OPEN TRACE FORMAT 2

USER MANUAL
1.4 (revision 3826)

Fri Aug 29 2014 12:03:38

OTF2 LICENSE AGREEMENT

COPYRIGHT ©2009-2012,

RWTH Aachen University, Germany
COPYRIGHT ©2009-2012,

Gesellschaft fuer numerische Simulation mbH, Germany
COPYRIGHT ©2009-2013,

Technische Universitaet Dresden, Germany
COPYRIGHT ©2009-2012,

University of Oregon, Eugene, USA
COPYRIGHT ©2009-2013,

Forschungszentrum Juelich GmbH, Germany
COPYRIGHT ©2009-2013,

German Research School for Simulation Sciences GmbH, Germany
COPYRIGHT ©2009-2012,

Technische Universitaet Muenchen, Germany

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are per-
mitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the names of

RWTH Aachen University,

Gesellschaft fuer numerische Simulation mbH Braunschweig,

Technische Universitaet Dresden,

University of Oregon, Eugene,

Forschungszentrum Juelich GmbH,

German Research School for Simulation Sciences GmbH, or the

Technische Universitaet Muenchen,

nor the names of their contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIB-
UTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DI-
RECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTI-
TUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

ii

WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLI-
GENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFT-
WARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

iii

Contents

Contents

1 Open Trace Format 2
1.1 Introduction
1.2 Getstarted

Appendix A OTF2 INSTALL
Appendix B Deprecated List

Appendix C Module Documentation
C.1 Usageof OTF2tools
C2 OTF2configtool
C3 OTR2printtool,
C4 OTF2snapshotstool
CS5 OTF2markertool
C.6 OTF2estimatortool
C7 OTF2records
C.8 Listof all definitionrecords
C.9 ClockProperties
C.10 MappingTable oo
C.11 ClockOffset o
Cl2 String
CI3 Attribute
C.14 SystemTreeNode
C.15 LocationGroup e
C.l6 Location i e
CI7Region. e
C.A8 Callsite
CI9 Callpath
C20Group o v i i e e e
C.21 MetricMember
C22 MetricClass o i it
C.23 Metriclnstance e

Page

CONTENTS

C24 Comm e 32
C.25 Parametero 33
C26 RmaWin e 33
C.27 MetricClassRecorder 34
C.28 SystemTreeNodeProperty 34
C.29 SystemTreeNodeDomain 35
C.30 LocationGroupProperty 35
C.31 LocationProperty 36
C.32 CartDimension 36
C.33 CartTopology o i 37
C.34 CartCoordinateo i i 38
C35 Listofalleventrecords 39
C36 BufferFlush 39
C.37 MeasurementOnOff oL L. 39
C38 Enter. 40
C39 Leave i i 40
CA40 MpiSend 41
Cd4l Mpilsend 41
C.42 MpilsendComplete 42
C.43 MpilrecvRequest L o 42
C44 MpiRecv oL 43
CA45 Mpilrecv oL 44
C.46 MpiRequestTest 44
C47 MpiRequestCancelled 45
C.48 MpiCollectiveBegin 45
C.49 MpiCollectiveEnd L o 46
C.50 OmpFork 46
CS51Omploin. o 47
C.52 OmpAcquireLock L 47
C.53 OmpReleaselLock 48
C.54 OmpTaskCreate 49
C.55 OmpTaskSwitch 49
C.56 OmpTaskComplete 50
CS57 Metric o v vttt e e e 51
C.58 ParameterString 51
C.59 ParameterInt oL o 52
C.60 ParameterUnsignedInt 53
C.61 RmaWinCreate 53
C.62 RmaWinDestroy oo 54
C.63 RmaCollectiveBegin 54
C.64 RmaCollectiveEnd 55
C.65 RmaGroupSync 55
C.66 RmaRequestlock 56
C.67 RmaAcquireLock 57

vi

CONTENTS

C.68 RmaTryLock 57
C.69 RmaReleaseLock 58
C70 RmaSync 59
C.71 RmaWaitChange 59
C72 RmaPut 60
CT73 RmaGet 60
C.74 RmaAtomic 61
C.75 RmaOpCompleteBlocking 62
C.76 RmaOpCompleteNonBlocking 62
C.77 RmaOpTest e e 63
C.78 RmaOpCompleteRemote 63
C.79 ThreadFork 64
C.80 ThreadJoin 65
C.81 ThreadTeamBegin 65
C.82 ThreadTeamEnd 66
C.83 ThreadAcquireLock 66
C.84 ThreadReleaseLock 67
C.85 ThreadTaskCreate 67
C.86 ThreadTaskSwitch 68
C.87 ThreadTaskComplete 69
C.88 ThreadCreate i 69
C.89 ThreadBegin 70
CO90 ThreadWait 70
CO91 ThreadEnd 71
CO92 Listof all markerrecords 72
CO93 DefMarker. 72
CO94 Marker. 72
C.95 Listof all snapshotrecords 73
C.96 SnapshotStart 73
C.97 SnapshotEnd 73
C.98 MeasurementOnOffSnap 74
CO99 EnterSnap e 74
C.100MpiSendSnap 75
C.10MpilsendSnap 76
C.102MpilsendCompleteSnap 77
C.103MpiRecvSnap 77
C.104MpilrecvRequestSnap L. 78
C.105MpilrecvSnap 79
C.106MpiCollectiveBeginSnap 79
C.10MMpiCollectiveEndSnap 80
C.1080mpForkSnap 81
C.1090mpAcquireLockSnap Lo 81
C.1100mpTaskCreateSnap 82
C.1110mpTaskSwitchSnap 83

vii

CONTENTS

C.l12MetricSnap o v v e e 83
C.113ParameterStringSnap 84
C.114ParameterIntSnap 85
C.115ParameterUnsignedIntSnap 85
C.1160TF2 usageexamples oo 86
C.117Usage in writing mode - a simple example 86
C.118How to use the attribute list for writing additional attributes to
eventrecords Lo 91
C.1190TF2 callbacks i 91
C.120Controlling OTF2 flush behavior in writing mode 91
C.120.1Detailed Description 92
C.120.2Typedef Documentation 92
C.12IMemory pooling for OTF2 93
C.121.1Detailed Description 94
C.121.2Typedef Documentation 94
C.1220perating OTF2 in an collective context 95
C.122.1Detailed Description 97
C.122.2Typedef Documentation 97
C.123Usage in reading mode - MPl example 101
C.124Usage in writing mode - MPl example 108
C.125Usage in reading mode - a simple example 115
Appendix D Data Structure Documentation 121
D.1 OTF2_AttributeValue Union Reference 121
D.1.1 Detailed Description 122
D.2 OTF2_CollectiveCallbacks Struct Reference 123
D.2.1 Detailed Description 123
D.3 OTF2_CollectiveContext Struct Reference 123
D.3.1 Detailed Description 123
D.4 OTF2_FlushCallbacks Struct Reference 123
D.4.1 Detailed Description 124
D.5 OTF2_MemoryCallbacks Struct Reference 124
D.5.1 Detailed Description 124
D.6 OTF2_MetricValue Union Reference 125
D.6.1 Detailed Description 125
D.7 OTF2_MPI_UserData Struct Reference 125
D.7.1 Detailed Description 125
Appendix E File Documentation 127
E.1 otf2/OTF2_ErrorCodes.h File Reference 127
E.1.1 Detailed Description 131
E.1.2 Typedef Documentation 131
E.1.3 Enumeration Type Documentation 131
E.1.4 Function Documentation 135

viii

CONTENTS

E.2

E.3

E.4

E.5

E.6

E.7

E.8

E.9

E.10

E.11

E.12

E.13

E.14

E.15

otf2/otf2.h File Reference 136
E.2.1 Detailed Description 136
otf2/OTF2_Archive.h File Reference 136
E.3.1 Detailed Description 142
E.3.2 Define Documentation 142
E.3.3 Typedef Documentation 142
E.3.4 Function Documentation 143
otf2/OTF2_AttributeList.h File Reference 167
E.4.1 Detailed Description 172
E.4.2 Function Documentation 172
otf2/OTF2_Callbacks.h File Reference 192
E.5.1 Detailed Description 194
otf2/OTF2_Definitions.h File Reference 195
E.6.1 Detailed Description 200
E.6.2 Enumeration Type Documentation 200
otf2/OTF2_DefReader.h File Reference 209
E.7.1 Detailed Description 210
E.7.2 Function Documentation 210
otf2/OTF2_DefReaderCallbacks.h File Reference 212
E.8.1 Detailed Description 218
E.8.2 Typedef Documentation 218
E.8.3 Function Documentation 236
otf2/OTF2_DefWriter.h File Reference 250
E.9.1 Detailed Description 253
E.9.2 Function Documentation 253
otf2/OTF2_Events.h File Reference 269
E.10.1 Detailed Description 272
E.10.2 Enumeration Type Documentation 272
otf2/OTF2_EventSizeEstimator.h File Reference 275
E.11.1 Detailed Description 281
E.11.2 Function Documentation 281
otf2/OTF2_EvtReader.h File Reference 310
E.12.1 Detailed Description 311
E.12.2 Function Documentation 311
otf2/OTF2_EvtReaderCallbacks.h File Reference 315
E.13.1 Detailed Description 328
E.13.2 Typedef Documentation 328
E.13.3 Function Documentation 370
otf2/OTF2_EvtWriter.h File Reference 402
E.14.1 Detailed Description 409
E.14.2 Function Documentation 409
otf2/OTF2_GeneralDefinitions.h File Reference 448
E.15.1 Detailed Description 455
E.15.2 Enumeration Type Documentation 455

ix

CONTENTS

E.16 otf2/OTF2_GlobalDefReader.h File Reference 461
E.16.1 Detailed Description 462
E.16.2 Function Documentation 462

E.17 otf2/OTF2_GlobalDefReaderCallbacks.h File Reference 463
E.17.1 Detailed Description 469
E.17.2 Typedef Documentation 469
E.17.3 Function Documentation 486

E.18 otf2/OTF2_GlobalDefWriter.h File Reference 502
E.18.1 Detailed Description 505
E.18.2 Function Documentation 505

E.19 otf2/OTF2_GlobalEvtReader.h File Reference 522
E.19.1 Detailed Description 523
E.19.2 Function Documentation 523

E.20 otf2/OTF2_GlobalEvtReaderCallbacks.h File Reference 525
E.20.1 Detailed Description 538
E.20.2 Typedef Documentation 538
E.20.3 Function Documentation 577

E.21 otf2/OTF2_GlobalSnapReader.h File Reference 611
E.21.1 Detailed Description 612
E.21.2 Function Documentation 612

E.22 otf2/OTF2_GlobalSnapReaderCallbacks.h File Reference 613
E.22.1 Detailed Description 619
E.22.2 Typedef Documentation 619
E.22.3 Function Documentation 636

E.23 otf2/OTF2_IdMap.h File Reference 649
E.23.1 Detailed Description 650
E.23.2 Typedef Documentation 650
E.23.3 Enumeration Type Documentation 651
E.23.4 Function Documentation 651

E.24 otf2/OTF2_Marker.h File Reference 655
E.24.1 Detailed Description 656
E.24.2 Enumeration Type Documentation 656

E.25 otf2/OTF2_MarkerReader.h File Reference 657
E.25.1 Detailed Description 658
E.25.2 Function Documentation 658

E.26 otf2/OTF2_MarkerReaderCallbacks.h File Reference 659
E.26.1 Detailed Description 660
E.26.2 Typedef Documentation 661
E.26.3 Function Documentation 662

E.27 otf2/OTF2_MarkerWriter.h File Reference 665
E.27.1 Detailed Description 666
E.27.2 Function Documentation 666

E.28 otf2/OTF2_MPI_Collectives.h File Reference 667

E.28.1 Detailed Description 669

CONTENTS

E.29

E.30

E.31

E.32

E.33

E.28.2 Function Documentation 669
otf2/OTF2_Reader.h File Reference 670
E.29.1 Detailed Description 676
E.29.2 Function Documentation 676
otf2/OTF2_SnapReader.h File Reference 704
E.30.1 Detailed Description 705
E.30.2 Function Documentation 705
otf2/OTF2_SnapReaderCallbacks.h File Reference 707
E.31.1 Detailed Description 712
E.31.2 Typedef Documentation 713
E.31.3 Function Documentation 729
otf2/OTF2_SnapWriter.h File Reference 741
E.32.1 Detailed Description 744
E.32.2 Typedef Documentation 744
E.32.3 Function Documentation 745
otf2/OTF2_Thumbnail.h File Reference 759
E.33.1 Detailed Description 760
E.33.2 Function Documentation 760

xi

Chapter 1

Open Trace Format 2

1.1 Introduction

The OTF2 library provides an interface to write and read trace data.

OTF2 is developed within the Score-P project. The Score-P project is funded by
the German Federal Ministry of Education and Research. OTF2 is available under
the BSD open source license that allows free usage for academic and commercial
applications.

1.2 Get started

OTF2 usage examples
OTF?2 records

OTF?2 callbacks
Usage of OTF2 tools

CHAPTER 1. OPEN TRACE FORMAT 2

Appendices

Appendix A

OTF2 INSTALL

For generic installation instructions see below.

Configuration of OTF2

kAKhkkkhkhkkhkkkhkkAkhk Ak hk Ak Ak kK Khk%k

‘configure’ configures scorep to adapt to many kinds of systems.

Usage: ./configure [OPTION]... [VAR=VALUE]...
To assign environment variables (e.g., CC, CFLAGS...), specify them as
VAR=VALUE. See below for descriptions of some of the useful variables.

Defaults for the options are specified in brackets.

Configuration:

-h, --help display this help and exit
—-—help=short display options specific to this package
——help=recursive display the short help of all the included packages

-V, —--version display version information and exit

-g, ——quiet, --silent do not print ‘checking ...’ messages
——cache-file=FILE cache test results in FILE [disabled]

-C, —--config-cache alias for ‘--cache-file=config.cache’

-n, ——-no-create do not create output files
——srcdir=DIR find the sources in DIR [configure dir or ‘..’]

Installation directories:

——prefix=PREFIX install architecture-independent files in PREFIX
[/opt/otf2]

——exec-prefix=EPREFIX install architecture-dependent files in EPREFIX
[PREFIX]

By default, ‘make install’ will install all the files in
‘/opt/otf2/bin’, ‘/opt/otf2/1lib’ etc. You can specify

an installation prefix other than ‘/opt/otf2’ using ‘--prefix’,
for instance ‘--prefix=S$HOME’ .

APPENDIX A. OTF2 INSTALL

For better control, use the options below.

Fine tuning of the installation directories:

—-bindir=DIR
—--sbindir=DIR
——libexecdir=DIR
—--sysconfdir=DIR
——-sharedstatedir=DIR
—-—localstatedir=DIR
--1libdir=DIR
——includedir=DIR
—--oldincludedir=DIR
—-—datarootdir=DIR
—-—datadir=DIR
——infodir=DIR
—--localedir=DIR
——-mandir=DIR
——docdir=DIR
--—htmldir=DIR
——dvidir=DIR
——-pdfdir=DIR
—--psdir=DIR

Program names:

——program-prefix=PREFIX
——-program-suffix=SUFFIX

user executables [EPREFIX/bin]

system admin executables [EPREFIX/sbin]

program executables [EPREFIX/libexec]

read-only single-machine data [PREFIX/etc]

modifiable architecture-independent data [PREFIX/com]
modifiable single-machine data [PREFIX/var]

object code libraries [EPREFIX/1lib]

C header files [PREFIX/include]

C header files for non-gcc [/usr/include]

read-only arch.-independent data root [PREFIX/share]
read-only architecture-independent data [DATAROOTDIR]
info documentation [DATAROOTDIR/info]
locale—-dependent data [DATAROOTDIR/locale]

man documentation [DATAROOTDIR/man]

documentation root [DATAROOTDIR/doc/otf2]

html documentation [DOCDIR]

dvi documentation [DOCDIR]

pdf documentation [DOCDIR]

ps documentation [DOCDIR]

prepend PREFIX to installed program names
append SUFFIX to installed program names

——program—-transform—name=PROGRAM run sed PROGRAM on installed program names

System types:

—-build=BUILD configure for building on BUILD [guessed]
—-host=HOST cross—compile to build programs to run on HOST [BUILD]

Optional Features:

——disable-option-checking ignore unrecognized —--enable/--with options

——disable-FEATURE
——enable-FEATURE [=ARG]
—-—enable-silent-rules

——disable-silent-rules

do not include FEATURE (same as ——-enable-FEATURE=no)
include FEATURE [ARG=yes]
less verbose build output (undo: ‘make V=1")
verbose build output (undo: ‘make V=07)

——disable-dependency-tracking speeds up one-time build
——enable-dependency-tracking do not reject slow dependency extractors

——enable—-debug

activate internal debug output [no]

——enable-backend-test-runs

——enable—-shared [=PKGS]
——enable-static [=PKGS]

Run tests at make check [no]. If disabled, tests are
still build at make check. Additionally, scripts
(scorep_xtests.sh) containing the tests are
generated in <builddir>/build-backend.

build shared libraries [default=no]

build static libraries [default=yes]

——enable-fast-install [=PKGS]

——disable-libtool-lock

Optional Packages:
——with-PACKAGE [=ARG]

optimize for fast installation [default=yes]
avoid locking (might break parallel builds)

use PACKAGE [ARG=yes]

——without-PACKAGE do not use PACKAGE (same as ——-with-PACKAGE=no)
——with-sionlib[=<sionlib-bindir>]
Use an already installed sionlib. Provide path to
sionconfig. Auto-detected if already in $PATH.

——with-pic try to use only PIC/non-PIC objects [default=use
both]
—--with-gnu-1d assume the C compiler uses GNU 1ld [default=no]

——with-sysroot=DIR Search for dependent libraries within DIR
(or the compiler’s sysroot if not specified).

Some influential environment variables:
CC_FOR_BUILD
C compiler command for the frontend build
CXX_FOR_BUILD
C++ compiler command for the frontend build
F77_FOR_BUILD
Fortran 77 compiler command for the frontend build
FC_FOR_BUILD
Fortran compiler command for the frontend build
CPPFLAGS_FOR_BUILD
(Objective) C/C++ preprocessor flags for the frontend build,
e.g. —-I<include dir> if you have headers in a nonstandard
directory <include dir>
CFLAGS_FOR_BUILD
C compiler flags for the frontend build
CXXFLAGS_FOR_BUILD
C++ compiler flags for the frontend build
FFLAGS_FOR_BUILD
Fortran 77 compiler flags for the frontend build
FCFLAGS_FOR_BUILD
Fortran compiler flags for the frontend build
LDFLAGS_FOR_BUILD
linker flags for the frontend build, e.g. -L<lib dir> if you
have libraries in a nonstandard directory <lib dir>
LIBS_FOR_BUILD
libraries to pass to the linker for the frontend build, e.g.

—-l<library>

cC C compiler command

CFLAGS C compiler flags

LDFLAGS linker flags, e.g. -L<lib dir> if you have libraries in a
nonstandard directory <lib dir>

LIBS libraries to pass to the linker, e.g. -1l<library>

CPPFLAGS (Objective) C/C++ preprocessor flags, e.g. —-I<include dir> if
you have headers in a nonstandard directory <include dir>

CXX C++ compiler command

CXXFLAGS C++ compiler flags

CPP C preprocessor

CXXCPP C++ preprocessor

Use these variables to override the choices made by ‘configure’ or to help
it to find libraries and programs with nonstandard names/locations.

Please report bugs to <support@score-p.org>.

APPENDIX A. OTF2 INSTALL

Installation Instructions

KAkXAKA AR AR KA AR A XA A XA A XKk h kK

Copyright (C) 1994, 1995, 1996, 1999, 2000, 2001, 2002, 2004, 2005,
2006, 2007, 2008, 2009 Free Software Foundation, Inc.

Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is,
without warranty of any kind.

Basic Installation

Briefly, the shell commands ‘./configure; make; make install’ should
configure, build, and install this package. The following
more—-detailed instructions are generic; see the ‘README’ file for
instructions specific to this package. Some packages provide this
‘INSTALL’ file but do not implement all of the features documented
below. The lack of an optional feature in a given package is not
necessarily a bug. More recommendations for GNU packages can be found
in x*note Makefile Conventions: (standards)Makefile Conventions.

The ‘configure’ shell script attempts to guess correct values for
various system-dependent variables used during compilation. It uses
those values to create a ‘Makefile’ in each directory of the package.
It may also create one or more ‘.h’ files containing system-dependent
definitions. Finally, it creates a shell script ‘config.status’ that
you can run in the future to recreate the current configuration, and a
file ‘config.log’ containing compiler output (useful mainly for
debugging ‘configure’).

It can also use an optional file (typically called ‘config.cache’
and enabled with ‘--cache-file=config.cache’ or simply ‘-C’) that saves
the results of its tests to speed up reconfiguring. Caching is
disabled by default to prevent problems with accidental use of stale
cache files.

If you need to do unusual things to compile the package, please try
to figure out how ‘configure’ could check whether to do them, and mail
diffs or instructions to the address given in the ‘README’ so they can
be considered for the next release. If you are using the cache, and at
some point ‘config.cache’ contains results you don’t want to keep, you
may remove or edit it.

The file ‘configure.ac’ (or ‘configure.in’) is used to create
‘configure’ by a program called ‘autoconf’. You need ‘configure.ac’ if
you want to change it or regenerate ‘configure’ using a newer version
of ‘autoconf’.

The simplest way to compile this package is:

1. ‘cd’ to the directory containing the package’s source code and type
‘./configure’ to configure the package for your system.

Running ‘configure’ might take a while. While running, it prints
some messages telling which features it is checking for.

2. Type ‘make’ to compile the package.

3. Optionally, type ‘make check’ to run any self-tests that come with
the package, generally using the just-built uninstalled binaries.

4. Type ‘make install’” to install the programs and any data files and
documentation. When installing into a prefix owned by root, it is
recommended that the package be configured and built as a regular
user, and only the ‘make install’ phase executed with root
privileges.

5. Optionally, type ‘make installcheck’ to repeat any self-tests, but
this time using the binaries in their final installed location.
This target does not install anything. Running this target as a
regular user, particularly if the prior ‘make install’ required
root privileges, verifies that the installation completed
correctly.

6. You can remove the program binaries and object files from the
source code directory by typing ‘make clean’. To also remove the
files that ‘configure’ created (so you can compile the package for
a different kind of computer), type ‘make distclean’. There is
also a ‘make maintainer-clean’ target, but that is intended mainly
for the package’s developers. If you use it, you may have to get
all sorts of other programs in order to regenerate files that came
with the distribution.

7. Often, you can also type ‘make uninstall’ to remove the installed
files again. 1In practice, not all packages have tested that
uninstallation works correctly, even though it is required by the
GNU Coding Standards.

8. Some packages, particularly those that use Automake, provide ‘make
distcheck’, which can by used by developers to test that all other
targets like ‘make install’ and ‘make uninstall’ work correctly.
This target is generally not run by end users.

Compilers and Options

Some systems require unusual options for compilation or linking that
the ‘configure’ script does not know about. Run ‘./configure --help’
for details on some of the pertinent environment variables.

You can give ‘configure’ initial values for configuration parameters
by setting variables in the command line or in the environment. Here

is an example:

./configure CC=c99 CFLAGS=-g LIBS=-lposix

APPENDIX A. OTF2 INSTALL

*Note Defining Variables::, for more details.

Compiling For Multiple Architectures

You can compile the package for more than one kind of computer at the
same time, by placing the object files for each architecture in their
own directory. To do this, you can use GNU ‘make’. ‘cd’” to the
directory where you want the object files and executables to go and run
the ‘configure’ script. ‘configure’ automatically checks for the
source code in the directory that ‘configure’ is in and in ‘..’. This
is known as a "VPATH" build.

With a non-GNU ‘make’, it is safer to compile the package for one
architecture at a time in the source code directory. After you have
installed the package for one architecture, use ‘make distclean’ before
reconfiguring for another architecture.

On MacOS X 10.5 and later systems, you can create libraries and
executables that work on multiple system types—--known as "fat" or
"universal" binaries--by specifying multiple ‘-arch’ options to the
compiler but only a single ‘-arch’ option to the preprocessor. Like
this:

./configure CC="gcc -arch 1386 —-arch x86_64 —arch ppc —arch ppc64" \
CXX="g++ —arch 1386 -arch x86_64 -arch ppc —-arch ppc64" \
CPP="gcc —-E" CXXCPP="g++ —E"

This is not guaranteed to produce working output in all cases, you
may have to build one architecture at a time and combine the results
using the ‘lipo’ tool if you have problems.

Installation Names

By default, ‘make install’ installs the package’s commands under
‘/usr/local/bin’, include files under ‘/usr/local/include’, etc. You
can specify an installation prefix other than ‘/usr/local’ by giving
‘configure’ the option ‘--prefix=PREFIX’, where PREFIX must be an
absolute file name.

You can specify separate installation prefixes for
architecture-specific files and architecture-independent files. If you
pass the option ‘--exec-prefix=PREFIX’ to ‘configure’, the package uses
PREFIX as the prefix for installing programs and libraries.
Documentation and other data files still use the regular prefix.

In addition, if you use an unusual directory layout you can give
options like ‘--bindir=DIR’ to specify different values for particular
kinds of files. Run ‘configure --help’ for a list of the directories
you can set and what kinds of files go in them. In general, the
default for these options is expressed in terms of ‘${prefix}’, so that
specifying just ‘--prefix’ will affect all of the other directory
specifications that were not explicitly provided.

10

The most portable way to affect installation locations is to pass the
correct locations to ‘configure’; however, many packages provide one or
both of the following shortcuts of passing variable assignments to the
‘make install’ command line to change installation locations without
having to reconfigure or recompile.

The first method involves providing an override variable for each
affected directory. For example, ‘make install
prefix=/alternate/directory’ will choose an alternate location for all
directory configuration variables that were expressed in terms of
‘${prefix}’. Any directories that were specified during ‘configure’,
but not in terms of ‘${prefix}’, must each be overridden at install
time for the entire installation to be relocated. The approach of
makefile variable overrides for each directory variable is required by
the GNU Coding Standards, and ideally causes no recompilation.
However, some platforms have known limitations with the semantics of
shared libraries that end up requiring recompilation when using this
method, particularly noticeable in packages that use GNU Libtool.

The second method involves providing the ‘DESTDIR’ variable. For
example, ‘make install DESTDIR=/alternate/directory’ will prepend

‘/alternate/directory’ before all installation names. The approach of
‘DESTDIR’ overrides is not required by the GNU Coding Standards, and
does not work on platforms that have drive letters. On the other hand,

it does better at avoiding recompilation issues, and works well even
when some directory options were not specified in terms of ‘${prefix}’
at ‘configure’ time.

Optional Features

If the package supports it, you can cause programs to be installed
with an extra prefix or suffix on their names by giving ‘configure’ the
option ‘--program-prefix=PREFIX’ or ‘--program-suffix=SUFFIX’.

Some packages pay attention to ‘-—-enable-FEATURE’ options to
‘configure’, where FEATURE indicates an optional part of the package.

They may also pay attention to ‘--with-PACKAGE’ options, where PACKAGE
is something like ‘gnu-as’ or ‘x’ (for the X Window System). The
‘README’ should mention any ‘--enable-’ and ‘--with-’ options that the

package recognizes.

For packages that use the X Window System, ‘configure’ can usually
find the X include and library files automatically, but if it doesn’t,
you can use the ‘configure’ options ‘--x-includes=DIR’ and
‘-—x-libraries=DIR’ to specify their locations.

Some packages offer the ability to configure how verbose the

execution of ‘make’ will be. For these packages, running ‘./configure
——enable-silent-rules’ sets the default to minimal output, which can be
overridden with ‘make V=1’; while running ‘./configure

——disable-silent-rules’ sets the default to verbose, which can be
overridden with ‘make V=0'.

11

APPENDIX A. OTF2 INSTALL

Particular systems

On HP-UX, the default C compiler is not ANSI C compatible. TIf GNU
CC is not installed, it is recommended to use the following options in
order to use an ANSI C compiler:
./configure CC="cc -Ae -D_XOPEN_SOURCE=500"

and if that doesn’t work, install pre-built binaries of GCC for HP-UX.

On OSF/1 a.k.a. Tru64, some versions of the default C compiler cannot

parse its ‘<wchar.h>’ header file. The option ‘-nodtk’ can be used as
a workaround. If GNU CC is not installed, it is therefore recommended
to try

./configure CC="cc"
and if that doesn’t work, try

./configure CC="cc -nodtk"

On Solaris, don’t put ‘/usr/ucb’ early in your ‘PATH’. This
directory contains several dysfunctional programs; working variants of
these programs are available in ‘/usr/bin’. So, if you need ‘/usr/ucb’

in your ‘PATH’, put it _after_ ‘/usr/bin’.

On Haiku, software installed for all users goes in ‘/boot/common’,
not ‘/usr/local’. It is recommended to use the following options:

./configure --prefix=/boot/common

Specifying the System Type

There may be some features ‘configure’ cannot figure out
automatically, but needs to determine by the type of machine the package
will run on. Usually, assuming the package is built to be run on the
same architectures, ‘configure’ can figure that out, but if it prints
a message saying it cannot guess the machine type, give it the
‘--build=TYPE’ option. TYPE can either be a short name for the system
type, such as ‘sun4’, or a canonical name which has the form:

CPU-COMPANY-SYSTEM
where SYSTEM can have one of these forms:

oS
KERNEL-0S

See the file ‘config.sub’ for the possible values of each field. If
‘config.sub’ isn’t included in this package, then this package doesn’t
need to know the machine type.

12

If you are _building_ compiler tools for cross-compiling, you should
use the option ‘--target=TYPE’ to select the type of system they will
produce code for.

If you want to _use_ a cross compiler, that generates code for a
platform different from the build platform, you should specify the
"host" platform (i.e., that on which the generated programs will
eventually be run) with ‘--host=TYPE’.

Sharing Defaults

If you want to set default values for ‘configure’ scripts to share,
you can create a site shell script called ‘config.site’ that gives
default values for variables like ‘CC’, ‘cache_file’, and ‘prefix’.
‘configure’ looks for ‘PREFIX/share/config.site’ if it exists, then
‘PREFIX/etc/config.site’ if it exists. Or, you can set the
‘CONFIG_SITE’ environment variable to the location of the site script.
A warning: not all ‘configure’ scripts look for a site script.

Defining Variables

Variables not defined in a site shell script can be set in the
environment passed to ‘configure’. However, some packages may run
configure again during the build, and the customized values of these
variables may be lost. In order to avoid this problem, you should set
them in the ‘configure’ command line, using ‘VAR=value’. For example:

./configure CC=/usr/local2/bin/gcc

causes the specified ‘gcc’ to be used as the C compiler (unless it is
overridden in the site shell script).

Unfortunately, this technique does not work for ‘CONFIG_SHELL’ due to
an Autoconf bug. Until the bug is fixed you can use this workaround:

CONFIG_SHELL=/bin/bash /bin/bash ./configure CONFIG_SHELL=/bin/bash

‘configure’ Invocation

‘configure’ recognizes the following options to control how it
operates.

‘—-—help’
_hl
Print a summary of all of the options to ‘configure’, and exit.

‘-—help=short’

‘-—help=recursive’
Print a summary of the options unique to this package’s
‘configure’, and exit. The ‘short’ wvariant lists options used

13

APPENDIX A. OTF2 INSTALL

only in the top level, while the ‘recursive’ variant lists options
also present in any nested packages.

‘-—version’

\7VI
Print the version of Autoconf used to generate the ‘configure’
script, and exit.

‘--cache-file=FILE’
Enable the cache: use and save the results of the tests in FILE,
traditionally ‘config.cache’. FILE defaults to ‘/dev/null’ to
disable caching.

‘—-—config-cache’
_c/

\

Alias for ‘--cache-file=config.cache’.

‘-—quiet’

‘--silent’

\7ql
Do not print messages saying which checks are being made. To
suppress all normal output, redirect it to ‘/dev/null’ (any error
messages will still be shown).

‘-—srcdir=DIR’
Look for the package’s source code in directory DIR. Usually
‘configure’ can determine that directory automatically.

‘--prefix=DIR’
Use DIR as the installation prefix. +note Installation Names::
for more details, including other options available for fine-tuning
the installation locations.

‘-—no-create’

\ ’

-n
Run the configure checks, but stop before creating any output
files.

‘configure’ also accepts some other, not widely useful, options. Run
‘configure --help’ for more details.

14

Appendix B

Deprecated List

Global OTF2_AttributeList_AddString(OTF2_AttributeList xattributeList, OTF2_AttributeRef attribute,
Use OTF2_AttributeList_AddStringRef{) instead.

Global OTF2_AttributeList_GetString(const OTF2_AttributeList xattributeList, OTF2_AttributeRef attri
Use OTF2_AttributeList_GetStringRef{) instead.

Global OTF2_EventSizeEstimator_GetSizeOfOmpA cquireLockEvent(OTF2_EventSizeEstimator xestimat
In version 1.2

Global OTF2_EventSizeEstimator_GetSizeOfOmpForkEvent(OTF2_EventSizeEstimator xestimator)
In version 1.2

Global OTF2_EventSizeEstimator_GetSizeOfOmpJoinEvent(OTF2_EventSizeEstimator *estimator)
In version 1.2

Global OTF2_EventSizeEstimator_GetSizeOfOmpReleaseLockEvent(OTF2_EventSizeEstimator xestimat
In version 1.2

Global OTF2_EventSizeEstimator_GetSizeOfOmpTaskCompleteEvent(OTF2_EventSizeEstimator x«estim:
In version 1.2

Global OTF2_EventSizeEstimator_GetSizeOfOmpTaskCreateEvent(OTF2_EventSizeEstimator xestimato
In version 1.2

APPENDIX B. DEPRECATED LIST

Global OTF2_EventSizeEstimator_GetSizeOfOmpTaskSwitchEvent(OTF2_EventSizeEstimator xestimato
In version 1.2

Global OTF2_EvtWriter_OmpAcquireLock(OTF2_EvtWriter «writer, OTF2_AttributeList xattributeList
In version 1.2

Global OTF2_EvtWriter_ OmpFork(OTF2_EvtWriter «writer, OTF2_AttributeList xattributeList, OTF2_
In version 1.2

Global OTF2_EvtWriter_OmpJoin(OTF2_EvtWriter xwriter, OTF2_AttributeList xattributeList, OTF2_]
In version 1.2

Global OTF2_EvtWriter_OmpReleaseLock(OTF2_EvtWriter «writer, OTF2_AttributeList xattributeList,
In version 1.2

Global OTF2_EvtWriter_OmpTaskComplete(OTF2_EvtWriter «writer, OTF2_AttributeList xattributeLis
In version 1.2

Global OTF2_EvtWriter_OmpTaskCreate(OTF2_EvtWriter «writer, OTF2_AttributeList x«attributeList, (
In version 1.2

Global OTF2_EvtWriter_OmpTaskSwitch(OTF2_EvtWriter xwriter, OTF2_AttributeList xattributeList, (
In version 1.2

Group records_event In version 1.2
In version 1.2
In version 1.2
In version 1.2
In version 1.2
In version 1.2

In version 1.2

16

Appendix C

Module Documentation

C.1 Usage of OTF2 tools

Modules

* OTF?2 config tool

* OTF?2 print tool

* OTF2 snapshots tool
* OTF2 marker tool

* OTF2 estimator tool

C.2 OTF2 config tool

A call to otf2-config has the following syntax:

Usage: otf2-config [OPTION]... COMMAND
Commands :
—-—cflags prints additional compiler flags. They already contain

the include flags
-—cppflags prints the include flags for the OTF2 headers

—-—1libs prints the required libraries for linking
--1ldflags prints the required linker flags
--cc prints the C compiler name

—-—features <FEATURE-CATEGORY>
prints available features selected by <FEATURE-CATEGORY>.
available feature categories:
* substrates
* compressions
—-help prints this usage information

APPENDIX C. MODULE DOCUMENTATION

—-—-version prints the version number of the OTF2 package and

-—-otf2-revision

prints the revision number of the OTF2 package

—-—common-revision

prints the revision number of the common package

—-—interface-version

prints the interface version number

Options:
—-—-backend
on systems, which required cross-compiling, this flag
specifies that the information for the backend is displayed.
By default the information for the frontend is displayed.
On non-cross compiling systems, this flag is ignored
—--nvcc specifies that the required flags are for the CUDA compiler

nvcce

C.3 OTF2 print tool

A call to oft2-print has the following syntax:

Usage: otf2-print [OPTION]... [-—-] ANCHORFILE
Print selected content of the OTF2 archive specified by ANCHORFILE.

Options:
-A, —--show-all print all output including definitions and anchor
file
-G, —-show-global-defs print all global definitions
-I, --show-info print information from the anchor file
-T, —--show-thumbnails print the headers from all thumbnails
-M, --show-mappings print mappings to global definitions
-C, —--show-clock-offsets

print clock offsets to global timer

——timestamps=<FORMAT>
format of the

timestamps. <FORMAT> is one of:

plain - no formatting is done (default)
offset - timestamps are relative to the global offset
(taken form the ClockProperties definition)
-L, ——-location <LID> limit output to location <LID>
-s, ——step <N> step through output by steps of <N> events

——time <MIN> <MAX> limit output to events within time interval

—-—-system-tree output system tree to dot-file

—--silent only validate trace and do not print any events
-d, ——debug turn on debug mode
-V, —-version print version information
-h, --help print this help information

18

C.4 OTF2 snapsheots tool

C.4 OTF2 snapshots tool

A call to oft2-snapshots has the following syntax:

Usage: otf2-snapshots [OPTION]... ANCHORFILE
Append snapshots to existing otf2 traces at given ’break’ timestamps.

Options:
-n, ——number <BREAKS> Number of breaks (distributed regularly)
if -p and -t are not set, the default for -n is 10
breaks.
-p <TICK_RATE> Create break every <TICK_RATE> ticks
if both, -n and -p are specified the one producing
more breaks wins.
——progress Brief mode, print progress information.
—--verbose Verbose mode, print break timestamps, i.e. snapshot
informations to stdout.
-V, —--version Print version information.
-h, --help Print this help information.

C.5 OTF2 marker tool

A call to oft2-marker has the following syntax:

Usage: otf2-marker [OPTION] [ARGUMENTS]... ANCHORFILE
Read or edit a marker file.

Options:

Print all markers sorted by group.

——def <GROUP> [<CATEGORY>]
Print all marker definitions of group <GROUP> or of
category <CATEGORY> from group <GROUP>.

—-—-defs-only Print only marker definitions.

——add-def <GROUP> <CATEGORY> <SEVERITY>
Add a new marker definition.

——add <GROUP> <CATEGORY> <TIME> <SCOPE> <TEXT>
Add a marker to an existing definition.

——remove—-def <GROUP> [<CATEGORY>]
Remove all marker classes of group <GROUP> or only the
category <CATEGORY> of group <GROUP>; and all according
markers.

——clear—-def <GROUP> [<CATEGORY>]
Remove all markers of group <GROUP> or only of category
<CATEGORY> of group <GROUP>.

