
Scalasca 2.1 User Guide
Scalable Automatic Performance Analysis

August 2014
The Scalasca Development Team
scalasca@fz-juelich.de

The entire code of Scalasca v2 is licensed under the BSD-style license agreement given
below, except for the third-party code distributed in the ’vendor/’ subdirectory. Please
see the corresponding COPYING files in the subdirectories of ’vendor/’ included in the
distribution tarball for details.

Scalasca v2 License Agreement

Copyright © 1998–2014 Forschungszentrum Jülich GmbH, Germany
Copyright © 2009–2014 German Research School for Simulation Sciences GmbH,

Jülich/Aachen, Germany
Copyright © 2014 RWTH Aachen University, Germany
Copyright © 2003–2008 University of Tennessee, Knoxville, USA
Copyright © 2006 Technische Universität Dresden, Germany

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

• Neither the names of

– the Forschungszentrum Jülich GmbH,

– the German Research School for Simulation Sciences GmbH,

– the RWTH Aachen University,

– the University of Tennessee,

– the Technische Universität Dresden,

nor the names of their contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

ii

Attention

The Scalasca User Guide is currently being rewritten and still incomplete.
However, it should already contain enough information to get you started
and avoid the most common pitfalls.

iii

Contents

1 Introduction 1

2 Getting started 3
2.1 Instrumentation . 4
2.2 Runtime measurement collection & analysis . 5
2.3 Analysis report examination . 6
2.4 A full workflow example . 7

2.4.1 Preparing a reference execution . 8
2.4.2 Instrumenting the application code . 11
2.4.3 Initial summary measurement . 12
2.4.4 Optimizing the measurement configuration 14
2.4.5 Summary measurement & examination 17

2.4.5.1 Using the Cube browser . 19
2.4.6 Trace collection and analysis . 21

Bibliography 27

v

1 Introduction

Supercomputing is a key technology of modern science and engineering, indispensable
to solve critical problems of high complexity. However, since the number of cores on
modern supercomputers is increasing from generation to generation, HPC applications are
required to harness much higher degrees of parallelism to satisfy their growing demand for
computing power. Therefore – as a prerequisite for the productive use of today’s large-scale
computing systems – the HPC community needs powerful and robust performance analysis
tools that make the optimization of parallel applications both more effective and more
efficient.

Jointly developed at the Jülich Supercomputing Centre and the German Research School
for Simulation Sciences (Aachen), the Scalasca Tracing Tools are a collection of trace-based
performance analysis tools that have been specifically designed for use on large-scale
systems such as IBM Blue Gene or Cray XT and successors, but also suitable for smaller
HPC platforms. While the current focus is on applications using MPI [8], OpenMP [10] or
hybrid MPI+OpenMP, support for other parallel programming paradigms may be added
in the future. A distinctive feature of the Scalasca Tracing Tools is its scalable automatic
trace-analysis component which provides the ability to identify wait states that occur, for
example, as a result of unevenly distributed workloads [5]. Especially when trying to scale
communication intensive applications to large process counts, such wait states can present
severe challenges to achieving good performance. In addition, the trace analyzer is able to
identify the activities on the critical path of the target application [2], highlighting those
routines which determine the length of the program execution and therefore constitute the
best candidates for optimization.

In contrast to previous versions of the Scalasca toolset – which used a custom measurement
system and trace data format – the Scalasca Tracing Tools 2.x release series is based on
the community-driven instrumentation and measurement infrastructure Score-P [7]. The
Score-P software is jointly developed by a consortium of partners from Germany and the
US, and supports a number of complementary performance analysis tools through the use
of the common data formats CUBE4 for profiles and the Open Trace Format 2 (OTF2) [4] for
event trace data. This significantly improves interoperability between Scalasca and other
performance analysis tool suites such as Vampir [6] and TAU [13]. Nevertheless, backward
compatibility to Scalasca 1.x is maintained where possible, for example, the Scalasca trace
analyzer is still able to process trace measurements generated by the measurement system
of the Scalasca 1.x release series.

This user guide is intended to address the needs of users which are new to Scalasca as
well as those already familiar with previous versions of the Scalasca toolset. For both user
groups, it is recommended to work through Chapter 2 to get familiar with the intended
Scalasca analysis workflow in general, and to learn about the changes compared to the
Scalasca 1.x release series which are highlighted when appropriate. Later chapters then
provide more in-depth reference information for the individual Scalasca commands and
tools, and can be consulted when necessary.

1

2 Getting started

This chapter provides an introduction to the use of the Scalasca Tracing Tools on the basis
of the analysis of an example application. The most prominent features are addressed, and
at times a reference to later chapters with more in-depth information on the corresponding
topic is given.

Use of the Scalasca Tracing Tools involves three phases: instrumentation of the target
application, execution measurement collection and analysis, and examination of the analysis
report. For instrumentation and measurement, the Scalasca Tracing Tools 2.x release
series leverages the Score-P infrastructure, while the Cube graphical user interface is used
for analysis report examination. Scalasca complements the functionality provided by Cube
and Score-P with scalable automatic trace-analysis components, as well as convenience
commands for controlling execution measurement collection and analysis, and analysis
report postprocessing.

Most of Scalasca’s functionality can be accessed through the scalasca command, which
provides action options that in turn invoke the corresponding underlying commands scorep,
scan and square. These actions are:

1. scalasca -instrument

(or short skin) familiar to users of the Scalasca 1.x series is deprecated and only
provided for backward compatibility. It tries to map the command-line options of
the Scalasca 1.x instrumenter onto corresponding options of Score-P’s instrumenter
command scorep – as far as this is possible. However, to take full advantage of
the improved functionality provided by Score-P, users are strongly encouraged to
use the scorep instrumenter command directly. Please refer to the Score-P User
Manual [12] for details. To assist in transitioning existing measurement configurations
to Score-P, the Scalasca instrumentation wrapper prints the converted command that
is actually executed to standard output.

2. scalasca -analyze

(or short scan) is used to control the Score-P measurement environment during the
execution of the target application (supporting both runtime summarization and/or
event trace collection, optionally including hardware-counter information), and to
automatically initiate Scalasca’s trace analysis after measurement completion if
tracing was requested.

3. scalasca -examine

(or short square) is used to postprocess the analysis report generated by a Score-P
profiling measurement and/or Scalasca’s automatic post-mortem trace analysis, and
to start the analysis report examination browser Cube.

To get a brief usage summary, call the scalasca command without arguments, or use
scalasca --quickref to open the Scalasca Quick Reference (with a suitable PDF viewer).

3

Chapter 2. Getting started

Note:
Under the hood, the Scalasca convenience commands leverage a number of other
commands provided by Score-P and Cube. Therefore, it is generally advisable to
include the executable directories of appropriate installations of all three components
in the shell search path (PATH).

The following three sections provide a quick overview of each of these actions and how to
use them during the corresponding step of the performance analysis, before a tutorial-style
full workflow example is presented in Section 2.4.

2.1 Instrumentation

To generate measurements which can be used as input for the Scalasca Tracing Tools, user
application programs first need to be instrumented. That is, special measurement calls
have to be inserted into the program code which are then executed at specific important
points (events) during the application run. Unlike previous versions of Scalasca which
used a custom measurement system, this task is now accomplished by the community
instrumentation and measurement infrastructure Score-P.

