzer options (default: none). For details on the supported options,
see scout(1).

SCAN_CLEAN
If enabled, removes event trace data after successful trace analysis (default: 'false').

SCAN_MPI_LAUNCHER
Specifies a non-standard MPI launcher name.
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SCAN_MPI_RANKS
Specifies the number of MPI processes, for example in an MPMD use case or if the
number of ranks is not automatically identified correctly. The specified number will
also be used in the automatically generated experiment title. While an experiment
title with an incorrect number of processes is harmless (though generally confusing),
the correct number is required for automatic parallel trace analysis.
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SCAN_MULTIRUN_DEFAULT_CFG
Path to a multi-run configuration file that will be loaded per default in any measure-
ment based on configuration files or presets. As a default settings file, only global
settings are used to avoid interference with explicitly specified configs or presets.

SCAN_MULTIRUN_PRESET_PATH
Colon-separated list of paths containing preset files.

SCAN_OVERWRITE
If enabled, removes an existing experiment archive directory before measurement
(default: 'false').

SCAN_SETENV
If environment variables are not automatically forwarded to MPI processes by
the launcher, one can specify the syntax that the launcher requires for this as
SCAN_SETENV. For example, "-foo" results in passing "-foo key val" to the launcher,
while "–foo=" results in "–foo key=val".

SCAN_TARGET
If there is an imposter executable or script, for example, used to specify place-
ment/thread binding, that precedes the instrumented target, it may be necessary to
explicitly identify the target executable by setting SCAN_TARGET to the executable
name.

SCAN_TRACE_ANALYZER
Specifies an alternative trace analyzer to be used (e.g., scout.mpi or scout.hyb). If
'none' is specified, automatic trace analysis is skipped after measurement.

SCAN_TRACE_FILESYS
Specifies an optional list of colon separated paths identifying suitable file systems for
tracing. If set, the file system of trace measurements has to match at least one of the
specified file systems.

SCAN_WAIT
Time in seconds to wait for synchronization of a distributed filesystem after measure-
ment completion.

Common Score-P environment variables controlling the measurement

SCOREP_EXPERIMENT_DIRECTORY
Explicit experiment archive title.

SCOREP_ENABLE_PROFILING
Enable or disable runtime summarization.

SCOREP_ENABLE_TRACING
Enable or disable event trace generation.

SCOREP_FILTERING_FILE
Name of run-time measurement filter file.

SCOREP_VERBOSE
Controls the generation of additional (debugging) output from the Score-P measure-
ment system.
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SCOREP_TOTAL_MEMORY
Size of per-process memory in bytes reserved for Score-P.

For further details, please refer to the Score-P documentation and/or the output of
'scorep-info config-vars'.

MULTI-RUN EXPERIMENTS

scan also provides means to automate the generation of multiple measurements with vary-
ing configuration settings. This workflow can be employed for various analysis objectives,
as long as the variations are based on environment variables. Likely candidates are:

1. Increasing the statistical significance through multiple repetitions of measurements
with identical settings.

2. Spreading multiple hardware-counter measurements over different runs to limit the
measurement overhead and/or to overcome hardware limitations (e.g., number of
hardware performance counters that can be measured simultaneously).

3. Performing a series of measurements with varying application settings, like problem
size or input data.

Results of such multi-run experiments can be used individually, aggregated manually
using various Cube tools, or be passed to the square(1) command for automated report
aggregation.

Attention:
The degree of non-determinism in an application's runtime behavior will influence the
informative value of any aggregated result. Only with sufficient similarity between
application runs will the combination of results be useful.

Multi-run experiments are set up using a plain-text configuration file, which is passed to the
scan command via the -M command-line option. In this file, the begin of each measurement
run configuration is marked by a line starting with a single dash (-) character; the remainder
of the line will be ignored. Subsequent lines up to either the next run separator or the
end of the file may contain at most one variable setting of the form 'VARIABLE=VALUE'.
Optionally, a section with global settings can be specified at the beginning of the config
file, introduced by a line starting with two dashes (--); the remainder of this line will
again be ignored. A variable defined in the global section will be applied in all subsequent
run configurations unless it is overwritten by a run-specific setting. The configuration file
format also allows for single-line comments starting with a hash character (#) and blank
lines, both of which are ignored.