—-—reset Reset all marker.
-V, —--version Print version information.
-h, —--help Print this help information.

Argument descriptions:
<GROUP>, <CATEGORY>, <TEXT>

19

APPENDIX C. MODULE DOCUMENTATION

Arbitrary strings.
<SEVERITY> One of:
* NONE
* LOW
* MEDIUM
* HIGH
<TIME> One of the following formats:
* <TIMESTAMP>
A valid timestamp inside the trace range
"global offset’ and ’'global offset’ + ’'trace
length’ .
* <TIMESTAMP>+<DURATION>
<TIMESTAMP> and <TIMESTAMP> + <DURATION> must be valid
timestamps inside the trace range ’'global
offset’ and ’'global offset’ + ’"trace length’.
* <TIMESTAMP-START>-<TIMESTAMP-END>
Two valid timestamps inside the trace range ’'global
offset’” and ’'global offset’ + 'trace length’, with
<TIMESTAMP-START> <= <TIMESTAMP-END>.
See the CLOCK_PROPERTIES definition with the help
of the ’otf2-print -G’ tool.
<SCOPE> [: <SCOPE-REF>]
The <SCOPE> must be one of:
GLOBAL
LOCATION:<LOCATION—-REF>
LOCATION_GROUP :<LOCATION-GROUP—-REF>
SYSTEM_TREE_NODE :<SYSTEM-TREE-NODE-REF>
GROUP : <GROUP—-REEF'>
* COMM:<COMMUNICATOR-REF>
<SCOPE-REF> must be a valid definition reference of
the specified scope. Use 'otf2-print -G’ for a list of
defined references.
There is no <SCOPE-REF> for <SCOPE> ’'GLOBAL’.
For a scope ’'GROUP’ the type of the referenced
group must be "OTF2_GROUP_TYPE_LOCATIONS’ or
"OTF2_GROUP_TYPE_COMM_LOCATIONS’ .

% ok X

C.6 OTF2 estimator tool

A call to oft2-estimator has the following syntax:

Usage: otf2-estimator [OPTION]...
This tool estimates the size of OTF2 events.
It will open a prompt to type in commands.

Options:
-V, —--version Print version information.
-h, --help Print this help information.
Commands :
list definitions Lists all known definition names.

20

C.7

OTF2 records

list events
list types
set <DEFINITION> <NUMBER>

get Timestamp
get Attributelist

get <EVENT> [ARGS...]

exit

[TYPES...

Lists all known event names.

Lists all known type names.

Specifies the number of definitions of a
type of defintions.

Prints the size an timestamp.

Prints the estimated size for an attribute
list with the given number of entries and
types.

Prints the estimated size of records for
<EVENT>.

Exits the tool.

This tool provides an command line interface to the estimator API of the OTF2

lib

rary.

It is based on an stream based protocol.

Commands are send to the

standard input stream of the program and the result is written to the standard
output stream of the program. All definition and event names are in the

canonical CamelCase form. Numbers are printed in decimal.
ALL_CAPS. See the output of the appropriate list commands. Arguments are
separated with an arbitrary number of white space.

everything after the first white space separator verbatim as an key,

The TYPES are in

The get commands use
which 1is

then printed as the result appended with the estimated size.

Her
def
and

cat
set
set
get
get
get
get
exi
EOC
Tim
Ent
Lea
Met

e is a simple example.
inition.

We want to know the size of an timestamp,

We have at most 4 region definitions and one metric

enter and leave event,

an metric event with 4 wvalues.

<<EOC | otf2-estimator
Region 4

Metric 1

Timestamp

Enter

Leave

Metric 4

t

estamp 9
er 3
ve 3
ric 4 44

C.7 OTF2 records

Modules

e List of all definition records
e List of all event records
¢ List of all marker records

* List of all snapshot records

21

APPENDIX C. MODULE DOCUMENTATION

C.8 List of all definition records

Attibute:
T
Gescriplion
SystemTreeNodeProperly:
‘
Tame

m
vale

LocationGroupProperty: Rmaltin

Vaiie

. ~JLocationPropery.

CaTopon - - ~GarGaarnate
e

Comm

group
parent

ClassName
parent

LocationGroup:

Meticinstance:
el

Tame
systemTreeParent

Location:

TocationGroup Tame

Region Calsite:
Sourcerie

Gescription TeftRegion Pe|

SourceFile MetricClass: < recorder |
metichembers

Callpath:
Parametor parent
name region

CartDimension:
name.

C.9 ClockProperties

Defines the timer resolution and time range of this trace. There will be no event
with a timestamp less than globalOf fset, and no event with timestamp greater
than (globalOffset + traceLength).

This definition is only valid as a global definition.

Attributes
uint64_t | timerReso- | Ticks per seconds.
lution
uint64_t globalOff- | A timestamp smaller than all event times-
set | tamps.
uint64_t trace- | A timespan which includes the timespan

Length | between the smallest and greatest times-
tamp of all event timestamps.

22

C.11 ClockOffset

See also

OTF2_GlobalDefWriter_WriteClockProperties()

Since

Version 1.0

C.10 MappingTable

Mapping tables are needed for situations where an ID is not globally known at
measurement time. They are applied automatically at reading.

This definition is only valid as a local definition.

Attributes

OTF2_- mapping- | Says to what type of ID the mapping table
MappingType Type | has to be applied.
const idMap | Mapping table.
OTF2_IdMapx

See also

OTF2_DefWriter_WriteMappingTable()

Since

Version 1.0

C.11 ClockOffset

Clock offsets are used for clock corrections.

This definition is only valid as a local definition.

Attributes

OTF2_TimeStamp time | Time when this offset was determined.
int64 t offset | The offset to the global clock which was

determined at t ime.

double standard- | A possible standard deviation, which can

Deviation | be used as a metric for the quality of the

offset.

23

APPENDIX C. MODULE DOCUMENTATION

See also

OTF2_DefWriter_WriteClockOffset()

Since

Version 1.0

C.12 OTF2 StringRef String

The string definitions.

Attributes

‘ const charx ‘ string ‘ The string, null terminated.

See also

OTF2_GlobalDefWriter_WriteString()
OTF2_DefWriter_WriteString()

Since

Version 1.0

C.13 OTF2_AttributeRef Attribute

The attribute definition.

Attributes

OTF2_StringRef name Name of the attribute. References a
String definition.

OTF2_StringRef | description Description of the attribute. References a
String definition. Since version 1.4.
OTF2_Type type | Type of the attribute value.

See also

OTF2_GlobalDefWriter_Write Attribute()
OTF2_DefWriter_WriteAttribute()

24

C.15 LocationGroup

Since

Version 1.0

C.14 OTF2_SystemTreeNodeRef SystemTreeNode

The system tree node definition.

Attributes

OTF2_StringRef name | Free form instance name of this node.
References a String definition.

OTF2_StringRef | className | Free form class name of this node Refer-
ences a String definition.

OTF?2_- parent | Parent id of this node. May be OTF2_-
SystemTreeNodeRef UNDEFINED_SYSTEM_TREE _NODE
to indicate that there is no parent.
References a SystemTreeNode definition.

Supplements

SystemTreeNodeProperty
SystemTreeNodeDomain

See also

OTF2_GlobalDefWriter_WriteSystemTreeNode()
OTF2_DefWriter_WriteSystemTreeNode()

Since

Version 1.0

C.15 OTF2_LocationGroupRef LocationGroup

The location group definition.

Attributes
OTF2_StringRef name | Name of the group. References a String
definition.
OTF2_- location- | Type of this group.

LocationGroupType | GroupType

25

APPENDIX C. MODULE DOCUMENTATION

OTF2_- sys- | Parent of this location group in the sys-
SystemTreeNodeRef | temTreePar- | tem tree. References a SystemTreeNode
ent | definition.

Supplements

LocationGroupProperty

See also

OTF2_GlobalDefWriter_WriteLocationGroup()
OTF2_DefWriter_WriteLocationGroup()

Since

Version 1.0

C.16 OTF2_LocationRef Location

The location definition.

Attributes
OTF2_StringRef name | Name of the location References a String
definition.
OTF2_- location- | Location type.
LocationType Type
uint64_t| numberO- | Number of events this location has
fEvents | recorded.
OTF2_- location- | Location group which includes this loca-
LocationGroupRef Group | tion. References a LocationGroup defini-
tion.
Supplements
LocationProperty
See also

OTF2_GlobalDefWriter_WriteLocation()
OTF2_DefWriter_WriteLocation()

26

C.18 Callsite

Since

Version 1.0

C.17 OTF2 RegionRef Region

The region definition.

Attributes

OTF2_StringRef

name

Name of the region (demangled name if
available). References a String definition.

OTF2_StringRef | canonical- | Alternative name of the region (e.g. man-
Name gled name). References a String defini-
tion. Since version 1.1.
OTF2_StringRef | description | A more detailed description of this re-
gion. References a String definition.
OTF2_RegionRole | regionRole Region role. Since version 1.1.
OTF2_Paradigm paradigm | Paradigm. Since version 1.1.
OTF2_RegionFlag Region flags. Since version 1.1.
regionFlags
OTF2_StringRef | sourceFile | The source file where this region was de-
clared. References a String definition.
uint32_t beginLi- Starting line number of this region in the
neNumber source file.
uint32_t endLi- | Ending line number of this region in the
neNumber | source file.

See also

OTF2_GlobalDefWriter_WriteRegion()

OTF2_DefWriter_WriteRegion()

Since

Version 1.0

C.18 OTF2 CallsiteRef Callsite

The callsite definition.

27

APPENDIX C. MODULE DOCUMENTATION

Attributes

OTF2_StringRef | sourceFile | The source file where this call was made.
References a String definition.

uint32_t lineNum- | Line number in the source file where this
ber call was made.

OTF2_RegionRef | enteredRe- | The region which was called. References
gion | a Region definition.

OTF2_RegionRef | leftRegion | The region which made the call. Refer-
ences a Region definition.

See also

OTF2_GlobalDefWriter_WriteCallsite()
OTF2_DefWriter_WriteCallsite()

Since

Version 1.0

C.19 OTF2 CallpathRef Callpath

The callpath definition.
Attributes
OTF2_CallpathRef parent | The parent of this callpath. References a
Callpath definition.
OTF2_RegionRef region | The region of this callpath. References a
Region definition.
See also

OTF2_GlobalDefWriter_WriteCallpath()
OTF2_DefWriter_WriteCallpath()

Since

Version 1.0

C.20 OTF2 GroupRef Group

The group definition.

28

C.21 MetricMember

Attributes

OTF2_StringRef

name

Name of this group References a String
definition.

OTF2_GroupType

groupType

The type of this group. Since version 1.2.

OTF2_Paradigm

paradigm

The paradigm of this communication
group. Since version 1.2.

OTF2_GroupFlag

groupFlags

Flags for this group. Since version 1.2.

uint32_t

num-
berOfMem-
bers

The number of members in this group.

uint64_t

members [
num-
berOfMem-
bers

]

The identifiers of the group members.

See also

OTF2_GlobalDefWriter_WriteGroup()
OTF2_DefWriter_WriteGroup()

Since

Version 1.0

C.21 OTF2 MetricMemberRef MetricMember

A metric is defined by a metric member definition. A metric member is always a
member of a metric class. Therefore, a single metric is a special case of a metric
class with only one member. It is not allowed to reference a metric member id in a
metric event, but only metric class IDs.

Attributes

OTF2_StringRef

name

Name of the metric. References a String
definition.

OTF2_StringRef

description

Description of the metric. References a
String definition.

OTF2_MetricType

metricType

Metric type: PAPI, etc.

OTF2_MetricMode

metric-
Mode

Metric mode: accumulative, fix, relative,
etc.

29

APPENDIX C. MODULE DOCUMENTATION

OTF2_Type | valueType Type of the value. Only OTF2_TYPE_-
INT64, OTF2_TYPE_UINT64, and
OTF2_TYPE_DOUBLE are valid types.
If this metric member is recorded in an
Metric event, than this type and the type
in the event must match.
OTF2_MetricBase The recorded values should be handled in
metricBase | this given base, either binary or decimal.
This information can be used if the value
needs to be scaled.

int64 _t exponent | The values inside the Metric events
should be scaled by the factor
base”‘exponent, to get the value in
its base unit. For example, if the metric
values come in as KiBi, than the base
should be OTF2_BASE_BINARY and the
exponent 10. Than the writer does not
need to scale the values up to bytes, but
can directly write the KiBi values into
the Metric event. At reading time, the
reader can apply the scaling factor to get
the value in its base unit, ie. in bytes.
OTF2_StringRef unit | Unit of the metric. This needs to be the
scale free base unit, ie. "bytes", "oper-
ations", or "seconds". In particular this
unit should not have any scale prefix.
References a String definition.

See also

OTF2_GlobalDefWriter_WriteMetricMember()
OTF2_DefWriter_WriteMetricMember()

Since

Version 1.0

C.22 OTF2 MetricRef MetricClass

For a metric class it is implicitly given that the event stream that records the metric
is also the scope. A metric class can contain multiple different metrics.

30

C.23 MetricInstance

Attributes
uint8_t | numberOf- | Number of metrics within the set.
Metrics
OTF?2_- met- | List of metric members. References a
MetricMemberRef | ricMembers = MetricMember definition.
[
numberOf-
Metrics
]
OTF2_-| metricOc- | Defines occurrence of a metric set.
MetricOccurrence currence
OTF?2_- What kind of locations will record this
RecorderKind | recorderKin¢ metric class, or will this metric class only
be recorded by metric instances. Since
version 1.2.
Supplements
MetricClassRecorder
See also

OTF2_GlobalDefWriter_WriteMetricClass()
OTF2_DefWriter_WriteMetricClass()

Since

Version 1.0

C.23 OTF2 MetricRef Metriclnstance

A metric instance is used to define metrics that are recorded at one location for
multiple locations or for another location. The occurrence of a metric instance is
implicitly of type OTF2_METRIC_ASYNCHRONOUS.

Attributes

OTF2_MetricRef

metricClass

The instanced MetricClass. This met-
ric class must be of kind OTF2_-
RECORDER_KIND_ABSTRACT. Refer-
ences a MetricClass definition.

OTF?2_LocationRef

recorder

Recorder of the metric: location ID. Ref-
erences a Location definition.

31

APPENDIX C. MODULE DOCUMENTATION

OTF2_MetricScope metric- | Defines type of scope: location, loca-
Scope | tion group, system tree node, or a generic
group of locations.
uint64_t scope | Scope of metric: ID of a location, loca-
tion group, system tree node, or a generic
group of locations.

See also

OTF2_GlobalDefWriter_WriteMetricInstance()
OTF2_DefWriter_WriteMetricInstance()

Since

Version 1.0

C.24 OTF2 CommRef Comm

The communicator definition.

Attributes
OTF2_StringRef name | The name given by calling MPI_Comm_-
set_name on this communicator. Or the
empty name to indicate that no name was
given. References a String definition.
OTF2_GroupRef group | The describing MPI group of this MPI

communicator

The group needs to be of type OTF2_-
GROUP_TYPE_COMM_GROUP or
OTF2_GROUP_TYPE_COMM_SELF.
References a Group definition.
OTF2_CommRef parent The parent MPI communicator from
which this communicator was created, if
any. Use OTF2_UNDEFINED_COMM
to indicate no parent. References a Comm
definition.

See also

OTF2_GlobalDefWriter_WriteComm()
OTF2_DefWriter_WriteCommy()

32

C.26 RmaWin

Since

Version 1.0

C.25 OTF2 ParameterRef Parameter

The parameter definition.

Attributes
OTF2_StringRef name Name of the parameter (variable name
etc.) References a String definition.
OTF2_-| parameter- Type of the parameter, OTF2_-
ParameterType Type | ParameterType for possible types.
See also

OTF2_GlobalDefWriter_WriteParameter()
OTF2_DefWriter_WriteParameter()

Since

Version 1.0

C.26 OTF2_RmaWinRef RmaWin

A window defines the communication context for any remote-memory access op-
eration.

Attributes
OTF2_StringRef name | Name, e.g. *GASPI Queue 1°, NVidia
Card 2’, etc.. References a String defini-
tion.
OTF2_CommRef comm | Communicator object used to create the
window. References a Comm definition.
See also

OTF2_GlobalDefWriter_WriteRmaWin()
OTF2_DefWriter_WriteRmaWin()

33

APPENDIX C. MODULE DOCUMENTATION

Since

Version 1.2

C.27 MetricClassRecorder

The metric class recorder definition.

Attributes

OTF2_MetricRef Parent MetricClass definition to which
metricClass | this one is a supplementary definition.
References a MetricClass definition.
OTF2_LocationRef recorder | The location which recorded the refer-
enced metric class. References a Loca-
tion definition.

See also

OTF2_GlobalDefWriter_WriteMetricClassRecorder()
OTF2_DefWriter_WriteMetricClassRecorder()

Since

Version 1.2

C.28 SystemTreeNodeProperty

An arbitrary key/value property for a SystemTreeNode definition.

Attributes

OTF?2_- sys- | Parent SystemTreeNode definition to
SystemTreeNodeRef | temTreeN- | which this one is a supplementary defini-
ode | tion. References a SystemTreeNode defi-

nition.

OTF2_StringRef name Name of the property. References a
String definition.

OTF2_StringRef value | Property value. References a String defi-
nition.

34

C.30 LocationGroupProperty

See also

OTF2_GlobalDefWriter_WriteSystemTreeNodeProperty()
OTF2_DefWriter_WriteSystemTreeNodeProperty()

Since

Version 1.2

C.29 SystemTreeNodeDomain

The system tree node domain definition.

Attributes
OTF2_- sys- | Parent SystemTreeNode definition to
SystemTreeNodeRef | temTreeN- | which this one is a supplementary defini-
ode | tion. References a SystemTreeNode defi-
nition.
OTF?2_- sys- | The domain in which the referenced Sys-
SystemTreeDomain | temTreeDo- | temTreeNode operates in.
main
See also

OTF2_GlobalDefWriter_WriteSystemTreeNodeDomain()
OTF2_DefWriter_WriteSystemTreeNodeDomain()

Since

Version 1.2

C.30 LocationGroupProperty

An arbitrary key/value property for a LocationGroup definition.

Attributes

OTF2_-
LocationGroupRef

location-
Group

Parent LocationGroup definition to
which this one is a supplementary
definition. References a LocationGroup
definition.

35

APPENDIX C. MODULE DOCUMENTATION

OTF2_StringRef name Name of the property. References a
String definition.
OTF2_StringRef value | Property value. References a String defi-
nition.
See also

OTF2_GlobalDefWriter_WriteLocationGroupProperty()
OTF2_DefWriter_WriteLocationGroupProperty()

Since

Version 1.3

C.31 LocationProperty

An arbitrary key/value property for a Location definition.

Attributes
OTF2_LocationRef location | Parent Location definition to which this
one is a supplementary definition. Refer-
ences a Location definition.
OTF2_StringRef name | Name of the property. References a
String definition.
OTF2_StringRef value | Property value. References a String defi-
nition.
See also

OTF2_GlobalDefWriter_WriteLocationProperty()
OTF2_DefWriter_WriteLocationProperty()

Since

Version 1.3

C.32 OTF2 _CartDimensionRef CartDimension

Each dimension in a Cartesian topology is composed of a global id, a name, its
size, and whether it is periodic or not.

36

C.33 CartTopology

Attributes
OTF2_StringRef name | The name of the cartesian topology di-
mension. References a String definition.
uint32_t size | The size of the cartesian topology dimen-
sion.
OTF2_- | cartPeriod- | Periodicity of the cartesian topology di-
CartPeriodicity icity | mension.
See also

OTF2_GlobalDefWriter_WriteCartDimension()
OTF2_DefWriter_WriteCartDimension()
Since

Version 1.3

C.33 OTF2_CartTopologyRef CartTopology

Each topology is described by a global id, a reference to its name, a reference to a
communicator, the number of dimensions, and references to those dimensions. The
topology type is defined by the paradigm of the group referenced by the associated
communicator.

Attributes
OTF2_StringRef name | The name of the topology. References a
String definition.
OTF2_CommRef| communi- | Communicator object used to create the
cator | topology. References a Comm definition.
uint8_t num- Number of dimensions.
berOfDi-
mensions
OTF2_- cartDi- | The dimensions of this topology. Refer-
CartDimensionRef | mensions [| ences a CartDimension definition.
num-
berOfDi-
mensions
I
Supplements
CartCoordinate

37

APPENDIX C. MODULE DOCUMENTATION

See also

OTF2_GlobalDefWriter_WriteCartTopology()
OTF2_DefWriter_WriteCartTopology()

Since

Version 1.3

C.34 CartCoordinate

Defines the coordinate of the location referenced by the given rank (w.r.t. the com-
municator associated to the topology) in the referenced topology.

Attributes
OTF2_- | cartTopol- | Parent CartTopology definition to which
CartTopologyRef ogy | this one is a supplementary definition.
References a CartTopology definition.
uint32_t rank | The rank w.r.t. the communicator associ-
ated to the topology referencing this co-
ordinate.
uint8_t num- | Number of dimensions.
berOfDi-
mensions
uint32_t Coordinates, indexed by dimension.
coordinates
[num-
berOfDi-
mensions
1
See also

OTF2_GlobalDefWriter_WriteCartCoordinate()
OTF2_DefWriter_WriteCartCoordinate()

Since

Version 1.3

38

C.37 MeasurementOnOff

C.35 List of all event records

C.36 BufferFlush

This event signals that the internal buffer was flushed at the given time.

Attributes

OTF?2_LocationRef

location

The location where this event happened.

OTF2_TimeStamp

timestamp

The time when this event happened.

OTF2_TimeStamp

stopTime

The time the buffer flush finished.

See also

OTF2_EvtWriter_BufferFlush()

Since

Version 1.0

C.37 MeasurementOnOff

This event signals where the measurement system turned measurement on or off.

Attributes
OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp The time when this event happened.
OTF2 - measure- | Is the measurement turned on (OTF2_-
MeasurementMode | mentMode | MEASUREMENT_ON) or off (OTF2_-

MEASUREMENT_OFF)?

See also

OTF2_EvtWriter_MeasurementOnOff()

Since

Version 1.0

39

APPENDIX C. MODULE DOCUMENTATION

C.38 Enter

An enter record indicates that the program enters a code region.

Attributes

OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp | The time when this event happened.
OTF2_RegionRef region | Needs to be defined in a definition
record References a Region definition
and will be mapped to the global defini-
tion if a mapping table of type OTF2_-
MAPPING _REGION is available.

See also

OTF2_EvtWriter_Enter()

Since
Version 1.0
C.39 Leave

A leave record indicates that the program leaves a code region.

Attributes

OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp | The time when this event happened.
OTF2_RegionRef region | Needs to be defined in a definition
record References a Region definition
and will be mapped to the global defini-
tion if a mapping table of type OTF2_-
MAPPING_REGION is available.

See also

OTF2_EvtWriter_Leave()

Since

Version 1.0

40

C.41 Mpilsend

C.40 MpiSend

A MpiSend record indicates that a MPI message send process was initiated (MPI_-
SEND). It keeps the necessary information for this event: receiver of the message,
communicator, and the message tag. You can optionally add further information
like the message length (size of the send buffer).

Attributes
OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp The time when this event happened.
uint32_t receiver | MPI rank of receiver in
communicator.
OTF2_CommRef| communi- | Communicator ID. References a Comm
cator | definition and will be mapped to the
global definition if a mapping table of
type OTF2_MAPPING_COMM is avail-
able.
uint32_t msgTag | Message tag
uint64_t Message length
msgLength

See also

OTF2_EvtWriter_MpiSend()

Since
Version 1.0
C.41 Mpilsend

A Mpilsend record indicates that a MPI message send process was initiated (MPI_-
ISEND). It keeps the necessary information for this event: receiver of the message,
communicator, and the message tag. You can optionally add further information
like the message length (size of the send buffer).

Attributes
OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp The time when this event happened.
uint32_t receiver | MPI rank of receiver in
communicator.

41

APPENDIX C. MODULE DOCUMENTATION

OTF2_CommRef| communi- | Communicator ID. References a Comm
cator | definition and will be mapped to the
global definition if a mapping table of
type OTF2_MAPPING_COMM is avail-

able.
uint32_t msgTag | Message tag
uint64_t Message length
msgLength

uint64_t| requestID | ID of the related request

See also

OTF2_EvtWriter_Mpilsend()

Since

Version 1.0

C.42 MpilsendComplete

Signals the completion of non-blocking send request.

Attributes

OTF2_LocationRef location | The location where this event happened.

OTF2_TimeStamp | timestamp The time when this event happened.

uint64_t | requestID | ID of the related request

See also

OTF2_EvtWriter_MpilsendComplete()

Since

Version 1.0

C.43 MpilrecvRequest

Signals the request of an receive, which can be completed later.

42

C.44 MpiRecv

Attributes
OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp The time when this event happened.
uint64_t| requestID | ID of the requested receive

See also

OTF2_EvtWriter_MpilrecvRequest()

Since
Version 1.0
C.44 MpiRecv

A MpiRecv record indicates that a MPI message was received (MPI_RECYV). It
keeps the necessary information for this event: sender of the message, communi-
cator, and the message tag. You can optionally add further information like the
message length (size of the receive buffer).

Attributes

OTF?2_LocationRef

location

The location where this event happened.

OTF2_TimeStamp | timestamp | The time when this event happened.
uint32_t sender | MPI rank of sender in communicator.
OTF2_CommRef| communi- | Communicator ID. References a Comm
cator | definition and will be mapped to the
global definition if a mapping table of
type OTF2_MAPPING_COMM is avail-
able.
uint32_t msgTag | Message tag
uint64_t Message length
msglength

See also

OTF2_EvtWriter_MpiRecv()

Since

Version 1.0

43

APPENDIX C. MODULE DOCUMENTATION

C.45 Mpilrecv

A Mpilrecv record indicates that a MPI message was received (MPI_IRECV). It
keeps the necessary information for this event: sender of the message, communi-
cator, and the message tag. You can optionally add further information like the
message length (size of the receive buffer).

Attributes
OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp The time when this event happened.
uint32_t sender | MPI rank of sender in communicator.
OTF2_CommRef| communi- Communicator ID. References a Comm
cator | definition and will be mapped to the
global definition if a mapping table of
type OTF2_MAPPING_COMM is avail-
able.
uint32_t msgTag | Message tag
uint64_t Message length
msgl.ength
uint64_t | requestID | ID of the related request

See also

OTF2_EvtWriter_Mpilrecv()

Since

Version 1.0

C.46 MpiRequestTest

This events appears if the program tests if a request has already completed but the

test failed.

Attributes

OTF2_LocationRef

location

The location where this event happened.

OTF2_TimeStamp

timestamp

The time when this event happened.

uint64_t

requestID

ID of the related request

See also

OTF2_EvtWriter_MpiRequestTest()

44

C.48 MpiCollectiveBegin

Since

Version 1.0

C.47 MpiRequestCancelled

This events appears if the program canceled a request.

Attributes

OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp The time when this event happened.
uint64_t| requestID | ID of the related request

See also

OTF2_EvtWriter_MpiRequestCancelled()

Since

Version 1.0

C.48 MpiCollectiveBegin

A MpiCollectiveBegin record marks the begin of an MPI collective operation (MPI_-
GATHER, MPI_SCATTER etc.).

Attributes

OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp The time when this event happened.

See also

OTF2_EvtWriter_MpiCollectiveBegin()

Since

Version 1.0

45

APPENDIX C. MODULE DOCUMENTATION

C.49 MpiCollectiveEnd

A MpiCollectiveEnd record marks the end of an MPI collective operation (MPI_-
GATHER, MPI_SCATTER etc.). It keeps the necessary information for this event:
type of collective operation, communicator, the root of this collective operation.
You can optionally add further information like sent and received bytes.

Attributes

OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp The time when this event happened.

OTF2_CollectiveOp collec- | Determines which collective operation it
tiveOp | is.
OTF2_CommRef| communi- | Communicator References a Comm defi-
cator | nition and will be mapped to the global
definition if a mapping table of type
OTF2_MAPPING_COMM is available.

uint32_t root | MPI rank of root in communicator.
uint64_t sizeSent | Size of the sent message.
uint64_t sizeRe- ' Size of the received message.

ceived

See also

OTF2_EvtWriter_MpiCollectiveEnd()

Since

Version 1.0

C.50 OmpFork

An OmpFork record marks that an OpenMP Thread forks a thread team.

This event record is superseded by the ThreadFork event record and should not be
used when the ThreadFork event record is in use.

Attributes

OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp The time when this event happened.
uint32_t num- Requested size of the team.
berOfRe-

quest-
edThreads

46

C.52 OmpAcquireLock

See also

OTF2_EvtWriter_OmpFork()

Since

Version 1.0

Deprecated

In version 1.2

C.51 OmpdJoin

An OmpJoin record marks that a team of threads is joint and only the master thread

continues execution.

This event record is superseded by the ThreadJoin event record and should not be
used when the ThreadJoin event record is in use.

Attributes
OTF2_LocationRef location | The location where this event happened. ‘
OTF2_TimeStamp | timestamp The time when this event happened. ‘

See also

OTF2_EvtWriter_OmpJoin()

Since

Version 1.0

Deprecated

In version 1.2

C.52 OmpAcquireLock

An OmpAcquireLock record marks that a thread acquires an OpenMP lock.

This event record is superseded by the ThreadAcquireLock event record and should
not be used when the ThreadAcquireLock event record is in use.

47

APPENDIX C. MODULE DOCUMENTATION

Attributes
OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp The time when this event happened.
uint32_t lockID | ID of the lock.
uint32_t acquisi- | A monotonically increasing number to
tionOrder | determine the order of lock acquisitions

(with unsynchronized clocks this is oth-
erwise not possible). Corresponding
acquire-release events have same num-
ber.

See also

OTF2_EvtWriter_OmpAcquireLock()

Since

Version 1.0

Deprecated

In version 1.2

C.53 OmpReleaselLock

An OmpReleasel.ock record marks that a thread releases an OpenMP lock.

This event record is superseded by the ThreadReleaseLock event record and should
not be used when the ThreadReleaseLock event record is in use.

Attributes
OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp The time when this event happened.

uint32_t

lockID

ID of the lock.

uint32_t

acquisi-
tionOrder

A monotonically increasing number to
determine the order of lock acquisitions
(with unsynchronized clocks this is oth-
erwise not possible). Corresponding
acquire-release events have same num-
ber.

48

C.55 OmpTaskSwitch

See also

OTF2_EvtWriter_OmpReleasel.ock()

Since

Version 1.0

Deprecated

In version 1.2

C.54 OmpTaskCreate

An OmpTaskCreate record marks that an OpenMP Task was/will be created in the
current region.

This event record is superseded by the ThreadTaskCreate event record and should
not be used when the ThreadlaskCreate event record is in use.

Attributes
OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp The time when this event happened.
uint64_t taskID | Identifier of the newly created task in-
stance.
See also

OTF2_EvtWriter_OmpTaskCreate()

Since

Version 1.0

Deprecated

In version 1.2

C.55 OmpTaskSwitch

An OmpTaskSwitch record indicates that the execution of the current task will be
suspended and another task starts/restarts its execution. Please note that this may
change the current call stack of the executing location.

49

APPENDIX C. MODULE DOCUMENTATION

This event record is superseded by the ThreadTaskSwitch event record and should
not be used when the ThreadTaskSwitch event record is in use.

Attributes

OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp | The time when this event happened.
uint64_t taskID | Identifier of the now active task instance.

See also

OTF2_EvtWriter_OmpTaskSwitch()

Since

Version 1.0

Deprecated

In version 1.2

C.56 OmpTaskComplete

An OmpTaskComplete record indicates that the execution of an OpenMP task has
finished.

This event record is superseded by the ThreadTaskComplete event record and should
not be used when the ThreadTaskComplete event record is in use.

Attributes
OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp The time when this event happened.
uint64_t taskID | Identifier of the completed task instance.
See also

OTF2_EvtWriter_OmpTaskComplete()
Since

Version 1.0
Deprecated

In version 1.2

50

C.58 ParameterString

C.57 Metric

A metric event is always stored at the location that recorded the metric. A metric
event can reference a metric class or metric instance. Therefore, metric classes
and instances share same ID space. Synchronous metrics are always located right

before the according enter and leave event.

Attributes

OTF2_LocationRef location | The location where this event happened.

OTF2_TimeStamp

timestamp

The time when this event happened.

OTF2_MetricRef

metric

Could be a metric class or a metric in-
stance. References a MetricClass, or
a Metriclnstance definition and will be
mapped to the global definition if a map-
ping table of type OTF2_MAPPING_-
METRIC is available.

uint8_t| numberOf- | Number of metrics with in the set.

Metrics

OTF2_Type typelDs [| List of metric types. These types must

numberOf- | match that of the corresponding Met-

Metrics | ricMember definitions.
1
OTF2_MetricValue metricVal- | List of metric values.

ues [
numberOf-
Metrics
1

See also

OTF2_EvtWriter_Metric()

Since

Version 1.0

C.58 ParameterString

A ParameterString record marks that in the current region, the specified string pa-

rameter has the specified value.

51

APPENDIX C. MODULE DOCUMENTATION

Attributes

OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp The time when this event happened.
OTF2_- parameter | Parameter ID. References a Parameter
ParameterRef definition and will be mapped to the
global definition if a mapping table of
type OTF2_MAPPING_PARAMETER is
available.
OTF2_StringRef string | Value: Handle of a string definition Ref-
erences a String definition and will be
mapped to the global definition if a map-
ping table of type OTF2_MAPPING_-
STRING is available.

See also

OTF2_EvtWriter_ParameterString()

Since

Version 1.0

C.59 Parameterint

A ParameterInt record marks that in the current region, the specified integer pa-
rameter has the specified value.

Attributes

OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp | The time when this event happened.
OTF2_-| parameter Parameter ID. References a Parameter

ParameterRef definition and will be mapped to the

global definition if a mapping table of

type OTF2_MAPPING_PARAMETER is

available.

int64_t value | Value of the recorded parameter.

See also

OTF2_EvtWriter_ParameterInt()

52

C.61 RmaWinCreate

Since

Version 1.0

C.60 ParameterUnsignedint

A ParameterUnsignedInt record marks that in the current region, the specified un-
signed integer parameter has the specified value.

Attributes
OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp | The time when this event happened.
OTF2_-| parameter Parameter ID. References a Parameter
ParameterRef definition and will be mapped to the
global definition if a mapping table of
type OTF2_MAPPING_PARAMETER is
available.
uint64_t value Value of the recorded parameter.
See also

OTF2_EvtWriter_ParameterUnsignedInt()

Since

Version 1.0

C.61 RmaWinCreate

An RmaWinCreate record denotes the creation of an RMA window.

Attributes
OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp The time when this event happened.
OTF2_RmaWinRef win | ID of the window created. References a

RmaWin definition and will be mapped to
the global definition if a mapping table
of type OTF2_MAPPING_RMA_WIN is
available.

53

APPENDIX C. MODULE DOCUMENTATION

See also

OTF2_EvtWriter_RmaWinCreate()

Since

Version 1.2

C.62 RmaWinDestroy

An RmaWinDestroy record denotes the destruction of an RMA window.

Attributes

OTF2_LocationRef location | The location where this event happened.

OTF2_TimeStamp | timestamp The time when this event happened.
OTF2_RmaWinRef win | ID of the window destructed. References
a RmaWin definition and will be mapped
to the global definition if a mapping table
of type OTF2_MAPPING_RMA_WIN is
available.

See also

OTF2_EvtWriter_RmaWinDestroy()

Since

Version 1.2

C.63 RmaCollectiveBegin

An RmaCollectiveBegin record denotes the beginnig of a collective RMA opera-
tion.

Attributes

OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp The time when this event happened.

See also

OTF2_EvtWriter_RmaCollectiveBegin()

54

C.65 RmaGroupSync

Since

Version 1.2

C.64 RmaCollectiveEnd

"An RmaCollectiveEnd record denotes the end of a collective RMA operation.

Attributes
OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp The time when this event happened.
OTF2_CollectiveOp collec- | Determines which collective operation it
tiveOp | is.
OTF2_-| syncLevel Synchronization level of this collective
RmaSyncLevel operation.

OTF2_RmaWinRef win | ID of the window used for this opera-
tion. References a RmaWin definition
and will be mapped to the global defini-
tion if a mapping table of type OTF2_-
MAPPING_RMA_WIN is available.

uint32_t root | Root process for this operation.

uint64_t| DbytesSent | Bytes sent in operation.

uint64_t bytesRe- | Bytes receives in operation.
ceived

See also

OTF2_EvtWriter_RmaCollectiveEnd()

Since

Version 1.2

C.65 RmaGroupSync

An RmaGroupSync record denotes the synchronization with a subgroup of pro-

cesses on a window.

Attributes

‘ OTF2_LocationRef ‘

location | The location where this event happened. ‘

55

APPENDIX C. MODULE DOCUMENTATION

OTF2_TimeStamp | timestamp | The time when this event happened.

OTF2_-| syncLevel Synchronization level of this collective
RmaSyncLevel operation.
OTF2_RmaWinRef win | ID of the window used for this opera-

tion. References a RmaWin definition
and will be mapped to the global defini-
tion if a mapping table of type OTF2_-
MAPPING_RMA_WIN is available.
OTF2_GroupRef group | Group of remote processes involved in
synchronization. References a Group
definition and will be mapped to the
global definition if a mapping table of
type OTF2_MAPPING_GROUP is avail-
able.

See also

OTF2_EvtWriter_RmaGroupSync()

Since

Version 1.2

C.66 RmaRequestLock

An RmaRequestLock record denotes the time a lock was requested and with it the
earliest time it could have been granted. It is used to mark (possibly) non-blocking
lock request, as defined by the MPI standard.

Attributes
OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp The time when this event happened.
OTF2_RmaWinRef win | ID of the window used for this opera-

tion. References a RmaWin definition
and will be mapped to the global defini-
tion if a mapping table of type OTF2_-
MAPPING_RMA_WIN is available.
uint32_t remote Rank of the locked remote process.
uint64_t lockld | ID of the lock aquired, if multiple locks
are defined on a window.
OTF2_LockType lockType | Type of lock aquired.

56

C.68 RmaTryLock

See also

OTF2_EvtWriter_RmaRequestLock()

Since

Version 1.2

C.67 RmaAcquireLock

An RmaAcquireLock record denotes the time a lock was aquired by the process.

Attributes
OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp The time when this event happened.
OTF2_RmaWinRef win ID of the window used for this opera-

tion. References a RmaWin definition
and will be mapped to the global defini-
tion if a mapping table of type OTF2_-
MAPPING_RMA_WIN is available.
uint32_t remote = Rank of the locked remote process.
uint64_t lockld | ID of the lock aquired, if multiple locks
are defined on a window.
OTF2_LockType lockType | Type of lock aquired.

See also

OTF2_EvtWriter_RmaAcquireLock()

Since

Version 1.2

C.68 RmaTryLock

An RmaTryLock record denotes the time of an unsuccessful attempt to acquire the
lock.