As already mentioned in the previous section, use of the scalasca -instrument and skin
commands is discouraged, and therefore not discussed in detail. Instead, all the necessary
instrumentation of user routines, OpenMP constructs and MPI functions should be handled
by the Score-P instrumenter, which is accessed through the scorep command. Therefore,
the compile and link commands to build the application that is to be analyzed should be
prefixed with scorep (e.g., in a Makefile).

For example, to instrument the MPI application executable myapp generated from the two
Fortran source files foo.f90 and bar.f90, the following compile and link commands

% mpif90 -c foo.f90
% mpif90 -c bar.f90
% mpif90 -o myapp foo.o bar.o

have to be replaced by corresponding commands using the Score-P instrumenter:

% scorep mpif90 -c foo.f90
% scorep mpif90 -c bar.f90
% scorep mpif90 -o myapp foo.o bar.o

This will automatically instrument every routine entry and exit seen by the compiler,
intercept MPI function calls to gather message-passing information, and link the necessary
Score-P measurement libraries to the application executable.

Attention:
The scorep instrumenter must be used with the link command to ensure that
all required Score-P measurement libraries are linked with the executable. However,
not all object files need to be instrumented, thereby avoiding measurements and data
collection for routines and OpenMP constructs defined in those files. Instrumenting

4

2.2. Runtime measurement collection & analysis

files defining OpenMP parallel regions is essential, as Score-P has to track the
creation of new threads.

Although generally most convenient, automatic compiler-based function instrumentation
as used by default may result in too many and/or too disruptive measurements, which can
be addressed with selective instrumentation and measurement filtering. While the most
basic steps will be briefly covered in Section 2.4.4, please refer to the Score-P manual [12]
for details on the available instrumentation and filtering options.

2.2 Runtime measurement collection & analysis

While applications instrumented by Score-P can be executed directly with a measurement
configuration defined via environment variables, the scalasca -analyze (or short scan)
convenience command provided by Scalasca can be used to control certain aspects of
the Score-P measurement environment during the execution of the target application.
To produce a performance measurement using an instrumented executable, the target
application execution command is prefixed with the scalasca -analyze (or short scan)
command:

% scalasca -analyze [options] \
[<launch_cmd> [<launch_flags>]] <target> [target args]

For pure MPI or hybrid MPI+OpenMP applications, launch_cmd is typically the MPI
execution command such as mpirun or mpiexec, with launch_flags being the corresponding
command-line arguments as used for uninstrumented runs, e.g., to specify the number of
compute nodes or MPI ranks. For non-MPI (i.e., serial and pure OpenMP) applications, the
launch command and associated flags can usually be omitted.

In case of the example MPI application executable myapp introduced in the previous section,
a measurement command starting the application with four MPI ranks could therefore be:

% scalasca -analyze mpiexec -n 4 ./myapp

Attention:
A unique directory is used for each measurement experiment, which must not already
exist when measurement starts: otherwise measurement is aborted immediately.

A default name for the experiment directory is composed of the prefix "scorep_", the
target application executable name, the run configuration (e.g., number of MPI ranks and
OMP_NUM_THREADS), and a few other parameters of the measurement configuration. For
example, a measurement of the myapp application as outlined above will produce a measure-
ment experiment directory named "scorep_myapp_4_sum". Alternatively, the experiment
directory name can also be explicitly specified with the -e <experiment_name> option of
scalasca -analyze or via the environment variable SCOREP_EXPERIMENT_DIRECTORY.

5

Chapter 2. Getting started

Note:
A number of settings regarding the measurement configuration can be specified
in different ways. Command-line options provided to scalasca -analyze always
have highest precedence, followed by Score-P environment variables, and finally
automatically determined defaults.

When measurement has completed, the measurement experiment directory contains various
log files and one or more analysis reports. By default, runtime summarization is used to
provide a summary report of the number of visits and time spent on each callpath by each
process/thread, as well as hardware counter metrics (if configured). For MPI or hybrid
MPI+OpenMP applications, MPI message statistics are also included.

Event trace data can also be collected as part of a measurement. This measurement
mode can be enabled by passing the -t option to the scalasca -analyze command (or
alternatively by setting the environment variable SCOREP_ENABLE_TRACING to 1).

Note:
Enabling event trace collection does not automatically turn off summarization mode
(i.e., both a summary profile and event traces are collected). It has to be explicitly
disabled when this behavior is undesired.

When collecting a trace measurement, experiment trace analysis is automatically initiated
after measurement is complete to quantify wait states that cannot be determined with
runtime summarization. In addition to examining the trace-analysis report, the generated
event traces can also be visualized with a third-party graphical trace browser such as
Vampir [6].

Warning:

Traces can easily become extremely large and unwieldy, and uncoordinated
intermediate trace buffer flushes may result in cascades of distortion, which renders
such traces to be of little value. It is therefore extremely important to set up an
adequate measurement configuration before initiating trace collection and
analysis! Please see Section 2.4.4 as well as the Score-P User Manual [12] for
more details on how to set up a filtering file and adjust Score-P’s internal memory
management.

2.3 Analysis report examination

The results of the runtime summarization and/or the automatic trace analysis are stored in
one or more reports (i.e., CUBE4 files) in the measurement experiment directory. These re-
ports can be postprocessed and examined using the scalasca -examine (or short square)
command, providing an experiment directory name as argument:

% scalasca -examine [options] <experiment_name>

Postprocessing is done the first time an experiment is examined, before launching the Cube
analysis report browser. If the scalasca -examine command is provided with an already
processed experiment directory, or with a CUBE4 file specified as argument, the viewer is
launched immediately.

6

2.4. A full workflow example

Instead of interactively examining the measurement analysis results, a textual score report
can also be obtained using the -s option without launching the viewer:

% scalasca -examine -s <experiment_name>

This score report comes from the scorep-score utility and provides a breakdown of the
different types of regions included in the measurement and their estimated associated
trace buffer capacity requirements, aggregate trace size and largest process trace buffer
size (max_buf), which can be used to set up a filtering file and to determine an appropriate
SCOREP_TOTAL_MEMORY setting for a subsequent trace measurement. See Section 2.4.4 for
more details.

The Cube viewer can also be directly used on an experiment archive – opening a dialog
window to choose one of the contained CUBE4 files – or an individual CUBE4 file as shown
below:

% cube <experiment_name>
% cube <file>.cubex

However, keep in mind that no postprocessing is performed in this case, so that only a
subset of Scalasca’s analyses and metrics may be shown.

2.4 A full workflow example

While the previous sections introduced the general usage workflow of Scalasca based on an
abstract example, we will now guide through an example analysis of a moderately complex
benchmark code using MPI: BT from the NAS Parallel Benchmarks (NPB-MPI 3.3) [9]. The
BT benchmark implements a simulated CFD application using a block-tridiagonal solver
for a synthetic system of nonlinear partial differential equations and consists of about
20 Fortran 77 source code files. Although BT does not exhibit significant performance
bottlenecks – after all, it is a highly optimized benchmark – it serves as a good example to
demonstrate the overall workflow, including typical configuration steps and how to avoid
common pitfalls.