For example, the following multi-run configuration file defines a series of four subsequent
measurements with different settings:

# example run configuration file
# global section
-- this can also hold comments
SCOREP_ENABLE_TRACING=true

-
# first run with two PAPI metrics
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SCOREP_METRIC_PAPI=PAPI_TOT_CYC,PAPI_TOT_INS

-
# second run with different PAPI metric and increased Score-P memory
SCOREP_METRIC_PAPI=PAPI_LD_INS
SCOREP_TOTAL_MEMORY=42M

- third run with different PAPI metric
SCOREP_METRIC_PAPI=PAPI_VEC_DP

-
# fourth run using only global settings

Note that measurement configuration settings are not limited to scan or Score-P environ-
ment variables, but also allow for setting arbitrary variables in the measurement execution
environment. Also, the order in which measurements are specified may have an impact on
the aggregated result, see square(1) for details.

To ensure consistency and reproducibility, the environment must not contain Score-P or
Scalasca variables when using a multi-run configuration file. Otherwise, scan will abort
with an error providing a list of the offending variables. That is, all Score-P/Scalasca
settings to be applied have to be placed in either the global or run-specific sections of
the configuration. Moreover, all variables used anywhere in the configuration file will
be unset before each measurement run, and then set to either the global or run-specific
value if applicable, thus avoiding side effects from variable settings not specified in the
configuration file. The Score-P variable SCOREP_EXPERIMENT_DIRECTORY will not have any
effect inside the configuration file, as an automatic naming scheme—an extension to
the default Scalasca scheme—is enforced to keep the multi-run measurement directories
consistent. To set the experiment directory a priori, the scan command-line option -e
can be used. Other scan options that control the measurement (-q, -t, and -s) will be
ignored when used with a config file and should be set through the respective environment
variables in the configuration file for consistency.

A variation of the configuration file mode described above is the preset mode. The preset
mode combines predefined configurations for typical scenarios with global environment
variables for the specific use case. In this case, only variables used in the preset configu-
ration are blocked in the global environment to avoid interference with the functionality
provided by the selected preset. Available presets can be listed by using the -L option. By
default, only presets provided by the Scalasca installation are available. Additional presets
can be provided by adding paths to the SCAN_MULTIRUN_PRESET_PATH variable using a
colon as separator. Preset files have the extension .preset and follow the same syntax
as multi-run configuration files. To ensure the functionality of a preset in the presence
of additional user-defined Score-P/Scalasca variables, the preset configuration file has to
contain all variables that may interfere with the functionality of the preset by using default
settings.

In addition to multi-run experiments with different configuration settings, scan supports
repeating a single or a set of measurements multiple times via the -R command-line option,
for example, to provide increased statistical significance. For measurements without a
configuration file, the measurement will be repeated the requested number of times with
the current environment. In case of multi-run configurations, each individual run will be
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repeated the given number of times with the specified configuration.

For multi-run experiments, scan creates a common directory which contains the result
of each individual measurement run stored in a subdirectory. The name of the base
directory and the experiment directories contains the number of configurations as well as
the number of repetitions. To support reproducibility, the configuration used is stored in the
file scalasca_run.cfg in the common base directory. To test the validity of a configuration
file before running a measurement, scan provides the -D option. In this mode, the provided
configuration file is parsed and, on success, the processed data is dumped for comparison.

To store commonly used system- or user-specific variables, the user can specify a default
configuration file via SCAN_MULTIRUN_DEFAULT_CFG. Its global settings will be used in any
configuration- or preset-based multi-run measurement. Note that only the global settings
are used to avoid interference with explicitly specified files by adding additional runs to
the measurement.

EXIT STATUS

scan exits with status 0 if measurement and automatic trace analysis (if configured) were
successful, and greater than 0 if errors occur.

NOTES

While parsing the arguments, unrecognized flags might be reported as ignored, and
unrecognized options with required arguments might need to be quoted.

Instrumented applications can still be run without using scan to generate measurements,
however, measurement configuration is then exclusively via Score-P environment variables
(which must be explicitly exported to MPI processes) and trace analysis is not automatically
started after event trace collection.
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EXAMPLES

scan mpiexec -n 4 foo args
Execute the instrumented MPI program foo with command-line arguments args, collecting
a runtime summary (default). Results in an experiment directory scorep_foo_4_sum.

OMP_NUM_THREADS=3 scan -s mpiexec -n 4 foobar
Execute the instrumented hybrid MPI+OpenMP program foobar, collecting a run-
time summary (default, but explicitly requested). Results in an experiment directory
scorep_foobar_4x3_sum.