Attributes
‘ OTF2_LocationRef ‘ location | The location where this event happened.

57

APPENDIX C. MODULE DOCUMENTATION

OTF2_TimeStamp | timestamp | The time when this event happened.
OTF2_RmaWinRef win | ID of the window used for this opera-
tion. References a RmaWin definition
and will be mapped to the global defini-
tion if a mapping table of type OTF2_-
MAPPING _RMA_WIN is available.
uint32_t remote | Rank of the locked remote process.
uint64_t lockld | ID of the lock aquired, if multiple locks
are defined on a window.
OTF2_LockType lockType | Type of lock aquired.

See also

OTF2_EvtWriter_RmaTryLock()

Since

Version 1.2

C.69 RmaReleaselLock

An RmaReleaseLock record denotes the time the lock was released.

Attributes

OTF2_LocationRef location | The location where this event happened.

OTF2_TimeStamp | timestamp The time when this event happened.
OTF2_RmaWinRef win | ID of the window used for this opera-
tion. References a RmaWin definition
and will be mapped to the global defini-
tion if a mapping table of type OTF2_-
MAPPING_RMA_WIN is available.
uint32_t remote Rank of the locked remote process.
uint64_t lockld | ID of the lock released, if multiple locks
are defined on a window.

See also

OTF2_EvtWriter_RmaReleaseLock()

Since

Version 1.2

58

C.71 RmaWaitChange

C.70 RmaSync

An RmaSync record denotes the direct synchronization with a possibly remote

process.
Attributes
OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp The time when this event happened.
OTF2_RmaWinRef win | ID of the window used for this opera-
tion. References a RmaWin definition
and will be mapped to the global defini-
tion if a mapping table of type OTF2_-
MAPPING_RMA_WIN is available.
uint32_t remote = Rank of the locked remote process.
OTF2_- syncType | Type of synchronization.
RmaSyncType

See also

OTF2_EvtWriter_RmaSync()

Since

Version 1.2

C.71 RmaWaitChange

An RmaWaitChange record denotes the change of a window that was waited for.

Attributes
OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp | The time when this event happened.

OTF2_RmaWinRef

win

ID of the window used for this opera-
tion. References a RmaWin definition
and will be mapped to the global defini-
tion if a mapping table of type OTF2_-
MAPPING _RMA_WIN is available.

See also

OTF2_EvtWriter_RmaWaitChange()

59

APPENDIX C. MODULE DOCUMENTATION

Since
Version 1.2
C.72 RmaPut

An RmaPut record denotes the time a put operation was issued.

Attributes
OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp The time when this event happened.
OTF2_RmaWinRef win | ID of the window used for this opera-
tion. References a RmaWin definition
and will be mapped to the global defini-
tion if a mapping table of type OTF2_-
MAPPING_RMA_WIN is available.
uint32_t remote Rank of the target process.
uint64_t bytes | Bytes sent to target.
uint64_t ID used for matching the appropriate
matchingld | completion record.
See also

OTF2_EvtWriter_RmaPut()

Since
Version 1.2
C.73 RmaGet

An RmaGet record denotes the time a get operation was issued.

Attributes
OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp The time when this event happened.
OTF2_RmaWinRef win ID of the window used for this opera-

tion. References a RmaWin definition
and will be mapped to the global defini-
tion if a mapping table of type OTF2_-
MAPPING_RMA_WIN is available.

60

C.74 RmaAtomic

uint32_t remote = Rank of the target process.

uint64_t bytes | Bytes received from target.

uint64_t ID used for matching the appropriate
matchingld | completion record.

See also

OTF2_EvtWriter_RmaGet()

Since

Version 1.2

C.74 RmaAtomic

An RmaAtomic record denotes the time a atomic operation was issued.

Attributes
OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp | The time when this event happened.
OTF2_RmaWinRef win | ID of the window used for this opera-
tion. References a RmaWin definition
and will be mapped to the global defini-
tion if a mapping table of type OTF2_-
MAPPING _RMA_WIN is available.
uint32_t remote Rank of the target process.
OTF2_- type | Type of atomic operation.
RmaAtomicType
uint64_t| DbytesSent | Bytes sent to target.
uint64_t bytesRe- | Bytes received from target.
ceived
uint64_t ID used for matching the appropriate
matchingld | completion record.

See also

OTF2_EvtWriter_RmaAtomic()

Since

Version 1.2

61

APPENDIX C. MODULE DOCUMENTATION

C.75 RmaOpCompleteBlocking

An RmaOpCompleteBlocking record denotes the local completion of a blocking
RMA operation.

Attributes

OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp The time when this event happened.
OTF2_RmaWinRef win | ID of the window used for this opera-
tion. References a RmaWin definition
and will be mapped to the global defini-
tion if a mapping table of type OTF2_-
MAPPING_RMA_WIN is available.
uint64_t ID used for matching the appropriate
matchingld | completion record.

See also

OTF2_EvtWriter_RmaOpCompleteBlocking()

Since

Version 1.2

C.76 RmaOpCompleteNonBlocking

An RmaOpCompleteNonBlocking record denotes the local completion of a non-
blocking RMA operation.

Attributes

OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp The time when this event happened.
OTF2_RmaWinRef win | ID of the window used for this opera-
tion. References a RmaWin definition
and will be mapped to the global defini-
tion if a mapping table of type OTF2_-
MAPPING_RMA_WIN is available.
uint64_t ID used for matching the appropriate
matchingld | completion record.

62

C.78 RmaOpCompleteRemote

See also

OTF2_EvtWriter_RmaOpCompleteNonBlocking()

Since

Version 1.2

C.77 RmaOpTest

An RmaOpTest record denotes that a non-blocking RMA operation has been tested
for completion unsuccessfully.

Attributes

OTF?2_LocationRef

location

The location where this event happened.

OTF2_TimeStamp

timestamp

The time when this event happened.

OTF2_RmaWinRef

win

ID of the window used for this opera-
tion. References a RmaWin definition
and will be mapped to the global defini-
tion if a mapping table of type OTF2_-
MAPPING _RMA_WIN is available.

uint64_t

matchingld

ID used for matching the appropriate
completion record.

See also

OTF2_EvtWriter_RmaOpTest()

Since

Version 1.2

C.78 RmaOpCompleteRemote

An RmaOpCompleteRemote record denotes the local completion of an RMA op-

eration.

Attributes

OTF?2_LocationRef

location

The location where this event happened.

OTF2_TimeStamp

timestamp

The time when this event happened.

63

APPENDIX C. MODULE DOCUMENTATION

OTF2_RmaWinRef win | ID of the window used for this opera-
tion. References a RmaWin definition
and will be mapped to the global defini-
tion if a mapping table of type OTF2_-
MAPPING _RMA_WIN is available.
uint64_t ID used for matching the appropriate
matchingld | completion record.

See also

OTF2_EvtWriter_RmaOpCompleteRemote()

Since

Version 1.2

C.79 ThreadFork

An ThreadFork record marks that an thread forks a thread team.

Attributes
OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp | The time when this event happened.
OTF2_Paradigm model | The threading paradigm this event took
place.
uint32_t num- | Requested size of the team.
berOfRe-
quest-
edThreads
See also

OTF2_EvtWriter_ThreadFork()

Since

Version 1.2

64

C.81 ThreadTeamBegin

C.80 ThreadJoin

An ThreadJoin record marks that a team of threads is joint and only the master
thread continues execution.

Attributes
OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp | The time when this event happened.
OTF2_Paradigm model | The threading paradigm this event took

place.

See also

OTF2_EvtWriter_ThreadJoin()

Since

Version 1.2

C.81 ThreadTeamBegin

The current location enters the specified thread team.

Attributes
OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp The time when this event happened.
OTF2_CommRef Thread team References a Comm defini-
threadTeam | tion and will be mapped to the global def-

inition if a mapping table of type OTF2_-
MAPPING_COMM is available.

See also

OTF2_EvtWriter_ThreadTeamBegin()

Since

Version 1.2

65

APPENDIX C. MODULE DOCUMENTATION

C.82 ThreadTeamEnd

The current location leaves the specified thread team.

Attributes

OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp | The time when this event happened.
OTF2_CommRef Thread team References a Comm defini-
threadTeam | tion and will be mapped to the global def-
inition if a mapping table of type OTF2_-
MAPPING_COMM is available.

See also

OTF2_EvtWriter_ThreadTeamEnd()

Since

Version 1.2

C.83 ThreadAcquireLock

An ThreadAcquireLock record marks that a thread acquires an lock.

Attributes
OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp The time when this event happened.
OTF2_Paradigm model | The threading paradigm this event took
place.
uint32_t lockID | ID of the lock.
uint32_t acquisi- | A monotonically increasing number to
tionOrder | determine the order of lock acquisitions
(with unsynchronized clocks this is oth-
erwise not possible). Corresponding
acquire-release events have same num-
ber.
See also

OTF2_EvtWriter_Thread AcquireLock()

66

C.85 ThreadTaskCreate

Since

Version 1.2

C.84 ThreadReleaseLock

An ThreadReleaseLock record marks that a thread releases an lock.

Attributes
OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp | The time when this event happened.
OTF2_Paradigm model | The threading paradigm this event took
place.

uint32_t lockID | ID of the lock.
uint32_t acquisi- | A monotonically increasing number to
tionOrder | determine the order of lock acquisitions

(with unsynchronized clocks this is oth-
erwise not possible). Corresponding
acquire-release events have same num-
ber.

See also

OTF2_EvtWriter_ThreadReleaseLock()

Since

Version 1.2

C.85 ThreadTaskCreate

An ThreadTaskCreate record marks that an task in was/will be created and will be
processed by the specified thread team.

Attributes
OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp The time when this event happened.

OTF2_CommRef

threadTeam

Thread team References a Comm defini-
tion and will be mapped to the global def-
inition if a mapping table of type OTF2_-
MAPPING_COMM is available.

67

APPENDIX C. MODULE DOCUMENTATION

uint32_t creat- | Creating thread of this task.
ingThread
uint32_t genera- | Thread-private generation number of
tionNumber | task’s creating thread.

See also

OTF2_EvtWriter_ThreadTaskCreate()

Since

Version 1.2

C.86 ThreadTaskSwitch

An ThreadTaskSwitch record indicates that the execution of the current task will be
suspended and another task starts/restarts its execution. Please note that this may
change the current call stack of the executing location.

Attributes
OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp | The time when this event happened.
OTF2_CommRef Thread team References a Comm defini-
threadTeam | tion and will be mapped to the global def-
inition if a mapping table of type OTF2_-
MAPPING_COMM is available.
uint32_t creat- Creating thread of this task.
ingThread
uint32_t genera- | Thread-private generation number of
tionNumber | task’s creating thread.

See also

OTF2_EvtWriter_ThreadTaskSwitch()

Since

Version 1.2

68

C.88 ThreadCreate

C.87 ThreadTaskComplete

An ThreadTaskComplete record indicates that the execution of an OpenMP task

has finished.
Attributes
OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp | The time when this event happened.
OTF2_CommRef Thread team References a Comm defini-
threadTeam | tion and will be mapped to the global def-
inition if a mapping table of type OTF2_-
MAPPING_COMM is available.
uint32_t creat- Creating thread of this task.
ingThread
uint32_t genera- | Thread-private generation number of
tionNumber | task’s creating thread.

See also

OTF2_EvtWriter_ThreadTaskComplete()

Since

Version 1.2

C.88 ThreadCreate

The location created successfully a new thread.

Attributes
OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp The time when this event happened.

OTF2_CommRef thread- | The thread contingent. References a
Contingent | Comm definition and will be mapped to
the global definition if a mapping table of
type OTF2_MAPPING_COMM is avail-

able.
uint64_t| sequence- | A threadContingent unique num-
Count | ber. The corresponding ThreadBegin

event does have the same number.

69

APPENDIX C. MODULE DOCUMENTATION

See also

OTF2_EvtWriter_ThreadCreate()

Since

Version 1.3

C.89 ThreadBegin

Marks the begin of a thread created by another thread.

Attributes

OTF2_LocationRef location | The location where this event happened.

OTF2_TimeStamp | timestamp The time when this event happened.
OTF2_CommRef thread- | The thread contingent. References a
Contingent | Comm definition and will be mapped to
the global definition if a mapping table of
type OTF2_MAPPING_COMM is avail-
able.
uint64_t| sequence- | A threadContingent unique num-
Count | ber. The corresponding ThreadCreate
event does have the same number.

See also

OTF2_EvtWriter_ThreadBegin()

Since

Version 1.3

C.90 ThreadWait

The location waits for the completion of another thread.

Attributes

OTF2_LocationRef location | The location where this event happened. ‘
OTF2_TimeStamp | timestamp The time when this event happened. ‘

70

C.91 ThreadEnd

OTF2_CommRef thread- | The thread contingent. References a
Contingent | Comm definition and will be mapped to
the global definition if a mapping table of
type OTF2_MAPPING_COMM is avail-
able.
uint64_t sequence- | A threadContingent unique num-
Count | ber. The corresponding ThreadEnd event

does have the same number.

See also

OTF2_EvtWriter_ThreadWait()

Since

Version 1.3

C.91 ThreadEnd

Marks the end of a thread.
Attributes
OTF2_LocationRef location | The location where this event happened.
OTF2_TimeStamp | timestamp The time when this event happened.
OTF2_CommRef thread- | The thread contingent. —References a
Contingent | Comm definition and will be mapped to
the global definition if a mapping table of
type OTF2_MAPPING_COMM is avail-
able.
uint64_t| sequence- | A threadContingent unique num-
Count | ber. The corresponding ThreadWait event

does have the same number. OTF2_-
UNDEFINED_UINT64 in case no corre-
sponding ThreadWait event exists.

See also

OTF2_EvtWriter_ThreadEnd()

Since

Version 1.3

71

APPENDIX C. MODULE DOCUMENTATION

C.92 List of all marker records

C.93 OTF2_MarkerRef DefMarker

Group markers by name and severity.

Attributes
const charx marker- | Group name, e.g., "MUST", ...
Group
const charx marker- | Marker category, e.g., "Argument type
Category | error", ...
OTF2_- severity | The severity for these markers.
MarkerSeverity

See also

OTF2_MarkerWriter_WriteDefMarker()

Since
Version 1.2
C.94 Marker

A user marker instance, with implied time stamp.

Attributes
OTF2_TimeStamp | timestamp The time when this marker happened.
OTF2_TimeStamp duration | A possible duration of this marker. May
be 0.
OTF2_MarkerRef marker | Groups this marker by name and severity.
References a DefMarker definition.
OTF2_- scope | The type of scope of this marker instance.
MarkerScope
uint64_t scopeRef | The scope instance of this marker. De-
pends on scope.
const charx text | A textual description for this marker.

See also

OTF2_MarkerWriter_WriteMarker()

72

C.97 SnapshotEnd

Since

Version 1.2

C.95 List of all snapshot records

C.96 SnapshotStart

This record marks the start of a snapshot.

A snapshot consists of an timestamp and a set of snapshot records. All these snap-
shot records have the same snapshot time. A snapshot starts with one SnapshotStart
record and closes with one SnapshotEnd record. All snapshot records inbetween
are ordered by the origEvent Time, which are also less than the snapshot times-
tamp. Ie. The timestamp of the next event read from the event stream is greater or
equal to the snapshot time.

Attributes

OTF2_LocationRef location | The location of the snapshot.
OTF2_TimeStamp | timestamp | The snapshot time of this record.

uint64_t num- | Number of snapshot event records in this
berOfRecord| snapshot. Excluding the SnapshotEnd
record.

See also

OTF2_SnapWriter_SnapshotStart()

Since

Version 1.2

C.97 SnapshotEnd

This record marks the end of a snapshot. It contains the position to continue reading
in the event trace for this location. Use OTF2_EvtReader_Seek with contReadPos
as the position.

Attributes

OTF2_LocationRef location | The location of the snapshot. ‘
OTF2_TimeStamp | timestamp | The snapshot time of this record. ‘

73

APPENDIX C. MODULE DOCUMENTATION

uint64_t

contRead-
Pos

Position to continue reading in the event
trace.

See also

OTF2_SnapWriter_SnapshotEnd()

Since

Version 1.2

C.98 MeasurementOnOffSnap

The last occurrence of an MeasurementOnOff event of this location, if any.

Attributes
OTF2_LocationRef location | The location of the snapshot.
OTF2_TimeStamp | timestamp | The snapshot time of this record.
OTF2_TimeStamp | origEvent- | The original time this event happended.
Time
OTF?2_- measure- | Is the measurement turned on (OTF2_-
MeasurementMode | mentMode | MEASUREMENT_ON) or off (OTF2_-

MEASUREMENT _OFF)?

See also

MeasurementOnOff event
OTF2_SnapWriter_MeasurementOnOff()

Since

Version 1.2

C.99 EnterSnap

This record exists for each Enter event where the corresponding Leave event did
not occur before the snapshot.

Attributes

74

C.100 MpiSendSnap

OTF2_LocationRef location | The location of the snapshot.
OTF2_TimeStamp | timestamp | The snapshot time of this record.
OTF2_TimeStamp | origEvent- | The original time this event happended.
Time
OTF2_RegionRef region Needs to be defined in a definition

record References a Region definition
and will be mapped to the global defini-
tion if a mapping table of type OTF2_-
MAPPING_REGION is available.

See also

Enter event

OTF2_SnapWriter_Enter()

Since

Version 1.2

C.100 MpiSendSnap

This record exists for each MpiSend event where the matching receive message
event did not occur on the remote location before the snapshot. This could either
be an MpiRecv or an Mpilrecv event. Note that it may so, that a previous Mpilsend
with the same envelope than this one is neither completed not canceled yet, thus
the matching receive may already occurred, but the matching couldn’t be done yet.

Attributes

OTF?2_LocationRef

location

The location of the snapshot.

OTF2_TimeStamp | timestamp | The snapshot time of this record.
OTF2_TimeStamp | origEvent- | The original time this event happended.
Time
uint32_t receiver | MPI rank of receiver in
communicator.
OTF2_CommRef| communi- | Communicator ID. References a Comm
cator | definition and will be mapped to the
global definition if a mapping table of
type OTF2_MAPPING_COMM is avail-
able.
uint32_t msgTag | Message tag
uint64_t Message length
msglength

75

APPENDIX C. MODULE DOCUMENTATION

See also

MpiSend event
OTF2_SnapWriter_MpiSend()

Since

Version 1.2

C.101 MpilsendSnap

This record exists for each Mpilsend event where an corresponding MpilsendCom-
plete or MpiRequestCancelled event did not occur on this location before the snap-
shot. Or the corresponding MpilsendComplete did occurred (the MpilsendCom-
pleteSnap record exists in the snapshot) but the matching receive message event
did not occur on the remote location before the snapshot. (This could either be
anMpiRecv or an Mpilrecv event.)

Attributes

OTF2_LocationRef location | The location of the snapshot.
OTF2_TimeStamp | timestamp | The snapshot time of this record.
OTF2_TimeStamp | origEvent- | The original time this event happended.

Time

uint32_t receiver | MPI rank of receiver in

communicator.

OTF2_CommRef| communi- | Communicator ID. References a Comm

cator | definition and will be mapped to the

global definition if a mapping table of
type OTF2_MAPPING_COMM is avail-

able.
uint32_t msgTag | Message tag
uint64_t Message length

msgLength
uint64_t | requestID ID of the related request

See also

Mpilsend event
OTF2_SnapWriter_Mpilsend()

Since

Version 1.2

76

C.103 MpiRecvSnap

C.102 MpilsendCompleteSnap

This record exists for each Mpilsend event where the corresponding MpilsendCom-
plete event occurred, but where the matching receive message event did not occur
on the remote location before the snapshot. (This could either be an MpiRecv or an
Mpilrecy event.) .

Attributes

OTF2_LocationRef location | The location of the snapshot.
OTF2_TimeStamp | timestamp | The snapshot time of this record.
OTF2_TimeStamp | origEvent- | The original time this event happended.

Time

uint64_t | requestID ID of the related request

See also

MpilsendComplete event
OTF2_SnapWriter_MpilsendComplete()

Since

Version 1.2

C.103 MpiRecvSnap

This record exists for each MpiRecv event where the matching send message event
did not occur on the remote location before the snapshot. This could either be
an MpiSend or an MpilsendComplete event. Or an MpilrecvRequest occurred be-
fore this event but the corresponding Mpilrecv event did not occurred before this
snapshot. In this case the message matching couldn’t performed yet, because the
envelope of the ongoing MpilrecvRequest is not yet known.

Attributes

OTF?2_LocationRef location | The location of the snapshot.
OTF2_TimeStamp | timestamp | The snapshot time of this record.
OTF2_TimeStamp | origEvent- | The original time this event happended.

Time

uint32_t sender | MPI rank of sender in communicator.

OTF2_CommRef| communi- Communicator ID. References a Comm

cator | definition and will be mapped to the

global definition if a mapping table of
type OTF2_MAPPING_COMM is avail-

able. 77

APPENDIX C. MODULE DOCUMENTATION

uint32_t msgTag | Message tag ‘
uint64_t Message length
msgLength
See also
MpiRecv event

OTF2_SnapWriter_MpiRecv()

Since

Version 1.2

C.104 MpilrecvRequestSnap

This record exists for each MpilrecvRequest event where an corresponding Mpi-
Irecv or MpiRequestCancelled event did not occur on this location before the snap-
shot. Or the corresponding Mpilrecv did occurred (the MpilrecvSnap record exists
in the snapshot) but the matching receive message event did not occur on the re-
mote location before the snapshot. This could either be an MpiRecv or an Mpilrecv
event.

Attributes

OTF2_LocationRef location | The location of the snapshot.
OTF2_TimeStamp | timestamp | The snapshot time of this record.
OTF2_TimeStamp | origEvent- | The original time this event happended.

Time

uint64_t | requestID | ID of the requested receive

See also

MpilrecvRequest event
OTF2_SnapWriter_MpilrecvRequest()

Since

Version 1.2

78

C.106 MpiCollectiveBeginSnap

C.105 MpilrecvSnap

This record exists for each Mpilrecv event where the matching send message event
did not occur on the remote location before the snapshot. This could either be
an MpiSend or an MpilsendComplete event. Or an MpilrecvRequest occurred be-
fore this event but the corresponding Mpilrecv event did not occurred before this
snapshot. In this case the message matching couldn’t performed yet, because the
envelope of the ongoing MpilrecvRequest is not yet known.

Attributes
OTF2_LocationRef location | The location of the snapshot.
OTF2_TimeStamp | timestamp | The snapshot time of this record.
OTF2_TimeStamp | origEvent- | The original time this event happended.
Time
uint32_t sender | MPI rank of sender in communicator.
OTF2_CommRef| communi- | Communicator ID. References a Comm
cator | definition and will be mapped to the
global definition if a mapping table of
type OTF2_MAPPING_COMM is avail-
able.
uint32_t msgTag | Message tag
uint64_t Message length
msgLength
uint64_t | requestID ID of the related request

See also

Mpilrecv event

OTF2_SnapWriter_Mpilrecv()

Since

Version 1.2

C.106 MpiCollectiveBeginSnap

Indicates that this location started a collective operation but not all of the partici-
pating locations completed the operation yet, including this location.

Attributes

‘ OTF2_LocationRef ‘

location | The location of the snapshot.

79

APPENDIX C. MODULE DOCUMENTATION

OTF2_TimeStamp | timestamp | The snapshot time of this record. ‘
OTF2_TimeStamp | origEvent- | The original time this event happended.
Time

See also

MpiCollectiveBegin event
OTF2_SnapWriter_MpiCollectiveBegin()

Since

Version 1.2

C.107 MpiCollectiveEndSnap

Indicates that this location completed a collective operation localy but not all of
the participating locations completed the operation yet. The corresponding Mpi-
CollectiveBeginSnap record is still in the snapshot though.

Attributes
OTF2_LocationRef location | The location of the snapshot.
OTF2_TimeStamp | timestamp | The snapshot time of this record.
OTF2_TimeStamp | origEvent- | The original time this event happended.
Time
OTF2_CollectiveOp collec- | Determines which collective operation it
tiveOp | is.
OTF2_CommRef| communi- | Communicator References a Comm defi-
cator | nition and will be mapped to the global
definition if a mapping table of type
OTF2_MAPPING_COMM is available.
uint32_t root | MPI rank of root in communicator.
uint64_t sizeSent | Size of the sent message.
uint64 _t sizeRe- | Size of the received message.
ceived

See also

MpiCollectiveEnd event
OTF2_SnapWriter_MpiCollectiveEnd()

80

C.109 OmpA cquireLockSnap

Since

Version 1.2

C.108 OmpForkSnap

This record exists for each OmpFork event where the corresponding OmpJoin did
not occurred before this snapshot.

Attributes

OTF?2_LocationRef

location

The location of the snapshot.

OTF2_TimeStamp | timestamp | The snapshot time of this record.
OTF2_TimeStamp | origEvent- | The original time this event happended.
Time
uint32_t num- | Requested size of the team.
berOfRe-
quest-
edThreads
See also
OmpFork event

OTF2_SnapWriter_OmpFork()

Since

Version 1.2

C.109 OmpAcquireLockSnap

This record exists for each OmpAcquireLock event where the corresponding Om-
pReleaseLock did not occurred before this snapshot yet.

Attributes
OTF2_LocationRef location | The location of the snapshot.
OTF2_TimeStamp | timestamp | The snapshot time of this record.
OTF2_TimeStamp | origEvent- | The original time this event happended.
Time
uint32_t lockID | ID of the lock.

81

APPENDIX C. MODULE DOCUMENTATION

uint32_t acquisi- | A monotonically increasing number to
tionOrder | determine the order of lock acquisitions
(with unsynchronized clocks this is oth-
erwise not possible). Corresponding
acquire-release events have same num-
ber.

See also

OmpAcquireLock event
OTF2_SnapWriter_OmpAcquireLock()

Since

Version 1.2

C.110 OmpTaskCreateSnap

This record exists for each OmpTaskCreate event where the corresponding Omp-
TaskComplete event did not occurred before this snapshot. Neither on this location
nor on any other location in the current thread team.

Attributes

OTF2_LocationRef location | The location of the snapshot.
OTF2_TimeStamp | timestamp | The snapshot time of this record.
OTF2_TimeStamp | origEvent- The original time this event happended.

Time

uint64_t taskID | Identifier of the newly created task in-

stance.

See also

OmpTaskCreate event
OTF2_SnapWriter_OmpTaskCreate()

Since

Version 1.2

82

C.112 MetricSnap

C.111 OmpTaskSwitchSnap

This record exists for each OmpTaskSwitch event where the corresponding Omp-
TaskComplete event did not occurred before this snapshot. Neither on this location
nor on any other location in the current thread team.

Attributes

OTF2_LocationRef location | The location of the snapshot.
OTF2_TimeStamp | timestamp | The snapshot time of this record.
OTF2_TimeStamp | origEvent- | The original time this event happended.

Time

uint64_t taskID | Identifier of the now active task instance.

See also

OmpTaskSwitch event
OTF2_SnapWriter_OmpTaskSwitch()

Since

Version 1.2

C.112 MetricSnap

This record exists for each referenced metric class or metric instance event this lo-
cation recorded metrics before and provides the last known recorded metric values.

As an exception for metric classes where the metric mode detontes an OTF2_-
METRIC_VALUE_RELATIVE mode the value indicates the accumulation of all
previous metric values recorded.

Attributes

OTF2_LocationRef location | The location of the snapshot.
OTF2_TimeStamp | timestamp | The snapshot time of this record.
OTF2_TimeStamp | origEvent- | The original time this event happended.

Time

OTF2_MetricRef metric | Could be a metric class or a metric in-

stance. References a MetricClass, or

a Metriclnstance definition and will be

mapped to the global definition if a map-

ping table of type OTF2_MAPPING -

METRIC is available.

83

APPENDIX C. MODULE DOCUMENTATION

uint8_t | numberOf- Number of metrics with in the set.

Metrics

OTF2_Type typelDs [| List of metric types. These types must

numberOf- | match that of the corresponding Met-

Metrics | ricMember definitions.
]
OTF2_MetricValue | metricVal- | List of metric values.

ues [
numberOf-
Metrics
]

See also

Metric event
OTF2_SnapWriter_Metric()

Since

Version 1.2

C.113 ParameterStringSnap

This record must be included in the snapshot until the leave event for the enter
event occurs which has the greates timestamp less or equal the timestamp of this
record.

Attributes
OTF2_LocationRef location | The location of the snapshot.
OTF2_TimeStamp | timestamp | The snapshot time of this record.
OTF2_TimeStamp | origEvent- | The original time this event happended.
Time
OTF2_-| parameter Parameter ID. References a Parameter
ParameterRef definition and will be mapped to the
global definition if a mapping table of
type OTF2_MAPPING PARAMETER is
available.

OTF2_StringRef string | Value: Handle of a string definition Ref-
erences a String definition and will be
mapped to the global definition if a map-
ping table of type OTF2_MAPPING_-
STRING is available.

84

C.115 ParameterUnsignedIntSnap

See also

ParameterString event
OTF2_SnapWriter_ParameterString()

Since

Version 1.2

C.114 ParameterintSnap

This record must be included in the snapshot until the leave event for the enter
event occurs which has the greates timestamp less or equal the timestamp of this
record.

Attributes

OTF2_LocationRef location | The location of the snapshot.
OTF2_TimeStamp | timestamp | The snapshot time of this record.
OTF2_TimeStamp | origEvent- The original time this event happended.

Time

OTF2_-| parameter Parameter ID. References a Parameter

ParameterRef definition and will be mapped to the

global definition if a mapping table of

type OTF2_MAPPING _PARAMETER is
available.

int64_t value | Value of the recorded parameter.

See also

ParameterInt event
OTF2_SnapWriter_ParameterInt()

Since

Version 1.2

C.115 ParameterUnsignedintSnap

This record must be included in the snapshot until the leave event for the enter
event occurs which has the greates timestamp less or equal the timestamp of this
record.

85

APPENDIX C. MODULE DOCUMENTATION

Attributes

OTF2_LocationRef location | The location of the snapshot.
OTF2_TimeStamp | timestamp | The snapshot time of this record.
OTF2_TimeStamp | origEvent- | The original time this event happended.

Time

OTF2_-| parameter Parameter ID. References a Parameter

ParameterRef definition and will be mapped to the

global definition if a mapping table of

type OTF2_MAPPING PARAMETER is
available.

uint64_t value | Value of the recorded parameter.

See also

ParameterUnsignedInt event
OTF2_SnapWriter_ParameterUnsignedInt()

Since

Version 1.2

C.116 OTF2 usage examples

Modules

» Usage in writing mode - a simple example

* How to use the attribute list for writing additional attributes to event records
* Usage in reading mode - MPI example

* Usage in writing mode - MPI example

» Usage in reading mode - a simple example

C.117 Usage in writing mode - a simple example
This is a short example of how to use the OTF2 writing interface. This example is

available as source code in the file ot f2_writer_example.c.
First include the OTF2 header.

#include <otf2/otf2.h>

For this example an additional include statement is necessary.

86

C.117 Usage in writing mode - a simple example

#include <stdlib.h>

Furthermore this example uses a function delivering dummy timestamps. Real
world applications will use a timer like clock_gettime.

static OTF2_TimeStamp
get_time (void)
{
static uint64_t sequence;
return sequence++;

Define a pre and post flush callback. If no memory is left in OTF2’s internal mem-
ory buffer or the writer handle is closed a memory buffer flushing routine is trig-
gered. The pre flush callback is triggered right before a buffer flush. It needs
to return either OTF2_FLUSH to flush the recorded data to a file or OTF2_NO_-
FLUSH to supress flushing data to a file. The post flush callback is triggered right
after a memory buffer flush. It has to return a current timestamp which is recorded
to mark the time spend in a buffer flush. The callbacks are passed via a struct to
OTF2.

static OTF2_FlushType

pre_flush(voidx userData,
OTF2_FileType fileType,
OTF2_LocationRef location,
voidx callerData,
bool final)

{
return OTF2_FLUSH;

}

static OTF2_TimeStamp
post_flush(voidx userData,
OTF2_FileType fileType,
OTF2_LocationRef location)
{
return get_time();

}

static OTF2_FlushCallbacks flush_callbacks =
{

.otf2_pre_flush pre_flush,
.otf2_post_flush = post_flush
}i

Now everything is prepared to begin with the main program.

int
main(int argc,

87

APPENDIX C. MODULE DOCUMENTATION

charxx argv)

Create new archive handle.

OTF2_Archive* archive = OTF2_Archive_Open("ArchivePath",
"ArchiveName",
OTF2_FILEMODE_WRITE,
1024 x 1024 /* event chunk size =/

4 x 1024 * 1024 /* def chunk size
*/,

OTF2_SUBSTRATE_POSIX,

OTF2_COMPRESSION_NONE) ;

Set the previously defined flush callbacks.

OTF2_Archive_SetFlushCallbacks (archive, &flush_callbacks, NULL);

We will operate in an serial context.

OTF2_Archive_SetSerialCollectiveCallbacks (archive);

Now we can create the event files. Though physical files aren’t created yet.

OTF2_Archive_OpenEvtFiles (archive);

Get a local event writer for location O.

OTF2_EvtWriterx evt_writer = OTF2_Archive_GetEvtWriter (archive, 0);

Write an enter and a leave record for region O to the local event writer.

OTF2_EvtWriter_Enter (evt_writer,

NULL,

get_time (),

0 /x region x/);
OTF2_EvtWriter_Leave (evt_writer,

NULL,

get_time (),

0 /* region x/);

Now close the event writer, before closing the event files collectivly.

88

C.117 Usage in writing mode - a simple example

OTF2_Archive_CloseEvtWriter (archive, evt_writer);

After we wrote all of the events we close the event files again.

OTF2_Archive_CloseEvtFiles (archive);

Now write the global definitions by getting an writer object for it.

OTF2_GlobalDefWriterx global_def_writer = OTF2_Archive_GetGlobalDefWriter (ar
chive);

We need to define the clock used for this trace and the overall timestamp range.

OTF2_GlobalDefWriter WriteClockProperties(global_def_writer,
1 /+« 1 tick per second =/,
0 /* epoch =/,
2 /* length x/);

Now we can start writing the referenced definitions, starting with the strings.

OTF2_GlobalDefWriter WriteString(global_def_writer, 0, "");
OTF2_GlobalDefWriter_ WriteString(global_def_writer, 1, "Master Process");
OTF2_GlobalDefWriter_ WriteString(global_def_writer, 2, "Main Thread");
OTF2_GlobalDefWriter WriteString(global_def_writer, 3, "MyFunction");

(4

OTF2_GlobalDefWriter_WriteString "Alternative function
name (e.g. mangled one)");

OTF2_GlobalDefWriter WriteString(global_def_writer, 5, "Computes something"
)

OTF2_GlobalDefWriter_ WriteString(global_def_writer, 6, "MyHost");

OTF2_GlobalDefWriter WriteString(global_def_writer, 7, "node");

global_def_writer,

~

Write definition for the code region which was just entered and left to the global
definition writer.

OTF2_GlobalDefWriter WriteRegion(global_def_writer,
0 /+ id =/,
3 /* region name =/,
4 /+ alternative name x/,
5 /% description =*/,
OTF2_REGION_ROLE_FUNCTION,
OTF2_PARADIGM_USER,
OTF2_REGION_FLAG_NONE,
0 /% source file =/,
0 /* begin 1lno x/,
0 /x end 1lno */);

89

APPENDIX C. MODULE DOCUMENTATION

Write the system tree including a definition for the location group to the global
definition writer.

OTF2_GlobalDefWriter_WriteSystemTreeNode (global_def_writer,
0 /+ id =/,
6 /x name x/,
7 /% class =/,
OTF2_UNDEFINED_SYSTEM_TREE_NODE /=«
parent */);
OTF2_GlobalDefWriter_WriteLocationGroup(global_def_writer,
0 /+ id =/,
1 /% name x/,
OTF2_LOCATION_GROUP_TYPE_PROCESS,
0 /+ system tree x/);

Write a definition for the location to the global definition writer.

OTF2_GlobalDefWriter_ WriteLocation(global_def_writer,
0 /+ id «/,
2 /x name =%/,
OTF2_LOCATION_TYPE_CPU_THREAD,
2 /+x # events «/,
0 /+ location group */);

At the end, close the archive and exit.

OTF2_Archive_Close (archive);

return EXIT_SUCCESS;

To compile your program use a command like the following. Note that we need to
activate the C99 standard explicitly for GCC.

gcc —-std=c99 ‘otf2-config —--cflags‘' \
-c otf2_writer_example.c \
-0 otf2_writer_example.o

Now you can link your program with:

gcc otf2_writer_example.o \
‘otf2-config —--ldflags® \
‘otf2-config —-libs' \
-0 otf2_writer_example

90

C.118 How to use the attribute list for writing additional attributes to event
records

C.118 How to use the attribute list for writing additional attributes to
event records

First create an attribute list handle.
OTF2_AttributelList attribute_list = OTF2_AttributelList_New();

To write your additional attribute to an event record add your attributes to an empty
attribute list right before you call the routine to write the event.

OTF2_AttributeValue attr_value;

attr_value.uint32 = attribute_value;
OTF2_AttributeList_AddAttribute(attribute_list, attribute_id, OTF2_UINT8, attr
_value);

Then call the routine to write the event and pass the attribute list. The additional
attributes are added to the event record and will be appended when reading the
event later on. Please note: All attributes in the list will be added to event record.
So make sure that there are only those attributes in the attribute list that you actually
like to write. Please note: After writing the event record all attributes are removed
from the attribute list. So the attribute list is empty again. If you want to write
identical attributes to multiple events you have to add them each time new.

OTF2_EvtWriter_ WriteEnter(..., attribute_list, ...);

C.119 OTF2 callbacks

Modules

* Controlling OTF2 flush behavior in writing mode
* Memory pooling for OTF2

* Operating OTF2 in an collective context

C.120 Controlling OTF2 flush behavior in writing mode

Data Structures

e struct OTF2_FlushCallbacks
Structure holding the flush callbacks.

91

APPENDIX C. MODULE DOCUMENTATION

Typedefs

¢ typedef OTF2_TimeStamp(x OTF2_PostFlushCallback)(void xuserData, OTF2_-
FileType fileType, OTF2_LocationRef location)
Definition for the post flush callback.
* typedef OTF2_FlushType(x OTF2_PreFlushCallback)(void xuserData, OTF2_-
FileType fileType, OTF2_LocationRef location, void xcallerData, bool fi-
nal)

Definition for the pre flush callback.

C.120.1 Detailed Description

The flushing behavior from OTF2 can be controlled via callbacks. Calling OTF2_-
Archive_SetFlushCallbacks 1s mandatory when writing and erroneous when read-
ing an archive.

The pre-flush callback decides whether an flush should actually happen. When
missing, the default is not to flush any data for event writers, all others will flush
there data by default.

The post-flush callback is used to decide whether an buffer flush record should be
written after the flush finished. This only applies to event writers.

C.120.2 Typedef Documentation

C.120.2.1 typedef OTF2_TimeStamp(+ OTF2_PostFlushCallback)(void

xuserData, OTF2_FileType fileType, OTF2_LocationRef location)

Definition for the post flush callback.