The example measurements (available for download on the Scalasca documentation web
page [11]) were carried out using Scalasca in combination with Score-P 1.3 and Cube 4.2.3
on the JUROPA cluster at Jülich Supercomputing Centre. JUROPA’s compute nodes are
equipped with two Intel Xeon X5570 (Nehalem-EP) quad-core CPUs running at 2.93 GHz,
and connected via a QDR Infiniband fat-tree network. The code was compiled using Intel
compilers and linked against ParTec ParaStation MPI (which is based on MPICH2). The
example commands shown below – which are assumed to be available in PATH, e.g., after
loading site-specific environment modules – should therefore be representative for using
Scalasca in a typical HPC cluster environment.

Note:
Remember that the Scalasca commands use other commands provided by Score-P
and Cube. It is assumed that the executable directories of appropriate installations
of all three components are available in the shell search path.

7

Chapter 2. Getting started

2.4.1 Preparing a reference execution

As a first step of every performance analysis, a reference execution using an uninstrumented
executable should be performed. On the one hand, this step verifies that the code executes
cleanly and produces correct results, and on the other hand later allows to assess the
overhead introduced by instrumentation and measurement. At this stage an appropriate
test configuration should be chosen, such that it is both repeatable and long enough to be
representative. (Note that excessively long execution durations can make measurement
analysis inconvenient or even prohibitive, and therefore should be avoided.)

After unpacking the NPB-MPI source archive, the build system has to be adjusted to the
respective environment. For the NAS benchmarks, this is accomplished by a Makefile
snippet defining a number of variables used by a generic Makefile. This snippet is called
make.def and has to reside in the config/ subdirectory, which already contains a template
file that can be copied and adjusted appropriately. In particular, the MPI Fortran compiler
wrapper and flags need to be specified, for example:

MPIF77 = mpif77
FFLAGS = -O2
FLINKFLAGS = -O2

Note that the MPI C compiler wrapper and flags are not used for building BT, but may also
be set accordingly to experiment with other NPB benchmarks.

Next, the benchmark can be built from the top-level directory by running make, specifying
the number of MPI ranks to use (for BT, this is required to be a square number) as well as
the problem size on the command line:

% make bt NPROCS=64 CLASS=D
===
= NAS Parallel Benchmarks 3.3 =
= MPI/F77/C =
===

cd BT; make NPROCS=64 CLASS=D SUBTYPE= VERSION=
make[1]: Entering directory ‘/tmp/NPB3.3-MPI/BT’
make[2]: Entering directory ‘/tmp/NPB3.3-MPI/sys’
cc -g -o setparams setparams.c
make[2]: Leaving directory ‘/tmp/NPB3.3-MPI/sys’
../sys/setparams bt 64 D
make[2]: Entering directory ‘/tmp/NPB3.3-MPI/BT’
mpif77 -c -O2 bt.f
mpif77 -c -O2 make_set.f
mpif77 -c -O2 initialize.f
mpif77 -c -O2 exact_solution.f
mpif77 -c -O2 exact_rhs.f
mpif77 -c -O2 set_constants.f
mpif77 -c -O2 adi.f
mpif77 -c -O2 define.f
mpif77 -c -O2 copy_faces.f
mpif77 -c -O2 rhs.f

8

2.4. A full workflow example

mpif77 -c -O2 solve_subs.f
mpif77 -c -O2 x_solve.f
mpif77 -c -O2 y_solve.f
mpif77 -c -O2 z_solve.f
mpif77 -c -O2 add.f
mpif77 -c -O2 error.f
mpif77 -c -O2 verify.f
mpif77 -c -O2 setup_mpi.f
cd ../common; mpif77 -c -O2 print_results.f
cd ../common; mpif77 -c -O2 timers.f
make[3]: Entering directory ‘/tmp/NPB3.3-MPI/BT’
mpif77 -c -O2 btio.f
mpif77 -O2 -o ../bin/bt.D.64 bt.o make_set.o initialize.o exact_solution.o
exact_rhs.o set_constants.o adi.o define.o copy_faces.o rhs.o solve_subs.o
x_solve.o y_solve.o z_solve.o add.o error.o verify.o setup_mpi.o
../common/print_results.o ../common/timers.o btio.o
make[3]: Leaving directory ‘/tmp/NPB3.3-MPI/BT’
make[2]: Leaving directory ‘/tmp/NPB3.3-MPI/BT’
make[1]: Leaving directory ‘/tmp/NPB3.3-MPI/BT’

Valid problem classes (of increasing size) are W, S, A, B, C, D and E, and can be used to
adjust the benchmark runtime to the execution environment. For example, class W or
S is appropriate for execution on a single-core laptop with 4 MPI ranks, while the other
problem sizes are more suitable for "real" configurations.

The resulting executable encodes the benchmark configuration in its name and is placed
into the bin/ subdirectory. For the example make command above, it is named bt.D.64.
This binary can now be executed, either via submitting an appropriate batch job (which is
beyond the scope of this user guide) or directly in an interactive session.

% cd bin
% mpiexec -n 64 ./bt.D.64

NAS Parallel Benchmarks 3.3 -- BT Benchmark

No input file inputbt.data. Using compiled defaults
Size: 408x 408x 408
Iterations: 250 dt: 0.0000200
Number of active processes: 64

Time step 1
Time step 20
Time step 40
Time step 60
Time step 80
Time step 100
Time step 120
Time step 140
Time step 160
Time step 180
Time step 200

9

Chapter 2. Getting started

Time step 220
Time step 240
Time step 250
Verification being performed for class D
accuracy setting for epsilon = 0.1000000000000E-07
Comparison of RMS-norms of residual

1 0.2533188551738E+05 0.2533188551738E+05 0.1479210131727E-12
2 0.2346393716980E+04 0.2346393716980E+04 0.8488743310506E-13
3 0.6294554366904E+04 0.6294554366904E+04 0.3034271788588E-14
4 0.5352565376030E+04 0.5352565376030E+04 0.8597827149538E-13
5 0.3905864038618E+05 0.3905864038618E+05 0.6650300273080E-13

Comparison of RMS-norms of solution error
1 0.3100009377557E+03 0.3100009377557E+03 0.1373406191445E-12
2 0.2424086324913E+02 0.2424086324913E+02 0.1582835864248E-12
3 0.7782212022645E+02 0.7782212022645E+02 0.4053872777553E-13
4 0.6835623860116E+02 0.6835623860116E+02 0.3762882153975E-13
5 0.6065737200368E+03 0.6065737200368E+03 0.2474004739002E-13

Verification Successful

BT Benchmark Completed.
Class = D
Size = 408x 408x 408
Iterations = 250
Time in seconds = 485.47
Total processes = 64
Compiled procs = 64
Mop/s total = 120162.50
Mop/s/process = 1877.54
Operation type = floating point
Verification = SUCCESSFUL
Version = 3.3
Compile date = 03 Apr 2014

Compile options:
MPIF77 = mpif77
FLINK = $(MPIF77)
FMPI_LIB = (none)
FMPI_INC = (none)
FFLAGS = -O2
FLINKFLAGS = -O2
RAND = (none)

Please send the results of this run to:

NPB Development Team
Internet: npb@nas.nasa.gov

If email is not available, send this to:

MS T27A-1
NASA Ames Research Center

10

2.4. A full workflow example

Moffett Field, CA 94035-1000

Fax: 650-604-3957

Note that this application verified its successful calculation and reported the associated
wall-clock execution time for the core computation.