OMP_NUM_THREADS=3 scan -q -t -f filter bar
Execute the instrumented OpenMP program bar, collecting only an event trace with
the run-time measurement filter filter applied. Trace collection is immediately fol-
lowed by Scalasca's automatic trace analysis. Results in an experiment directory
scorep_bar_Ox3_trace.

SEE ALSO

scalasca(1), square(1), scout(1)
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3.3 square – Scalasca analysis report explorer

SYNOPSIS

square [OPTIONS] (EXPERIMENT_DIR | CUBE_FILE)

DESCRIPTION

square, the Scalasca analysis report explorer, facilitates post-processing, scoring, and
interactive examination of analysis reports from both runtime summarization and tracing
experiments.

When provided with a Score-P experiment directory EXPERIMENT_DIR, square post-
processes intermediate analysis reports produced by a measurement and/or an automatic
trace analysis to derive additional metrics and construct a hierarchy of measured and
derived metrics, and then presents this final report using the Cube GUI (unless the -s
option is used). If intermediate reports were already processed, the final report is shown
immediately. If there is more than one analysis report in a Score-P experiment directory,
the most comprehensive report is shown by default.

When provided with the name of a specific analysis report CUBE_FILE, post-processing is
skipped and the corresponding report is shown immediately.

Analysis report examination can only be done after measurement and analysis are com-
pleted. Parallel resources are not required, and it is often more convenient to examine
analysis reports on a different system, such as a desktop computer where interactivity is
superior.

Depending on the measurement configuration and the provided options, square places
additional files into the experiment archive directory. For single-run experiments, the
following files are created if the corresponding input files are available:

• summary.cubex: post-processed runtime summary result

• trace.cubex: post-processed trace analysis result

In scoring mode (-s option), square generates:

• scorep.score: detailed measurement score report, optionally suffixed with the name
of a provided filter file (-f option)

In multi-run mode, aggregated reports are created if the corresponding input files are
available:

• profile_aggr.cubex: aggregated runtime summary result

• scout_aggr.cubex: aggregated trace analysis result

• scout+profile.cubex: merged runtime summary and trace analysis result

• summary_aggr.cubex: post-processed aggregated runtime summary result

• trace_aggr.cubex: post-processed aggregated trace analysis result

• trace+summary.cubex: post-processed merged runtime summary and trace result
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OPTIONS

Common options

-C LEVEL
Level of sanity checks for newly created reports (default: 'none'). 'quick' performs
various sanity checks on the experiment meta data, while 'full' also executes a more
time-consuming check for negative metric values (which usually indicate a serious
error).

-c num_counter
Specifies the number of hard- and software counters that shall be considered when
generating a score report (option -s). By default, this value is 0, which means that
only a timestamp is measured on each event. If you plan to record extra counters
specify the number of counters. Otherwise, scoring may underestimate the required
space.

-F
Force post-processing of analysis reports, even if a post-processed report already
exists.

-f filter_file
Apply the specified filter file when generating a score report (option -s).

-s
Output a textual score report. Skips launching the Cube GUI.

-v
Enable verbose mode.

-n
Suppress the calculation of 'Idle Threads' metric.

-x <scorep-score opt>
Pass option(s) directly to scorep-score. Any composite options have to be quoted as
needed.

Options for multi-run experiments

-S MODE
Set aggregation mode for runtime summarization results of each configuration. Cur-
rently supported modes are 'mean' and 'merge' (default).

-T MODE
Set aggregation mode for trace analysis results of each configuration. Currently
supported modes are 'mean' and 'merge' (default).

-A
Force post-processing of every individual step report of a multi-run experiment.
WARNING: Depending on the number and size of the individual measurement reports,
the time required to post-process all reports can be significant!

-I
Ignore structural sanity checks and force aggregation of measurements in a multi-run
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experiment.

MULTI-RUN EXPERIMENTS

For multi-run experiments, square provides additional options to aggregate the set of
measurement results into a single Cube file. The user can choose between the two aggre-
gation methods 'merge' and 'mean' to combine results from different configurations, which
underneath use the corresponding CubeLib command-line tools. The default aggregation
mode is to 'merge' results.

Note:
The 'merge' operation always copies metric data from the last measurement configu-
ration in a given set in which data for a particular metric is available. This should be
taken into account when setting up a multi-run experiment that is supposed to be
aggregated using the square command later on. In particular, it is recommended to
include a low-overhead measurement without hardware performance counters at the
end of a measurement configuration set including hardware counter measurements
in order to provide more accurate time information.

The aggregation of multi-run measurement results happens in the following order:

1. Aggregate results from multiple runs for each measurement configuration. At this
point, the only supported mode for this aggregation is 'mean', which is therefore
hard-coded.