This callback is triggered right after flushing the recorded data into file when run-
ning out of memory. The main function of this callback is to provide a timestamp
for the end of flushing data into a file. So an according record can be written
correctly.

Parameters

userData | Data passed to the call OTF2_Archive_SetFlushCallbacks.

fileType | The file type for which the flush has happened.

location | The location ID of the writer for which the flush has happened (for file
types without an ID this is OTF2_UNDEFINED_LOCATION).

Returns

Returns a timestamp for the end of flushing data into a file.

92

C.121 Memory pooling for OTF2

C.120.2.2 typedef OTF2_FlushType(x* OTF2_PreFlushCallback)(void xuserData,
OTF2_FileType fileType, OTF2_LocationRef location, void xcallerData,
bool final)

Definition for the pre flush callback.

This callback is triggered right before flushing the recorded data into file when
running out of memory.

Parameters

userData

Data passed to the call OTF2_Archive_SetFlushCallbacks.

fileType

The type of file for what this buffer holds data.

location

The location id for what this buffer holds data. This is only valid for
files of type OTF2_FILETYPE_LOCAL_DEFS or OTF2_FILETYPE_-
EVENTS. For other files this is OTF2_UNDEFINED_LOCATION. A
special case exists for files of type OTF2_FILETYPE_EVENTS in
writing mode. The location ID may still be OTF2_UNDEFINED_-
LOCATION. In this case if the application wants to write the data from
the buffer into the file, the application needs to provide a valid loca-
tion ID via a call to OTF2_EvtWriter_SetLocationID() and utilizing the
callerData argument.

callerData

Depending of the fileType, this can be an OTF2_EvtWriter, OTF2_-
GlobalDefWriter, OTF2_DefWriter.

final

Indicates whether this is the final flush when closing the writer objects.

Returns

Returns OTF2_FLUSH or OTF2_NO_FLUSH.

C.121 Memory pooling for OTF2

Data Structures

¢ struct OTF2_MemoryCallbacks

Structure holding the memory callbacks.

Typedefs

* typedef void *(x OTF2_MemoryAllocate)(void *userData, OTF2_FileType
fileType, OTF2_LocationRef location, void sxxperBufferData, uint64_t chunk-

Size)

Function pointer for allocating memory for chunks.

93

APPENDIX C. MODULE DOCUMENTATION

¢ typedef void(x OTF2_MemoryFreeAll)(void xuserData, OTF2_FileType file-
Type, OTF2_LocationRef location, void #xperBufferData, bool final)

Function pointer to release all allocated chunks.

C.121.1 Detailed Description

It is possible to provide memory for the record chunks to OTF2 via this callback
interface. It is only used for writing. The default memory pool has a size of 128
MiB per writer.

C.121.2 Typedef Documentation

C.121.2.1 typedef void«(* OTF2_MemoryAllocate)(void xuserData,
OTF2_FileType fileType, OTF2_LocationRef location, void
+xperBufferData, uint64_t chunkSize)

Function pointer for allocating memory for chunks.

Please note: Do not use this feature if you do not really understand it. The OTF2
library is not able to do any kind of checks to validate if your memory manage-
ment works properly. If you do not use it correctly OTF2’s behavior is undefined
including dead locks and all that nasty stuff.

This function must return a pointer to a valid allocated memory location (just like
malloc). This memory location must be of exact same size as the parameter *chunk-
Size’ provided with OTF2_Archive_Open().

Parameters

userData | Data passed to the call OTF2_Archive_SetMemoryCallbacks.

fileType | The file type for which the chunk is requested.

types without an ID this is OTF2_UNDEFINED_LOCATION).

location | The location ID of the writer for which the flush has happened (for file

Data | NULL.

perBuffer- | A writable pointer to store callee data. For the first call this will be

chunkSize | The size of the requested chunk.

Returns

Returns a the allocated memory on success, NULL if an error occurs.

94

C.122 Operating OTF2 in an collective context

C.121.2.2 typedef void(* OTF2_MemoryFreeAll)(void xuserData, OTF2_FileType
fileType, OTF2_LocationRef location, void :xperBufferData, bool final)

Function pointer to release all allocated chunks.

Please note: Do not use this feature if you do not really understand it. The OTF2
library is not able to do any kind of checks to validate if your memory manage-
ment works properly. If you do not use it correctly OTF2’s behavior is undefined
including dead locks and all that nasty stuff.

This function must free all those memory locations that were allocated for a buffer
handle with the according allocate function. Please note: This is different from
a posix free(). You must free _all_ memory locations for that were allocated for
exactly this buffer handle.

Parameters

userData

Data passed to the call OTF2_Archive_SetMemoryCallbacks.

fileType

The file type for which free is requested.

location

The location ID of the writer for which the flush has happened (for file
types without an ID this is OTF2_UNDEFINED_LOCATION).

perBuffer-
Data

A writable pointer to store callee data. For the first call this will be
NULL.

final

Indicates whether this is the final free when closing the writer objects.
perBuf ferData should be handled than.

C.122 Operating OTF2 in an collective context

Data Structures

¢ struct OTF2_CollectiveCallbacks

Struct which holds all collective callbacks.

Typedefs

¢ typedef OTF2_CallbackCode(x OTF2_Collectives_Barrier)(void xuserData,
OTF2_CollectiveContext *commContext)

Performs an barrier collective on the given communication context.
¢ typedef OTF2_CallbackCode(x OTF2_Collectives_Bcast)(void sxuserData,

OTF2_CollectiveContext xcommContext, void xdata, uint32_t numberEle-
ments, OTF2_Type type, uint32_t root)

Performs an broadcast collective on the given communication context.

95

APPENDIX C. MODULE DOCUMENTATION

typedef OTF2_CallbackCode(x OTF2_Collectives_CreateL.ocalComm)(void
sxuserData, OTF2_CollectiveContext xxlocalCommContext, OTF2_CollectiveContext
xglobalCommContext, uint32_t globalRank, uint32_t globalSize, uint32_-
t localRank, uint32_t localSize, uint32_t fileNumber, uint32_t numberOf-
Files)
Create a new disjoint partitioning of the the globalCommContext communica-
tion context. numberOfFiles denotes the number of the partitions. fileNumber
denotes in which of the partitions this OTF2_Archive should belong. localSize
is the size of this partition and localRank the rank of this OTF2_Archive in the
partition.
typedef OTF2_CallbackCode(x OTF2_Collectives_FreeLocalComm)(void
sxuserData, OTF2_CollectiveContext xlocalCommContext)
Destroys the communication context previous created by the OTF2_Collectives_-
CreateLocalComm callback.
typedef OTF2_CallbackCode(x OTF2_Collectives_Gather)(void xuserData,
OTF2_CollectiveContext *commContext, const void xinData, void xoutData,
uint32_t numberElements, OTF2_Type type, uint32_t root)
Performs an gather collective on the given communication context where each

ranks contribute the same number of elements. outData is only valid at rank
root.

typedef OTF2_CallbackCode(x OTF2_Collectives_Gatherv)(void xuserData,
OTF2_CollectiveContext xcommContext, const void xinData, uint32_t in-
Elements, void xoutData, const uint32_t xoutElements, OTF2_Type type,
uint32_t root)

Performs an gather collective on the given communication context where each

ranks contribute different number of elements. outData and outElements are
only valid at rank root.

typedef OTF2_CallbackCode(x OTF2_Collectives_GetRank)(void xuserData,
OTF2_CollectiveContext xcommContext, uint32_t *rank)
Returns the rank of this OTF2_Archive objects in this communication context. A
number between 0 and one less of the size of the communication context.
typedef OTF2_CallbackCode(x OTF2_Collectives_GetSize)(void xuserData,
OTF2_CollectiveContext *commContext, uint32_t xsize)
Returns the number of OTF2_Archive objects operating in this communication
context.
typedef void(x OTF2_Collectives_Release)(void xuserData, OTF2_CollectiveContext
xglobal CommContext, OTF2_CollectiveContext xlocalCommContext)
Optionally called in OTF2_Archive_Close or OTF2_Reader_Close respectively.
typedef OTF2_CallbackCode(x OTF2_Collectives_Scatter)(void xuserData,
OTF2_CollectiveContext xcommContext, const void *xinData, void xoutData,
uint32_t numberElements, OTF2_Type type, uint32_t root)

Performs an scatter collective on the given communication context where each
ranks contribute the same number of elements. inData is only valid at rank root.

C.122 Operating OTF2 in an collective context

* typedef OTF2_CallbackCode(x OTF2_Collectives_Scatterv)(void xuserData,
OTF2_CollectiveContext xcommContext, const void xinData, const uint32_-
t xinElements, void xoutData, uint32_t outElements, OTF2_Type type, uint32_-
t root)

Performs an scatter collective on the given communication context where each
ranks contribute different number of elements. inData and inElements are only
valid at rank root.

C.122.1 Detailed Description

To operate multiple OTF2_Archive objects in an collective context, the following
callbacks need to be implemented. These are mandatory, when writing an trace
file with multiple OTF2_Archive objects. For reading a set of serial callbacks are
provided (See OTF2_Archive_SetSerialCollectiveCallbacks and OTF2_Reader_-
SetSerialCollectiveCallbacks). The struct OTF2_CollectiveContext needs to be
declared too.

Only OTF2_Type of the integer and floating point category need to be considered
as values when the callbacks are called.

Except for the OTF2_Collectives_GetSize and OTF2_Collectives_GetRank call-
backs, the return value must always be the same for all participating tasks. In
particular all calls should either return OTF2_CALLBACK_SUCCESS or |OTF2_-
CALLBACK_SUCCESS, but it is undefined, if some of the calls return OTF2_-
CALLBACK_SUCCESS and other |OTF2_CALLBACK_SUCCESS.

The OTF2_Collectives_CreateLocalComm and OTF2_Collectives_FreeLocalComm
are ignored when writing and optional when reading, but than both are mandatory.
These are used to created the same local communication context as was given at
writing time, if possible.

On the contrary the localCommContext to OTF2_Archive_SetCollectiveCallbacks
is ignored when reading and optional (i.e., not NULL) when writing. It determines
the number of files to use when the SION substrate is used. these localCommCon-
text must be an disjoint partitioning of the used globalCommContext than.

The OTF2_Collectives_Release is optional and will be called as one of the last
actions before the OTF2_Archive or the OTF2_Reader will be closed.

C.122.2 Typedef Documentation

C.122.2.1 typedef OTF2_CallbackCode(x* OTF2_Collectives_Barrier)(void
xuserData, OTF2_CollectiveContext xcommContext)

Performs an barrier collective on the given communication context.

97

APPENDIX C. MODULE DOCUMENTATION

Since

Version 1.3

Returns

OTF2_CALLBACK_SUCCESS or OTF2_CALLBACK_ERROR.

C.122.2.2 typedef OTF2_CallbackCode(x* OTF2_Collectives_Bcast)(void
xuserData, OTF2_CollectiveContext xcommContext, void *data, uint32_t
numberElements, OTF2_Type type, uint32_t root)

Performs an broadcast collective on the given communication context.

Since

Version 1.3

Returns

OTF2_CALLBACK_SUCCESS or OTF2_CALLBACK_ERROR.

C.122.2.3 typedef OTF2_CallbackCode(x* OTF2_Collectives_-
CreateLocalComm)(void xuserData, OTF2_CollectiveContext
+xlocalCommContext, OTF2_CollectiveContext :«globalCommContext,
uint32_t globalRank, uint32_t globalSize, uint32_t localRank, uint32_t localSize,
uint32_t fileNumber, uint32_t numberOfFiles)

Create a new disjoint partitioning of the the globalCommContext communication
context. numberOfFiles denotes the number of the partitions. fileNumber denotes
in which of the partitions this OTF2_Archive should belong. localSize is the size
of this partition and localRank the rank of this OTF2_Archive in the partition.

Since

Version 1.3

Returns

OTF2_CALLBACK_SUCCESS or OTF2_CALLBACK_ERROR.

98

C.122 Operating OTF2 in an collective context

C.122.24 typedef OTF2_CallbackCode(x* OTF2_Collectives_-
FreeLocalComm)(void xuserData, OTF2_CollectiveContext
xlocalCommContext)

Destroys the communication context previous created by the OTF2_Collectives_-
CreateLocalComm callback.

Since
Version 1.3
Returns

OTF2_CALLBACK_SUCCESS or OTF2_CALLBACK_ERROR.

C.122.25 typedef OTF2_CallbackCode(x* OTF2_Collectives_Gather)(void
xuserData, OTF2_CollectiveContext xcommContext, const void *inData,
void xoutData, uint32_t numberElements, OTF2_Type type, uint32_t root)

Performs an gather collective on the given communication context where each
ranks contribute the same number of elements. outData is only valid at rank root.

Since
Version 1.3

Returns

OTF2_CALLBACK_SUCCESS or OTF2_CALLBACK_ERROR.

C.122.2.6 typedef OTF2_CallbackCode(x OTF2_Collectives_Gatherv)(void
xuserData, OTF2_CollectiveContext xcommContext, const void xinData,
uint32_t inElements, void outData, const uint32_t coutElements, OTF2_Type
type, uint32_t root)

Performs an gather collective on the given communication context where each
ranks contribute different number of elements. outData and outElements are only
valid at rank root.

Since
Version 1.3

Returns

OTF2_CALLBACK_SUCCESS or OTF2_CALLBACK_ERROR.

99

APPENDIX C. MODULE DOCUMENTATION

C.122.2.7 typedef OTF2_CallbackCode(x OTF2_Collectives_GetRank)(void
xuserData, OTF2_CollectiveContext xcommContext, uint32_t xrank)

Returns the rank of this OTF2_Archive objects in this communication context. A
number between 0 and one less of the size of the communication context.

Since

Version 1.3

Returns

OTF2_CALLBACK_SUCCESS or OTF2_CALLBACK_ERROR.

C.122.2.8 typedef OTF2_CallbackCode(x« OTF2_Collectives_GetSize)(void
xuserData, OTF2_CollectiveContext xcommContext, uint32_t xsize)

Returns the number of OTF2_Archive objects operating in this communication

context.

Since

Version 1.3

Returns

OTF2_CALLBACK_SUCCESS or OTF2_CALLBACK_ERROR.

C.122.2.9 typedef void(x OTF2_Collectives_Release)(void «userData, OTF2_-
CollectiveContext xglobalCommContext, OTF2_CollectiveContext

xlocalCommContext)

Optionally called in OTF2_Archive_Close or OTF2_Reader_Close respectively.

Since

Version 1.3

Returns

OTF2_CALLBACK_SUCCESS or OTF2_CALLBACK_ERROR.

100

C.123 Usage in reading mode - MPI example

C.122.2.10 typedef OTF2_CallbackCode(* OTF2_Collectives_Scatter)(void
xuserData, OTF2_CollectiveContext xcommContext, const void *«inData,
void outData, uint32_t numberElements, OTF2_Type type, uint32_t root)

Performs an scatter collective on the given communication context where each
ranks contribute the same number of elements. inData is only valid at rank root.

Since

Version 1.3

Returns

OTF2_CALLBACK_SUCCESS or OTF2_CALLBACK_ERROR.

C.122.2.11 typedef OTF2_CallbackCode(* OTF2_Collectives_Scatterv)(void
xuserData, OTF2_CollectiveContext xcommContext, const void xinData,
const uint32_t xinElements, void xoutData, uint32_t outElements, OTF2_Type
type, uint32_t root)

Performs an scatter collective on the given communication context where each
ranks contribute different number of elements. inData and inElements are only
valid at rank root.

Since

Version 1.3

Returns

OTF2_CALLBACK_SUCCESS or OTF2_CALLBACK_ERROR.

C.123 Usage in reading mode - MPI example

This is a example of how to use the OTF2 reading interface with MPIL. It shows
how to define and register callbacks and how to use the provided MPI collective
callbacks to read all events of a given OTF2 archive in parallel. This example is
available as source code in the file ot f2_mpi_reader_example.c.

We start with inclusion of some standard headers.

#include <stdlib.h>
#include <stdio.h>
#include <inttypes.h>

101

APPENDIX C. MODULE DOCUMENTATION

And than include the MPI and OTF2 header.

#include <mpi.h>

#include <otf2/otf2.h>

Now prepare the inclusion of the <otf2/OTF2_MPI_Collectives.h>> header. As it
is an header-only interface, it needs some information about the used MPI enviri-
onment. In particular the MPI datatypes which match the C99 types uint64_t
and int 64_t. In case you have an MPI 3.0 conforming MPI implementation you
can skip this. If not, provide #define’s for the following macros prior the #include
statement. In this example, we asume an LP64 platform.

#if MPI_VERSION < 3

#define OTF2_MPI_UINT64_T MPI_UNSIGNED_LONG
#define OTF2_MPI_INT64_T MPI_LONG

#endif

After this preparatory step, we can include the <otf2/OTF2_MPI_Collectives.h>
header.

#include <otf2/0OTF2_MPI_Collectives.h>

The following section until desribing main is the same as in the Usage in reading
mode - a simple example.

Define an event callback for entering and leaving a region.

static OTF2_CallbackCode

Enter_print (OTF2_LocationRef location,
OTF2_TimeStamp time,
void=* userData,
OTF2_AttributelList* attributes,
OTF2_RegionRef region)
{
printf("Entering region %u at location %" PRIu64 " at time %" PRIu64 ".\n",
region, location, time);
return OTF2_CALLBACK_SUCCESS;
}
static OTF2_CallbackCode
Leave_print (OTF2_LocationRef location,
OTF2_TimeStamp time,
void= userData,
OTF2_AttributelList* attributes,
OTF2_RegionRef region)
{
printf("Leaving region %u at location %" PRIu64 " at time %" PRIu64 ".\n",

102

C.123 Usage in reading mode - MPI example

region, location, time);

return OTF2_CALLBACK_SUCCESS;

The global definition file provides all location IDs that are included in the OTF2
trace archive. When reading the global defintions these location IDs must be col-
lected and stored by the user. Probably, the easiest way to do that is to use a C++
container.

struct vector

{
size_t capacity;
size_t size;
uint64_t members|[];

bi

static OTF2_CallbackCode

GlobDefLocation_Register (voidx userData,
OTF2_LocationRef location,
OTF2_StringRef name,
OTF2_LocationType locationType,
uint64_t numberOfEvents,

OTF2_LocationGroupRef locationGroup)
struct vectorx locations = userData;
if (locations->size == locations->capacity)
{
return OTF2_CALLBACK_INTERRUPT;

locations—->members|[locations->size++] = location;

return OTF2_CALLBACK_SUCCESS;

Now everything is prepared to begin with the main program.

int
main(int argc,
charxx argv)

First initialize the MPI envirionment and query the size and rank.

MPI_Init(&argc, &argv);
int size;
MPI_Comm_size(MPI_COMM_WORLD, &size);

103

APPENDIX C. MODULE DOCUMENTATION

int rank;
MPI_Comm_rank (MPI_COMM_WORLD, &rank);

Create a new reader handle. The path to the OTF2 anchor file must be provided as
argument.

OTF2_Reader* reader = OTF2_Reader_Open("ArchivePath/ArchiveName.otf2");

Now we provide the OTF2 reader object the MPI collectives.

OTF2_MPI_Reader_SetCollectiveCallbacks(reader, MPI_COMM_WORLD);

OTF2 provides an API to query the number of locations prior reading the global
definitions. We use this to pre-allocate the storage for all locations.

uint64_t number_of_ locations;
OTF2_Reader_GetNumberOfLocations (reader,

&number_of_locations);
struct vectorx locations = malloc(sizeof(xlocations)

+ number_of_locations

* sizeof (xlocations->members));
locations—->capacity = number_of_locations;
locations—->size 0;

All ranks need to read the global definitions to know the list of locations in the
trace. Get a global definition reader with the above reader handle as argument.

OTF2_GlobalDefReader* global_def_reader = OTF2_Reader_GetGlobalDefReader (rea
der);

Register the above defined global definition callbacks. All other definition call-
backs will be deactivated. And instruct the reader to pass the locations object to
each call of the callbacks.

OTF2_GlobalDefReaderCallbacks* global_def_callbacks =
OTF2_GlobalDefReaderCallbacks_New () ;
OTF2_GlobalDefReaderCallbacks_SetLocationCallback(global_def_callbacks,
&GlobDeflLocation_Register
)i
OTF2_Reader_RegisterGlobalDefCallbacks (reader,
global_def_reader,
global_def_callbacks,
locations);
OTF2_GlobalDefReaderCallbacks_Delete(global_def_callbacks);

104

C.123 Usage in reading mode - MPI example

Read all global definitions. Everytime a location definition is read, the previosly
registered callback is triggered. In definitions_read the number of read
definitions is returned.

uint64_t definitions_read = 0;

OTF2_Reader_ReadAllGlobalDefinitions (reader,
global_def_reader,
&definitions_read);

After reading all global definitions all location IDs are stored in the generic con-
tainer ListOfLocations. After that, the locations that are suppossed to be
read are selected. We distribute the locations round-robin to all ranks in MPT -
COMM_WORLD. We need also to remember, whether this rank actually reads any
locations.

uint64_t number_of_ locations_to_read = 0;

for (size_t i = 0; i < locations->size; i++)
{
if (locations—>members|[1] % size != rank)
{
continue;

}
number_of_locations_to_read++;
OTF2_Reader_SelectLocation(reader, locations—>members[i]

When the locations are selected the according event and definition files can be
opened. Note that the local definition files are optional, thus we need to remember
the success of this call.

bool successful_open_def_ files =
OTF2_Reader_OpenDefFiles(reader) == OTF2_SUCCESS;
OTF2_Reader_OpenEvtFiles (reader);

When the files are opened the event and defintion reader handle can be requested.
We distribute the locations round-robin to all ranks in MPI_COMM_WORLD. To
apply mapping tables stored in the local definitions, the local defintions must be
read. Though the existence of these files are optional. The call to OTF2_Reader_-
GetEvtReader is mandatory, but the result is unused.

for (size_t i1 = 0; i < locations->size; i++)
{
if (locations—>members|[i1] % size != rank)
{
continue;
}
if (successful_open_def_files)

{

105

APPENDIX C. MODULE DOCUMENTATION

OTF2_DefReaderx def_reader =
OTF2_Reader_GetDefReader (reader, locations->members[1]);
if (def_reader)
{
uinto64_t def_reads = 0;
OTF2_Reader_ReadAllLocalDefinitions(reader,
def_reader,
&def_reads);
OTF2_Reader_CloseDefReader (reader, def_reader);

}
OTF2_EvtReaderx evt_reader =
OTF2_Reader_GetEvtReader (reader, locations->members|[i]);

The definition files can now be closed, if it was successfully opened in the first
place.

if (successful_open_def_ _files)

{
OTF2_Reader_CloseDefFiles (reader);

Only these ranks which actually read events for locations, can now open a new
global event reader. This global reader automatically contains all previously opened
local event readers.

if (number_of_locations_to_read > 0)

{
OTF2_GlobalEvtReaderx global_evt_reader = OTF2_Reader_GetGlobalEvtReader (
reader);

Register the above defined global event callbacks. All other global event callbacks
will be deactivated.

OTF2_GlobalEvtReaderCallbacks* event_callbacks =
OTF2_GlobalEvtReaderCallbacks_New () ;
OTF2_GlobalEvtReaderCallbacks_SetEnterCallback (event_callbacks,
&Enter_print);
OTF2_GlobalEvtReaderCallbacks_SetLeaveCallback (event_callbacks,
&Leave_print);
OTF2_Reader_RegisterGlobalEvtCallbacks (reader,
global_evt_reader,
event_callbacks,
NULL) ;
OTF2_GlobalEvtReaderCallbacks_Delete(event_callbacks);

Read all events in the OTF2 archive. The events are automatically ordered by
the time they occured in the trace. Everytime an enter or leave event is read, the

106

C.123 Usage in reading mode - MPI example

previously registered callbacks are triggered. In events_read the number of
read events is returned.

uint64_t events_read = 0;

OTF2_Reader_ReadAllGlobalEvents(reader,
global_evt_reader,
&events_read);

The global event reader can now be closed and the event files too.

OTF2_Reader_CloseGlobalEvtReader (reader, global_evt_reader);

As the call to OTF2_Reader_CloseEvtFiles is an collective operation all ranks need
to call this, not only those which read events.

}
OTF2_Reader_CloseEvtFiles (reader);

At the end, close the reader and exit. All opened event and definition readers are
closed automatically. Free resources and finalize the MPI envirionment.

OTF2_Reader_Close(reader);
free(locations);
MPI_Finalize();

return EXIT_SUCCESS;

To compile your program use a command like the following. Note that we need to
activate the C99 standard explicitly for GCC.

mpicc -std=c99 ‘otf2-config --cflags‘' \
—-c otf2_mpi_reader_example.c \
-0 otf2_mpi_reader_example.o

Now you can link your program with:

mpicc otf2_mpi_reader_example.o \
‘otf2-config —--ldflags® \
‘otf2-config —-libs' \
-0 otf2_mpi_reader_example

107

APPENDIX C. MODULE DOCUMENTATION

C.124 Usage in writing mode - MPI example

This is a short example of how to use the OTF2 writing interface with MPI. This ex-
ample is available as source code in the file ot f2_mpi_writer_example.c.

We start with inclusion of some standard headers.

#include <stdlib.h>
#include <stdio.h>
#include <inttypes.h>

And than include the MPI and OTF2 header.

#include <mpi.h>

finclude <otf2/otf2.h>

Now prepare the inclusion of the <otf2/OTF2_MPI_Collectives.h>> header. As it
is an header-only interface, it needs some information about the used MPI enviri-
onment. In particular the MPI datatypes which match the C99 types uint64_t
and int 64_t. In case you have an MPI 3.0 conforming MPI implementation you
can skip this. If not, provide #define’s for the following macros prior the #include
statement. In this example, we asume an LP64 platform.

#if MPI_VERSION < 3

#define OTF2_MPI_UINT64_T MPI_UNSIGNED_LONG
#define OTF2_MPI_INT64_T MPI_LONG

#endif

After this preparatory step, we can include the <otf2/OTF2_MPI_Collectives.h>
header.

#include <otf2/0TF2_MPI_Collectives.h>

We use MPI_Wtime to get timestamps for our events but need to convert the
seconds to an integral value. We use a nano second resolution.

static OTF2_TimeStamp

get_time(void)

{
double t = MPI_Wtime () =* 1le9;
return (uint64_t)t;

Define a pre and post flush callback. If no memory is left in OTF2’s internal mem-
ory buffer or the writer handle is closed a memory buffer flushing routine is trig-
gered. The pre flush callback is triggered right before a buffer flush. It needs

108

C.124 Usage in writing mode - MPI example

to return either OTF2_FLUSH to flush the recorded data to a file or OTF2_NO_-
FLUSH to supress flushing data to a file. The post flush callback is triggered right
after a memory buffer flush. It has to return a current timestamp which is recorded
to mark the time spend in a buffer flush. The callbacks are passed via a struct to
OTF2.

static OTF2_FlushType

pre_flush(voidx userData,
OTF2_FileType fileType,
OTF2_LocationRef location,
voidx callerData,
bool final)

return OTF2_FLUSH;

static OTF2_TimeStamp

post_flush(voidx userData,
OTF2_FileType fileType,
OTF2_LocationRef location)

return get_time ();

static OTF2_FlushCallbacks flush_callbacks =
{

.otf2_pre_flush pre_flush,
.otf2_post_flush = post_flush
}i

Now everything is prepared to begin with the main program.

int
main (int argc,
charxx argv)

First initialize the MPI envirionment and query the size and rank.

MPI_TInit(&argc, &argv);

int size;

MPI_Comm_size (MPI_COMM_WORLD, &size);
int rank;

MPI_Comm_rank (MPI_COMM_WORLD, &rank);

Create new archive handle.

OTF2_Archivex archive = OTF2_Archive_Open("ArchivePath",
"ArchiveName",

109

APPENDIX C. MODULE DOCUMENTATION

OTF2_FILEMODE_WRITE,
1024 « 1024 /» event chunk size */

4 x 1024 % 1024 /% def chunk size

*/,
OTF2_SUBSTRATE_POSIX,
OTF2_COMPRESSION_NONE) ;

Set the previously defined flush callbacks.

OTF2_Archive_SetFlushCallbacks (archive, &flush_callbacks, NULL);

Now we provide the OTF2 archive object the MPI collectives. As all ranks in
MPI_COMM_WORLD write into the archive, we use this communicator as the global
one. We set the local communicator to MPI__COMM_NULL, as we don’t care about
file optimization here.

OTF2_MPI_Archive_SetCollectiveCallbacks (archive,
MPI_COMM_WORLD,
MPI_COMM_NULL) ;

Now we can create the event files. Though physical files aren’t created yet.

OTF2_Archive_OpenEvtFiles (archive);

Each rank now requests an event writer with its rank number as the location id.

OTF2_EvtWriter* evt_writer = OTF2_Archive_GetEvtWriter (archive,
rank);

We note the start time in each rank, this is later used to determine the global epoch.

uint64_t epoch_start = get_time();

Write an enter and a leave record for region O to the local event writer.

OTF2_EvtWriter_Enter (evt_writer,
NULL,
get_time (),
0 /x region x/);

We also record an MPI_Barrier in the trace. For this we generate an event
before we do the MPI call.

110

C.124 Usage in writing mode - MPI example

OTF2_EvtWriter_ MpiCollectiveBegin(evt_writer,
NULL,
get_time ());

Now we can do the MPTI_Barrier call.

MPI_Barrier (MPI_COMM_WORLD) ;

After we passed the MPI_Barrier. we can note the end of the collective opera-
tion inside the event stream.

OTF2_EvtWriter_MpiCollectiveEnd(evt_writer,
NULL,
get_time (),
OTF2_COLLECTIVE_OP_BARRIER,
0 /+ communicator =/,
OTF2_UNDEFINED UINT32 /% root x/,
0 /» bytes provided =/,
0 /+ bytes obtained x/);

Finally we leave the region again with the leave region.

OTF2_EvtWriter_Leave (evt_writer,
NULL,
get_time (),
0 /x region x/);

The event recording is now done, note the end time in each rank.

uint64_t epoch_end = get_time();

Now close the event writer, before closing the event files collectivly.

OTF2_Archive_CloseEvtWriter (archive, evt_writer);

After we wrote all of the events we close the event files again.

OTF2_Archive_CloseEvtFiles (archive);

We now collect all of the epoch_start and epoch_end timestamps by calcu-
lating the minimum and maximize and provide these to the root rank.

111

APPENDIX C. MODULE DOCUMENTATION

uint64_t global_epoch_start;

MPI_Reduce (&epoch_start,
&global_epoch_start,
1, OTF2_MPI_UINT64_T,
0, MPI_COMM_WORLD) ;

uint64_t global_epoch_end;
MPI_Reduce (&epoch_end,
&global_epoch_end,
1, OTF2_MPI_UINT64_T,
0, MPI_COMM_WORLD) ;

MPI_MIN,

MPI_MAX,

Only the root rank will write the global definitions, thus only he requests an writer

object from the archive.

if |
{

0 == rank)

OTF2_GlobalDefWriter* global_def_writer =

OTF2_Archive_GetGlobalDefWriter (archive

)i

We need to define the clock used for this trace and the overall timestamp range.

OTF2_GlobalDefWriter WriteClockProperties(global_def_writer,

h_start + 1);

1000000000,
global_epoch_start,
global_epoch_end - global_epoc

Now we can start writing the referenced definitions, starting with the strings.

OTF2_GlobalDefWriter_WriteString(
OTF2_GlobalDefWriter_WriteString(

OTF2_GlobalDefWriter_WriteString(
OTF2_GlobalDefWriter_WriteString(

OTF2_GlobalDefWriter_WriteString(
OTF2_GlobalDefWriter_ WriteString(
OTF2_GlobalDefWriter WriteString(
OTF2_GlobalDefWriter_WriteString(
OTF2_GlobalDefWriter WriteString(

global_def_writer, 0, "");
global_def_writer, 1, "Master Thread")
global_def_writer, 2, "MPI_Barrier");

global_def_writer, 3, "PMPI_Barrier");

global_def_writer, 4, "barrier");
global_def_writer, 5, "MyHost");
global_def_writer, 6, "node");
global_def_writer, 7, "MPI");

8

global_def_writer, "MPI_COMM_WORLD"

~

Write definition for the code region which was just entered and left to the global

definition writer.

OTF2_GlobalDefWriter_WriteRegion (

global_def_writer,
0 /% id =/,

112

C.124 Usage in writing mode - MPI example

2 /+ region name =/,

3 /+ alternative name x/,
4 /% description =/,
OTF2_REGION_ROLE_BARRIER,
OTF2_PARADIGM MPI,
OTF2_REGION_FLAG_NONE,

7 /* source file x/,

0 /* begin lno x/,

0 /* end 1lno =/);

Write the system tree to the global definition writer.

OTF2_GlobalDefWriter_WriteSystemTreeNode (global_def_writer,
0 /+ id =/,
5 /% name x/,
6 /x class x/,

OTF2_UNDEFINED_SYSTEM TREE_NODE /«+ parent x/);

For each rank we define a new loation group and one location. We provide also a
unique string for each location group.

for (int r = 0; r < size; r++)
{
char process_name[32];
sprintf (process_name, "MPI Rank %d", r);
OTF2_GlobalDefWriter WriteString(global_def_writer,
9 + r,
process_name) ;

OTF2_GlobalDefWriter_ WriteLocationGroup(global_def_writer,
r /+ id */,
9 + r /x name %/,

OTF2_LOCATION_GROUP_TYPE_PROCESS,
0 /% system tree */);

OTF2_GlobalDefWriter_WriteLocation(global_def_writer,
r /= id =/,
1 /x name */,
OTF2_LOCATION_TYPE_CPU_THREAD,
4 /% # events */,
r /+ location group */);

The last step is to define the MPI communicator. This is a three-step process. First
we define that this trace actually recorded in the MPI paradigm and enumerate all
locations which participate in this paradigm. As we used the MPI ranks directly as
the location id, the array with the locations is the identity.

113

APPENDIX C. MODULE DOCUMENTATION

uint64_t comm_locations[size];

for (int r = 0; r < size; r++)

{

comm_locations[r] = r;

}

OTF2_GlobalDefWriter WriteGroup(global_def_writer,
0 /+ id =/,
7 /* name %/,
OTF2_GROUP_TYPE_COMM_LOCATIONS,
OTF2_PARADIGM_MPI,
OTF2_GROUP_FLAG_NONE,
size,
comm_locations);

Now we can define sub-groups of the previously defined list of communication.
locations. For MPI_COMM_WORLD this is the whole group here. Note the these
sub-groups are created by using indices into the list of communication locations,
and not by enumrateing location ids again. But in this example the sub-group is
the identity again.

OTF2_GlobalDefWriter_WriteGroup(global_def_writer,
1 /+ id =*/,
0 /% name x/,
OTF2_GROUP_TYPE_COMM_GROUP,
OTF2_PARADIGM_MPI,
OTF2_GROUP_FLAG_NONE,
size,
comm_locations);

Finally we can write the definition of the MPT__COMM_WORLD communcator. This
finalizes the writing of the global definitions and we can also close the writer object.

OTF2_GlobalDefWriter_WriteComm(global_def_writer,
0 /* 1id =«/,
8 /% name x/,
1 /x group */,
OTF2_UNDEFINED_COMM /* parent =/

OTF2_Archive_CloseGlobalDefWriter (archive,
global_def_writer);

All the other ranks wait inside this barrier so that root can write the global defini-
tions.

MPI_Barrier (MPI_COMM_WORLD) ;

At the end, close the archive, finalize the MPI envirionment, and exit.

114

C.125 Usage in reading mode - a simple example

OTF2_Archive_Close(archive);
MPI_Finalize();

return EXIT_SUCCESS;

To compile your program use a command like the following. Note that we need to
activate the C99 standard explicitly for GCC.

mpicc —-std=c99 ‘otf2-config —--cflags‘' \
-c otf2_mpi_writer_example.c \
-0 otf2_mpi_writer_example.o

Now you can link your program with:

mpicc otf2_mpi_writer_example.o \
‘otf2-config —--1dflags‘' \
‘otf2-config —--libs' \
-0 otf2_mpi_writer_example

C.125 Usage in reading mode - a simple example

This is a short example of how to use the OTF2 reading interface. It shows how
to define and register callbacks and how to use the reader interface to read all
events of a given OTF2 archive. This example is available as source code in the file
otf2_reader_example.c.

First include the OTF2 header.

#include <otf2/otf2.h>

For this example some additional include statements are necessary.

#include <stdlib.h>
#include <stdio.h>
#include <inttypes.h>

Define an event callback for entering and leaving a region.

static OTF2_CallbackCode

Enter_print (OTF2_LocationRef location,
OTF2_TimeStamp time,
voidx* userData,

115

APPENDIX C. MODULE DOCUMENTATION

OTF2_AttributelList* attributes,
OTF2_RegionRef region)

printf("Entering region %u at location %" PRIu64 " at time %" PRIu64 ".\n",
region, location, time);

return OTF2_CALLBACK_SUCCESS;

static OTF2_CallbackCode

Leave_print (OTF2_LocationRef location,
OTF2_TimeStamp time,
void=* userData,
OTF2_AttributelList* attributes,
OTF2_RegionRef region)
{
printf("Leaving region %u at location %" PRIu64 " at time %" PRIu64 ".\n",

region, location, time);

return OTF2_CALLBACK_SUCCESS;

The global definition file provides all location IDs that are included in the OTF2
trace archive. When reading the global defintions these location IDs must be col-
lected and stored by the user. Probably, the easiest way to do that is to use a C++
container.

struct vector

{
size_t capacity;
size_t size;
uint64_t members|[];

}i

static OTF2_CallbackCode

GlobDefLocation_Register (voidx userData,
OTF2_LocationRef location,
OTF2_StringRef name,
OTF2_LocationType locationType,
uinte64d_t numberOfEvents,

OTF2_LocationGroupRef locationGroup)
struct vectorx locations = userData;
if (locations->size == locations->capacity)
{
return OTF2_CALLBACK_INTERRUPT;

locations—->members|[locations—->size++] = location;

return OTF2_CALLBACK_SUCCESS;

116

C.125 Usage in reading mode - a simple example

Now everything is prepared to begin with the main program.

int
main(int argc,
charxx argv)

Create a new reader handle. The path to the OTF2 anchor file must be provided as
argument.

OTF2_Reader* reader = OTF2_Reader_Open("ArchivePath/ArchiveName.otf2");

We will operate in an serial context.

OTF2_Reader_SetSerialCollectiveCallbacks(reader);

OTF2 provides an API to query the number of locations prior reading the global
definitions. We use this to pre-allocate the storage for all locations.

uint64_t number_of_locations;
OTF2_Reader_GetNumberOfLocations (reader,

&number_of_locations);
struct vector* locations = malloc(sizeof(xlocations)

+ number_of_ locations

* sizeof (xlocations—->members));
locations—->capacity = number_of_locations;
locations—->size = 0;

Get the global definition reader from the reader handle.