2.4.2 Instrumenting the application code

Now that the reference execution was successful, it is time to prepare an instrumented
executable using Score-P to perform an initial measurement. By default, Score-P leverages
the compiler to automatically instrument every function entry and exit. This is usually
the best first approach, when you don’t have detailed knowledge about the application
and need to identify the hotspots in your code. For BT, using Score-P for instrumentation
is simply accomplished by prefixing the compile and link commands specified in the
config/make.def Makefile snippet by the Score-P instrumenter command scorep:

MPIF77 = scorep mpif77

Note that the linker specification variable FLINK in config/make.def defaults to the value
of MPIF77, i.e., no further modifications are necessary in this case.

Recompilation of the BT source code in the top-level directory now creates an instrumented
executable, overwriting the uninstrumented binary (for archiving purposes, one may
consider renaming it before recompiling):

% cd ..
% make clean
rm -f core
rm -f *~ */core */*~ */*.o */npbparams.h */*.obj */*.exe
rm -f MPI_dummy/test MPI_dummy/libmpi.a
rm -f sys/setparams sys/makesuite sys/setparams.h
rm -f btio.*.out*
% make bt NPROCS=64 CLASS=D

===
= NAS Parallel Benchmarks 3.3 =
= MPI/F77/C =
===

cd BT; make NPROCS=64 CLASS=D SUBTYPE= VERSION=
make[1]: Entering directory ‘/tmp/NPB3.3-MPI/BT’
make[2]: Entering directory ‘/tmp/NPB3.3-MPI/sys’
cc -g -o setparams setparams.c
make[2]: Leaving directory ‘/tmp/NPB3.3-MPI/sys’
../sys/setparams bt 64 D
make[2]: Entering directory ‘/tmp/NPB3.3-MPI/BT’
scorep mpif77 -c -O2 bt.f

11

Chapter 2. Getting started

scorep mpif77 -c -O2 make_set.f
scorep mpif77 -c -O2 initialize.f
scorep mpif77 -c -O2 exact_solution.f
scorep mpif77 -c -O2 exact_rhs.f
scorep mpif77 -c -O2 set_constants.f
scorep mpif77 -c -O2 adi.f
scorep mpif77 -c -O2 define.f
scorep mpif77 -c -O2 copy_faces.f
scorep mpif77 -c -O2 rhs.f
scorep mpif77 -c -O2 solve_subs.f
scorep mpif77 -c -O2 x_solve.f
scorep mpif77 -c -O2 y_solve.f
scorep mpif77 -c -O2 z_solve.f
scorep mpif77 -c -O2 add.f
scorep mpif77 -c -O2 error.f
scorep mpif77 -c -O2 verify.f
scorep mpif77 -c -O2 setup_mpi.f
cd ../common; scorep mpif77 -c -O2 print_results.f
cd ../common; scorep mpif77 -c -O2 timers.f
make[3]: Entering directory ‘/tmp/NPB3.3-MPI/BT’
scorep mpif77 -c -O2 btio.f
scorep mpif77 -O2 -o ../bin/bt.D.64 bt.o make_set.o initialize.o exact_solution.o
exact_rhs.o set_constants.o adi.o define.o copy_faces.o rhs.o solve_subs.o
x_solve.o y_solve.o z_solve.o add.o error.o verify.o setup_mpi.o
../common/print_results.o ../common/timers.o btio.o
make[3]: Leaving directory ‘/tmp/NPB3.3-MPI/BT’
make[2]: Leaving directory ‘/tmp/NPB3.3-MPI/BT’
make[1]: Leaving directory ‘/tmp/NPB3.3-MPI/BT’

2.4.3 Initial summary measurement

The instrumented executable prepared in the previous step can now be executed under
the control of the scalasca -analyze (or short scan) convenience command to perform
an initial summary measurement:

% cd bin
% scalasca -analyze mpiexec -n 64 ./bt.D.64
S=C=A=N: Scalasca 2.1 runtime summarization
S=C=A=N: ./scorep_bt_64_sum experiment archive
S=C=A=N: Thu Apr 3 20:21:22 2014: Collect start
mpiexec -n 64 [...] ./bt.D.64

NAS Parallel Benchmarks 3.3 -- BT Benchmark

No input file inputbt.data. Using compiled defaults
Size: 408x 408x 408
Iterations: 250 dt: 0.0000200
Number of active processes: 64

Time step 1

12

2.4. A full workflow example

Time step 20
Time step 40
Time step 60
Time step 80
Time step 100
Time step 120
Time step 140
Time step 160
Time step 180
Time step 200
Time step 220
Time step 240
Time step 250
Verification being performed for class D
accuracy setting for epsilon = 0.1000000000000E-07
Comparison of RMS-norms of residual

1 0.2533188551738E+05 0.2533188551738E+05 0.1479210131727E-12
2 0.2346393716980E+04 0.2346393716980E+04 0.8488743310506E-13
3 0.6294554366904E+04 0.6294554366904E+04 0.3034271788588E-14
4 0.5352565376030E+04 0.5352565376030E+04 0.8597827149538E-13
5 0.3905864038618E+05 0.3905864038618E+05 0.6650300273080E-13

Comparison of RMS-norms of solution error
1 0.3100009377557E+03 0.3100009377557E+03 0.1373406191445E-12
2 0.2424086324913E+02 0.2424086324913E+02 0.1582835864248E-12
3 0.7782212022645E+02 0.7782212022645E+02 0.4053872777553E-13
4 0.6835623860116E+02 0.6835623860116E+02 0.3762882153975E-13
5 0.6065737200368E+03 0.6065737200368E+03 0.2474004739002E-13

Verification Successful

BT Benchmark Completed.
Class = D
Size = 408x 408x 408
Iterations = 250
Time in seconds = 947.46
Total processes = 64
Compiled procs = 64
Mop/s total = 61570.85
Mop/s/process = 962.04
Operation type = floating point
Verification = SUCCESSFUL
Version = 3.3
Compile date = 03 Apr 2014

Compile options:
MPIF77 = scorep mpif77
FLINK = $(MPIF77)
FMPI_LIB = (none)
FMPI_INC = (none)
FFLAGS = -O2
FLINKFLAGS = -O2
RAND = (none)

13

Chapter 2. Getting started

Please send the results of this run to:

NPB Development Team
Internet: npb@nas.nasa.gov

If email is not available, send this to:

MS T27A-1
NASA Ames Research Center
Moffett Field, CA 94035-1000

Fax: 650-604-3957

S=C=A=N: Thu Apr 3 20:37:18 2014: Collect done (status=0) 956s
S=C=A=N: ./scorep_bt_64_sum complete.

% ls scorep_bt_64_sum
profile.cubex scorep.cfg scorep.log

As can be seen, the measurement run successfully produced an experiment directory
scorep_bt_64_sum containing

• the runtime summary result file profile.cubex,

• a copy of the measurement configuration in scorep.cfg, and

• the measurement log file scorep.log.

However, application execution took about twice as long as the reference run (947.46
vs. 485.47 seconds). That is, instrumentation and associated measurements introduced
a non-negligible amount of overhead. While it is possible to interactively examine the
generated summary result file using the Cube report browser, this should only be done
with great caution since the substantial overhead negatively impacts the accuracy of the
measurement.