2. Aggregate averaged runtime summarization results from all configurations in ascend-
ing order using the selected mode (-S option).

3. Aggregate averaged trace analysis analysis results from all configurations in ascend-
ing order using the selected mode (-T option).

4. Merge the aggregated runtime summarization and trace analysis results into a
combined report.

5. Post-process the combined report (step 4) if available, otherwise post-process the
aggregated report(s) generated in either step 2 or step 3.

Depending on the measurement settings, those steps will be applied if the respective
intermediate results are found. Before merging intermediate results, square performs
sanity checks to compare the call-tree structure to ensure merging will result in a valid
Cube file. In rare cases, where the user is aware of potential call-tree differences, it may
be necessary to skip these checks, which can be accomplished by passing the -I option.
However, note that this may produce erroneous or at least misleading results. The reports
of the individual runs will only be post-processed when explicitly requested (-A option).

EXIT STATUS

square exits with status 0 on success, and greater than 0 if errors occur.
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NOTES

To examine an analysis report on a different system, for example, a desktop or laptop
computer, it is often best to post-process the report using square's scoring functionality
(-s option) on the system where the measurement has been taken, and then copy over the
resulting post-processed Cube file. This is because square requires various command-line
tools and support files from the Score-P, CubeLib, and Scalasca Trace Tools packages,
which may not be available on the target computer.

EXAMPLES

square scorep_foo_4_trace
Post-process measurement reports in scorep_foo_4_trace and display the most comprehen-
sive report using the Cube GUI.

square -s -f filter scorep_foo_4_sum
Post-process measurement reports in scorep_foo_4_sum and generate a score report with
the run-time measurement filter rules from the file filter applied.

square -S mean scorep_foo_4_multi-run_c2_r4
Aggregate and post-process the measurement results of the multi-run experiment with
two configurations and four runs per configuration stored in scorep_foo_4_multi-run_c2_r4.
Then, show the most comprehensive report using the Cube GUI.

SEE ALSO

scalasca(1), scan(1)
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3.4 scout – Scalasca parallel trace analyzer

SYNOPSIS

scout.ser [OPTION] (ANCHOR_FILE | EXPERIMENT_DIR)
scout.omp [OPTION] (ANCHOR_FILE | EXPERIMENT_DIR)
scout.mpi [OPTION] (ANCHOR_FILE | EXPERIMENT_DIR)
scout.hyb [OPTION] (ANCHOR_FILE | EXPERIMENT_DIR)

DESCRIPTION

scout is the scalable automatic trace-analysis component of the Scalasca Trace Tools. In
particular, it provides the ability to

• identify wait states in communication and synchronization operations that occur, for
example, as a result of unevenly distributed workloads,

• pinpoint the root causes of those wait states (i.e., delays), and

• identify the activities on the critical path of the target application, highlighting
those routines which determine the length of the program execution and therefore
constitute the best candidates for optimization.

Usually, scout is launched automatically by the Scalasca measurement collection and
analysis nexus scan(1) after a successful measurement if event tracing is configured.
However, it can also be run manually on an existing event trace measurement.

scout currently supports trace experiments in two different event trace formats: OTF2
traces generated by the Score-P instrumentation and measurement system, and legacy
traces in EPILOG format generated by the measurement system of the Scalasca 1.x re-
lease series. For OTF2 event traces, scout has to be provided with the corresponding
ANCHOR_FILE (e.g., 'traces.otf2'), for EPILOG traces with the experiment directory
name EXPERIMENT_DIR.

Depending on the build configuration and the capabilities of the target platform, the scout
analyzer may be available in up to four forms:

scout.ser
is always built. It is used to analyze event traces generated by serial applications. It
can also be used to analyze event traces from multi-threaded applications, however,
it will then only provide information about the master thread.

scout.omp
is built whenever the Scalasca Trace Tools are configured with OpenMP support. It
is used to analyze event traces generated by pure multi-threaded applications (e.g.,
using OpenMP or POSIX threads). It can also be used to analyze event traces from
serial applications, though analysis incurs a higher overhead than using scout.ser.

scout.mpi
is built whenever the Scalasca Trace Tools are configured with MPI support. It is
used to analyze event traces generated by pure MPI applications. It can also be used
on traces from multi-threaded MPI applications, however, it will then only provide
information about the master thread of each process and its MPI activities.
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scout.hyb
is built if the Scalasca Trace Tools are configured with both MPI and OpenMP support.
It is used to analyze event traces generated by multi-threaded MPI applications (e.g.,
MPI+OpenMP or MPI+Pthreads), providing information about all OpenMP/POSIX
threads of each MPI process. It can also be used on traces from pure MPI applications,
though analysis incurs a slightly higher overhead than using scout.mpi.