OTF2_GlobalDefReaderx global_def_ reader = OTF2_Reader_GetGlobalDefReader (rea
der);

Register the above defined global definition callbacks. All other definition call-
backs will be deactivated. And instruct the reader to pass the locations object to
each call of the callbacks.

OTF2_GlobalDefReaderCallbacks* global_def_callbacks =
OTF2_GlobalDefReaderCallbacks_New () ;
OTF2_GlobalDefReaderCallbacks_SetLocationCallback(global_def_callbacks,
&GlobDeflocation_Register
)
OTF2_Reader_RegisterGlobalDefCallbacks (reader,
global_def_reader,

117

APPENDIX C. MODULE DOCUMENTATION

global_def_callbacks,
locations);
OTF2_GlobalDefReaderCallbacks_Delete(global_def_callbacks);

Read all global definitions. Everytime a location definition is read, the previosly
registered callback is triggered. In definitions_read the number of read
definitions is returned.

uinto64_t definitions_read = 0;

OTF2_Reader_ReadAllGlobalDefinitions (reader,
global_def_reader,
&definitions_read);

After reading all global definitions all location IDs are stored in the vector Locations.
After that, the locations that are suppossed to be read are selected. In this example
all.

for (size_t i1 = 0; i < locations->size; i++)
{

OTF2_Reader_SelectLocation(reader, locations->members|[1]);

When the locations are selected the according event and definition files can be
opened. Note that the local definition files are optional, thus we need to remember
the success of this call.

bool successful_open_def files =
OTF2_Reader_OpenDefFiles(reader) == OTF2_SUCCESS;
OTF2_Reader_OpenEvtFiles (reader);

When the files are opened the event and defintion reader handle can be requested.
In this example for all. To apply mapping tables stored in the local definitions, the
local defintions must be read. Though the existence of these files are optional. The
call to OTF2_Reader_GetEvtReader is mandatory, but the result is unused.

for (size_t i = 0; i < locations->size; i++)
{
if (successful_open_def_files)
{
OTF2_DefReaderx def_ reader =
OTF2_Reader_GetDefReader (reader, locations->members|[i
if (def_reader)
{
uint64_t def_reads = 0;
OTF2_Reader_ReadAllLocalDefinitions (reader,
def_reader,
&def_reads);
OTF2_Reader_CloseDefReader (reader, def_reader);

118

C.125 Usage in reading mode - a simple example

}
OTF2_EvtReaderx evt_reader =
OTF2_Reader_GetEvtReader (reader, locations->members|[i]);

The definition files can now be closed, if it was successfully opened in the first
place.

if (successful_open_def_files)

{
OTF2_Reader_CloseDefFiles (reader);

Open a new global event reader. This global reader automatically contains all
previously opened local event readers.

OTF2_GlobalEvtReader* global_evt_reader = OTF2_Reader_GetGlobalEvtReader (rea
der);

Register the above defined global event callbacks. All other global event callbacks
will be deactivated.

OTF2_GlobalEvtReaderCallbacksx event_callbacks =
OTF2_GlobalEvtReaderCallbacks_New () ;
OTF2_GlobalEvtReaderCallbacks_SetEnterCallback (event_callbacks,
&Enter_print);
OTF2_GlobalEvtReaderCallbacks_SetLeaveCallback (event_callbacks,
&Leave_print);
OTF2_Reader_RegisterGlobalEvtCallbacks (reader,
global_evt_reader,
event_callbacks,
NULL) ;
OTF2_GlobalEvtReaderCallbacks_Delete(event_callbacks);

Read all events in the OTF2 archive. The events are automatically ordered by
the time they occured in the trace. Everytime an enter or leave event is read, the
previously registered callbacks are triggered. In events_read the number of
read events is returned.

uint64_t events_read = 0;

OTF2_Reader_ReadAllGlobalEvents (reader,
global_evt_reader,
S&events_read);

The global event reader can now be closed and the event files too.

119

APPENDIX C. MODULE DOCUMENTATION

OTF2_Reader_CloseGlobalEvtReader (reader, global_evt_reader);
OTF2_Reader_CloseEvtFiles(reader);

At the end, close the reader and exit. All opened event and definition readers are
closed automatically.

OTF2_Reader_Close(reader);
free(locations);

return EXIT_SUCCESS;

To compile your program use a command like the following. Note that we need to
activate the C99 standard explicitly for GCC.

gcc —-std=c99 ‘otf2-config --cflags' \
-c otf2_reader_example.c \
-0 otf2_reader_example.o

Now you can link your program with:

gcc otf2_reader_example.o \
‘otf2-config —--1ldflags® \
‘otf2-config —--libs' \
-0 otf2_reader_example

120

Appendix D

Data Structure Documentation

D.1 OTF2_AttributeValue Union Reference

Value container for an attributes.

#include <otf2/0OTF2_Attributelist.h>

Data Fields

e OTF2_AttributeRef attributeRef

References a Attribute definition and will be mapped to the global definition if a
mapping table of type OTF2_MAPPING_ATTRIBUTE is available.

e OTF2_CommRef commRef

References a Comm definition and will be mapped to the global definition if a
mapping table of type OTF2_MAPPING_COMM is available.

¢ float float32

Arbitrary value of type float.
* double float64

Arbitrary value of type double.
* OTF2_GroupRef groupRef

References a Group definition and will be mapped to the global definition if a
mapping table of type OTF2_MAPPING_GROUP is available.

e intl6_tintl6
Arbitrary value of type int16_t.
e int32_tint32

Arbitrary value of type int32_t.
e int64_t int64

Arbitrary value of type int64_t.

APPENDIX D. DATA STRUCTURE DOCUMENTATION

D.1.1

int8_t int8
Arbitrary value of type int8_t.
OTF2_LocationRef locationRef

References a Location definition and will be mapped to the global definition if a
mapping table of type OTF2_MAPPING_LOCATION is available.

OTF2_MetricRef metricRef

References a MetricClass, or a MetricInstance definition and will be mapped to
the global definition if a mapping table of type OTF2_MAPPING_METRIC is
available.

OTF2_ParameterRef parameterRef

References a Parameter definition and will be mapped to the global definition if
a mapping table of type OTF2_MAPPING_PARAMETER is available.

OTF2_RegionRef regionRef

References a Region definition and will be mapped to the global definition if a
mapping table of type OTF2_MAPPING_REGION is available.

OTF2_RmaWinRef rmaWinRef

References a RmaWin definition and will be mapped to the global definition if a
mapping table of type OTF2_MAPPING_RMA_WIN is available.

OTF2_StringRef stringRef

References a String definition and will be mapped to the global definition if a
mapping table of type OTF2_MAPPING_STRING is available.

uint16_t uint16

Arbitrary value of type uint16_t.
uint32_t uint32

Arbitrary value of type uint32_t.
uint64_t uint64

Arbitrary value of type uint64_t.
uint8_t uint8

Arbitrary value of type uint8_t.

Detailed Description

Value container for an attributes.

For definition references (OTF2_MappingType) use the same data type as the defi-
nition.

The documentation for this union was generated from the following file:

e otf2/OTF2_AttributeList.h

122

D.2 OTF2_CollectiveCallbacks Struct Reference

D.2 OTF2_CollectiveCallbacks Struct Reference

Struct which holds all collective callbacks.

#include <otf2/0TF2_Callbacks.h>

D.2.1 Detailed Description

Struct which holds all collective callbacks.

Since

Version 1.3

The documentation for this struct was generated from the following file:

¢ otf2/OTF2_Callbacks.h

D.3 OTF2_CollectiveContext Struct Reference

Collective context which wraps an MPI communicator.
#include <otf2/0TF2_MPI Collectives.h>
D.3.1 Detailed Description

Collective context which wraps an MPI communicator.

User provided type for collective groups.

Since

Version 1.3

The documentation for this struct was generated from the following file:

e otf2/OTF2_MPI_Collectives.h

D.4 OTF2_FlushCallbacks Struct Reference

Structure holding the flush callbacks.
#include <otf2/0TF2_Callbacks.h>

123

APPENDIX D. DATA STRUCTURE DOCUMENTATION

Data Fields

* OTF2_PostFlushCallback otf2_post_flush

Callback which is called after a flush.
* OTF2_PreFlushCallback otf2_pre_flush
Callback which is called prior a flush.

D.4.1 Detailed Description

Structure holding the flush callbacks.
To be used in a call to OTF2_Archive_SetFlushCallbacks.
otf2_post_flush callback may be NULL to suppress writing a BufferFlush record.

The documentation for this struct was generated from the following file:

¢ otf2/OTF2_Callbacks.h

D.5 OTF2 MemoryCallbacks Struct Reference

Structure holding the memory callbacks.

#include <otf2/0TF2_Callbacks.h>

Data Fields

* OTF2_MemoryAllocate otf2_allocate

Callback which is called to allocate a new chunk.
¢ OTF2_MemoryFreeAll otf2_free_all

Callback which is called to release all previous allocated chunks.

D.5.1 Detailed Description

Structure holding the memory callbacks.
To be used in a call to OTF2_Archive_SetMemoryCallbacks.

The documentation for this struct was generated from the following file:

¢ otf2/OTF2_Callbacks.h

124

D.6 OTF2_MetricValue Union Reference

D.6 OTF2_MetricValue Union Reference

Metric value.
#include <otf2/0OTF2_Events.h>
D.6.1 Detailed Description

Metric value.

Wrapper for enum OTF2_MetricValue_union.

The documentation for this union was generated from the following file:

e otf2/OTF2_Events.h

D.7 OTF2_MPI _UserData Struct Reference

User data structure, which will be used by the MPI collectives.

#include <otf2/0TF2_MPI Collectives.h>

D.7.1 Detailed Description

User data structure, which will be used by the MPI collectives.

The documentation for this struct was generated from the following file:

e otf2/OTF2_MPI_Collectives.h

125

APPENDIX D. DATA STRUCTURE DOCUMENTATION

126

Appendix E

File Documentation

E.1 otf2/OTF2_ErrorCodes.h File Reference

Error codes and error handling.
#include <errno.h>
#include <stdint.h>

#include <stdarg.h>

Typedefs

* typedef OTF2_ErrorCode(x OTF2_ErrorCallback)(void xuserData, const
char xfile, uint64_t line, const char xfunction, OTF2_ErrorCode errorCode,
const char *msgFormatString, va_list va)

Enumerations

e enum OTF2_ErrorCode {
OTF2_DEPRECATED = -3,
OTF2_ABORT = -2,
OTF2_WARNING = -1,
OTF2_SUCCESS =0,
OTF2_ERROR_INVALID =1,
OTF2_ERROR_E2BIG,
OTF2_ERROR_EACCES,
OTF2_ERROR_EADDRNOTAVAIL,

APPENDIX E. FILE DOCUMENTATION

OTF2_ERROR_EAFNOSUPPORT,
OTF2_ERROR_EAGAIN,
OTF2_ERROR_EALREADY,
OTF2_ERROR_EBADF,
OTF2_ERROR_EBADMSG,
OTF2_ERROR_EBUSY,
OTF2_ERROR_ECANCELED,
OTF2_ERROR_ECHILD,
OTF2_ERROR_ECONNREFUSED,
OTF2_ERROR_ECONNRESET,
OTF2_ERROR_EDEADLK,
OTF2_ERROR_EDESTADDRREQ,
OTF2_ERROR_EDOM,
OTF2_ERROR_EDQUOT,
OTF2_ERROR_EEXIST,
OTF2_ERROR_EFAULT,
OTF2_ERROR_EFBIG,
OTF2_ERROR_EINPROGRESS,
OTF2_ERROR_EINTR,
OTF2_ERROR_EINVAL,
OTF2_ERROR_EIO,
OTF2_ERROR_EISCONN,
OTF2_ERROR_EISDIR,
OTF2_ERROR_ELOOP,
OTF2_ERROR_EMFILE,
OTF2_ERROR_EMLINK,
OTF2_ERROR_EMSGSIZE,
OTF2_ERROR_EMULTIHOP,
OTF2_ERROR_ENAMETOOLONG,
OTF2_ERROR_ENETDOWN,
OTF2_ERROR_ENETRESET,
OTF2_ERROR_ENETUNREACH,
OTF2_ERROR_ENFILE,

128

E.1 otf2/OTF2_ErrorCodes.h File Reference

OTF2_ERROR_ENOBUFS,
OTF2_ERROR_ENODATA,
OTF2_ERROR_ENODEYV,
OTF2_ERROR_ENOENT,
OTF2_ERROR_ENOEXEC,
OTF2_ERROR_ENOLCK,
OTF2_ERROR_ENOLINK,
OTF2_ERROR_ENOMEM,
OTF2_ERROR_ENOMSG,
OTF2_ERROR_ENOPROTOOPT,
OTF2_ERROR_ENOSPC,
OTF2_ERROR_ENOSR,
OTF2_ERROR_ENOSTR,
OTF2_ERROR_ENOSYS,
OTF2_ERROR_ENOTCONN,
OTF2_ERROR_ENOTDIR,
OTF2_ERROR_ENOTEMPTY,
OTF2_ERROR_ENOTSOCK,
OTF2_ERROR_ENOTSUP,
OTF2_ERROR_ENOTTY,
OTF2_ERROR_ENXIO,
OTF2_ERROR_EOPNOTSUPP,
OTF2_ERROR_EOVERFLOW,
OTF2_ERROR_EPERM,
OTF2_ERROR_EPIPE,
OTF2_ERROR_EPROTO,
OTF2_ERROR_EPROTONOSUPPORT,
OTF2_ERROR_EPROTOTYPE,
OTF2_ERROR_ERANGE,
OTF2_ERROR_EROFS,
OTF2_ERROR_ESPIPE,
OTF2_ERROR_ESRCH,
OTF2_ERROR_ESTALE,

129

APPENDIX E. FILE DOCUMENTATION

OTF2_ERROR_ETIME,
OTF2_ERROR_ETIMEDOUT,
OTF2_ERROR_ETXTBSY,
OTF2_ERROR_EWOULDBLOCK,
OTF2_ERROR_EXDEV,
OTF2_ERROR_END_OF_FUNCTION,
OTF2_ERROR_INVALID_CALL,
OTF2_ERROR_INVALID_ARGUMENT,
OTF2_ERROR_INVALID_RECORD,
OTF2_ERROR_INVALID_DATA,
OTF2_ERROR_INVALID_SIZE_GIVEN,
OTF2_ERROR_UNKNOWN_TYPE,
OTF2_ERROR_INTEGRITY_FAULT,
OTF2_ERROR_MEM_FAULT,
OTF2_ERROR_MEM_ALLOC_FAILED,
OTF2_ERROR_PROCESSED_WITH_FAULTS,
OTF2_ERROR_INDEX_OUT_OF_BOUNDS,
OTF2_ERROR_INVALID_LINENO,
OTF2_ERROR_END_OF_BUFFER,
OTF2_ERROR_FILE_INTERACTION,
OTF2_ERROR_FILE_CAN_NOT_OPEN,
OTF2_ERROR_INTERRUPTED_BY_CALLBACK,
OTF2_ERROR_PROPERTY_NAME_INVALID,
OTF2_ERROR_PROPERTY_EXISTS,
OTF2_ERROR_PROPERTY_NOT_FOUND,
OTF2_ERROR_PROPERTY_VALUE_INVALID,
OTF2_ERROR_FILE_COMPRESSION_NOT_SUPPORTED,
OTF2_ERROR_DUPLICATE_MAPPING_TABLE,
OTF2_ERROR_INVALID_FILE _MODE_TRANSITION,
OTF2_ERROR_COLLECTIVE_CALLBACK,
OTF2_ERROR_FILE_SUBSTRATE_NOT_SUPPORTED }

130

E.1 otf2/OTF2_ErrorCodes.h File Reference

Functions

* const char x* OTF2_Error_GetDescription (OTF2_ErrorCode errorCode)
e const char x OTF2_Error_GetName (OTF2_ErrorCode errorCode)

* OTF2_ErrorCallback OTF2_Error_RegisterCallback (OTF2_ErrorCallback
errorCallbacklIn, void xuserData)

E.1.1 Detailed Description

Error codes and error handling.

E.1.2 Typedef Documentation
E.1.2.1 typedef OTF2_ErrorCode(x OTF2_ErrorCallback)(void «userData, const
char «file, uint64_t line, const char xfunction, OTF2_ErrorCode errorCode,

const char xmsgFormatString, va_list va)

Signature of error handler callback functions. The error handler can be set with
OTF2_Error_RegisterCallback.

Parameters

userData | : Data passed to this function as given by the registry call.

file | : Name of the source-code file where the error appeared

line | : Line number in the source-code where the error appeared

function | : Name of the function where the error appeared

errorCode | : Error Code

msgFormat- | : Format string like it is used at the printf family.
String

va | : Variable argument list

Returns

Should return the errorCode

E.1.3 Enumeration Type Documentation
E.1.3.1 enum OTF2_ErrorCode

This is the list of error codes for OTF2.
Enumerator:

OTF2_DEPRECATED Special marker for error messages which indicates

131

APPENDIX E. FILE DOCUMENTATION

an deprecation.
OTF2_ABORT Special marker when the application will be aborted.

OTF2_WARNING Special marker for error messages which are only warn-
ings.

OTF2_SUCCESS Operation successful

OTF2_ERROR_INVALID Invalid error code
Should only be used internally and not as an actual error code.

OTF2_ERROR_E2BIG The list of arguments is to long
OTF2_ERROR_EACCES Not enough rights

OTF2_ERROR _EADDRNOTAVAIL Address is not available
OTF2_ERROR_EAFNOSUPPORT Address family is not supported
OTF2_ERROR_EAGAIN Resource temporaly not available
OTF2_ERROR_EALREADY Connection is already processed
OTF2_ERROR_EBADF Invalid file pointer
OTF2_ERROR_EBADMSG Invalid message
OTF2_ERROR_EBUSY Resource or device is busy
OTF2_ERROR_ECANCELED Operation was aborted
OTF2_ERROR_ECHILD No child process available

OTF2 ERROR ECONNREFUSED Connection was refused
OTF2 ERROR ECONNRESET Connection was reset

OTF2 ERROR EDEADLK Resolved deadlock
OTF2_ERROR_EDESTADDRRE(Q Destination address was expected
OTF2_ERROR_EDOM Domain error
OTF2_ERROR_EDQUOT Reserved
OTF2_ERROR_EEXIST File does already exist
OTF2_ERROR_EFAULT Invalid Address
OTF2_ERROR_EFBIG Fileis to big
OTF2_ERROR_EINPROGRESS Operation is work in progress
OTF2_ERROR_EINTR Interuption of an operating system call
OTF2_ERROR_EINVAL Invalid argument

OTF2 _ERROR _EIO Generic I/O error
OTF2_ERROR_EISCONN Socket is already connected
OTF2_ERROR_EISDIR Target is a directory
OTF2_ERROR_ELOOP To many layers of symbolic links
OTF2_ERROR_EMFILE To many opened files

132

E.1 otf2/OTF2_ErrorCodes.h File Reference

OTF2_ERROR_EMLINK To many links
OTF2_ERROR_EMSGSIZE Message buffer is to small
OTF2_ERROR_EMULTIHOP Reserved
OTF2_ERROR_ENAMETOOLONG Filename is to long

OTF2 ERROR ENETDOWN Network is down
OTF2_ERROR_ENETRESET Connection was reset from the network
OTF2 _ERROR _ENETUNREACH Network is not reachable
OTF2_ERROR_ENFILE To much opened files
OTF2_ERROR_ENOBUFS No buffer space available
OTF2_ERROR_ENODATA No more data left in the queue
OTF2_ERROR_ENODEYV This device does not support this function
OTF2_ERROR_ENOENT File or Directory does not exist
OTF2_ERROR_ENOEXEC Cannot execute binary
OTF2_ERROR_ENOLCK Locking failed
OTF2_ERROR_ENOLINK Reserved

OTF2_ERROR_ENOMEM Not enough main memory available
OTF2_ERROR_ENOMSG Message has not the expected type
OTF2_ERROR_ENOPROTOOPT This protocol is not available
OTF2_ERROR_ENOSPC No space left on device
OTF2_ERROR_ENOSR No stream available

OTF2 ERROR ENOSTR This is not a stream
OTF2_ERROR_ENOSYS Requested function is not implemented
OTF2_ERROR _ENOTCONN Socket is not connected
OTF2_ERROR_ENOTDIR This is not an directory
OTF2_ERROR_ENOTEMPTY This directory is not empty
OTF2_ERROR_ENOTSOCK No socket
OTF2_ERROR_ENOTSUP This operation is not supported
OTF2_ERROR_ENOTTY This IOCTL is not supported by the device
OTF2_ERROR_ENXIO Deyvice is not yet configured
OTF2_ERROR_EOPNOTSUPP Operation is not supported by this socket
OTF2_ERROR_EOVERFLOW Value is to long for the datatype
OTF2_ERROR_EPERM Operation is not permitted
OTF2_ERROR_EPIPE Broken pipe

OTF2_ERROR_EPROTO Protocoll error

133

APPENDIX E. FILE DOCUMENTATION

OTF2_ERROR_EPROTONOSUPPORT Protocoll is not supported

OTF2_ERROR_EPROTOTYPE Wrong protocoll type for this socket

OTF2_ERROR_ERANGE Value is out of range

OTF2_ERROR_EROFS Filesystem is read only

OTF2_ERROR_ESPIPE This seek is not allowed

OTF2_ERROR_ESRCH No matching process found

OTF2 ERROR ESTALE Reserved

OTF2 ERROR _ETIME Timout in file stream or IOCTL

OTF2 ERROR _ETIMEDOUT Connection timed out

OTF2_ERROR_ETXTBSY File couldn’t be executed while it is opened

OTF2_ERROR_EWOULDBLOCK Operation would be blocking

OTF2 ERROR _EXDEYV Invalid link between devices

OTF2 ERROR END OF FUNCTION Unintentional reached end of func-
tion

OTF2_ERROR_INVALID_CALL Function call not allowed in current state

OTF2_ERROR_INVALID_ARGUMENT Parameter value out of range
OTF2_ERROR _INVALID RECORD Invalid definition or event record
OTF2_ERROR_INVALID DATA Invalid or inconsistent record data
OTF2_ERROR_INVALID_SIZE _GIVEN The given size cannot be used
OTF2_ERROR_UNKNOWN_TYPE The given type is not known
OTF2_ERROR_INTEGRITY_FAULT The structural integrity is not given

OTF2_ERROR_MEM_FAULT This could not be done with the given mem-
ory

OTF2_ERROR_MEM_ALLOC_FAILED Memory allocation failed

OTF2_ERROR_PROCESSED_WITH_FAULTS An error appeared when
data was processed

OTF2_ERROR_INDEX_OUT_OF_BOUNDS Index out of bounds
OTF2_ERROR_INVALID_LINENO Invalid source code line number
OTF2_ERROR_END_OF_BUFFER End of buffer/file reached
OTF2_ERROR_FILE INTERACTION Invalid file operation
OTF2_ERROR_FILE CAN_NOT_OPEN Unable to open file

OTF2_ERROR_INTERRUPTED_BY_CALLBACK Record reading inter-
rupted by reader callback

OTF2_ERROR_PROPERTY_NAME_INVALID Property name does not con-
form to the naming scheme

134

E.1 otf2/OTF2_ErrorCodes.h File Reference

OTF2_ERROR_PROPERTY_EXISTS Property already exists

OTF2_ERROR_PROPERTY_NOT_FOUND Property not found found in
this archive

OTF2_ERROR_PROPERTY VALUE_INVALID Property value does not
have the expected value

OTF2_ERROR_FILE COMPRESSION_NOT_SUPPORTED Missing li-
brary support for requested compression mode

OTF2_ERROR_DUPLICATE_MAPPING_TABLE Multiple definitions for
the same mapping type

OTF2_ERROR_INVALID_FILE MODE_TRANSITION File mode tran-
sition not permitted

OTF2_ERROR_COLLECTIVE_CALLBACK Collective callback failed

OTF2_ERROR_FILE SUBSTRATE_NOT_SUPPORTED Missing library
support for requested file substrate

E.1.4 Function Documentation
E.1.4.1 const charx OTF2_Error_GetDescription (OTF2_ErrorCode errorCode)

Returns the description of an error code.

Parameters

errorCode ‘ : Error Code

Returns

Returns the description of a known error code.

E.1.4.2 const charx OTF2_Error_GetName (OTF2_ErrorCode errorCode)
Returns the name of an error code.

Parameters

errorCode ‘ : Error Code

Returns

Returns the name of a known error code, and "INVALID_ERROR" for invalid
or unknown error IDs.

135

APPENDIX E. FILE DOCUMENTATION

E.1.43 OTF2_ErrorCallback OTF2_Error_RegisterCallback (
OTF2_ErrorCallback errorCallbackin, void * userData)

Register a programmers callback function for error handling.

Parameters
errorCall- | : Fucntion will be called instead of printing a default message to stan-
backln | dard error.
‘ userData | : Data pointer passed to the callback.
Returns
Function pointer to the former error handling function.

E.2 otf2/otf2.h File Reference

Main include

#include

file for applications using OTF2.
<otf2/0TF2_Reader.h>

E.2.1 Detailed Description

Main include

file for applications using OTF2.

E.3 0otf2/OTF2_Archive.h File Reference

Writing interface for OTF2 archives.

#include
#include
#include
#include
#include
#include
#include
#include
#include

#include

<stdint.h>
<otf2/0TF2_ErrorCodes.h>
<otf2/0TF2_Callbacks.h>
<otf2/0TF2_DefWriter.h>
<otf2/0TF2_DefReader.h>
<otf2/0TF2_EvtWriter.h>
<otf2/0TF2_EvtReader.h>
<otf2/0OTF2_SnapWriter.h>
<otf2/0TF2_SnapReader.h>
<otf2/0TF2_GlobalbDefWriter.h>

136

E.3 otf2/OTF2_Archive.h File Reference

#include
#include
#include
#include
#include

#include

Defines

<otf2/0TF2_GlobalDefReader.h>
<otf2/0TF2_GlobalEvtReader.h>
<otf2/0TF2_GlobalSnapReader.h>
<otf2/0TF2_Thumbnail.h>
<otf2/0TF2_MarkerWriter.h>
<otf2/0TF2_MarkerReader.h>

* #define OTF2_CHUNK_SIZE_DEFINITIONS_DEFAULT (4 % 1024 x 1024

)

Default size for OTF2’s internal event chunk memory handling.
 #define OTF2_CHUNK_SIZE_EVENTS_DEFAULT (1024 % 1024)

Default size for OTF2’s internal event chunk memory handling.

Typedefs

¢ typedef struct OTF2_Archive_struct OTF2_Archive
Keeps all meta-data for an OTF?2 archive.

Functions

e OTF2_ErrorCode OTF2_Archive_Close (OTF2_Archive xarchive)

Close an opened archive.

e OTF2_ErrorCode OTF2_Archive_CloseDefFiles (OTF2_Archive *archive)

Closes the local definitions file container.
¢ OTF2_ErrorCode OTF2_Archive_CloseDefReader (OTF2_Archive *archive,
OTF2_DefReader *xreader)

Close an opened local definition reader.
e OTF2_ErrorCode OTF2_Archive_CloseDefWriter (OTF2_Archive *xarchive,
OTF2_DefWriter xwriter)

Close an opened local definition writer.

e OTF2_ErrorCode OTF2_Archive_CloseEvtFiles (OTF2_Archive *archive)

Closes the events file container.
¢ OTF2_ErrorCode OTF2_Archive_CloseEvtReader (OTF2_Archive xarchive,
OTF2_EvtReader *reader)

137

APPENDIX E. FILE DOCUMENTATION

Close an opened local event reader:

OTF2_ErrorCode OTF2_Archive_CloseEvtWriter (OTF2_Archive *archive,
OTF2_EvtWriter xwriter)

Close an opened local event writer.
OTF2_ErrorCode OTF2_Archive_CloseGlobalDefReader (OTF2_Archive xarchive,
OTF2_GlobalDefReader *globalDefReader)

Closes the global definition reader.
OTF2_ErrorCode OTF2_Archive_CloseGlobalDefWriter (OTF2_Archive *archive,
OTF2_GlobalDefWriter xwriter)

Close an opened global definition writer.

OTF2_ErrorCode OTF2_Archive_CloseGlobalEvtReader (OTF2_Archive xarchive,
OTF2_GlobalEvtReader xglobalEvtReader)

Closes the global event reader.
OTF2_ErrorCode OTF2_Archive_CloseGlobalSnapReader (OTF2_Archive
xarchive, OTF2_GlobalSnapReader *globalSnapReader)

Close the opened global snapshot reader.
OTF2_ErrorCode OTF2_Archive_CloseMarkerReader (OTF2_Archive *archive,
OTF2_MarkerReader xmarkerReader)

Closes the marker reader.
OTF2_ErrorCode OTF2_Archive_CloseMarkerWriter (OTF2_Archive *xarchive,
OTF2_MarkerWriter xwriter)

Close an opened marker writer.

OTF2_ErrorCode OTF2_Archive_CloseSnapFiles (OTF2_Archive *archive)

Closes the snapshots file container.
OTF2_ErrorCode OTF2_Archive_CloseSnapReader (OTF2_Archive xarchive,
OTF2_SnapReader *reader)

Close an opened local snap reader.
OTF2_ErrorCode OTF2_Archive_CloseSnapWriter (OTF2_Archive xarchive,
OTF2_SnapWriter swriter)

Close an opened local snap writer.

OTF2_ErrorCode OTF2_Archive_CloseThumbReader (OTF2_Archive *xarchive,
OTF2_ThumbReader xreader)

Close an opened thumbnail reader:

OTF2_ErrorCode OTF2_Archive_GetChunkSize (OTF2_Archive *archive,
uint64_t xchunkSizeEvents, uint64_t xchunkSizeDefs)

Get the chunksize.
OTF2_ErrorCode OTF2_Archive_GetCompression (OTF2_Archive *archive,
OTF2_Compression xcompression)

Get compression mode (none or zIlib)

138

E.3 otf2/OTF2_Archive.h File Reference

¢ OTF2_ErrorCode OTF2_Archive_GetCreator (OTF2_Archive xarchive, char
xkcreator)

Get creator information.

e OTF2_DefReader x OTF2_Archive_GetDefReader (OTF2_Archive *xarchive,
OTF2_LocationRef location)

Get a local definition reader.

e OTF2_DefWriter * OTF2_Archive_GetDefWriter (OTF2_Archive *archive,
OTF2_LocationRef location)

Get a local definition writer.

* OTF2_ErrorCode OTF2_Archive_GetDescription (OTF2_Archive xarchive,
char sxdescription)

Get description.

¢ OTF2_EvtReader x OTF2_Archive_GetEvtReader (OTF2_Archive xarchive,
OTF2_LocationRef location)

Get a local event reader.

e OTF2_EvtWriter * OTF2_Archive_GetEvtWriter (OTF2_Archive *archive,
OTF2_LocationRef location)

Get a local event writer.

¢ OTF2_ErrorCode OTF2_Archive_GetFileSubstrate (OTF2_Archive *archive,
OTF2_FileSubstrate xsubstrate)

Get the file substrate (posix, sion, none)

¢ OTF2_GlobalDefReader * OTF2_Archive_GetGlobalDefReader (OTF2_Archive
xarchive)

Get a global definition reader.

¢ OTF2_GlobalDefWriter x* OTF2_Archive_GetGlobalDefWriter (OTF2_Archive
xarchive)

Get a global definition writer.

¢ OTF2_GlobalEvtReader * OTF2_Archive_GetGlobalEvtReader (OTF2_Archive
xarchive)

Get a global event reader.

* OTF2_GlobalSnapReader « OTF2_Archive_GetGlobalSnapReader (OTF2_-
Archive *archive)

Get a global snap reader.

e OTF2_ErrorCode OTF2_Archive_GetMachineName (OTF2_Archive *archive,
char *+*machineName)

Get machine name.

¢ OTF2_MarkerReader * OTF2_Archive_GetMarkerReader (OTF2_Archive
xarchive)

Get a marker reader.

139

APPENDIX E. FILE DOCUMENTATION

OTF2_MarkerWriter * OTF2_Archive_GetMarkerWriter (OTF2_Archive xarchive)

Get a marker writer.
OTF2_ErrorCode OTF2_Archive_GetNumberOfGlobalDefinitions (OTF2_-
Archive *archive, uint64_t xnumberOfDefinitions)

Get the number of global definitions.
OTF2_ErrorCode OTF2_Archive_GetNumberOfLocations (OTF2_Archive
xarchive, uint64_t xnumberOfLocations)

Get the number of locations.

OTF2_ErrorCode OTF2_Archive_GetNumberOfSnapshots (OTF2_Archive
xarchive, uint32_t xnumber)

Get the number of snapshots.

OTF2_ErrorCode OTF2_Archive_GetNumberOfThumbnails (OTF2_Archive
xarchive, uint32_t xnumber)

Get the number of thumbnails.
OTF2_ErrorCode OTF2_Archive_GetProperty (OTF2_Archive sarchive, const
char xname, char *xvalue)

Get the value of the named trace file property.
OTF2_ErrorCode OTF2_Archive_GetPropertyNames (OTF2_Archive xarchive,
uint32_t xnumberOfProperties, char *xxnames)

Get the names of all trace file properties.
OTF2_SnapReader * OTF2_Archive_GetSnapReader (OTF2_Archive xarchive,
OTF2_LocationRef location)

Get a local snap reader:
OTF2_SnapWriter * OTF2_Archive_GetSnapWriter (OTF2_Archive *archive,
OTF2_LocationRef location)

Get a local snap writer.

OTF2_ThumbReader * OTF2_Archive GetThumbReader (OTF2_Archive
xarchive, uint32_t number)

Get a thumb reader.
OTF2_ThumbWriter x OTF2_Archive_GetThumbWriter (OTF2_Archive *archive,

const char *xname, const char xdescription, OTF2_ThumbnailType type, uint32_-
t numberOfSamples, uint32_t numberOfMetrics, const uint64_t xrefsToDefs)

Get a thumb writer.
OTF2_ErrorCode OTF2_Archive_GetTraceld (OTF2_Archive xarchive, uint64_-
t *xid)

Get the identifier of the trace file.
OTF2_ErrorCode OTF2_Archive_GetVersion (OTF2_Archive xarchive, uint8_-
t *major, uint8_t xminor, uint8_t xbugfix)

140

E.3 otf2/OTF2_Archive.h File Reference

Get format version.

* OTF2_Archive * OTF2_Archive_Open (const char *archivePath, const char
xarchiveName, const OTF2_FileMode fileMode, const uint64_t chunkSizeEvents,
const uint64_t chunkSizeDefs, const OTF2_FileSubstrate fileSubstrate, const
OTF2_Compression compression)

Create a new archive.

* OTF2_ErrorCode OTF2_Archive_OpenDefFiles (OTF2_Archive xarchive)

Open the local definitions file container.

* OTF2_ErrorCode OTF2_Archive_OpenEvtFiles (OTF2_Archive xarchive)

Open the events file container.

* OTF2_ErrorCode OTF2_Archive_OpenSnapFiles (OTF2_Archive *archive)

Open the snapshots file container.

e OTF2_ErrorCode OTF2_Archive_SelectLocation (OTF2_Archive xarchive,
OTF2_LocationRef location)

Select a location to be read.

* OTF2_ErrorCode OTF2_Archive_SetBoolProperty (OTF2_Archive xarchive,
const char xname, bool value, bool overwrite)

Add or remove a boolean trace file property to this archive.

e OTF2_ErrorCode OTF2_Archive_SetCollectiveCallbacks (OTF2_Archive *archive,
const OTF2_CollectiveCallbacks *collectiveCallbacks, void *collectiveData,
OTF2_CollectiveContext *globalCommContext, OTF2_CollectiveContext xlocalCommContext)

Set the collective callbacks for the archive.

¢ OTF2_ErrorCode OTF2_Archive_SetCreator (OTF2_Archive *archive, const
char *creator)

Set creator.

* OTF2_ErrorCode OTF2_Archive_SetDescription (OTF2_Archive xarchive,
const char *description)

Set a description.
e OTF2_ErrorCode OTF2_Archive_SetFlushCallbacks (OTF2_Archive xarchive,
const OTF2_FlushCallbacks xflushCallbacks, void *flushData)
Set the flush callbacks for the archive.
e OTF2_ErrorCode OTF2_Archive_SetMachineName (OTF2_Archive *xarchive,
const char xmachineName)

Set machine name.

e OTF2_ErrorCode OTF2_Archive_SetMemoryCallbacks (OTF2_Archive *archive,
const OTF2_MemoryCallbacks *memoryCallbacks, void xmemoryData)

141

APPENDIX E. FILE DOCUMENTATION

Set the memory callbacks for the archive.

* OTF2_ErrorCode OTF2_Archive_SetNumberOfSnapshots (OTF2_Archive
xarchive, uint32_t number)

Set the number of snapshots.

¢ OTF2_ErrorCode OTF2_Archive_SetProperty (OTF2_Archive xarchive, const

char xname, const char *xvalue, bool overwrite)

Add or remove a trace file property to this archive.

e OTF2_ErrorCode OTF2_Archive_SetSerialCollectiveCallbacks (OTF2_Archive

xarchive)

Convenient function to set the collective callbacks to an serial implementation.

¢ OTF2_ErrorCode OTF2_Archive_SwitchFileMode (OTF2_Archive xarchive,
OTF2_FileMode newFileMode)

Switch file mode of the archive.
E.3.1 Detailed Description

Writing interface for OTF2 archives.

E.3.2 Define Documentation
E.3.2.1 #define OTF2_CHUNK_SIZE_DEFINITIONS_DEFAULT (4 *« 1024 « 1024)

Default size for OTF2’s internal event chunk memory handling.

If you are not sure which chunk size is the best to use, use this default value.

E.3.2.2 #define OTF2_CHUNK_SIZE_EVENTS_DEFAULT (1024 + 1024)

Default size for OTF2’s internal event chunk memory handling.

If you are not sure which chunk size is the best to use, use this default value.

E.3.3 Typedef Documentation
E.3.3.1 typedef struct OTF2_Archive_struct OTF2_Archive

Keeps all meta-data for an OTF2 archive.

An OTF2 archive handle keeps all runtime information about an OTF2 archive. It
is the central handle to get and set information about the archive and to request
event and definition writer handles.

142

E.3 otf2/OTF2_Archive.h File Reference

E.3.4 Function Documentation
E.3.41 OTF2_ErrorCode OTF2_Archive_Close (OTF2_Archive * archive)

Close an opened archive.

Closes an opened archive and releases the associated resources. Closes also all
opened writer and reader handles. Does nothing if NULL is passed.

Parameters

‘ archive ‘ Archive handle.

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.34.2 OTF2_ErrorCode OTF2_Archive_CloseDefFiles (OTF2_Archive * archive)

Closes the local definitions file container.

This function is an collective operation.

Parameters

archive ‘ Archive handle.

Since

Version 1.3

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.3.43 OTF2_ErrorCode OTF2_Archive_CloseDefReader (OTF2_Archive
archive, OTF2_DefReader * reader)

Close an opened local definition reader.