2.4.4 Optimizing the measurement configuration

To avoid drawing wrong conclusions based on skewed performance data due to excessive
measurement overhead, it is often necessary to optimize the measurement configuration
before conducting additional experiments. This can be achieved in various ways, e.g., using
runtime filtering, selective recording, or manual instrumentation controlling measurement.
Please refer to the Score-P Manual [12] for details on the available options. However,
in many cases it is already sufficient to filter a small number of frequently executed
but otherwise unimportant user functions to reduce the measurement overhead to an
acceptable level. The selection of those routines has to be done with care, though, as it
affects the granularity of the measurement and too aggressive filtering might "blur" the
location of important hotspots.

To help identifying candidate functions for runtime filtering, the initial summary report can
be scored using the -s option of the scalasca -examine command:

14

2.4. A full workflow example

% scalasca -examine -s scorep_bt_64_sum
INFO: Post-processing runtime summarization report...
scorep-score -r ./scorep_bt_64_sum/profile.cubex > ./scorep_bt_64_sum/scorep.score
INFO: Score report written to ./scorep_bt_64_sum/scorep.score

% head -n 20 scorep_bt_64_sum/scorep.score

Estimated aggregate size of event trace: 3700GB
Estimated requirements for largest trace buffer (max_buf): 58GB
Estimated memory requirements (SCOREP_TOTAL_MEMORY): 58GB
(hint: When tracing set SCOREP_TOTAL_MEMORY=58GB to avoid intermediate flushes
or reduce requirements using USR regions filters.)

flt type max_buf[B] visits time[s] time[%] time/ region
visit[us]

ALL 62,076,748,138 152,783,214,921 61176.89 100.0 0.40 ALL
USR 62,073,899,966 152,778,875,273 57811.61 94.5 0.38 USR
MPI 2,267,202 2,909,568 3087.68 5.0 1061.22 MPI
COM 580,970 1,430,080 277.60 0.5 194.12 COM

USR 20,525,692,668 50,517,453,756 7019.03 11.5 0.14 matvec_sub_

USR 20,525,692,668 50,517,453,756 7800.42 12.8 0.15 matmul_sub_

USR 20,525,692,668 50,517,453,756 12256.11 20.0 0.24 binvcrhs_

USR 447,119,556 1,100,528,112 124.29 0.2 0.11 exact_solution_

USR 50,922,378 124,121,508 18.23 0.0 0.15 binvrhs_

MPI 855,834 771,456 10.98 0.0 14.23 MPI_Isend
MPI 855,834 771,456 5.06 0.0 6.55 MPI_Irecv

As can be seen from the top of the score output, the estimated size for an event trace
measurement without filtering applied is apprximately 3.7 TiB, with the process-local
maximum across all ranks being roughly 62 GB (∼58 GiB). Considering the 24 GiB of main
memory available on the JUROPA compute nodes and the 8 MPI ranks per node, a tracing
experiment with this configuration is clearly prohibitive if disruptive intermediate trace
buffer flushes are to be avoided.

The next section of the score output provides a table which shows how the trace memory
requirements of a single process (column max_buf) as well as the overall number of visits
and CPU allocation time are distributed among certain function groups. Currently, the
following groups are distinguished:

• MPI: MPI API functions.

• OMP: OpenMP constructs and API functions.

• COM: User functions/regions that appear on a call path to an OpenMP construct, or an
OpenMP or MPI API function. Useful to provide the context of MPI/OpenMP usage.

• USR: User functions/regions that do not appear on a call path to an OpenMP construct,
or an OpenMP or MPI API function.

The detailed breakdown by region below the summary provides a classification according
to these function groups (column type) for each region found in the summary report.
Investigation of this part of the score report reveals that most of the trace data would be
generated by about 50 billion calls to each of the three routines matvec_sub, matmul_sub
and binvcrhs, which are classified as USR. And although the percentage of time spent in

15

Chapter 2. Getting started

these routines at first glance suggest that they are important, the average time per visit is
below 250 nanoseconds (column time/visit). That is, the relative measurement overhead
for these functions is substantial, and thus a significant amount of the reported time is
very likely spent in the Score-P measurement system rather than in the application itself.
Therefore, these routines constitute good candidates for being filtered (like they are good
candidates for being inlined by the compiler). Additionally selecting the exact_solution
routine, which generates 447 MB of event data on a single rank with very little runtime
impact, a reasonable Score-P filtering file would therefore look like this:

SCOREP_REGION_NAMES_BEGIN
EXCLUDE

binvcrhs_

matvec_sub_

matmul_sub_

exact_solution_

SCOREP_REGION_NAMES_END

Please refer to the Score-P User Manual [12] for a detailed description of the filter file
format, how to filter based on file names, define (and combine) blacklists and whitelists,
and how to use wildcards for convenience.

The effectiveness of this filter can be examined by scoring the initial summary report again,
this time specifying the filter file using the -f option of the scalasca -examine command.
This way a filter file can be incrementally developed, avoiding the need to conduct many
measurements to step-by-step investigate the effect of filtering individual functions.

% scalasca -examine -s -f npb-bt.filt scorep_bt_64_sum
scorep-score -f npb-bt.filt -r ./scorep_bt_64_sum/profile.cubex \

> ./scorep_bt_64_sum/scorep.score_npb-bt.filt
INFO: Score report written to ./scorep_bt_64_sum/scorep.score_npb-bt.filt

% head -n 25 scorep_bt_64_sum/scorep.score_npb-bt.filt

Estimated aggregate size of event trace: 3298MB
Estimated requirements for largest trace buffer (max_buf): 53MB
Estimated memory requirements (SCOREP_TOTAL_MEMORY): 57MB
(hint: When tracing set SCOREP_TOTAL_MEMORY=57MB to avoid intermediate flushes
or reduce requirements using USR regions filters.)

flt type max_buf[B] visits time[s] time[%] time/ region
visit[us]

- ALL 62,076,748,138 152,783,214,921 61176.89 100.0 0.40 ALL
- USR 62,073,899,966 152,778,875,273 57811.61 94.5 0.38 USR
- MPI 2,267,202 2,909,568 3087.68 5.0 1061.22 MPI
- COM 580,970 1,430,080 277.60 0.5 194.12 COM

* ALL 54,527,956 130,325,541 33977.03 55.5 260.71 ALL-FLT
+ FLT 62,024,197,560 152,652,889,380 27199.86 44.5 0.18 FLT

* USR 51,679,784 125,985,893 30611.75 50.0 242.98 USR-FLT
- MPI 2,267,202 2,909,568 3087.68 5.0 1061.22 MPI-FLT

* COM 580,970 1,430,080 277.60 0.5 194.12 COM-FLT

16

2.4. A full workflow example

+ USR 20,525,692,668 50,517,453,756 7019.03 11.5 0.14 matvec_sub_

+ USR 20,525,692,668 50,517,453,756 7800.42 12.8 0.15 matmul_sub_

+ USR 20,525,692,668 50,517,453,756 12256.11 20.0 0.24 binvcrhs_

+ USR 447,119,556 1,100,528,112 124.29 0.2 0.11 exact_solution_

- USR 50,922,378 124,121,508 18.23 0.0 0.15 binvrhs_

- MPI 855,834 771,456 10.98 0.0 14.23 MPI_Isend

Below the (original) function group summary, the score report now also includes a second
summary with the filter applied. Here, an additional group FLT is added, which subsumes
all filtered regions. Moreover, the column flt indicates whether a region/function group
is filtered ("+"), not filtered ("-"), or possibly partially filtered ("∗", only used for function
groups).