Note that scout.mpi and scout.hyb are implemented as MPI programs, and therefore
have to be executed using appropriate MPI launch commands and flags. Also, the number
of MPI processes for scout must be identical to the number of MPI processes used for the
target application execution.

If successful, scout produces the following output files in the measurement archive direc-
tory:

• scout.cubex: the trace analysis result

• trace.stat: trace analysis pattern statistics

OPTIONS

scout accepts a number of command-line options to enable/disable particular analysis
features. When scout is launched automatically from the Scalasca measurement col-
lection and analysis nexus scan(1), these options can be passed to the analyzer via the
SCAN_ANALYZE_OPTS environment variable.

Common options

--statistics
Enables most-severe instance tracking and wait-state statistics. This is the default.

--no-statistics
Disables most-severe instance tracking and wait-state statistics.

--critical-path
Enables critical-path analysis. This is the default.

--no-critical-path
Disables critical-path analysis.

--rootcause
Enables root-cause analysis. This is the default.

--no-rootcause
Disables root-cause analysis.

--single-pass
Use single-pass forward analysis only. Disables both critical-path and root-cause
analysis, as well as the detection of Late Receiver wait states.

-v, --verbose
Increase verbosity.

--help
Print a brief usage summary, then exit.
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MPI options (scout.mpi/scout.hyb only)

--time-correct
Enables enhanced timestamp correction. Event traces collected on clusters with-
out a synchronized clock may contain logical clock condition violations (such as a
receive completing before the corresponding send is initiated). When scout detects
such situations, it issues a warning that the analysis may be inconsistent and recom-
mends (re-)running trace analysis with its integrated timestamp correction algorithm
activated.

--no-time-correct
Disables enhanced timestamp correction. This is the default.

EXIT STATUS

scout exits with status 0 if automatic trace analysis was successful, and greater than 0 if
errors occur.

NOTES

scout poses a number of requirements on the input event trace data, which are documented
in the OPEN_ISSUES file installed as part of the Scalasca Trace Tools documentation. It is
also available online at [16]. If those requirements are not met, scout may abort, deadlock,
or crash.

If scout crashes or deadlocks even though the documented requirements are met (which
usually indicates a bug), restricting the scope of the analysis by disabling certain features
(e.g., critical-path and/or root-cause analysis) may help as a workaround. In any case,
please report such issues for further investigation (see Chapter 4).

EXAMPLES

scout.omp scorep_foo_Ox4_trace/traces.otf2
Perform the Scalasca OpenMP event trace analysis on the OTF2 event trace with anchor
file scorep_foo_Ox4_trace/traces.otf2.

mpiexec -n 16 scout.mpi --time-correct scorep_bar_16_trace/traces.otf2
Apply the enhanced timestamp correction and perform the Scalasca MPI event trace
analysis on the OTF2 event trace with anchor file scorep_bar_16_trace/traces.otf.

mpiexec -n 4 scout.hyb epik_foobar_4x4_trace
Perform the hybrid Scalasca MPI+OpenMP event trace analysis on the EPILOG event trace
in the experiment archive epik_foobar_4x4_trace generated by the Scalasca 1.x release
series.

SEE ALSO

scalasca(1), scan(1), square(1)
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4 Reporting bugs

Like every other software, the Scalasca Trace Tools may contain bugs. If you en-
counter obviously broken, weird, or otherwise unexplainable behavior, please report it to
scalasca@fz-juelich.de.

Before doing so, however, please check the OPEN_ISSUES file installed as part of the
Scalasca Trace Tools documentation (also available online at [16]) whether the issue is
already known. If not, make sure to include at least the following information in your bug
report:

• The Scalasca Trace Tools version reported by 'scalasca --version'.

• The Scalasca Trace Tools configuration reported by 'scalasca --show-config'.

• The Score-P version reported by 'scorep --version'.

• The Score-P configuration reported by 'scorep-info config-summary'.

• The exact command line of the failing command.

• The exact failure/error message.

Also, if the trace analysis fails, please archive a copy of the entire experiment archive
directory including the event trace data, as this may be required to aid in debugging.
However, ONLY PROVIDE TRACE DATA IF EXPLICITLY REQUESTED, as the data
volume may be excessive.
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