Parameters

‘ archive | Archive handle.
‘ reader | Reader handle to be closed.

143

APPENDIX E. FILE DOCUMENTATION

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.3.44 OTF2_ErrorCode OTF2_Archive_CloseDefWriter (OTF2_Archive = archive,
OTF2_DefWriter x* writer)

Close an opened local definition writer.

Parameters

' archive | Archive handle.
| writer Writer handle to be closed.

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.3.45 OTF2_ErrorCode OTF2_Archive_CloseEvtFiles (OTF2_Archive * archive)

Closes the events file container.

This function is an collective operation.

Parameters

‘ archive ‘ Archive handle.

Since

Version 1.3

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.3.46 OTF2_ErrorCode OTF2_Archive_CloseEvtReader (OTF2_Archive * archive,
OTF2_EvtReader * reader)

Close an opened local event reader.

Parameters

archive | Archive handle.

P2y a 7a¥
7¢O CT T 1IXCaCr rantairC—to

h
154

o
P
Q@

144

E.3 otf2/OTF2_Archive.h File Reference

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.3.47 OTF2_ErrorCode OTF2_Archive_CloseEvtWriter (OTF2_Archive * archive,
OTF2_EvtWriter * writer)

Close an opened local event writer.

Parameters

' archive | Archive handle.

| writer Writer handle to be closed.

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.3.48 OTF2_ErrorCode OTF2_Archive_CloseGlobalDefReader (OTF2_Archive x
archive, OTF2_GlobalDefReader * globalDefReader)

Closes the global definition reader.

Parameters

‘ archive | Archive handle.

globalDef- | The global definition reader.
Reader

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.3.49 OTF2_ErrorCode OTF2_Archive_CloseGlobalDefWriter (OTF2_Archive x
archive, OTF2_GlobalDefWriter * writer)

Close an opened global definition writer.

Only the master archive can call this function.

Parameters

‘ archive | Archive handle.

| writer | Writer handle to be closed.

145

APPENDIX E. FILE DOCUMENTATION

Returns

OTF2_SUCCESS if successful

OTF2_ERROR_INVALID_ARGUMENT if the archive or writer argument
is invalid
OTF2 _ERROR_INVALID CALL if the archive is not in master mode

E.3.410 OTF2_ErrorCode OTF2_Archive_CloseGlobalEvtReader (OTF2_Archive x
archive, OTF2_GlobalEvtReader = globalEvtReader)

Closes the global event reader.

This closes also all local event readers.

Parameters

‘ archive | Archive handle.

glob- | The global event reader.
alEvtReader

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.3.4.11 OTF2_ErrorCode OTF2_Archive_CloseGlobalSnapReader (OTF2_Archive
x archive, OTF2_GlobalSnapReader * globalSnapReader)

Close the opened global snapshot reader.

Parameters

‘ archive | Archive handle.

global- | Reader handle to be closed.
SnapReader

Since

Version 1.2

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

146

E.3 otf2/OTF2_Archive.h File Reference

E.3.412 OTF2_ErrorCode OTF2_Archive_CloseMarkerReader (OTF2_Archive x
archive, OTF2_MarkerReader * markerReader)

Closes the marker reader.

Parameters

‘ archive | Archive handle.

marker- | The marker reader.
Reader

Since

Version 1.2

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.3.413 OTF2_ErrorCode OTF2_Archive_CloseMarkerWriter (OTF2_Archive
archive, OTF2_MarkerWriter x writer)

Close an opened marker writer.

Parameters

‘ archive | Archive handle.

writer | Writer handle to be closed.

Since

Version 1.2

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.3.414 OTF2_ErrorCode OTF2_Archive_CloseSnapFiles (OTF2_Archive *
archive)

Closes the snapshots file container.

This function is an collective operation.

147

APPENDIX E. FILE DOCUMENTATION

Parameters

‘ archive ‘ Archive handle.

Since

Version 1.3

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.3.415 OTF2_ErrorCode OTF2_Archive_CloseSnapReader (OTF2_Archive x
archive, OTF2_SnapReader * reader)

Close an opened local snap reader.

Parameters

‘ archive | Archive handle.

‘ reader | Reader handle to be closed.

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

Since

Version 1.2

E.3.416 OTF2_ErrorCode OTF2_Archive_CloseSnapWriter (OTF2_Archive *
archive, OTF2_SnapWriter x writer)

Close an opened local snap writer.

Parameters

‘ archive | Archive handle.

‘ writer | Writer handle to be closed.

Since

Version 1.2

148

E.3 otf2/OTF2_Archive.h File Reference

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.3.417 OTF2_ErrorCode OTF2_Archive_CloseThumbReader (OTF2_Archive *
archive, OTF2_ThumbReader * reader)

Close an opened thumbnail reader.

Parameters

' archive | Archive handle.

\ reader | Reader handle to be closed.

Since

Version 1.2

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.3.418 OTF2_ErrorCode OTF2_Archive_GetChunkSize (OTF2_Archive = archive,
uint64_t x chunkSizeEvents, uint64_t « chunkSizeDefs)

Get the chunksize.

Parameters
archive | Archive handle.
out chunk- | Chunk size for event files.
SizeEvents
out chunk- | Chunk size for definition files.
SizeDefs
Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.3.4.19 OTF2_ErrorCode OTF2_Archive_GetCompression (OTF2_Archive %
archive, OTF2_Compression x compression)

Get compression mode (none or zlib)

149

APPENDIX E. FILE DOCUMENTATION

Parameters
archive | Archive handle.
out compres- | Returned compression mode.
sion
Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.3.420 OTF2_ErrorCode OTF2_Archive_GetCreator (OTF2_Archive * archive,
char xx creator)

Get creator information.

Parameters

‘ archive | Archive handle.

‘ out creator | Returned creator. Allocated with malloc.
Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.3.421 OTF2_DefReaderx OTF2_Archive_GetDefReader (OTF2_Archive
archive, OTF2_LocationRef location)

Get a local definition reader.

Parameters

‘ archive | Archive handle.

location | Location ID of the requested reader handle.

Returns

Returns a local definition reader handle if successful, NULL if an error occurs.

E.3.422 OTF2_DefWriterx OTF2_Archive_GetDefWriter (OTF2_Archive * archive,
OTF2_LocationRef location)

Get a local definition writer.

150

E.3 otf2/OTF2_Archive.h File Reference

Parameters

‘ archive | Archive handle.

‘ location | Location ID of the requested writer handle.

Returns

Returns a local definition writer handle if successful, NULL if an error occurs.

E.3.4.23 OTF2_ErrorCode OTF2_Archive_GetDescription (OTF2_Archive x
archive, char xx description)

Get description.

Parameters

‘ archive | Archive handle.

‘ out description | Returned description. Allocated with malloc.

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.3.424 OTF2_EvtReaderx OTF2_Archive_GetEvtReader (OTF2_Archive x
archive, OTF2_LocationRef location)

Get a local event reader.

Parameters

‘ archive | Archive handle.

location | Location ID of the requested reader handle.

Returns

Returns a local event reader handle if successful, NULL if an error occurs.

E.3.425 OTF2_EvtWriter:x OTF2_Archive_GetEvtWriter (OTF2_Archive * archive,
OTF2_LocationRef location)

Get a local event writer.

151

APPENDIX E. FILE DOCUMENTATION

Parameters

‘ archive | Archive handle.

‘ location | Location ID of the requested writer handle.

Returns

Returns a local event writer handle if successful, NULL if an error occurs.

E.3.4.26 OTF2_ErrorCode OTF2_Archive_GetFileSubstrate (OTF2_Archive *
archive, OTF2_FileSubstrate « substrate)

Get the file substrate (posix, sion, none)

Parameters

‘ archive | Archive handle.

‘ out substrate | Returned file substrate.
Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.3.427 OTF2_GlobalDefReader:+ OTF2_Archive_GetGlobalDefReader (
OTF2_Archive * archive)

Get a global definition reader.

Only the master archive can call this function.

Parameters

archive | Archive handle.

Returns

Returns a global definition reader handle if successful, NULL if an error oc-
curs.

E.3.428 OTF2_GlobalDefWritersx OTF2_Archive_GetGlobalDefWriter (
OTF2_Archive x archive)

Get a global definition writer.

152

E.3 otf2/OTF2_Archive.h File Reference

Parameters

archive ‘ Archive handle.

Returns

Returns a global definition writer handle if successful, NULL if an error oc-

curs.

E.3.429 OTF2_GlobalEvtReader+ OTF2_Archive_GetGlobalEvtReader (
OTF2_Archive * archive)

Get a global event reader.

Parameters

archive ‘ Archive handle.

Returns

Returns a global event reader handle if successful, NULL if an error occurs.

E.3.4.30 OTF2_GlobalSnapReader:+ OTF2_Archive_GetGlobalSnapReader (
OTF2_Archive x archive)

Get a global snap reader.

Parameters

archive | Archive handle.

Since

Version 1.2

Returns

Returns a global snap reader handle if successful, NULL if an error occurs.

E.3.431 OTF2_ErrorCode OTF2_Archive_GetMachineName (OTF2_Archive
archive, char xx machineName)

Get machine name.

153

APPENDIX E. FILE DOCUMENTATION

Parameters
‘ archive | Archive handle.
out machine- Returned machine name. Allocated with malloc.
Name
Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.3.432 OTF2_MarkerReader: OTF2_Archive_GetMarkerReader (OTF2_Archive
* archive)

Get a marker reader.

Parameters

‘ archive ‘ Archive handle.

Since

Version 1.2

Returns

Returns a marker reader handle if successful, NULL if an error occurs.

E.3.433 OTF2_MarkerWriterx OTF2_Archive_GetMarkerWriter (OTF2_Archive
archive)

Get a marker writer.

Parameters

‘ archive | Archive handle.

Since

Version 1.2

Returns

Returns a marker writer handle if successful, NULL if an error occurs.

154

E.3 otf2/OTF2_Archive.h File Reference

E.3.4.34 OTF2_ErrorCode OTF2_Archive_GetNumberOfGlobalDefinitions (
OTF2_Archive * archive, uint64_t x numberOfDefinitions)

Get the number of global definitions.

Parameters
archive | Archive handle.
out num- | Return pointer to the number of global definitions.
berOfDefi-
nitions
Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.3.435 OTF2_ErrorCode OTF2_Archive_GetNumberOfLocations (OTF2_Archive
x archive, uint64_t x numberOfLocations)

Get the number of locations.

Parameters
‘ archive | Archive handle.
out num- | Return pointer to the number of locations.
berOfLoca-
tions
Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.3.4.36 OTF2_ErrorCode OTF2_Archive_GetNumberOfSnapshots (OTF2_Archive
* archive, uint32_t x number)

Get the number of snapshots.

Parameters

‘ archive

Archive handle.

number

Snapshot number.

155

APPENDIX E. FILE DOCUMENTATION

Since

Version 1.2

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.3.437 OTF2_ErrorCode OTF2_Archive_GetNumberOfThumbnails (OTF2_Archive
x archive, uint32_t «x number)

Get the number of thumbnails.

Parameters

‘ archive | Archive handle.

number | Thumb number.

Since

Version 1.2

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.3.4.38 OTF2_ErrorCode OTF2_Archive_GetProperty (OTF2_Archive * archive,
const char x name, char xx value)

Get the value of the named trace file property.

Parameters
archive | Archive handle.
name | Name of the property.
out value Returned value of the property. Allocated with malloc.
Returns

OTF2_SUCCESS if successful

OTF2_ERROR_PROPERTY_NOT_FOUND if the named property was not
found

156

E.3 otf2/OTF2_Archive.h File Reference

E.3.439 OTF2_ErrorCode OTF2_Archive_GetPropertyNames (OTF2_Archive *
archive, uint32_t x numberOfProperties, char xxx names)

Get the names of all trace file properties.

Parameters
archive | Archive handle.
out numberOf- | Returned number of trace file properties.
Properties
out names Returned list of property names. Allocated with malloc. To
release memory, just pass xnames to free.
Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.3.440 OTF2_SnapReaderx OTF2_Archive_GetSnapReader (OTF2_Archive %
archive, OTF2_LocationRef location)

Get a local snap reader.

Parameters

‘ archive | Archive handle.

‘ location | Location ID of the requested snap handle.

Since

Version 1.2

Returns

Returns a local snap handle if successful, NULL if an error occurs.

E.3.441 OTF2_SnapWriter:x OTF2_Archive_GetSnapWriter (OTF2_Archive *
archive, OTF2_LocationRef location)

Get a local snap writer.

Parameters

‘ archive | Archive handle.

‘ location | Location ID of the requested writer handle.

157

APPENDIX E. FILE DOCUMENTATION

Since

Version 1.2

Returns

Returns a local event writer handle if successful, NULL if an error occurs.

E.3.442 OTF2_ThumbReader:x OTF2_Archive_GetThumbReader (OTF2_Archive
* archive, uint32_t number)

Get a thumb reader.

Parameters

‘ archive | Archive handle.

‘ number | Thumbnail number.

Since

Version 1.2

Returns

Returns a global definition writer handle if successful, NULL if an error oc-
curs.

E.3.443 OTF2_ThumbWriter:x OTF2_Archive_GetThumbWriter (OTF2_Archive *
archive, const char x name, const char x description, OTF2_Thumbnail Type
type, uint32_t numberOfSamples, uint32_t numberOflletrics, const uint64_t
refsToDefs)

Get a thumb writer.

Parameters

archive | Archive handle.

name | Name of thumb.

description | Description of thumb.

type | Type of thumb.

numberOf- | Number of samples.
Samples

numberOf- | Number of metrics.
Metrics

refsToDefs | numberOfMetrics references to defintion matching the thumbnail type.

158

E.3 otf2/OTF2_Archive.h File Reference

Since

Version 1.2

Returns

Returns a thumb writer handle if successful, NULL if an error occurs.

E.3.444 OTF2_ErrorCode OTF2_Archive_GetTraceld (OTF2_Archive * archive,
uint64_t x id)

Get the identifier of the trace file.

Note

This call is only allowed when the archive was opened with mode OTF2_-
FILEMODE_READ.

Parameters

‘ archive | Archive handle.
‘ out id Trace identifier.
Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.3.445 OTF2_ErrorCode OTF2_Archive_GetVersion (OTF2_Archive x archive,
uint8_t x major, uint8_t x minor, uint8_t x bugfix)

Get format version.

Parameters
archive | Archive handle
out major | Major version number
out minor | Minor version number
out bugfix | Bugfix revision
Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

159

APPENDIX E. FILE DOCUMENTATION

E.3.446 OTF2_Archivex OTF2_Archive_Open (const char x archivePath, const
char * archiveName, const OTF2_FileMode fileMode, const uint64_t
chunkSizeEvents, const uint64_t chunkSizeDefs, const OTF2_FileSubstrate
fileSubstrate, const OTF2_Compression compression)

Create a new archive.

Creates a new archive handle that keeps all meta data about the archive on runtime.

Parameters

archivePath

Path to the archive i.e. the directory where the anchor file is located.

archive-
Name

Name of the archive. It is used to generate sub pathes e.g. ’archive-
Name.otf2’.

fileMode

Determines if in reading or writing mode. Available values are OTF2_-
FILEMODE_WRITE or OTF2_FILEMODE READ.

chunk-
SizeEvents

Requested size of OTF2’s internal event chunks in writing mode. Avail-
able values are from 256kB to 16MB. The event chunk size affects per-
formance as well as total memory usage. A value satisfying both is
about 1MB. If you are not sure which chunk size is the best to use, use
OTF2_CHUNK_SIZE _EVENTS_DEFAULT. In reading mode this value
is ignored because the correct chunk size is extracted from the anchor
file.

chunk-
SizeDefs

Requested size of OTF2’s internal definition chunks in writing mode.
Available values are from 256kB to 16MB. The definition chunk size
affects performance as well as total memory usage. In addition, the
definition chunk size must be big enough to carry the largest possible
definition record. Therefore, the definition chunk size must be at least
10 times the number of locations. A value satisfying these requirements
is about 4MB. If you are not sure which chunk size is the best to use,
use OTF2_CHUNK_SIZE_DEFINITIONS_DEFAULT. In reading mode
this value is ignored because the correct chunk size is extracted from the
anchor file.

fileSub-
strate

Determines which file substrate should be used in writing mode. Avail-
able values are OTF2_SUBSTRATE POSIX to use the standard Posix
interface, OTF2_SUBSTRATE_SION to use an installed SION library to
store multiple logical files into fewer or one physical file, and OTF2_-
SUBSTRATE_NONE to supress file writing at all. In reading mode this
value is ignored because the correct file substrated is extracted from the
anchor file.

compres-
sion

Determines if compression is used to reduce the size of data in files.
Available values are OTF2_COMPRESSION_ZLIB to use an installed
zlib and OTF2_COMPRESSION_NONE to disable compression. In
reading mode this value is ignored because the correct file compression
is extracted from the anchor file.

160

E.3 otf2/OTF2_Archive.h File Reference

Returns

Returns an archive handle if successful, NULL otherwise.

E.3.447 OTF2_ErrorCode OTF2_Archive_OpenDefFiles (OTF2_Archive * archive)

Open the local definitions file container.

This function is an collective operation.

Parameters

archive | Archive handle.

Since

Version 1.3

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.3.448 OTF2_ErrorCode OTF2_Archive_OpenEvtFiles (OTF2_Archive * archive)

Open the events file container.

This function is an collective operation.

Parameters

archive ‘ Archive handle.

Since
Version 1.3

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.3.449 OTF2_ErrorCode OTF2_Archive_OpenSnapFiles (OTF2_Archive * archive
)

Open the snapshots file container.

This function is an collective operation.

161

APPENDIX E. FILE DOCUMENTATION

Parameters

‘ archive ‘ Archive handle.

Since

Version 1.3

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.3.450 OTF2_ErrorCode OTF2_Archive_SelectLocation (OTF2_Archive x archive,
OTF2_LocationRef location)

Select a location to be read.

Parameters

archive | Archive handle.

location | Location ID.

Since

Version 1.3

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.3.451 OTF2_ErrorCode OTF2_Archive_SetBoolProperty (OTF2_Archive
archive, const char x name, bool value, bool overwrite)

Add or remove a boolean trace file property to this archive.

Note

This call is only allowed when the archive was opened with mode OTF2_-
FILEMODE_WRITE.

Parameters

archive | Archive handle.

name | Name of the trace file property (case insensitive, [A-Z0-9_]).

value | Boolean value of property (e.g. true or false).

162 overwritten.

overwrite | If true a previous trace file property with the same name name will be

E.3 otf2/OTF2_Archive.h File Reference

Returns

OTF2_SUCCESS if successful

OTF2_ERROR_PROPERTY_NAME_INVALID if property name does not
conform to the naming scheme

OTF2_ERROR_PROPERTY NOT_FOUND if property was not found, but
requested to remove

OTF2_ERROR_PROPERTY_EXISTS if property exists but overwrite was
not set

E.3.452 OTF2_ErrorCode OTF2_Archive_SetCollectiveCallbacks (OTF2_Archive
x archive, const OTF2_CollectiveCallbacks * collectiveCallbacks,
void x collectiveData, OTF2_CollectiveContext * globalCommContext,
OTF2_CollectiveContext x localCommContext)

Set the collective callbacks for the archive.

This function is an collective operation.

Parameters

archive | Archive handle.

collective- | Struct holding the collective callback functions.
Callbacks

collective- | Data passed to the collective callbacks in the userData argument.
Data

global- | Global communication context.
CommCon-
text

local- | Local communication context.
CommCon-
text

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.3.453 OTF2_ErrorCode OTF2_Archive_SetCreator (OTF2_Archive * archive,
const char x creator)

Set creator.

Sets information about the creator of the trace archive. This value is optional. It

163

APPENDIX E. FILE DOCUMENTATION

only needs to be set for an archive handle marked as *master’ or does not need to
be set at all.

Parameters

‘ archive | Archive handle.

‘ creator | Creator information.

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.3.454 OTF2_ErrorCode OTF2_Archive_SetDescription (OTF2_Archive * archive,
const char x description)

Set a description.

Sets a description for a trace archive. This value is optional. It only needs to be set
for an archive handle marked as *master’ or does not need to be set at all.

Parameters

‘ archive | Archive handle.

‘ description | Description.

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.3.455 OTF2_ErrorCode OTF2_Archive_SetFlushCallbacks (OTF2_Archive x
archive, const OTF2_FlushCallbacks * flushCallbacks, void * flushData)

Set the flush callbacks for the archive.

Parameters

archive | Archive handle.

flushCall- | Struct holding the flush callback functions.
backs

flushData Data passed to the flush callbacks in the userData argument.

Returns

OTF2_ErrorCode, or error code.

164

E.3 otf2/OTF2_Archive.h File Reference

E.3.456 OTF2_ErrorCode OTF2_Archive_SetMachineName (OTF2_Archive x
archive, const char « machineName)
Set machine name.

Sets the name for the machine the trace was recorded. This value is optional. It
only needs to be set for an archive handle marked as *master’ or does not need to
be set at all.

Parameters

‘ archive | Archive handle.

machine- Machine name.
Name

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.3.457 OTF2_ErrorCode OTF2_Archive_SetMemoryCallbacks (OTF2_Archive
« archive, const OTF2_MemoryCallbacks « memoryCallbacks, void
memoryData)

Set the memory callbacks for the archive.

Parameters

archive | Archive handle.

memo- | Struct holding the memory callback functions.
ryCallbacks

memory- | Data passed to the memory callbacks in the userData argument.
Data

Returns

OTF2_ErrorCode, or error code.

E.3.458 OTF2_ErrorCode OTF2_Archive_SetNumberOfSnapshots (OTF2_Archive
x archive, uint32_t number)

Set the number of snapshots.

Parameters

165

APPENDIX E. FILE DOCUMENTATION

‘ archive | Archive handle.

‘ number | Snapshot number.

Since

Version 1.2

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.3.459 OTF2_ErrorCode OTF2_Archive SetProperty (OTF2_Archive x archive,
const char x name, const char x value, bool overwrite)

Add or remove a trace file property to this archive.

Removing a trace file property is done by passing "" in the value parameter. The
overwrite parameter is ignored than.

Note

This call is only allowed when the archive was opened with mode OTF2_-
FILEMODE_WRITE.

Parameters

archive | Archive handle.

name | Name of the trace file property (case insensitive, [A-Z0-9_]).

value | Value of property.

overwritten.

overwrite | If true a previous trace file property with the same name name will be

Returns
OTF2 _SUCCESS if successful

OTF2_ERROR_PROPERTY_NAME_INVALID if property name does not
conform to the naming scheme

OTF2_ERROR_PROPERTY NOT_FOUND if property was not found, but
requested to remove

OTF2_ERROR_PROPERTY_EXISTS if property exists but overwrite was
not set

166

E.4 otf2/OTF2_AttributeList.h File Reference

E.3.460 OTF2_ErrorCode OTF2_Archive_SetSerialCollectiveCallbacks (
OTF2_Archive * archive)

Convenient function to set the collective callbacks to an serial implementation.

Parameters

archive ‘ Archive handle.

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.3.461 OTF2_ErrorCode OTF2_Archive_SwitchFileMode (OTF2_Archive
archive, OTF2_FileMode newFileMode)

Switch file mode of the archive.

Currently only a switch from OTF2_FILEMODE_READ to OTF2_FILEMODE_-
WRITE is permitted. Currrently it is also only permitted when operating on an
OTF2 archive with the OTF2_SUBSTRATE_POSIX file substrate.

Parameters

‘ archive | Archive handle.

newkFile- | New OTF2_FileMode to switch to.
Mode

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

Since

Version 1.2

E.4 otf2/OTF2_AttributeList.h File Reference

This layer enables dynamic appending of arbitrary attributes to any type of event
record.

#include <stdint.h>
#include <stdbool.h>
#include <otf2/0TF2_ErrorCodes.h>

167

APPENDIX E. FILE DOCUMENTATION

#include <otf2/0OTF2_GeneralDefinitions.h>

Data Structures

e union OTF2_ AttributeValue

Value container for an attributes.

Typedefs

* typedef struct OTF2_AttributeList_struct OTF2_AttributeList

Attribute list handle.

Functions

OTF2_ErrorCode OTF2_AttributeList_AddAttribute (OTF2_AttributeList xattributeList,
OTF2_AttributeRef attribute, OTF2_Type type, OTF2_Attribute Value attribute-
Value)

Add an attribute to an attribute list.
OTF2_ErrorCode OTF2_AttributeList_ AddAttributeRef (OTF2_AttributeList
xattributeList, OTF2_AttributeRef attribute, OTF2_AttributeRef attributeRef)

Add an OTF2_TYPE_ATTRIBUTE attribute to an attribute list.
OTF2_ErrorCode OTF2_AttributeList_ AddCommRef (OTF2_AttributeList
xattributeList, OTF2_AttributeRef attribute, OTF2_CommRef commRef)

Add an OTF2_TYPE _COMM attribute to an attribute list.
OTF2_ErrorCode OTF2_AttributeList_ AddDouble (OTF2_AttributeList *xattributeList,
OTF2_AttributeRef attribute, double float64 Value)

Add an OTF2_TYPE_DOUBLE attribute to an attribute list.
OTF2_ErrorCode OTF2_AttributeList_ AddFloat (OTF2_AttributeList *attributeList,
OTF2_AttributeRef attribute, float float32Value)

Add an OTF2_TYPE_FLOAT attribute to an attribute list.
OTF2_ErrorCode OTF2_AttributeList_ AddGroupRef (OTF2_AttributeList
xattributeList, OTF2_AttributeRef attribute, OTF2_GroupRef groupRef)

Add an OTF2_TYPE_GROUP attribute to an attribute list.
OTF2_ErrorCode OTF2_AttributeList_ AddInt16 (OTF2_AttributeList xattributeList,
OTF2_AttributeRef attribute, int16_t int16Value)

Add an OTF2_TYPE_INTI6 attribute to an attribute list.
OTF2_ErrorCode OTF2_AttributeList_AddInt32 (OTF2_AttributeList xattributeList,
OTF2_AttributeRef attribute, int32_t int32Value)

Add an OTF2_TYPE_INT32 attribute to an attribute list.

168

E.4 otf2/OTF2_AttributeList.h File Reference

e OTF2_ErrorCode OTF2_AttributeList_AddInt64 (OTF2_AttributeList xattributeList,
OTF2_AttributeRef attribute, int64_t int64 Value)
Add an OTF2_TYPE_INT64 attribute to an attribute list.
¢ OTF2_ErrorCode OTF2_AttributeList_AddInt8 (OTF2_AttributeList xattributeList,
OTF2_AttributeRef attribute, int8_t int8 Value)
Add an OTF2_TYPE_INTS attribute to an attribute list.

e OTF2_ErrorCode OTF2_AttributeList_AddLocationRef (OTF2_AttributeList
xattributeList, OTF2_AttributeRef attribute, OTF2_LocationRef locationRef)

Add an OTF2_TYPE_LOCATION attribute to an attribute list.

* OTF2_ErrorCode OTF2_AttributeList_AddMetricRef (OTF2_AttributeList

sattributeList, OTF2_AttributeRef attribute, OTF2_MetricRef metricRef)
Add an OTF2_TYPE_METRIC attribute to an attribute list.

e OTF2_ErrorCode OTF2_AttributeList_ AddParameterRef (OTF2_AttributeList
xattributeList, OTF2_AttributeRef attribute, OTF2_ParameterRef parame-
terRef)

Add an OTF2_TYPE PARAMETER attribute to an attribute list.

* OTF2_ErrorCode OTF2_AttributeList_AddRegionRef (OTF2_AttributeList

xattributeList, OTF2_AttributeRef attribute, OTF2_RegionRef regionRef)
Add an OTF2_TYPE_REGION attribute to an attribute list.

e OTF2_ErrorCode OTF2_AttributeList_ AddRmaWinRef (OTF2_AttributeList
xattributeList, OTF2_AttributeRef attribute, OTF2_RmaWinRef rmaWinRef)

Add an OTF2_TYPE _RMA_WIN attribute to an attribute list.
* OTF2_ErrorCode OTF2_AttributeList_AddString (OTF2_AttributeList *attributeList,
OTF2_AttributeRef attribute, OTF2_StringRef stringRef)
Add an OTF2_STRING attribute to an attribute list.
* OTF2_ErrorCode OTF2_AttributeList_AddStringRef (OTF2_AttributeList
xattributeList, OTF2_AttributeRef attribute, OTF2_StringRef stringRef)
Add an OTF2_TYPE_STRING attribute to an attribute list.
e OTF2_ErrorCode OTF2_AttributeList_AddUint16 (OTF2_AttributeList *attributeList,
OTF2_AttributeRef attribute, uint16_t uint16Value)
Add an OTF2_TYPE_UINT16 attribute to an attribute list.
¢ OTF2_ErrorCode OTF2_AttributeList_AddUint32 (OTF2_AttributeList *attributeList,
OTF2_AttributeRef attribute, uint32_t uint32Value)
Add an OTF2_TYPE_UINT32 attribute to an attribute list.
e OTF2_ErrorCode OTF2_AttributeList_AddUint64 (OTF2_AttributeList *attributeList,
OTF2_AttributeRef attribute, uint64_t uint64 Value)

Add an OTF2_TYPE UINT64 attribute to an attribute list.

169

APPENDIX E. FILE DOCUMENTATION

¢ OTF2_ErrorCode OTF2_AttributeList_AddUint8 (OTF2_AttributeList *attributeList,
OTF2_AttributeRef attribute, uint8_t uint8Value)
Add an OTF2_TYPE _UINTS attribute to an attribute list.
e OTF2_ErrorCode OTF2_AttributeList_Delete (OTF2_AttributeList *attributeList)

Delete an attribute list handle.

* OTF2_ErrorCode OTF2_AttributeList_GetAttributeByID (const OTF2_AttributeList
xattributeList, OTF2_AttributeRef attribute, OTF2_Type *type, OTF2_AttributeValue
xattribute Value)

Get an attribute from an attribute list by attribute ID.

* OTF2_ErrorCode OTF2_AttributeList_GetAttributeByIndex (const OTF2_-
AttributeList xattributeList, uint32_t index, OTF2_AttributeRef *attribute,
OTF2_Type *type, OTF2_AttributeValue =attributeValue)

Get an attribute from an attribute list by attribute index.

e OTF2_ErrorCode OTF2_AttributeList_GetAttributeRef (const OTF2_AttributeList
xattributeList, OTF2_AttributeRef attribute, OTF2_AttributeRef *attributeRef)

Get an OTF2_TYPE_ATTRIBUTE attribute from an attribute list by attribute
ID.

e OTF2_ErrorCode OTF2_AttributeList_ GetCommRef (const OTF2_AttributeList
sattributeList, OTF2_AttributeRef attribute, OTF2_CommRef xcommRef)

Get an OTF2_TYPE_COMM attribute from an attribute list by attribute ID.
* OTF2_ErrorCode OTF2_AttributeList_GetDouble (const OTF2_AttributeList
«attributeList, OTF2_AttributeRef attribute, double *float64 Value)
Get an OTF2_TYPE_DOUBLE attribute from an attribute list by attribute ID.
¢ OTF2_ErrorCode OTF2_AttributeList_GetFloat (const OTF2_AttributeList
«attributeList, OTF2_AttributeRef attribute, float xfloat32Value)
Get an OTF2_TYPE_FLOAT attribute from an attribute list by attribute ID.
* OTF2_ErrorCode OTF2_AttributeList_GetGroupRef (const OTF2_AttributeList
wattributeList, OTF2_AttributeRef attribute, OTF2_GroupRef sgroupRef)
Get an OTF2_TYPE_GROUP attribute from an attribute list by attribute ID.
¢ OTF2_ErrorCode OTF2_AttributeList_GetInt16 (const OTF2_AttributeList
«attributeList, OTF2_AttributeRef attribute, int16_t xint16Value)
Get an OTF2_TYPE_INT16 attribute from an attribute list by attribute ID.
¢ OTF2_ErrorCode OTF2_AttributeList_GetInt32 (const OTF2_AttributeList
sattributeList, OTF2_AttributeRef attribute, int32_t xint32Value)
Get an OTF2_TYPE_INT3?2 attribute from an attribute list by attribute ID.

¢ OTF2_ErrorCode OTF2_AttributeList_GetInt64 (const OTF2_AttributeList
«attributeList, OTF2_AttributeRef attribute, int64_t xint64 Value)

170

E.4 otf2/OTF2_AttributeList.h File Reference

Get an OTF2_TYPE_INT64 attribute from an attribute list by attribute ID.
OTF2_ErrorCode OTF2_AttributeList_GetInt8 (const OTF2_AttributeList
sattributeList, OTF2_AttributeRef attribute, int8_t xint8Value)

Get an OTF2_TYPE_INTS attribute from an attribute list by attribute ID.

OTF2_ErrorCode OTF2_AttributeList_GetLocationRef (const OTF2_AttributeList
xattributeList, OTF2_AttributeRef attribute, OTF2_LocationRef xlocationRef)

Get an OTF2_TYPE_LOCATION attribute from an attribute list by attribute ID.

OTF2_ErrorCode OTF2_AttributeList_GetMetricRef (const OTF2_AttributeList
sattributeList, OTF2_AttributeRef attribute, OTF2_MetricRef *metricRef)

Get an OTF2_TYPE_METRIC attribute from an attribute list by attribute ID.
uint32_t OTF2_AttributeList_GetNumberOfElements (const OTF2_AttributeList
xattributeList)

Get the number of entries in an attribute list.

OTF2_ErrorCode OTF2_AttributeList_GetParameterRef (const OTF2_AttributeList
xattributeList, OTF2_AttributeRef attribute, OTF2_ParameterRef xparameterRef)

Get an OTF2_TYPE_PARAMETER attribute from an attribute list by attribute
ID.

OTF2_ErrorCode OTF2_AttributeList_GetRegionRef (const OTF2_AttributeList
xattributeList, OTF2_AttributeRef attribute, OTF2_RegionRef xregionRef)

Get an OTF2_TYPE_REGION attribute from an attribute list by attribute ID.

OTF2_ErrorCode OTF2_AttributeList_ GetRmaWinRef (const OTF2_AttributeList
sattributeList, OTF2_AttributeRef attribute, OTF2_RmaWinRef xrmaWinRef)

Get an OTF2_TYPE_RMA_WIN attribute from an attribute list by attribute ID.
OTF2_ErrorCode OTF2_AttributeList_GetString (const OTF2_AttributeList
xattributeList, OTF2_AttributeRef attribute, OTF2_StringRef *stringRef)

Add an OTF2_STRING attribute to an attribute list.

OTF2_ErrorCode OTF2_AttributeList_GetStringRef (const OTF2_AttributeList
xattributeList, OTF2_AttributeRef attribute, OTF2_StringRef *stringRef)

Get an OTF2_TYPE_STRING attribute from an attribute list by attribute ID.
OTF2_ErrorCode OTF2_AttributeList_GetUint16 (const OTF2_AttributeList
xattributeList, OTF2_AttributeRef attribute, uint16_t xuint16Value)

Get an OTF2_TYPE_UINT16 attribute from an attribute list by attribute ID.
OTF2_ErrorCode OTF2_AttributeList_GetUint32 (const OTF2_AttributeList
«attributeList, OTF2_AttributeRef attribute, uint32_t *xuint32Value)

Get an OTF2_TYPE_UINT3?2 attribute from an attribute list by attribute ID.

171

APPENDIX E. FILE DOCUMENTATION

¢ OTF2_ErrorCode OTF2_AttributeList_GetUint64 (const OTF2_AttributeList
xattributeList, OTF2_AttributeRef attribute, uint64_t xuint64Value)

Get an OTF2_TYPE_UINT64 attribute from an attribute list by attribute ID.

¢ OTF2_ErrorCode OTF2_AttributeList_GetUint8 (const OTF2_AttributeList
xattributeList, OTF2_AttributeRef attribute, uint8_t xuint8Value)

Get an OTF2_TYPE_UINTS attribute from an attribute list by attribute ID.
e OTF2_AttributeList x OTF2_AttributeList_New (void)

Create a new attribute list handle.

¢ OTF2_ErrorCode OTF2_AttributeList_PopAttribute (OTF2_AttributeList *attributeList,
OTF2_AttributeRef xattribute, OTF2_Type *type, OTF2_Attribute Value sattribute Value)

Get first attribute from an attribute list and remove it.

¢ OTF2_ErrorCode OTF2_AttributeList_RemoveAllAttributes (OTF2_AttributeList
xattributeList)

Remove all attributes from an attribute list.

¢ OTF2_ErrorCode OTF2_AttributeList_ RemoveAttribute (OTF2_AttributeList
sattributeList, OTF2_AttributeRef attribute)

Remove an attribute from an attribute list.

* bool OTF2_AttributeList_TestAttributeByID (const OTF2_AttributeList *attributeList,
OTF2_AttributeRef attribute)

Test if an attribute is in the attribute list.

E.4.1 Detailed Description

This layer enables dynamic appending of arbitrary attributes to any type of event
record.

Source Template:

template/OTF2_AttributeList.tmpl.h

E.4.2 Function Documentation

E.421 OTF2_ErrorCode OTF2_AttributeList_AddAttribute (OTF2_AttributeList
« attributeList, OTF2_AttributeRef attribute, OTF2_Type type,
OTF2_AttributeValue attributeValue)

Add an attribute to an attribute list.

Adds an attribute to an attribute list. If the attribute already exists, it fails and
returns an error.

172

E.4 otf2/OTF2_AttributeList.h File Reference

Parameters

attributeList | Attribute list handle.

attribute | Reference to attribute definition.

type | Type of the attribute.

attribute- | Value of the attribute.
Value

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.422 OTF2_ErrorCode OTF2_ AttributeList_AddAttributeRef (
OTF2_AttributeList * attributeList, OTF2_AttributeRef attribute,
OTF2_AttributeRef attributeRef)

Add an OTF2_TYPE_ATTRIBUTE attribute to an attribute list.
Convenient function around OTF2_AttributeList_AddAttribute.

Parameters

attributeList | Attribute list handle.

attribute | Reference to Attribute definition.

attributeRef | Reference to Attribute definition.

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.4.23 OTF2_ErrorCode OTF2_ AttributeList AddCommRef (OTF2_AttributeList
« attributeList, OTF2_AttributeRef attribute, OTF2_CommRef commRef)

Add an OTF2_TYPE_COMM attribute to an attribute list.

Convenient function around OTF2_AttributeList_AddAttribute.

Parameters

attributeList | Attribute list handle.

attribute | Reference to Attribute definition.

commRef Reference to Comm definition.

173

APPENDIX E. FILE DOCUMENTATION

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.424 OTF2_ErrorCode OTF2_AttributeList_ AddDouble (OTF2_AttributeList x
attributeList, OTF2_AttributeRef attribute, double float64Value)

Add an OTF2_TYPE_DOUBLE attribute to an attribute list.

Convenient function around OTF2_AttributeList_AddAttribute.

Parameters

attributeList | Attribute list handle.

attribute | Reference to attribute definition.