As expected, the estimate for the aggregate event trace size drops down to 3.3 GiB, and
the process-local maximum across all ranks is reduced to 53 MiB. Since the Score-P
measurement system also creates a number of internal data structures (e.g., to track
MPI requests and communicators), the suggested setting for the SCOREP_TOTAL_MEMORY
environment variable to adjust the maximum amount of memory used by the Score-P
memory management is 57 MiB when tracing is configured (see Section 2.4.6).

2.4.5 Summary measurement & examination

The filtering file prepared in Section 2.4.4 can now be applied to produce a new summary
measurement, ideally with reduced measurement overhead to improve accuracy. This can
be accomplished by providing the filter file name to scalasca -analyze via the -f option.

Attention:
Before re-analyzing the application, the unfiltered summary experiment should be
renamed (or removed), since scalasca -analyze will not overwrite the existing
experiment directory and abort immediately.

% mv scorep_bt_64_sum scorep_bt_64_sum.nofilt
% scalasca -analyze -f npb-bt.filt mpiexec -n 64 ./bt.D.64
S=C=A=N: Scalasca 2.1 runtime summarization
S=C=A=N: ./scorep_bt_64_sum experiment archive
S=C=A=N: Thu Apr 3 20:37:18 2014: Collect start
mpiexec -n 64 [...] ./bt.D.64

NAS Parallel Benchmarks 3.3 -- BT Benchmark

No input file inputbt.data. Using compiled defaults
Size: 408x 408x 408
Iterations: 250 dt: 0.0000200
Number of active processes: 64

Time step 1
Time step 20
Time step 40
Time step 60

17

Chapter 2. Getting started

Time step 80
Time step 100
Time step 120
Time step 140
Time step 160
Time step 180
Time step 200
Time step 220
Time step 240
Time step 250
Verification being performed for class D
accuracy setting for epsilon = 0.1000000000000E-07
Comparison of RMS-norms of residual

1 0.2533188551738E+05 0.2533188551738E+05 0.1479210131727E-12
2 0.2346393716980E+04 0.2346393716980E+04 0.8488743310506E-13
3 0.6294554366904E+04 0.6294554366904E+04 0.3034271788588E-14
4 0.5352565376030E+04 0.5352565376030E+04 0.8597827149538E-13
5 0.3905864038618E+05 0.3905864038618E+05 0.6650300273080E-13

Comparison of RMS-norms of solution error
1 0.3100009377557E+03 0.3100009377557E+03 0.1373406191445E-12
2 0.2424086324913E+02 0.2424086324913E+02 0.1582835864248E-12
3 0.7782212022645E+02 0.7782212022645E+02 0.4053872777553E-13
4 0.6835623860116E+02 0.6835623860116E+02 0.3762882153975E-13
5 0.6065737200368E+03 0.6065737200368E+03 0.2474004739002E-13

Verification Successful

BT Benchmark Completed.
Class = D
Size = 408x 408x 408
Iterations = 250
Time in seconds = 495.32
Total processes = 64
Compiled procs = 64
Mop/s total = 117773.61
Mop/s/process = 1840.21
Operation type = floating point
Verification = SUCCESSFUL
Version = 3.3
Compile date = 03 Apr 2014

Compile options:
MPIF77 = scorep mpif77
FLINK = $(MPIF77)
FMPI_LIB = (none)
FMPI_INC = (none)
FFLAGS = -O2
FLINKFLAGS = -O2
RAND = (none)

Please send the results of this run to:

18

2.4. A full workflow example

NPB Development Team
Internet: npb@nas.nasa.gov

If email is not available, send this to:

MS T27A-1
NASA Ames Research Center
Moffett Field, CA 94035-1000

Fax: 650-604-3957

S=C=A=N: Thu Apr 3 20:45:38 2014: Collect done (status=0) 500s
S=C=A=N: ./scorep_bt_64_sum complete.

Notice that applying the runtime filtering reduced the measurement overhead significantly,
down to now only 2% (495.32 seconds vs. 485.47 seconds for the reference run). This new
measurement with the optimized configuration should therefore accurately represent the
real runtime behavior of the BT application, and can now be postprocessed and interactively
explored using the Cube result browser. These two steps can be conveniently initiated
using the scalasca -examine command:

% scalasca -examine scorep_bt_64_sum
INFO: Post-processing runtime summarization report...
INFO: Displaying ./scorep_bt_64_sum/summary.cubex...

Examination of the summary result (see Figure 2.1 for a screenshot and Section 2.4.5.1
for a brief summary of how to use the Cube browser) shows that 97% of the overall CPU
allocation time is spent executing computational user functions, while 2.7% of the time is
spent in MPI point-to-point communication functions and the remainder scattered across
other activities. The point-to-point time is almost entirely spent in MPI_Wait calls inside
the three solver functions x_solve, y_solve and z_solve, as well as an MPI_Waitall in
the boundary exchange routine copy_faces. Execution time is also mostly spent in the
solver routines and the boundary exchange, however, inside the different solve_cell,
backsubstitute and compute_rhs functions. While the aggregated time spent in the
computational routines seems to be relatively balanced across the different MPI ranks
(determined using the box plot view in the right pane), there is quite some variation for the
MPI_Wait / MPI_Waitall calls.

2.4.5.1 Using the Cube browser

The following paragraphs provide a very brief introduction to the usage of the Cube analysis
report browser. To make effective use of the GUI, however, please also consult the Cube
User Guide [3].

Cube is a generic user interface for presenting and browsing performance and debugging
information from parallel applications. The underlying data model is independent from
particular performance properties to be displayed. The Cube main window (see Figure 2.1)
consists of three panels containing tree displays or alternate graphical views of analysis

19

Chapter 2. Getting started

Figure 2.1: Screenshot of a summary experiment result in the Cube report browser.

reports. The left panel shows performance properties of the execution, such as time or the
number of visits. The middle pane shows the call tree or a flat profile of the application.
The right pane either shows the system hierarchy consisting of, e.g., machines, compute
nodes, processes, and threads, a topological view of the application’s processes and threads
(if available), or a box plot view showing the statistical distribution of values across the
system. All tree nodes are labeled with a metric value and a color-coded box which can
help in identifying hotspots. The metric value color is determined from the proportion of
the total (root) value or some other specified reference value, using the color scale at the
bottom of the window.

A click on a performance property or a call path selects the corresponding node. This has
the effect that the metric value held by this node (such as execution time) will be further
broken down into its constituents in the panels right of the selected node. For example,
after selecting a performance property, the middle panel shows its distribution across the
call tree. After selecting a call path (i.e., a node in the call tree), the system tree shows
the distribution of the performance property in that call path across the system locations.
A click on the icon to the left of a node in each tree expands or collapses that node. By
expanding or collapsing nodes in each of the three trees, the analysis results can be viewed
on different levels of granularity (inclusive vs. exclusive values).

All tree displays support a context menu, which is accessible using the right mouse button
and provides further options. For example, to obtain the exact definition of a performance
property, select "Online Description" in the context menu associated with each performance
property. A brief description can also be obtained from the menu option "Info".

20

2.4. A full workflow example

2.4.6 Trace collection and analysis

While summary profiles only provide process- or thread-local data aggregated over time,
event traces contain detailed time-stamped event data which also allows to reconstruct the
dynamic behavior of an application. This enables tools such as the Scalasca trace analyzer
to provide even more insights into the performance behavior of an application, for example,
whether the time spent in MPI communication is real message processing time or incurs
significant wait states (i.e., intervals where a process sits idle without doing useful work
waiting for data from other processes to arrive).