Value of the attribute.
float64Value

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.425 OTF2_ErrorCode OTF2_ AttributeList_AddFloat (OTF2_AttributeList
attributeList, OTF2_AttributeRef attribute, float float32Value)

Add an OTF2_TYPE_FLOAT attribute to an attribute list.

Convenient function around OTF2_AttributeList AddAttribute.

Parameters

attributeList | Attribute list handle.

attribute | Reference to attribute definition.

Value of the attribute.

float32Value

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.4.26 OTF2_ErrorCode OTF2 AttributeList AddGroupRef (OTF2_AttributeList
« attributeList, OTF2_AttributeRef attribute, OTF2_GroupRef groupRef)

Add an OTF2_TYPE_GROUP attribute to an attribute list.

174

E.4 otf2/OTF2_AttributeList.h File Reference

Convenient function around OTF2_AttributeList AddAttribute.

Parameters

attributeList | Attribute list handle.

attribute | Reference to Attribute definition.

groupRef | Reference to Group definition.

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.42.7 OTF2_ErrorCode OTF2_AttributeList_AddInt16 (OTF2_AttributeList
attributeList, OTF2_AttributeRef attribute, int16_t int16Value)

Add an OTF2_TYPE_INT16 attribute to an attribute list.
Convenient function around OTF2_AttributeList AddAttribute.

Parameters

attributeList | Attribute list handle.

attribute | Reference to attribute definition.

intl6Value | Value of the attribute.

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.4.2.8 OTF2_ErrorCode OTF2 AttributeList_AddInt32 (OTF2_AttributeList
attributeList, OTF2_AttributeRef attribute, int32_t int32Value)

Add an OTF2_TYPE_INT?32 attribute to an attribute list.
Convenient function around OTF2_AttributeList AddAttribute.

Parameters

attributeList | Attribute list handle.

attribute | Reference to attribute definition.

int32Value | Value of the attribute.

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

175

APPENDIX E. FILE DOCUMENTATION

E.429 OTF2_ErrorCode OTF2 AttributeList_AddInté4 (OTF2_AttributeList
attributeList, OTF2_AttributeRef attribute, int64_t int64Value)

Add an OTF2_TYPE_INT64 attribute to an attribute list.

Convenient function around OTF2_AttributeList_AddAttribute.

Parameters

attributeList | Attribute list handle.

attribute | Reference to attribute definition.

int64Value | Value of the attribute.

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.4210 OTF2_ErrorCode OTF2_AttributeList_Addint8 (OTF2_AttributeList =
attributeList, OTF2_AttributeRef attribute, int8_t int8Value)

Add an OTF2_TYPE_INTS attribute to an attribute list.

Convenient function around OTF2_AttributeList_AddAttribute.

Parameters

attributeList | Attribute list handle.

attribute | Reference to attribute definition.

int8Value | Value of the attribute.

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.4211 OTF2_ErrorCode OTF2_AttributeList_AddLocationRef (
OTF2_AttributeList * attributeList, OTF2_AttributeRef attribute,
OTF2_LocationRef locationRef)

Add an OTF2_TYPE_LOCATION attribute to an attribute list.

Convenient function around OTF2_AttributeList_AddAttribute.

Parameters

\ attributeList \ Attribute list handle.

176

E.4 otf2/OTF2_AttributeList.h File Reference

attribute | Reference to Attribute definition.

‘ locationRef | Reference to Location definition.

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.4212 OTF2_ErrorCode OTF2_AttributeList_ AddMetricRef (OTF2_AttributeList
x attributeList, OTF2_AttributeRef attribute, OTF2_MetricRef metricRef

)

Add an OTF2_TYPE_METRIC attribute to an attribute list.

Convenient function around OTF2_AttributeList_AddAttribute.

Parameters

attributeList | Attribute list handle.

attribute | Reference to Attribute definition.

metricRef | Reference to Metric definition.

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.4213 OTF2_ErrorCode OTF2_AttributeList_ AddParameterRef (
OTF2_AttributeList * attributeList, OTF2_AttributeRef attribute,

OTF2_ParameterRef parameterRef)

Add an OTF2_TYPE_PARAMETER attribute to an attribute list.
Convenient function around OTF2_AttributeList AddAttribute.

Parameters

attributeList | Attribute list handle.

attribute | Reference to Attribute definition.

parameter- | Reference to Parameter definition.
Ref

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

177

APPENDIX E. FILE DOCUMENTATION

E.4214 OTF2_ErrorCode OTF2_AttributeList_AddRegionRef (
OTF2_AttributeList * attributeList, OTF2_AttributeRef attribute,
OTF2_RegionRef regionRef)

Add an OTF2_TYPE_REGION attribute to an attribute list.
Convenient function around OTF2_AttributeList AddAttribute.

Parameters

attributeList | Attribute list handle.

attribute | Reference to Attribute definition.

regionRef | Reference to Region definition.

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.4.2.15 OTF2_ErrorCode OTF2_AttributeList AddRmaWinRef (
OTF2_AttributeList * attributeList, OTF2_AttributeRef attribute,
OTF2_RmaWinRef rmaWinRef)

Add an OTF2_TYPE_RMA_WIN attribute to an attribute list.

Convenient function around OTF2_AttributeList AddAttribute.

Parameters

attributeList | Attribute list handle.

attribute | Reference to Attribute definition.

rmaWinRef | Reference to RmaWin definition.

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.42.16 OTF2_ErrorCode OTF2_AttributeList_AddString (OTF2_AttributeList
attributeList, OTF2_AttributeRef attribute, OTF2_StringRef stringRef)

Add an OTF2_STRING attribute to an attribute list.

Deprecated

Use OTF2_AttributeList_AddStringRef{) instead.

178

E.4 otf2/OTF2_AttributeList.h File Reference

Convenient function around OTF2_AttributeList AddAttribute.

Parameters

attributeList | Attribute list handle.

attribute | Reference to Attribute definition.

stringRef | Reference to String definition.

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.4.2.17 OTF2_ErrorCode OTF2_AttributeList_AddStringRef (OTF2_AttributeList
« attributeList, OTF2_AttributeRef attribute, OTF2_StringRef stringRef)

Add an OTF2_TYPE_STRING attribute to an attribute list.
Convenient function around OTF2_AttributeList AddAttribute.

Parameters

attributeList | Attribute list handle.

attribute | Reference to Attribute definition.

stringRef | Reference to String definition.

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.4.2.18 OTF2_ErrorCode OTF2_AttributeList AddUint16 (OTF2_AttributeList
attributeList, OTF2_AttributeRef attribute, uint16_t uint16Value)

Add an OTF2_TYPE_UINT16 attribute to an attribute list.
Convenient function around OTF2_AttributeList_AddAttribute.

Parameters

attributeList | Attribute list handle.

attribute | Reference to attribute definition.

uint16Value | Value of the attribute.

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

179

APPENDIX E. FILE DOCUMENTATION

E.4219 OTF2_ErrorCode OTF2_AttributeList_AddUint32 (OTF2_AttributeList x
attributeList, OTF2_AttributeRef attribute, uint32_t uint32Value)

Add an OTF2_TYPE_UINT32 attribute to an attribute list.

Convenient function around OTF2_AttributeList_AddAttribute.

Parameters

attributeList | Attribute list handle.

attribute | Reference to attribute definition.

uint32Value | Value of the attribute.

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.4220 OTF2_ErrorCode OTF2_AttributeList_AddUint64 (OTF2_AttributeList x
attributeList, OTF2_AttributeRef attribute, uint64_t uint64Value)

Add an OTF2_TYPE_UINTG64 attribute to an attribute list.

Convenient function around OTF2_AttributeList_AddAttribute.

Parameters

attributeList | Attribute list handle.

attribute | Reference to attribute definition.

uint64Value | Value of the attribute.

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.4221 OTF2_ErrorCode OTF2_AttributeList_AddUint8 (OTF2_AttributeList *
attributeList, OTF2_AttributeRef attribute, uint8_t uint8Value)

Add an OTF2_TYPE_UINTS attribute to an attribute list.

Convenient function around OTF2_AttributeList AddAttribute.

Parameters

attributeList | Attribute list handle.

attribute | Reference to attribute definition.

uint8Value | Value of the attribute.

180

E.4 otf2/OTF2_AttributeList.h File Reference

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.4222 OTF2_ErrorCode OTF2_AttributeList_Delete (OTF2_AttributeList
attributeList)

Delete an attribute list handle.

Deletes an attribute list handle and releases all associated resources.

Parameters

attributeList | Attribute list handle.

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.4.2.23 OTF2_ErrorCode OTF2_AttributeList_GetAttributeByID (const
OTF2_AttributeList * attributeList, OTF2_AttributeRef attribute,
OTF2_Type * type, OTF2_AttributeValue * attributeValue)

Get an attribute from an attribute list by attribute ID.

Parameters

attributeList | Attribute list handle.

attribute | Reference to Attribute definition.

out type | Returned type of the attribute.

out attribute- | Returned value of the attribute.
Value

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.4224 OTF2_ErrorCode OTF2_AttributeList_GetAttributeBylndex (const
OTF2_AttributeList * attributeList, uint32_t index, OTF2_AttributeRef *
attribute, OTF2_Type = type, OTF2_AttributeValue x attributeValue)

Get an attribute from an attribute list by attribute index.

181

APPENDIX E. FILE DOCUMENTATION

Parameters
attributeList | Attribute list handle.
index | Position of the attribute in the attribute list.
out attribute | Returned attribute reference.
out type | Returned type of the attribute.
out attribute- | Returned value of the attribute.
Value
Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

OTF2_ErrorCode OTF2_AttributeList_GetAttributeRef (const
OTF2_AttributeList * attributeList, OTF2_AttributeRef attribute,
OTF2_AttributeRef « attributeRef)

E.4.2.25

Get an OTF2_TYPE_ATTRIBUTE attribute from an attribute list by attribute ID.
Convenient function around OTF2_AttributeList_GetAttributeByID.

Parameters
attributeList | Attribute list handle.
attribute | Reference to attribute definition.
out | attributeRef Returned attribute value.
Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

OTF2_ErrorCode OTF2_AttributeList_GetCommRef (const
OTF2_AttributeList * attributeList, OTF2_AttributeRef attribute,
OTF2_CommRef « commRef)

E.4.2.26

Get an OTF2_TYPE_COMM attribute from an attribute list by attribute ID.

Convenient function around OTF2_AttributeList_GetAttribute ByID.

Parameters
attributeList | Attribute list handle.
attribute | Reference to attribute definition.
out commRef Returned comm value.

182

E.4 otf2/OTF2_AttributeList.h File Reference

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.4.2.27 OTF2_ErrorCode OTF2_AttributeList_GetDouble (const
OTYF2_AttributeList * attributeList, OTF2_AttributeRef attribute, double
«* float64Value)

Get an OTF2_TYPE_DOUBLE attribute from an attribute list by attribute ID.

Convenient function around OTF2_AttributeList_GetAttributeByID.

Parameters

attributeList | Attribute list handle.

attribute | Reference to Attribute definition.

out Returned value of the attribute.
float64Value

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.4.228 OTF2_ErrorCode OTF2_AttributeList_GetFloat (const
OTF2_AttributeList * attributeList, OTF2_AttributeRef attribute, float *
float32Value)

Get an OTF2_TYPE_FLOAT attribute from an attribute list by attribute ID.

Convenient function around OTF2_AttributeList_GetAttributeByID.

Parameters

attributeList | Attribute list handle.

attribute | Reference to Attribute definition.

out Returned value of the attribute.
float32Value

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

183

APPENDIX E. FILE DOCUMENTATION

E.4229 OTF2_ErrorCode OTF2_AttributeList_GetGroupRef (const
OTF2_AttributeList * attributeList, OTF2_AttributeRef attribute,
OTF2_GroupRef « groupRef)

Get an OTF2_TYPE_GROUP attribute from an attribute list by attribute ID.

Convenient function around OTF2_AttributeList_GetAttribute ByID.

Parameters

attributeList | Attribute list handle.

attribute | Reference to attribute definition.

out groupRef | Returned group value.

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.42.30 OTF2_ErrorCode OTF2_AttributeList_Getint16 (const
OTF2_AttributeList * attributeList, OTF2_AttributeRef attribute, int16_t
x int16Value)

Get an OTF2_TYPE_INT16 attribute from an attribute list by attribute ID.

Convenient function around OTF2_AttributeList_GetAttribute ByID.

Parameters

attributeList | Attribute list handle.

attribute | Reference to Attribute definition.

out intl6Value | Returned value of the attribute.

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.42.31 OTF2_ErrorCode OTF2_AttributeList_GetInt32 (const
OTF2_AttributeList * attributeList, OTF2_AttributeRef attribute, int32_t
* int32Value)

Get an OTF2_TYPE_INT32 attribute from an attribute list by attribute ID.

Convenient function around OTF2_AttributeList_GetAttribute ByID.

184

E.4 otf2/OTF2_AttributeList.h File Reference

Parameters

attributeList | Attribute list handle.

attribute | Reference to Attribute definition.

out int32Value | Returned value of the attribute.

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.4.232 OTF2_ErrorCode OTF2_AttributeList_Getint64 (const
OTF2_AttributeList x attributeList, OTF2_AttributeRef attribute, int64_t
* int64Value)

Get an OTF2_TYPE_INT64 attribute from an attribute list by attribute ID.

Convenient function around OTF2_AttributeList_GetAttributeByID.

Parameters

attributeList | Attribute list handle.

attribute | Reference to Attribute definition.

out int64Value | Returned value of the attribute.

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.4.2.33 OTF2_ErrorCode OTF2_AttributeList_GetInt8 (const OTF2_AttributeList
« attributeList, OTF2_AttributeRef attribute, int8_t x int8Value)

Get an OTF2_TYPE_INTS attribute from an attribute list by attribute ID.

Convenient function around OTF2_AttributeList_GetAttribute ByID.

Parameters

attributeList | Attribute list handle.

attribute | Reference to Attribute definition.

out int8Value | Returned value of the attribute.

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

185

APPENDIX E. FILE DOCUMENTATION

E.4.2.34 OTF2_ErrorCode OTF2_AttributeList_GetLocationRef (const
OTF2_AttributeList * attributeList, OTF2_AttributeRef attribute,
OTF2_LocationRef « locationRef)

Get an OTF2_TYPE_LOCATION attribute from an attribute list by attribute ID.

Convenient function around OTF2_AttributeList_GetAttribute ByID.

Parameters

attributeList | Attribute list handle.

attribute | Reference to attribute definition.

out locationRef | Returned location value.

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.42.35 OTF2_ErrorCode OTF2_AttributeList_GetMetricRef (const
OTF2_AttributeList * attributeList, OTF2_AttributeRef attribute,
OTF2_MetricRef x metricRef)

Get an OTF2_TYPE_METRIC attribute from an attribute list by attribute ID.

Convenient function around OTF2_AttributeList_GetAttribute ByID.

Parameters

attributeList | Attribute list handle.

attribute | Reference to attribute definition.

out metricRef Returned metric value.

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.4.2.36 uint32_t OTF2_AttributeList_GetNumberOfElements (const
OTF2_AttributeList * attributeList)

Get the number of entries in an attribute list.

Parameters

attributeList | Attribute list handle.

186

E.4 otf2/OTF2_AttributeList.h File Reference

Returns

Returns the number of elements in the list. Returns zero if the list does not

exist.

E.4.2.37 OTF2_ErrorCode OTF2_AttributeList_GetParameterRef (const
OTF2_AttributeList * attributeList, OTF2_AttributeRef attribute,
OTF2_ParameterRef « parameterRef)

Get an OTF2_TYPE_PARAMETER attribute from an attribute list by attribute ID.

Convenient function around OTF2_AttributeList_GetAttribute ByID.

Parameters

attributeList | Attribute list handle.

attribute | Reference to attribute definition.

out parameter- | Returned parameter value.
Ref

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.4.2.38 OTF2_ErrorCode OTF2_AttributeList_GetRegionRef (const
OTF2_AttributeList x attributeList, OTF2_AttributeRef attribute,

OTF2_RegionRef « regionRef)

Get an OTF2_TYPE_REGION attribute from an attribute list by attribute ID.

Convenient function around OTF2_AttributeList_GetAttribute ByID.

Parameters

attributeList | Attribute list handle.

attribute | Reference to attribute definition.

out regionRef | Returned region value.

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

187

APPENDIX E. FILE DOCUMENTATION

E.4.2.39 OTF2_ErrorCode OTF2_AttributeList_GetRmaWinRef (const
OTF2_AttributeList * attributeList, OTF2_AttributeRef attribute,
OTF2_RmaWinRef « rmaWinRef)

Get an OTF2_TYPE_RMA_WIN attribute from an attribute list by attribute ID.

Convenient function around OTF2_AttributeList_GetAttribute ByID.

Parameters

attributeList | Attribute list handle.

attribute | Reference to attribute definition.

out rmaWinRef | Returned rmaWin value.

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.42.40 OTF2_ErrorCode OTF2_AttributeList_GetString (const
OTF2_AttributeList * attributeList, OTF2_AttributeRef attribute,
OTF2_StringRef « stringRef)

Add an OTF2_STRING attribute to an attribute list.

Deprecated

Use OTF2_AttributeList_GetStringRef{) instead.

Convenient function around OTF2_AttributeList_AddAttribute.

Parameters

attributeList | Attribute list handle.

attribute | Reference to attribute definition.

out stringRef | Returned string value.

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

188

E.4 otf2/OTF2_AttributeList.h File Reference

E.4241 OTF2_ErrorCode OTF2_AttributeList_GetStringRef (const
OTF2_AttributeList * attributeList, OTF2_AttributeRef attribute,
OTF2_StringRef stringRef)

Get an OTF2_TYPE_STRING attribute from an attribute list by attribute ID.
Convenient function around OTF2_AttributeList_GetAttribute ByID.

Parameters

attributeList | Attribute list handle.

attribute | Reference to attribute definition.

out stringRef | Returned string value.

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.4242 OTF2_ErrorCode OTF2_AttributeList_GetUint16 (const
OTF2_AttributeList * attributeList, OTF2_AttributeRef attribute,
uint16_t x uint16Value)

Get an OTF2_TYPE_UINT16 attribute from an attribute list by attribute ID.

Convenient function around OTF2_AttributeList_GetAttribute ByID.

Parameters

attributeList | Attribute list handle.

attribute | Reference to Attribute definition.

out uintl6Value Returned value of the attribute.

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.4243 OTF2_ErrorCode OTF2_AttributeList_GetUint32 (const
OTF2_AttributeList * attributeList, OTF2_AttributeRef attribute,
uint32_t x uint32Value)

Get an OTF2_TYPE_UINT32 attribute from an attribute list by attribute ID.

Convenient function around OTF2_AttributeList_GetAttribute ByID.

189

APPENDIX E. FILE DOCUMENTATION

Parameters

attributeList | Attribute list handle.

attribute | Reference to Attribute definition.

out uint32Value Returned value of the attribute.

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.4.244 OTF2_ErrorCode OTF2_AttributeList_GetUint64 (const
OTF2_AttributeList * attributeList, OTF2_AttributeRef attribute,
uint64_t « uint64Value)

Get an OTF2_TYPE_UINT64 attribute from an attribute list by attribute ID.

Convenient function around OTF2_AttributeList_GetAttributeByID.

Parameters

attributeList | Attribute list handle.

attribute | Reference to Attribute definition.

out uint64Value | Returned value of the attribute.

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.4.245 OTF2_ErrorCode OTF2_AttributeList_GetUint8 (const
OTF2_AttributeList « attributeList, OTF2_AttributeRef attribute, uint8_t
* uint8Value)

Get an OTF2_TYPE_UINTS attribute from an attribute list by attribute ID.
Convenient function around OTF2_AttributeList_GetAttributeByID.

Parameters

attributeList | Attribute list handle.

attribute | Reference to Attribute definition.

out uint8Value | Returned value of the attribute.

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

190

E.4 otf2/OTF2_AttributeList.h File Reference

E.4.246 OTF2_AttributeListx OTF2_AttributeList_New (void)
Create a new attribute list handle.

Returns

Returns a handle to the attribute list if successful, NULL otherwise.

E.4.247 OTF2_ErrorCode OTF2_AttributeList_PopAttribute (OTF2_AttributeList
« attributeList, OTF2_AttributeRef « attribute, OTF2_Type * type,
OTF2_AttributeValue x attributeValue)

Get first attribute from an attribute list and remove it.

Returns the first entry in the attribute list and removes it from the list.

Parameters
attributeList | Attribute list handle.
out attribute | Returned attribute reference.
out type | Returned type of the attribute.
out attribute- | Returned value of the attribute.
Value
Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.4248 OTF2_ErrorCode OTF2_AttributeList_RemoveAllAttributes (
OTF2_AttributeList « attributeList)

Remove all attributes from an attribute list.

Parameters

attributeList | Attribute list handle.

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

191

APPENDIX E. FILE DOCUMENTATION

E.4249 OTF2_ErrorCode OTF2_AttributeList RemoveAttribute (
OTF2_AttributeList = attributeList, OTF2_AttributeRef attribute)

Remove an attribute from an attribute list.

Parameters

‘ attributeList | Attribute list handle.

‘ attribute | Reference to Attribute definition.

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.4.2.50 bool OTF2_AttributeList_TestAttributeByID (const OTF2_AttributeList *
attributeList, OTF2_AttributeRef attribute)

Test if an attribute is in the attribute list.

Parameters

‘ attributeList | Attribute list handle.

‘ attribute | Reference to Attribute definition.

Returns

True if the id is in the list, else false.

E.5 0otf2/OTF2_Callbacks.h File Reference

This header file provides all user callbacks.
#include <stdbool.h>
#include <otf2/0TF2_ErrorCodes.h>

#include <otf2/0TF2_GeneralDefinitions.h>

Data Structures

e struct OTF2_CollectiveCallbacks

Struct which holds all collective callbacks.
¢ struct OTF2_FlushCallbacks

Structure holding the flush callbacks.

192

E.5 otf2/OTF2_Callbacks.h File Reference

* struct OTF2_MemoryCallbacks

Structure holding the memory callbacks.

Typedefs

* typedef OTF2_CallbackCode(x OTF2_Collectives_Barrier)(void xuserData,
OTF2_CollectiveContext *commContext)

Performs an barrier collective on the given communication context.

¢ typedef OTF2_CallbackCode(x OTF2_Collectives_Bcast)(void xuserData,
OTF2_CollectiveContext xcommContext, void *data, uint32_t numberEle-
ments, OTF2_Type type, uint32_t root)

Performs an broadcast collective on the given communication context.

¢ typedef OTF2_CallbackCode(x OTF2_Collectives_CreatelLocalComm)(void
suserData, OTF2_CollectiveContext xxlocalCommContext, OTF2_CollectiveContext
xglobalCommContext, uint32_t globalRank, uint32_t globalSize, uint32_-
t localRank, uint32_t localSize, uint32_t fileNumber, uint32_t numberOf-
Files)

Create a new disjoint partitioning of the the globalCommContext communica-
tion context. numberOfFiles denotes the number of the partitions. fileNumber
denotes in which of the partitions this OTF2_Archive should belong. localSize
is the size of this partition and localRank the rank of this OTF2_Archive in the
partition.
¢ typedef OTF2_CallbackCode(x OTF2_Collectives_FreeLocalComm)(void
xuserData, OTF2_CollectiveContext xlocalCommContext)

Destroys the communication context previous created by the OTF2_Collectives_-
CreateLocalComm callback.
¢ typedef OTF2_CallbackCode(x OTF2_Collectives_Gather)(void xuserData,
OTF2_CollectiveContext xcommContext, const void xinData, void soutData,
uint32_t numberElements, OTF2_Type type, uint32_t root)

Performs an gather collective on the given communication context where each
ranks contribute the same number of elements. outData is only valid at rank
root.

* typedef OTF2_CallbackCode(x OTF2_Collectives_Gatherv)(void xuserData,
OTF2_CollectiveContext *commContext, const void xinData, uint32_t in-
Elements, void xoutData, const uint32_t xoutElements, OTF2_Type type,
uint32_t root)

Performs an gather collective on the given communication context where each

ranks contribute different number of elements. outData and outElements are
only valid at rank root.

* typedef OTF2_CallbackCode(x OTF2_Collectives_GetRank)(void xuserData,
OTF2_CollectiveContext *commContext, uint32_t xrank)

193

APPENDIX E. FILE DOCUMENTATION

Returns the rank of this OTF2_Archive objects in this communication context. A
number between 0 and one less of the size of the communication context.

* typedef OTF2_CallbackCode(x OTF2_Collectives_GetSize)(void xuserData,
OTF2_CollectiveContext xcommContext, uint32_t xsize)

Returns the number of OTF2_Archive objects operating in this communication
context.

* typedef void(x OTF2_Collectives_Release)(void xuserData, OTF2_CollectiveContext
xglobal CommContext, OTF2_CollectiveContext xlocalCommContext)

Optionally called in OTF2_Archive_Close or OTF2_Reader_Close respectively.

¢ typedef OTF2_CallbackCode(x OTF2_Collectives_Scatter)(void xuserData,

OTF2_CollectiveContext *commContext, const void xinData, void xoutData,
uint32_t numberElements, OTF2_Type type, uint32_t root)

Performs an scatter collective on the given communication context where each
ranks contribute the same number of elements. inData is only valid at rank root.

¢ typedef OTF2_CallbackCode(x OTF2_Collectives_Scatterv)(void xuserData,
OTF2_CollectiveContext xcommContext, const void *inData, const uint32_-
t xinElements, void xoutData, uint32_t outElements, OTF2_Type type, uint32_-
t root)
Performs an scatter collective on the given communication context where each

ranks contribute different number of elements. inData and inElements are only
valid at rank root.

* typedef void *(x OTF2_MemoryAllocate)(void *userData, OTF2_FileType
fileType, OTF2_LocationRef location, void xxperBufferData, uint64_t chunk-
Size)

Function pointer for allocating memory for chunks.

¢ typedef void(* OTF2_MemoryFreeAll)(void suserData, OTF2_FileType file-
Type, OTF2_LocationRef location, void *xperBufferData, bool final)

Function pointer to release all allocated chunks.

¢ typedef OTF2_TimeStamp(x OTF2_PostFlushCallback)(void xuserData, OTF2_-
FileType fileType, OTF2_LocationRef location)

Definition for the post flush callback.

¢ typedef OTF2_FlushType(x OTF2_PreFlushCallback)(void xuserData, OTF2_-
FileType fileType, OTF2_LocationRef location, void xcallerData, bool fi-
nal)

Definition for the pre flush callback.

E.5.1 Detailed Description

This header file provides all user callbacks.

194

E.6 otf2/OTF2_Definitions.h File Reference

E.6 otf2/OTF2_Definitions.h File Reference

Data types used in the definition records.
#include <otf2/0TF2_ErrorCodes.h>

#include <otf2/0OTF2_GeneralDefinitions.h>

Typedefs

¢ typedef uint8_t OTF2_CartPeriodicity
Wrapper for enum OTF2_CartPeriodicity_enum.
¢ typedef uint32_t OTF2_GroupFlag
Wrapper for enum OTF2_GroupFlag_enum.
¢ typedef uint8_t OTF2_GroupType
Wrapper for enum OTF2_GroupType_enum.
¢ typedef uint8_t OTF2_LocationGroupType
Wrapper for enum OTF2_LocationGroupType_enum.
¢ typedef uint8_t OTF2_LocationType
Wrapper for enum OTF2_LocationType_enum.
¢ typedef uint8_t OTF2_MetricBase
Wrapper for enum OTF2_MetricBase_enum.
¢ typedef uint8_t OTF2_MetricMode
Wrapper for enum OTF2_MetricMode_enum.
* typedef uint8_t OTF2_MetricOccurrence
Wrapper for enum OTF2_MetricOccurrence_enum.
* typedef uint8_t OTF2_MetricScope
Wrapper for enum OTF2_MetricScope_enum.
¢ typedef uint8_t OTF2_MetricTiming
Wrapper for enum OTF2_MetricTiming_enum.
¢ typedef uint8_t OTF2_MetricType
Wrapper for enum OTF2_MetricType_enum.
* typedef uint8_t OTF2_MetricValueProperty
Wrapper for enum OTF2_MetricValueProperty_enum.
¢ typedef uint8_t OTF2_ParameterType

Wrapper for enum OTF2_ParameterType_enum.
* typedef uint8_t OTF2_RecorderKind

Wrapper for enum OTF2_RecorderKind_enum.
* typedef uint32_t OTF2_RegionFlag
Wrapper for enum OTF2_RegionFlag_enum.

195

APPENDIX E. FILE DOCUMENTATION

¢ typedef uint8_t OTF2_RegionRole

Wrapper for enum OTF2_RegionRole_enum.

¢ typedef uint8_t OTF2_SystemTreeDomain

Wrapper for enum OTF2_SystemTreeDomain_enum.

Enumerations

* enum OTF2_CartPeriodicity_enum {

OTF2_CART_PERIODIC_FALSE =0,
OTF2_CART_PERIODIC_TRUE =1}

Periodicity types of a cartesian topology dimension.

enum OTF2_GroupFlag_enum {
OTF2_GROUP_FLAG_NONE =0,
OTF2_GROUP_FLAG_GLOBAL_MEMBERS =(1<<0)}

List of possible flags to specify special characteristics of a Group.
enum OTF2_GroupType_enum {

OTF2_GROUP_TYPE_UNKNOWN =0,
OTF2_GROUP_TYPE_LOCATIONS =1,
OTF2_GROUP_TYPE_REGIONS =2,
OTF2_GROUP_TYPE_METRIC =3,
OTF2_GROUP_TYPE_COMM_LOCATIONS =4,
OTF2_GROUP_TYPE_COMM_GROUP =5,
OTF2_GROUP_TYPE_COMM_SELF =6 }

List of available group types.
enum OTF2_LocationGroupType_enum {

OTF2_LOCATION_GROUP_TYPE_UNKNOWN =0,
OTF2_LOCATION_GROUP_TYPE_PROCESS =1 }

List of possible definitions of type LocationGroup.
enum OTF2_LocationType_enum {

OTF2_LOCATION_TYPE_UNKNOWN =0,
OTF2_LOCATION_TYPE_CPU_THREAD =1,
OTF2_LOCATION_TYPE_GPU =2,
OTF2_LOCATION_TYPE_METRIC =3 }

List of possible definitions of type Location.

196

E.6 otf2/OTF2_Definitions.h File Reference

* enum OTF2_MetricBase_enum {
OTF2_BASE_BINARY =0,
OTF2_BASE_DECIMAL =1 }

Metric base types.
e enum OTF2_MetricMode_enum {

OTF2_METRIC_ACCUMULATED_START = OTF2_METRIC_VALUE_-
ACCUMULATED | OTF2_METRIC_TIMING_START,

OTF2_METRIC_ACCUMULATED_POINT = OTF2_METRIC_VALUE _-
ACCUMULATED | OTF2_METRIC_TIMING_POINT,

OTF2_METRIC_ACCUMULATED_LAST = OTF2_METRIC_VALUE_ACCUMULATED
| OTF2_METRIC_TIMING_LAST,

OTF2_METRIC_ACCUMULATED_NEXT = OTF2_METRIC_VALUE_-
ACCUMULATED | OTF2_METRIC_TIMING_NEXT,

OTF2_METRIC_ABSOLUTE_POINT = OTF2_METRIC_VALUE_ABSOLUTE
| OTF2_METRIC_TIMING_POINT,

OTF2_METRIC_ABSOLUTE_LAST = OTF2_METRIC_VALUE_ABSOLUTE
| OTF2_METRIC_TIMING_LAST,

OTF2_METRIC_ABSOLUTE_NEXT = OTF2_METRIC_VALUE_ABSOLUTE
| OTF2_METRIC_TIMING_NEXT,

OTF2_METRIC_RELATIVE_POINT = OTF2_METRIC_VALUE_RELATIVE
| OTF2_METRIC_TIMING_POINT,

OTF2_METRIC_RELATIVE_LAST = OTF2_METRIC_VALUE_RELATIVE
| OTF2_METRIC_TIMING_LAST,

OTF2_METRIC_RELATIVE_NEXT = OTF2_METRIC_VALUE_RELATIVE
| OTF2_METRIC_TIMING_NEXT }

Metric mode is a combination of value property and timing information.

¢ enum OTF2_MetricOccurrence_enum {
OTF2_METRIC_SYNCHRONOUS_STRICT =0,
OTF2_METRIC_SYNCHRONOUS =1,
OTF2_METRIC_ASYNCHRONOUS =2 }

Metric occurrence.
* enum OTF2_MetricScope_enum {

OTF2_SCOPE_LOCATION =0,
OTF2_SCOPE_LOCATION_GROUP =1,
OTF2_SCOPE_SYSTEM_TREE_NODE =2,
OTF2_SCOPE_GROUP =3 }

List of available metric scopes.

197

APPENDIX E. FILE DOCUMENTATION

* enum OTF2_MetricTiming_enum {
OTF2_METRIC_TIMING_START =0,
OTF2_METRIC_TIMING_POINT =1 << 4,
OTF2_METRIC_TIMING_LAST =2 << 4,
OTF2_METRIC_TIMING_NEXT =3 << 4,
OTF2_METRIC_TIMING_MASK =240 }

Determines when the values have been collected or for which interval of time
they are valid. Used for the upper half-byte of OTF2_MetricMode.

* enum OTF2_MetricType_enum {
OTF2_METRIC_TYPE_OTHER =0,
OTF2_METRIC_TYPE_PAPI =1,
OTF2_METRIC_TYPE_RUSAGE =2,
OTF2_METRIC_TYPE_USER =3}

List of available metric types.
* enum OTF2_MetricValueProperty_enum {

OTF2_METRIC_VALUE_ACCUMULATED = 0,
OTF2_METRIC_VALUE_ABSOLUTE =1,
OTF2_METRIC_VALUE_RELATIVE =2,
OTF2_METRIC_VALUE_MASK =15 }

Information about whether the metric value is accumulated, absolute, or rela-
tive. Used for the lower half-byte of OTF2_MetricMode.

* enum OTF2_ParameterType_enum {
OTF2_PARAMETER_TYPE_STRING =0,
OTF2_PARAMETER_TYPE_INT64 = 1,

OTF2_PARAMETER_TYPE_UINT64 =2 }

List of possible for definitions of type Parameter.
¢ enum OTF2_RecorderKind_enum {

OTF2_RECORDER_KIND_UNKNOWN =0,
OTF2_RECORDER_KIND_ABSTRACT =1,
OTF2_RECORDER_KIND_CPU =2,
OTF2_RECORDER_KIND_GPU =3 }

List of possible kinds a MetricClass can be recorded by.
* enum OTF2_RegionFlag_enum {

OTF2_REGION_FLAG_NONE = 0,
OTF2_REGION_FLAG_DYNAMIC = (1 << 0),
OTF2_REGION_FLAG_PHASE=(1<< 1)}

198

E.6 otf2/OTF2_Definitions.h File Reference

List of possible flags to specify special characteristics of a Region.

* enum OTF2_RegionRole_enum {
OTF2_REGION_ROLE_UNKNOWN =0,
OTF2_REGION_ROLE_FUNCTION =1,
OTF2_REGION_ROLE_WRAPPER =2,
OTF2_REGION_ROLE_LOOP =3,
OTF2_REGION_ROLE_CODE =4,
OTF2_REGION_ROLE_PARALLEL =5,
OTF2_REGION_ROLE_SECTIONS =6,
OTF2_REGION_ROLE_SECTION =7,
OTF2_REGION_ROLE_WORKSHARE = 8§,
OTF2_REGION_ROLE_SINGLE =9,
OTF2_REGION_ROLE_SINGLE_SBLOCK = 10,
OTF2_REGION_ROLE_MASTER =11,
OTF2_REGION_ROLE_CRITICAL = 12,
OTF2_REGION_ROLE_CRITICAL_SBLOCK =13,
OTF2_REGION_ROLE_ATOMIC = 14,
OTF2_REGION_ROLE_BARRIER = 15,
OTF2_REGION_ROLE_IMPLICIT_BARRIER = 16,
OTF2_REGION_ROLE_FLUSH =17,
OTF2_REGION_ROLE_ORDERED = 18,
OTF2_REGION_ROLE_ORDERED_SBLOCK =19,
OTF2_REGION_ROLE_TASK = 20,
OTF2_REGION_ROLE_TASK_CREATE =21,
OTF2_REGION_ROLE_TASK_WAIT =22,
OTF2_REGION_ROLE_COLL_ONE2ALL = 23,
OTF2_REGION_ROLE_COLL_ALL20ONE = 24,
OTF2_REGION_ROLE_COLL_ALL2ALL =25,
OTF2_REGION_ROLE_COLL_OTHER = 26,
OTF2_REGION_ROLE_FILE_IO =27,
OTF2_REGION_ROLE_POINT2POINT = 28,
OTF2_REGION_ROLE_RMA = 29,
OTF2_REGION_ROLE_DATA_TRANSFER = 30,

199

APPENDIX E. FILE DOCUMENTATION

OTF2_REGION_ROLE_ARTIFICIAL =31,
OTF2_REGION_ROLE_THREAD_CREATE = 32,
OTF2_REGION_ROLE_THREAD_WAIT =33 }

List of possible roles of a Region.

* enum OTF2_SystemTreeDomain_enum {
OTF2_SYSTEM_TREE_DOMAIN_MACHINE = 0,
OTF2_SYSTEM_TREE_DOMAIN_SHARED_MEMORY =1,
OTF2_SYSTEM_TREE_DOMAIN_NUMA =2,
OTF2_SYSTEM_TREE_DOMAIN_SOCKET = 3,
OTF2_SYSTEM_TREE_DOMAIN_CACHE =4,
OTF2_SYSTEM_TREE_DOMAIN_CORE =5,
OTF2_SYSTEM_TREE_DOMAIN_PU =6 }

List of available system tree node domains.

E.6.1 Detailed Description
Data types used in the definition records.

Source Template:

templates/OTF2_Definitions.tmpl.h

E.6.2 Enumeration Type Documentation
E.6.2.1 enum OTF2_CartPeriodicity_enum

Periodicity types of a cartesian topology dimension.

Since

Version 1.0

Enumerator:
OTF2_CART _PERIODIC_FALSE Dimension is not periodic.
OTF2_CART _PERIODIC_TRUE Dimension is periodic.

200

E.6 otf2/OTF2_Definitions.h File Reference

E.6.22 enum OTF2_GroupFlag enum

List of possible flags to specify special characteristics of a Group.

Since

Version 1.2

Enumerator:

OTF2_GROUP_FLAG_NONE A group without special characterization.

OTF2 GROUP_FLAG GLOBAL MEMBERS No translation of ranks in
event records needs to be done when a group of type OTF2_GROUP_-
TYPE_COMM_GROUP has this flag. L.e., the ranks are indexes into the
the OTF2_GROUP_TYPE_COMM_LOCATIONS group.

E.6.2.3 enum OTF2_GroupType_enum

List of available group types.