Trace collection and subsequent automatic analysis by the Scalasca trace analyzer can
be enabled using the -t option of scalasca -analyze. Since this option enables trace
collection in addition to collecting a summary measurement, it is often used in conjunction
with the -q option which turns off measurement entirely. (Note that the order in which
these two options are specified matters.)

Attention:
Do not forget to specify an appropriate measurement configuration (i.e., a
filtering file and SCOREP_TOTAL_MEMORY setting)! Otherwise, you may easily fill up
your disks and suffer from uncoordinated intermediate trace buffer flushes, which
typically render such traces to be of little (or no) value!

For our example measurement, scoring of the initial summary report in Section 2.4.4 with
the filter applied estimated a total memory requirement of 56 MiB per process (which could
be verified by re-scoring the filtered summary measurement). As this exceeds the default
SCOREP_TOTAL_MEMORY setting of 16 MiB, use of the prepared filtering file alone is not yet
sufficient to avoid intermediate trace buffer flushes. In addition, the SCOREP_TOTAL_MEMORY
setting has to be adjusted accordingly before starting the trace collection and analysis.
(Alternatively, the filtering file could be extended to also exclude the binvrhs routine from
measurement.) Note that renaming or removing the summary experiment directory is not
necessary, as trace experiments are created with suffix "trace".

% export SCOREP_TOTAL_MEMORY=56M
% scalasca -analyze -q -t -f npb-bt.filt mpiexec -n 64 ./bt.D.64
S=C=A=N: Scalasca 2.1 trace collection and analysis
S=C=A=N: ./scorep_bt_64_trace experiment archive
S=C=A=N: Thu Apr 3 20:45:38 2014: Collect start
mpiexec -n 64 [...] ./bt.D.64

NAS Parallel Benchmarks 3.3 -- BT Benchmark

No input file inputbt.data. Using compiled defaults
Size: 408x 408x 408
Iterations: 250 dt: 0.0000200
Number of active processes: 64

Time step 1
Time step 20
Time step 40
Time step 60
Time step 80

21

Chapter 2. Getting started

Time step 100
Time step 120
Time step 140
Time step 160
Time step 180
Time step 200
Time step 220
Time step 240
Time step 250
Verification being performed for class D
accuracy setting for epsilon = 0.1000000000000E-07
Comparison of RMS-norms of residual

1 0.2533188551738E+05 0.2533188551738E+05 0.1479210131727E-12
2 0.2346393716980E+04 0.2346393716980E+04 0.8488743310506E-13
3 0.6294554366904E+04 0.6294554366904E+04 0.3034271788588E-14
4 0.5352565376030E+04 0.5352565376030E+04 0.8597827149538E-13
5 0.3905864038618E+05 0.3905864038618E+05 0.6650300273080E-13

Comparison of RMS-norms of solution error
1 0.3100009377557E+03 0.3100009377557E+03 0.1373406191445E-12
2 0.2424086324913E+02 0.2424086324913E+02 0.1582835864248E-12
3 0.7782212022645E+02 0.7782212022645E+02 0.4053872777553E-13
4 0.6835623860116E+02 0.6835623860116E+02 0.3762882153975E-13
5 0.6065737200368E+03 0.6065737200368E+03 0.2474004739002E-13

Verification Successful

BT Benchmark Completed.
Class = D
Size = 408x 408x 408
Iterations = 250
Time in seconds = 495.56
Total processes = 64
Compiled procs = 64
Mop/s total = 117715.93
Mop/s/process = 1839.31
Operation type = floating point
Verification = SUCCESSFUL
Version = 3.3
Compile date = 03 Apr 2014

Compile options:
MPIF77 = scorep mpif77
FLINK = $(MPIF77)
FMPI_LIB = (none)
FMPI_INC = (none)
FFLAGS = -O2
FLINKFLAGS = -O2
RAND = (none)

Please send the results of this run to:

NPB Development Team

22

2.4. A full workflow example

Internet: npb@nas.nasa.gov

If email is not available, send this to:

MS T27A-1
NASA Ames Research Center
Moffett Field, CA 94035-1000

Fax: 650-604-3957

S=C=A=N: Thu Apr 3 20:53:59 2014: Collect done (status=0) 501s
S=C=A=N: Thu Apr 3 20:54:00 2014: Analyze start
mpiexec -n 64 scout.mpi ./scorep_bt_64_trace/traces.otf2
SCOUT Copyright (c) 1998-2014 Forschungszentrum Juelich GmbH

Copyright (c) 2009-2014 German Research School for Simulation
Sciences GmbH

Analyzing experiment archive ./scorep_bt_64_trace/traces.otf2

Opening experiment archive ... done (0.046s).
Reading definition data ... done (0.063s).
Reading event trace data ... done (1.138s).
Preprocessing ... done (2.129s).
Analyzing trace data ...

Wait-state detection (fwd) (1/4) ... done (0.835s).
Wait-state detection (bwd) (2/4) ... done (0.391s).
Synchpoint exchange (3/4) ... done (0.645s).
Critical-path analysis (4/4) ... done (0.332s).

done (2.217s).
Writing analysis report ... done (0.191s).

Max. memory usage : 173.016MB

*** WARNING ***
9982 clock condition violations detected:

Point-to-point: 9982
Collective : 0

This usually leads to inconsistent analysis results.

Try running the analyzer using the ’--time-correct’ command-line
option to apply a correction algorithm.

Total processing time : 5.907s
S=C=A=N: Thu Apr 3 20:54:06 2014: Analyze done (status=0) 6s
Warning: 2.968GB of analyzed trace data retained in ./scorep_bt_64_trace/traces!
S=C=A=N: ./scorep_bt_64_trace complete.

% ls scorep_bt_64_trace
scorep.cfg scorep.log scout.log traces.def trace.stat
scorep.filt scout.cubex traces traces.otf2

After successful trace collection and analysis, the generated experiment directory

23

Chapter 2. Getting started

scorep_bt_64_trace contains the measurement configuration scorep.cfg, the measure-
ment log file scorep.log and a copy of the filtering file scorep.filt. In addition, an OTF2
trace archive is produced, consisting of the anchor file traces.otf2, the global definitions
file traces.def and the per-process data in the traces/ directory. Finally, the experiment
also includes the trace analysis reports scout.cubex and trace.stat, as well as a log file
storing the output of the trace analyzer (scout.log).

The Scalasca trace analyzer also warned about a number of point-to-point clock condition
violations it detected. A clock condition violation is a violation of the logical event order
that can occur when the local clocks of the individual compute nodes are insufficiently
synchronized. For example, a receive operation may appear to have finished before the
corresponding send operation started – something that is obviously not possible. The
Scalasca trace analyzer includes a correction algorithm [1] that can be applied in such
cases to restore the logical event order, while trying to preserve the length of intervals
between local events in the vicinity of the violation.

To enable this correction algorithm, the --time-correct command-line option has to
be passed to the Scalasca trace analyzer. However, since the analyzer is implicitly
started through the scalasca -analyze command, this option has to be set using
the SCAN_ANALYZE_OPTS environment variable, which holds command-line options that
scalasca -analyze should forward to the trace analyzer. An existing trace measurement
can be re-analyzed using the -a option of the scalasca -analyze command, avoiding the
need to collect a new experiment:

% export SCAN_ANALYZE_OPTS="--time-correct"
% scalasca -analyze -a mpiexec -n 64 ./bt.D.64
S=C=A=N: Scalasca 2.1 trace analysis
S=C=A=N: ./scorep_bt_64_trace experiment archive
S=C=A=N: Thu Apr 3 20:54:07 2014: Analyze start
mpiexec -n 64 scout.mpi --time-correct ./scorep_bt_64_trace/traces.otf2
SCOUT Copyright (c) 1998-2014 Forschungszentrum Juelich GmbH

Copyright (c) 2009-2014 German Research School for Simulation
Sciences GmbH

Analyzing experiment archive ./scorep_bt_64_trace/traces.otf2

Opening experiment archive ... done (0.006s).
Reading definition data ... done (0.008s).
Reading event trace data ... done (1.126s).
Preprocessing ... done (2.107s).
Timestamp correction ... done (0.683s).
Analyzing trace data ...

Wait-state detection (fwd) (1/4) ... done (0.829s).
Wait-state detection (bwd) (2/4) ... done (0.383s).
Synchpoint exchange (3/4) ... done (0.644s).
Critical-path analysis (4/4) ... done (0.335s).

done (2.198s).
Writing analysis report ... done (0.130s).

Max. memory usage : 204.395MB

passes : 1

24

2.4. A full workflow example

violated : 2679
corrected : 18791313
reversed-p2p : 2679
reversed-coll : 0
reversed-omp : 0
events : 263738186
max. error : 0.000072 [s]
error at final. : 0.000000 [%]
Max slope : 0.010000000

Total processing time : 6.383s
S=C=A=N: Thu Apr 3 20:54:13 2014: Analyze done (status=0) 6s
Warning: 2.968GB of analyzed trace data retained in ./scorep_bt_64_trace/traces!
S=C=A=N: ./scorep_bt_64_trace complete.

Note:
The additional time required to execute the timestamp correction algorithm is typi-
cally small compared to the trace data I/O time and waiting times in the batch queue
for starting a second analysis job. On platforms where clock condition violations are
likely to occur (i.e., clusters), it is therefore often convenient to enable the timestamp
correction algorithm by default.

Similar to the summary report, the trace analysis report can finally be postprocessed and
interactively explored using the Cube report browser, again using the scalasca -examine
convenience command:

% scalasca -examine scorep_bt_64_trace
INFO: Post-processing trace analysis report...
INFO: Displaying ./scorep_bt_64_trace/trace.cubex...

The report generated by the Scalasca trace analyzer is again a profile in CUBE4 format,
however, enriched with additional performance properties. Examination shows that roughly
half of the time spent in MPI point-to-point communication is waiting time, equally split into
Late Sender and Late Receiver wait states (see Figure 2.2). While the execution time in
the solve_cell routines looked relatively balanced in the summary profile, examination of
the Critical path imbalance metric shows that these routines in fact exhibit a small amount
of imbalance, which is likely to cause the wait states at the next synchronization point.

25

Chapter 2. Getting started

Figure 2.2: Screenshot of a trace analysis result in the Cube report browser.

26

Bibliography

[1] D. Becker, R. Rabenseifner, F. Wolf, and J. Linford. Scalable timestamp synchronization
for event traces of message-passing applications. Parallel Computing, 35(12):595–607,
Dec. 2009. 24

[2] D. Böhme, B. R. de Supinski, M. Geimer, M. Schulz, and F. Wolf. Scalable critical-
path based performance analysis. In Proc. of the 26th IEEE International Parallel &
Distributed Processing Symposium (IPDPS), Shanghai, China, pages 1330–1340. IEEE
Computer Society, May 2012. 1

[3] Cube User Guide. Available as part of the Cube installation or online at http://www.
scalasca.org/software/cube-4.x/documentation.html. 19

[4] D. Eschweiler, M. Wagner, M. Geimer, A. Knüpfer, W. E. Nagel, and F. Wolf. Open
Trace Format 2 - The next generation of scalable trace formats and support libraries.
In Applications, Tools and Techniques on the Road to Exascale Computing (Proc. of
Intl. Conference on Parallel Computing, ParCo, Aug./Sept. 2011, Ghent, Belgium),
volume 22 of Advances in Parallel Computing, pages 481–490. IOS Press, May 2012. 1

[5] M. Geimer, F. Wolf, B. J. N. Wylie, and B. Mohr. A scalable tool architecture for diagnos-
ing wait states in massively parallel applications. Parallel Computing, 35(7):375–388,
July 2009. 1

[6] A. Knüpfer, H. Brunst, J. Doleschal, M. Jurenz, M. Lieber, H. Mickler, M. S. Müller, and
W. E. Nagel. The Vampir performance analysis toolset. In Tools for High Performance
Computing (Proc. of the 2nd Parallel Tools Workshop, July 2008, Stuttgart, Germany),
pages 139–155. Springer, July 2008. 1, 6

[7] A. Knüpfer, C. Rössel, D. an Mey, S. Biersdorff, K. Diethelm, D. Eschweiler, M. Geimer,
M. Gerndt, D. Lorenz, A. Malony, W. E. Nagel, Y. Oleynik, P. Philippen, P. Saviankou,
D. Schmidl, S. Shende, R. Tschüter, M. Wagner, B. Wesarg, and F. Wolf. Score-P – A
joint performance measurement run-time infrastructure for Periscope, Scalasca, TAU,
and Vampir. In Tools for High Performance Computing 2011 (Proc. of 5th Parallel
Tools Workshop, Sept. 2011, Dresden, Germany), pages 79–91. Springer, Sept. 2012.
1

[8] Message Passing Interface Forum. MPI: A message-passing interface standard, Ver-
sion 3.0. http://www.mpi-forum.org, Sept. 2012. 1

[9] NASA Advanced Supercomputing Division. NAS Parallel Benchmarks website. https:
//www.nas.nasa.gov/publications/npb.html. 7

[10] OpenMP Architecture Review Board. OpenMP application program interface, Version
4.0. http://www.openmp.org, July 2013. 1

[11] Scalasca 2.x series documentation web page. http://www.scalasca.org/software/
scalasca-2.x/documentation.html. 7

27

http://www.scalasca.org/software/cube-4.x/documentation.html
http://www.scalasca.org/software/cube-4.x/documentation.html
http://www.mpi-forum.org
https://www.nas.nasa.gov/publications/npb.html
https://www.nas.nasa.gov/publications/npb.html
http://www.openmp.org
http://www.scalasca.org/software/scalasca-2.x/documentation.html
http://www.scalasca.org/software/scalasca-2.x/documentation.html

Bibliography

[12] Score-P User Manual. Available as part of the Score-P installation or online at
http://www.score-p.org. 3, 5, 6, 14, 16

[13] S. S. Shende and A. D. Malony. The TAU parallel performance system. International
Journal of High Performance Computing Applications, 20(2):287–311, May 2006. 1

28

http://www.score-p.org

www.scalasca.org

	Introduction
	Getting started
	Instrumentation
	Runtime measurement collection & analysis
	Analysis report examination
	A full workflow example
	Preparing a reference execution
	Instrumenting the application code
	Initial summary measurement
	Optimizing the measurement configuration
	Summary measurement & examination
	Using the Cube browser

	Trace collection and analysis

	Bibliography