Since

Version 1.2

Enumerator:

OTF2_GROUP_TYPE _UNKNOWN Group of unknown type.
OTF2_GROUP_TYPE_LOCATIONS Group of locations.
OTF2_GROUP_TYPE_REGIONS Group of regions.
OTF2_GROUP_TYPE_METRIC Group of metrics.

OTF2_GROUP_TYPE_COMM_LOCATIONS List of locations which par-
ticipated in the pardigm specified by the group definition. For example:
In case of MPI, the size of this group should match the size of MPI_-
COMM_WORLD. Each entry in the list is a Location reference, where
the index of the entry is equal to the rank in MPI_COMM_WORLD (i.e.,
rank i corresponds to location members/[i]).

Also, if this definition is present, the location group ids of locations with
type OTF2_LOCATION_TYPE_CPU_THREAD should match the MPI
rank.

This group needs to be defined, before any group of type OTF2_GROUP_-
TYPE_COMM_GROUP and the same paradigm.

Note: This does not makes sense in local definitions.

201

APPENDIX E. FILE DOCUMENTATION

OTF2_GROUP_TYPE_COMM_GROUP A sub-group of the correspond-
ing group definition with type OTF2_GROUP_TYPE_COMM_LOCATIONS
and the same paradigm. The sub-group is formed by listing the indexes
of the OTF2_GROUP_TYPE_COMM_LOCATIONS group.

OTF2_GROUP_TYPE COMM _SELF Special group type to efficiently han-
dle self-like communicators (i.e., MPI_COMM_SELF and friends). At
most one of this definition is allowed to exists per paradigm.

E.6.24 enum OTF2_LocationGroupType_enum

List of possible definitions of type LocationGroup.

Since

Version 1.0

Enumerator:

OTF2_LOCATION_GROUP_TYPE UNKNOWN A location group of un-
known type.

OTF2_LOCATION_GROUP_TYPE _PROCESS A process.

E.6.2.5 enum OTF2_LocationType_enum

List of possible definitions of type Location.

Since

Version 1.0

Enumerator:
OTF2_LOCATION_TYPE UNKNOWN A location of unknown type.
OTF2_LOCATION_TYPE_CPU_THREAD A CPU thread.
OTF2_LOCATION_TYPE_GPU A GPU location.

OTF2_LOCATION_TYPE_METRIC A metric only location e.g. an exter-
nal device.

202

E.6 otf2/OTF2_Definitions.h File Reference

E.6.26 enum OTF2_ MetricBase enum

Metric base types.

Since

Version 1.0

Enumerator:
OTF2_BASE_BINARY Binary base.
OTF2_BASE DECIMAL Decimal base.

E.6.2.7 enum OTF2_MetricMode_enum

Metric mode is a combination of value property and timing information.

Since

Version 1.0

Enumerator:

OTF2_METRIC_ACCUMULATED_START Accumulated metric, ’START’
timing.

OTF2_METRIC_ACCUMULATED_POINT Accumulated metric, ’'POINT’
timing.

OTF2 METRIC ACCUMULATED LAST Accumulated metric, LAST’ tim-
ing.

OTF2 _METRIC ACCUMULATED NEXT Accumulated metric, 'NEXT’
timing.

OTF2_METRIC_ABSOLUTE_POINT Absolute metric, 'POINT’ timing.

OTF2_METRIC_ABSOLUTE_LAST Absolute metric, 'LAST’ timing.

OTF2_METRIC_ABSOLUTE_NEXT Absolute metric, NEXT’ timing.

OTF2_METRIC_REIATIVE_POINT Relative metric, ’POINT’ timing.

OTF2_METRIC_REIATIVE_LAST Relative metric, 'LAST’ timing.

OTF2_METRIC_REILATIVE_NEXT Relative metric, ' NEXT’ timing.

203

APPENDIX E. FILE DOCUMENTATION

E.6.2.8 enum OTF2_MetricOccurrence_enum
Metric occurrence.

Since

Version 1.0

Enumerator:

OTF2_METRIC_SYNCHRONOUS_STRICT Metric occurs at every region
enter and leave.

OTF2_METRIC_SYNCHRONOUS Metric occurs only at a region enter
and leave, but does not need to occur at every enter/leave.

OTF2_METRIC_ASYNCHRONOUS Metric can occur at any place i.e. it
is not related to region enter and leaves.

E.6.2.9 enum OTF2_MetricScope_enum

List of available metric scopes.

Since

Version 1.0

Enumerator:
OTF2_SCOPE_LOCATION Scope of a metric is another location.
OTF2_SCOPE_LOCATION_GROUP Scope of ametric is a location group.

OTF2_SCOPE_SYSTEM_TREE_NODE Scope of a metric is a system tree
node.
OTF2_SCOPE_GROUP Scope of a metric is a generic group of locations.

E.6.2.10 enum OTF2_MetricTiming_enum

Determines when the values have been collected or for which interval of time they
are valid. Used for the upper half-byte of OTF2_MetricMode.

Since

Version 1.0

204

E.6 otf2/OTF2_Definitions.h File Reference

Enumerator:

OTF2_METRIC_TIMING_START Metric value belongs to the time inter-
val since the beginning of the measurement.

OTF2_METRIC_TIMING_POINT Metric value is only valid at a point in
time but not necessarily for any interval of time.

OTF2_METRIC TIMING _LAST Metric value is related to the time inter-
val since the last counter sample of the same metric, i.e. the immediate
past.

OTF2_METRIC_TIMING_NEXT Metric value is valid from now until the
next counter sample, i.e. the future right ahead.

OTF2_METRIC_TIMING_MASK This mask can be used to get the upper
half-byte in OTF2_MetricMode that is used to indicate metric timing
information.

E.6.2.11 enum OTF2_MetricType_enum

List of available metric types.

Since

Version 1.0

Enumerator:

OTF2_METRIC_TYPE_OTHER Any metric of a type not explicitly listed
below.

OTF2_METRIC_TYPE_PAPI PAPI counter.
OTF2_METRIC_TYPE_RUSAGE Resource usage counter.
OTF2 _METRIC _TYPE USER User metrics.

E.6.2.12 enum OTF2_MetricValueProperty_enum

Information about whether the metric value is accumulated, absolute, or relative.
Used for the lower half-byte of OTF2_MetricMode.

Since

Version 1.0

205

APPENDIX E. FILE DOCUMENTATION

Enumerator:

OTF2_METRIC_VALUE ACCUMULATED Accumulated metric is monotonously
increasing (i.e., PAPI counter for number of executed floating point op-

erations).
OTF2_METRIC_VALUE_ABSOLUTE Absolute metric (i.e., temperature,
rate, mean value, etc.).
OTF2_METRIC _VALUE_REILATIVE Relative metric.

OTF2_METRIC_VALUE_MASK This mask can be used to get lower half-
byte in OTF2_MetricMode that is used to indicate metric value property.

E.6.2.13 enum OTF2_ParameterType_enum

List of possible for definitions of type Parameter.

Since
Version 1.0

Enumerator:
OTF2_PARAMETER_TYPE _STRING Parameter is of type string.
OTF2_PARAMETER TYPE INT64 Parameter is of type signed 8-byte in-

teger.
OTF2_PARAMETER_TYPE _UINT64 Parameter is of type unsigned 8-byte

integer.

E.6.2.14 enum OTF2_RecorderKind_enum
List of possible kinds a MetricClass can be recorded by.

Since

Version 1.2

Enumerator:

OTF2_RECORDER_KIND_UNKNOWN No specific kind of recorder.

OTF2_RECORDER_KIND ABSTRACT The metric class will only be recorded
via a Metriclnstance definitions.

OTF2_RECORDER_KIND_CPU This metric class will only be recored by
locations of type OTF2_LOCATION_TYPE_CPU_THREAD.

OTF2_RECORDER_KIND_GPU This metric class will only be recored by
locations of type OTF2_LOCATION_TYPE_GPU.

206

E.6 otf2/OTF2_Definitions.h File Reference

E.6.2.15 enum OTF2_RegionFlag_enum

List of possible flags to specify special characteristics of a Region.

Since

Version 1.1

Enumerator:

OTF2_REGION_FLAG_NONE A region without special characterization.

OTF2_REGION_FLAG_DYNAMIC Each time this region is entered it will
get an individual call path in the profile.

OTF2_REGION_FLAG_PHASE Each time this region is entered it will get
an individual root node in the profile.

E.6.2.16 enum OTF2_RegionRole_enum

List of possible roles of a Region.

Since

Version 1.1

Enumerator:

OTF2_REGION_ROLE _UNKNOWN A region of unknown role.
OTF2_REGION_ROLE_FUNCTION An entire function/subroutine.

OTF2_REGION_ROLE_WRAPPER An API function wrapped by Score-
P.

OTF2_REGION_ROLE_LOOP A loop in the code.
OTF2_REGION_ROLE_CODE An arbitrary section of code.

OTF2_REGION_ROLE _PARALLEL E.g. OpenMP "parallel" construct (struc-
tured block)

OTF2_REGION_ROLE_SECTIONS E.g. OpenMP "sections" construct.

OTF2_REGION_ROLE _SECTION Individual "section" inside an OpenMP
"sections" construct.

OTF2_REGION_ROLE _WORKSHARE E.g. OpenMP "workshare" con-
struct.

OTF2_REGION_ROLE _SINGLE E.g. OpenMP "single" construct.

207

APPENDIX E. FILE DOCUMENTATION

OTF2_REGION_ROLE_SINGLE_SBLOCK E.g. OpenMP "single" con-
struct (structured block)

OTF2_REGION_ROLE _MASTER E.g. OpenMP "master" construct.
OTF2_REGION_ROLE_CRITICAL E.g. OpenMP "critical" construct.

OTF2_REGION_ROLE _CRITICAL_SBLOCK E.g. OpenMP "critical" con-
struct (structured block)

OTF2_REGION_ROLE _ATOMIC E.g. OpenMP "atomic" construct.
OTF2_REGION_ROLE_BARRIER Explicit barrier.
OTF2_REGION_ROLE_IMPLICIT_BARRIER Implicit barrier.
OTF2_REGION_ROLE_FLUSH E.g. OpenMP "flush" construct.
OTF2_REGION_ROLE_ORDERED E.g. OpenMP "ordered" construct.

OTF2_REGION_ROLE _ORDERED_SBLOCK E.g. OpenMP "ordered"
construct (structured block)

OTF2_REGION_ROLE_TASK '"task" construct (structured block)
OTF2_REGION_ROLE_TASK CREATE 'task" construct (creation)
OTF2_REGION_ROLE_TASK_WAIT '"taskwait" construct

OTF2 REGION _ROLE COLL ONE2ALL Collective 1:N communication
operation.

OTF2_REGION_ROLE COLL_ALL20NE Collective N:1 communication
operation.

OTF2_REGION_ROLE _COLL_ALI2ALL Collective N:N communication
operation.

OTF2_REGION_ROLE COLL_OTHER Collective M:N communication op-
eration.

OTF2_REGION_ROLE_FILE IO Any file I/O operation.

OTF2_REGION_ROLE _POINT2POINT A point-to-point communication
function.

OTF2_REGION_ROLE _RMA A remote memory access communication op-
eration.

OTF2_REGION_ROLE DATA_TRANSFER A data transfer operation in
memory.

OTF2_REGION_ROLE_ARTIFICIAL An artificial region, mostly used by

the monitor software.
Since

Version 1.2.

OTF2 _REGION_ROLE THREAD CREATE A function which creates one
thread.

208

E.7 otf2/OTF2_DefReader.h File Reference

Since

Version 1.3.

OTF2_REGION_ROLE _THREAD_WAIT A function which waits for the
completion of one thread.
Since

Version 1.3.

E.6.2.17 enum OTF2_SystemTreeDomain_enum

List of available system tree node domains.

Since

Version 1.2

Enumerator:

OTF2_SYSTEM_TREE _DOMAIN_MACHINE All nodes below a node with
this attribute encompass a tightly coupled HPC system.

OTF2_SYSTEM_TREE_DOMAIN_SHARED_MEMORY All nodes below
a node with this attribute encompass a system where processes can com-
municate via hardware shared memory.

OTF2_SYSTEM_TREE_DOMAIN_NUMA A numa domain. A set of pro-
cessors around memory which the processors can directly access.

OTF2_SYSTEM_TREE_DOMAIN_SOCKET Socket, physical package, or
chip. In the physical meaning, i.e. that you can add or remove physically.

OTF2_SYSTEM_TREE DOMAIN_CACHE Cache. Can be L1i, L1d, L2,
L3, ..

OTF2_SYSTEM_TREE DOMAIN_CORE Core. A computation unit (may
be shared by several logical processors).

OTF2_SYSTEM_TREE DOMAIN_PU Processing Unit (An non-shared ALU,
FPU, ...)

E.7 otf2/0TF2_DefReader.h File Reference

This is the local definition reader, which reads location dependend definitions, and
can also be used to get the mapping information from the local definition file. Local
definitions are always assigned to a location.

209

APPENDIX E. FILE DOCUMENTATION

#include <stdint.h>
#include <otf2/0TF2_ErrorCodes.h>
#include <otf2/0TF2_Definitions.h>

#include <otf2/0OTF2_DefReaderCallbacks.h>

Functions

e OTF2_ErrorCode OTF2_DefReader_GetLocationID (const OTF2_DefReader
xreader, OTF2_LocationRef xlocation)
Get the location ID of this reader object.
¢ OTF2_ErrorCode OTF2_DefReader_ReadDefinitions (OTF2_DefReader xreader,
uint64_t recordsToRead, uint64_t *recordsRead)
Reads the given number of records from the definition reader.
¢ OTF2_ErrorCode OTF2_DefReader_SetCallbacks (OTF2_DefReader *reader,
const OTF2_DefReaderCallbacks xcallbacks, void xuserData)

Sets the callback functions for the given reader object. Everytime when OTF2
reads a record, a callback function is called and the records data is passed to
this function. Therefore the programmer needs to set function pointers at the
"callbacks" struct for the record type he wants to read.

E.7.1 Detailed Description
This is the local definition reader, which reads location dependend definitions, and

can also be used to get the mapping information from the local definition file. Local
definitions are always assigned to a location.

E.7.2 Function Documentation

E.7.21 OTF2_ErrorCode OTF2_DefReader_GetLocationID (const
OTF2_DefReader * reader, OTF2_LocationRef « location)

Get the location ID of this reader object.

Parameters

‘ reader | This given reader object will be deleted.
‘ location | Pointer to the variable where the location ID is returned in.

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

210

E.7 otf2/OTF2_DefReader.h File Reference

E.7.2.2 OTF2_ErrorCode OTF2_DefReader_ReadDefinitions (OTF2_DefReader
reader, uint64_t recordsToRead, uint64_t x recordsRead)

Reads the given number of records from the definition reader.

Parameters

reader

The records of this reader will be read when the function is
issued.

record-
sToRead

This variable tells the reader how much records it has to read.

out

record-
sRead

This is a pointer to variable where the amount of actually
read records is returned. This may differ to the given record-
sToRead if there are no more records left in the trace. In
this case the programmer can easily check that the reader has
finnished his job by checking recordsRead < recordsToRead.

Returns

OTF2_SUCCESS if successful

OTF2_ERROR_INTERRUPTED_BY_CALLBACK if an user supplied call-
back returned OTF2_CALLBACK_INTERRUPT

OTF2_ERROR_DUPLICATE_MAPPING_TABLE if an duplicate mapping
table definition was read

otherwise the error code

E.7.23 OTF2_ErrorCode OTF2_DefReader_SetCallbacks (OTF2_DefReader *
reader, const OTF2_DefReaderCallbacks * callbacks, void x userData)

Sets the callback functions for the given reader object. Everytime when OTF2 reads
arecord, a callback function is called and the records data is passed to this function.
Therefore the programmer needs to set function pointers at the "callbacks" struct
for the record type he wants to read.

Parameters
reader | This given reader object will be setted up with new callback functions.
callbacks | Struct which holds a function pointer for each record type. OTF2_-
DefReaderCallbacks_New.
userData | Data passed as argument userData to the record callbacks.

211

APPENDIX E. FILE DOCUMENTATION

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.8 0otf2/OTF2_DefReaderCallbacks.h File Reference

This defines the callbacks for the definition reader.
#include <stdint.h>

#include <otf2/0TF2_ErrorCodes.h>
#include <otf2/0OTF2_GeneralDefinitions.h>
#include <otf2/0TF2 Definitions.h>

#include <otf2/0TF2_IdMap.h>

Typedefs

¢ typedef OTF2_CallbackCode(x OTF2_DefReaderCallback_Attribute)(void
xuserData, OTF2_AttributeRef self, OTF2_StringRef name, OTF2_StringRef
description, OTF2_Type type)
Function pointer definition for the callback which is triggered by a Attribute
definition record.
¢ typedef OTF2_CallbackCode(x OTF2_DefReaderCallback_Callpath)(void
xuserData, OTF2_CallpathRef self, OTF2_CallpathRef parent, OTF2_RegionRef
region)
Function pointer definition for the callback which is triggered by a Callpath
definition record.

* typedef OTF2_CallbackCode(x OTF2_DefReaderCallback_Callsite)(void
xuserData, OTF2_CallsiteRef self, OTF2_StringRef sourceFile, uint32_t lineNum-
ber, OTF2_RegionRef enteredRegion, OTF2_RegionRef leftRegion)

Function pointer definition for the callback which is triggered by a Callsite def-
inition record.

* typedef OTF2_CallbackCode(x OTF2_DefReaderCallback_CartCoordinate
)(void xuserData, OTF2_CartTopologyRef cartTopology, uint32_t rank, uint8_-

t numberOfDimensions, const uint32_t xcoordinates)
Function pointer definition for the callback which is triggered by a CartCoordi-
nate definition record.

* typedef OTF2_CallbackCode(x OTF2_DefReaderCallback_CartDimension
)(void xuserData, OTF2_CartDimensionRef self, OTF2_StringRef name, uint32_-
t size, OTF2_CartPeriodicity cartPeriodicity)

Function pointer definition for the callback which is triggered by a CartDimen-
sion definition record.

212

E.8 otf2/OTF2_DefReaderCallbacks.h File Reference

* typedef OTF2_CallbackCode(x OTF2_DefReaderCallback_CartTopology)(void
xuserData, OTF2_CartTopologyRef self, OTF2_StringRef name, OTF2_-
CommRef communicator, uint§_t numberOfDimensions, const OTF2_CartDimensionRef
xcartDimensions)

Function pointer definition for the callback which is triggered by a CartTopology
definition record.
* typedef OTF2_CallbackCode(x OTF2_DefReaderCallback_ClockOffset)(void
xuserData, OTF2_TimeStamp time, int64_t offset, double standardDevia-
tion)
Function pointer definition for the callback which is triggered by a ClockOffset
definition record.
* typedef OTF2_CallbackCode(x OTF2_DefReaderCallback_Comm)(void xuserData,
OTF2_CommRef self, OTF2_StringRef name, OTF2_GroupRef group, OTF2_-
CommRef parent)

Function pointer definition for the callback which is triggered by a Comm defi-
nition record.
¢ typedef OTF2_CallbackCode(x OTF2_DefReaderCallback_Group)(void xuserData,
OTF2_GroupRef self, OTF2_StringRef name, OTF2_GroupType groupType,
OTF2_Paradigm paradigm, OTF2_GroupFlag groupFlags, uint32_t numberOfMem-
bers, const uint64_t xmembers)
Function pointer definition for the callback which is triggered by a Group defi-
nition record.
¢ typedef OTF2_CallbackCode(x OTF2_DefReaderCallback_Location)(void
xuserData, OTF2_LocationRef self, OTF2_StringRef name, OTF2_LocationType
locationType, uint64_t numberOfEvents, OTF2_LocationGroupRef location-
Group)
Function pointer definition for the callback which is triggered by a Location
definition record.
* typedef OTF2_CallbackCode(x OTF2_DefReaderCallback_LocationGroup
)(void xuserData, OTF2_LocationGroupRef self, OTF2_StringRef name, OTF2_-
LocationGroupType locationGroupType, OTF2_SystemTreeNodeRef systemTreePar-
ent)

Function pointer definition for the callback which is triggered by a Location-
Group definition record.

¢ typedef OTF2_CallbackCode(x OTF2_DefReaderCallback_LocationGroupProperty
)(void xuserData, OTF2_LocationGroupRef locationGroup, OTF2_StringRef
name, OTF2_StringRef value)
Function pointer definition for the callback which is triggered by a Location-
GroupProperty definition record.
* typedef OTF2_CallbackCode(x OTF2_DefReaderCallback_LocationProperty
)(void xuserData, OTF2_LocationRef location, OTF2_StringRef name, OTF2_-
StringRef value)

213

APPENDIX E. FILE DOCUMENTATION

Function pointer definition for the callback which is triggered by a Location-
Property definition record.
¢ typedef OTF2_CallbackCode(x OTF2_DefReaderCallback_MappingTable)(void
xuserData, OTF2_MappingType mappingType, const OTF2_IdMap *idMap)

Function pointer definition for the callback which is triggered by a MappingTable
definition record.

* typedef OTF2_CallbackCode(x OTF2_DefReaderCallback_MetricClass)(void
xuserData, OTF2_MetricRef self, uint8_t numberOfMetrics, const OTF2_-
MetricMemberRef xmetricMembers, OTF2_MetricOccurrence metricOccur-
rence, OTF2_RecorderKind recorderKind)

Function pointer definition for the callback which is triggered by a MetricClass
definition record.
¢ typedef OTF2_CallbackCode(x OTF2_DefReaderCallback_MetricClassRecorder
)(void xuserData, OTF2_MetricRef metricClass, OTF2_LocationRef recorder)

Function pointer definition for the callback which is triggered by a MetricClass-
Recorder definition record.
* typedef OTF2_CallbackCode(x OTF2_DefReaderCallback_Metriclnstance
)(void xuserData, OTF2_MetricRef self, OTF2_MetricRef metricClass, OTF2_-
LocationRef recorder, OTF2_MetricScope metricScope, uint64_t scope)

Function pointer definition for the callback which is triggered by a Metricln-
stance definition record.

* typedef OTF2_CallbackCode(x OTF2_DefReaderCallback_MetricMember
)(void xuserData, OTF2_MetricMemberRef self, OTF2_StringRef name, OTF2_-
StringRef description, OTF2_MetricType metricType, OTF2_MetricMode
metricMode, OTF2_Type valueType, OTF2_MetricBase metricBase, int64_-

t exponent, OTF2_StringRef unit)
Function pointer definition for the callback which is triggered by a MetricMem-
ber definition record.

¢ typedef OTF2_CallbackCode(x OTF2_DefReaderCallback_Parameter)(void
xuserData, OTF2_ParameterRef self, OTF2_StringRef name, OTF2_ParameterType
parameterType)

Function pointer definition for the callback which is triggered by a Parameter
definition record.

¢ typedef OTF2_CallbackCode(x OTF2_DefReaderCallback_Region)(void xuserData,
OTF2_RegionRef self, OTF2_StringRef name, OTF2_StringRef canonical-
Name, OTF2_StringRef description, OTF2_RegionRole regionRole, OTF2_-
Paradigm paradigm, OTF2_RegionFlag regionFlags, OTF2_StringRef source-
File, uint32_t beginLineNumber, uint32_t endLineNumber)

Function pointer definition for the callback which is triggered by a Region defi-
nition record.

214

E.8 otf2/OTF2_DefReaderCallbacks.h File Reference

¢ typedef OTF2_CallbackCode(x OTF2_DefReaderCallback_RmaWin)(void
xuserData, OTF2_RmaWinRef self, OTF2_StringRef name, OTF2_CommRef
comm)

Function pointer definition for the callback which is triggered by a RmaWin
definition record.

¢ typedef OTF2_CallbackCode(x OTF2_DefReaderCallback_String)(void xuserData,
OTF2_StringRef self, const char *string)

Function pointer definition for the callback which is triggered by a String defi-
nition record.

* typedef OTF2_CallbackCode(x OTF2_DefReaderCallback_SystemTreeNode
)(void xuserData, OTF2_SystemTreeNodeRef self, OTF2_StringRef name,
OTF2_StringRef className, OTF2_SystemTreeNodeRef parent)

Function pointer definition for the callback which is triggered by a SystemTreeN-
ode definition record.

* typedef OTF2_CallbackCode(x OTF2_DefReaderCallback_SystemTreeNodeDomain
)(void xuserData, OTF2_SystemTreeNodeRef systemTreeNode, OTF2_SystemTreeDomain
systemTreeDomain)

Function pointer definition for the callback which is triggered by a SystemTreeN-
odeDomain definition record.

* typedef OTF2_CallbackCode(x OTF2_DefReaderCallback_SystemTreeNodeProperty
)(void xuserData, OTF2_SystemTreeNodeRef systemTreeNode, OTF2_StringRef
name, OTF2_StringRef value)

Function pointer definition for the callback which is triggered by a SystemTreeN-
odeProperty definition record.

¢ typedef OTF2_CallbackCode(x OTF2_DefReaderCallback_Unknown)(void
xuserData)

Function pointer definition for the callback which is triggered for an unknown
definition.
* typedef struct OTF2_DefReaderCallbacks_struct OTF2_DefReaderCallbacks

Opaque struct which holdes all definition record callbacks.

Functions

¢ void OTF2_DefReaderCallbacks_Clear (OTF2_DefReaderCallbacks *defReaderCallbacks)

Clears a struct for the definition callbacks.

¢ void OTF2_DefReaderCallbacks_Delete (OTF2_DefReaderCallbacks xdefReaderCallbacks)

Deallocates a struct for the definition callbacks.

¢ OTF2_DefReaderCallbacks * OTF2_DefReaderCallbacks_New (void)

215

APPENDIX E. FILE DOCUMENTATION

Allocates a new struct for the definition callbacks.
OTF2_ErrorCode OTF2_DefReaderCallbacks_SetAttributeCallback (OTF2_-
DefReaderCallbacks xdefReaderCallbacks, OTF2_DefReaderCallback_Attribute
attributeCallback)

Registers the callback for the Attribute definition.
OTF2_ErrorCode OTF2_DefReaderCallbacks_SetCallpathCallback (OTF2_-
DefReaderCallbacks xdefReaderCallbacks, OTF2_DefReaderCallback_Callpath
callpathCallback)

Registers the callback for the Callpath definition.
OTF2_ErrorCode OTF2_DefReaderCallbacks_SetCallsiteCallback (OTF2_-
DefReaderCallbacks xdefReaderCallbacks, OTF2_DefReaderCallback_Callsite
callsiteCallback)

Registers the callback for the Callsite definition.
OTF2_ErrorCode OTF2_DefReaderCallbacks_SetCartCoordinateCallback (OTF2_-
DefReaderCallbacks xdefReaderCallbacks, OTF2_DefReaderCallback_CartCoordinate
cartCoordinateCallback)

Registers the callback for the CartCoordinate definition.
OTF2_ErrorCode OTF2_DefReaderCallbacks_SetCartDimensionCallback (OTF2_-
DefReaderCallbacks *defReaderCallbacks, OTF2_DefReaderCallback CartDimension
cartDimensionCallback)

Registers the callback for the CartDimension definition.
OTF2_ErrorCode OTF2_DefReaderCallbacks_SetCartTopologyCallback (OTF2_-
DefReaderCallbacks xdefReaderCallbacks, OTF2_DefReaderCallback_CartTopology
cartTopologyCallback)

Registers the callback for the CartTopology definition.
OTF2_ErrorCode OTF2_DefReaderCallbacks_SetClockOffsetCallback (OTF2_-
DefReaderCallbacks xdefReaderCallbacks, OTF2_DefReaderCallback_ClockOffset
clockOffsetCallback)

Registers the callback for the ClockOffset definition.
OTF2_ErrorCode OTF2_DefReaderCallbacks_SetCommCallback (OTF2_-
DefReaderCallbacks xdefReaderCallbacks, OTF2_DefReaderCallback_Comm
commCallback)

Registers the callback for the Comm definition.
OTF2_ErrorCode OTF2_DefReaderCallbacks_SetGroupCallback (OTF2_-
DefReaderCallbacks xdefReaderCallbacks, OTF2_DefReaderCallback_Group
groupCallback)

Registers the callback for the Group definition.
OTF2_ErrorCode OTF2_DefReaderCallbacks_SetLocationCallback (OTF2_-
DefReaderCallbacks xdefReaderCallbacks, OTF2_DefReaderCallback Location
locationCallback)

Registers the callback for the Location definition.

216

E.8 otf2/OTF2_DefReaderCallbacks.h File Reference

* OTF2_ErrorCode OTF2_DefReaderCallbacks_SetLocationGroupCallback (OTF2_-
DefReaderCallbacks xdefReaderCallbacks, OTF2_DefReaderCallback_ILocationGroup
locationGroupCallback)

Registers the callback for the LocationGroup definition.
* OTF2_ErrorCode OTF2_DefReaderCallbacks_SetlL.ocationGroupPropertyCallback
(OTF2_DefReaderCallbacks *defReaderCallbacks, OTF2_DefReaderCallback_-
LocationGroupProperty locationGroupPropertyCallback)

Registers the callback for the LocationGroupProperty definition.
* OTF2_ErrorCode OTF2_DefReaderCallbacks_SetlLocationPropertyCallback
(OTF2_DefReaderCallbacks xdefReaderCallbacks, OTF2_DefReaderCallback_-
LocationProperty locationPropertyCallback)

Registers the callback for the LocationProperty definition.
e OTF2_ErrorCode OTF2_DefReaderCallbacks_SetMappingTableCallback (OTF2_-
DefReaderCallbacks *defReaderCallbacks, OTF2_DefReaderCallback_MappingTable
mappingTableCallback)

Registers the callback for the MappingTable definition.

e OTF2_ErrorCode OTF2_DefReaderCallbacks_SetMetricClassCallback (OTF2_-
DefReaderCallbacks xdefReaderCallbacks, OTF2_DefReaderCallback_MetricClass
metricClassCallback)

Registers the callback for the MetricClass definition.

¢ OTF2_ErrorCode OTF2_DefReaderCallbacks_SetMetricClassRecorderCallback
(OTF2_DefReaderCallbacks *defReaderCallbacks, OTF2_DefReaderCallback_-
MetricClassRecorder metricClassRecorderCallback)

Registers the callback for the MetricClassRecorder definition.

e OTF2_ErrorCode OTF2_DefReaderCallbacks_SetMetricInstanceCallback (OTF2_-
DefReaderCallbacks xdefReaderCallbacks, OTF2_DefReaderCallback_MetricInstance
metricInstanceCallback)

Registers the callback for the MetricInstance definition.

e OTF2_ErrorCode OTF2_DefReaderCallbacks_SetMetricMemberCallback (OTF2_-
DefReaderCallbacks xdefReaderCallbacks, OTF2_DefReaderCallback MetricMember
metricMemberCallback)

Registers the callback for the MetricMember definition.

¢ OTF2_ErrorCode OTF2_DefReaderCallbacks_SetParameterCallback (OTF2_-
DefReaderCallbacks xdefReaderCallbacks, OTF2_DefReaderCallback_Parameter
parameterCallback)

Registers the callback for the Parameter definition.

* OTF2_ErrorCode OTF2_DefReaderCallbacks_SetRegionCallback (OTF2_-
DefReaderCallbacks «defReaderCallbacks, OTF2_DefReaderCallback_Region
regionCallback)

Registers the callback for the Region definition.

217

APPENDIX E. FILE DOCUMENTATION

¢ OTF2_ErrorCode OTF2_DefReaderCallbacks_SetRmaWinCallback (OTF2_-
DefReaderCallbacks *defReaderCallbacks, OTF2_DefReaderCallback. RmaWin
rmaWinCallback)

Registers the callback for the RmaWin definition.
OTF2_ErrorCode OTF2_DefReaderCallbacks_SetStringCallback (OTF2_DefReaderCallbacks
xdefReaderCallbacks, OTF2_DefReaderCallback_String stringCallback)

Registers the callback for the String definition.
OTF2_ErrorCode OTF2_DefReaderCallbacks_SetSystemTreeNodeCallback
(OTF2_DefReaderCallbacks *defReaderCallbacks, OTF2_DefReaderCallback_-
SystemTreeNode systemTreeNodeCallback)

Registers the callback for the SystemTreeNode definition.
OTF2_ErrorCode OTF2_DefReaderCallbacks_SetSystemTreeNodeDomainCallback
(OTF2_DefReaderCallbacks *defReaderCallbacks, OTF2_DefReaderCallback_-
SystemTreeNodeDomain systemTreeNodeDomainCallback)

Registers the callback for the SystemTreeNodeDomain definition.

OTF2_ErrorCode OTF2_DefReaderCallbacks_SetSystemTreeNodePropertyCallback
(OTF2_DefReaderCallbacks *defReaderCallbacks, OTF2_DefReaderCallback_-
SystemTreeNodeProperty systemTreeNodePropertyCallback)

Registers the callback for the SystemTreeNodeProperty definition.

OTF2_ErrorCode OTF2_DefReaderCallbacks_SetUnknownCallback (OTF2_-
DefReaderCallbacks xdefReaderCallbacks, OTF2_DefReaderCallback_Unknown
unknownCallback)

Registers the callback for an unknown definition.

Detailed Description

This defines the callbacks for the definition reader.

Source Template:

templates/OTF2_DefReaderCallbacks.tmpl.h

E.8.2 Typedef Documentation

E.8.2.1 typedef OTF2_CallbackCode(+ OTF2_DefReaderCallback_-
Attribute)(void xuserData, OTF2_AttributeRef self, OTF2_StringRef
name, OTF2_StringRef description, OTF2_Type type)

Function pointer definition for the callback which is triggered by a Attribute defi-
nition record.

The attribute definition.

218

E.8 otf2/OTF2_DefReaderCallbacks.h File Reference

Parameters

userData

User data as set by OTF2_Reader_RegisterDefCallbacks or OTF2_-
DefReader_SetCallbacks.

self

The unique identifier for this A#tribute definition.

name

Name of the attribute. References a String definition.

description

Description of the attribute. References a String definition. Since ver-
sion 1.4.

type

Type of the attribute value.

Since

Version 1

Returns

.0

OTF2_CALLBACK_SUCCESS or OTF2_CALLBACK_INTERRUPT.

E.8.2.2 typedef OTF2_CallbackCode(+ OTF2_DefReaderCallback_-
Callpath)(void «xuserData, OTF2_CallpathRef self, OTF2_CallpathRef

parent,

OTF2_RegionRef region)

Function pointer definition for the callback which is triggered by a Callpath defi-

nition record.

The callpath definition.

Parameters

userData

User data as set by OTF2_Reader_RegisterDefCallbacks or OTF2_-
DefReader_SetCallbacks.

self

The unique identifier for this Callpath definition.

parent

The parent of this callpath. References a Callpath definition.

region

The region of this callpath. References a Region definition.

Since

Version 1.0

Returns

OTF2_CALLBACK_SUCCESS or OTF2_CALLBACK_INTERRUPT.

219

APPENDIX E. FILE DOCUMENTATION

E.8.2.3

typedef OTF2_CallbackCode(x* OTF2_DefReaderCallback_-
Callsite)(void xuserData, OTF2_CallsiteRef self, OTF2_StringRef
sourceFile, uint32_t lineNumber, OTF2_RegionRef enteredRegion,
OTF2_RegionRef leftRegion)

Function pointer definition for the callback which is triggered by a Callsite defini-
tion record.

The callsite definition.

Parameters

userData

DefReader_SetCallbacks.

self | The unique identifier for this Callsite definition.

sourcekile

gion

leftRegion The region which made the call. References a Region definition.

Since

Version 1.0

Returns

OTF2_CALLBACK_SUCCESS or OTF2_CALLBACK_INTERRUPT.

E.8.2.4

typedef OTF2_CallbackCode(x* OTF2_DefReaderCallback_-
CartCoordinate)(void xuserData, OTF2_CartTopologyRef cartTopology,
uint32._t rank, uint8_t numberOfDimensions, const uint32_t sxcoordinates)

Function pointer definition for the callback which is triggered by a CartCoordinate
definition record.

Defines the coordinate of the location referenced by the given rank (w.r.t. the com-
municator associated to the topology) in the referenced topology.

Parameters

userData

DefReader_SetCallbacks.

cartTopol-

ogy | inition. References a CartTopology definition.

220

User data as set by OTF2_Reader_RegisterDefCallbacks or OTF2_-

The source file where this call was made. References a String definition.
lineNumber | Line number in the source file where this call was made.
enteredRe- | The region which was called. References a Region definition.

User data as set by OTF2_Reader_RegisterDefCallbacks or OTF2_-

Parent CartTopology definition to which this one is a supplementary def-

E.8 otf2/OTF2_DefReaderCallbacks.h File Reference

rank

The rank w.r.t. the communicator associated to the topology referencing
this coordinate.

num-
berOfDi-

mensions

Number of dimensions.

coordinates

Coordinates, indexed by dimension.

Since

Version 1.3

Returns

OTF2_CALLBACK_SUCCESS or OTF2_CALLBACK_INTERRUPT.

E.8.2.5

typedef OTF2_CallbackCode(x* OTF2_DefReaderCallback_-

CartDimension)(void xuserData, OTF2_CartDimensionRef self,
OTF2_StringRef name, uint32_t size, OTF2_CartPeriodicity cartPeriodicity)

Function pointer definition for the callback which is triggered by a CartDimension
definition record.

Each dimension in a Cartesian topology is composed of a global id, a name, its
size, and whether it is periodic or not.

Parameters

userData

User data as set by OTF2_Reader_RegisterDefCallbacks or OTF2_-
DefReader_SetCallbacks.

self

The unique identifier for this CartDimension definition.

name

The name of the cartesian topology dimension. References a String def-
inition.

size

The size of the cartesian topology dimension.

cartPeriod-
icity

Periodicity of the cartesian topology dimension.

Since

Version 1.3

Returns

OTF2_CALLBACK_SUCCESS or OTF2_CALLBACK_INTERRUPT.

221

APPENDIX E. FILE DOCUMENTATION

E.8.2.6 typedef OTF2_CallbackCode(+ OTF2_DefReaderCallback_-
CartTopology)(void xuserData, OTF2_CartTopologyRef self,
OTF2_StringRef name, OTF2_CommRef communicator, uint8_t
numberOfDimensions, const OTF2_CartDimensionRef xcartDimensions)

Function pointer definition for the callback which is triggered by a CartTopology
definition record.

Each topology is described by a global id, a reference to its name, a reference to a
communicator, the number of dimensions, and references to those dimensions. The
topology type is defined by the paradigm of the group referenced by the associated
communicator.

Parameters

userData | User data as set by OTF2_Reader_RegisterDefCallbacks or OTF2_-
DefReader_SetCallbacks.

self | The unique identifier for this CartTopology definition.

name | The name of the topology. References a String definition.

communi- | Communicator object used to create the topology. References a Comm
cator | definition.

num- | Number of dimensions.
berOfDi-

mensions

cartDimen- | The dimensions of this topology. References a CartDimension defini-
sions | tion.

Since

Version 1.3

Returns

OTF2_CALLBACK_SUCCESS or OTF2_CALLBACK_INTERRUPT.

E.8.2.7 typedef OTF2_CallbackCode(+ OTF2_DefReaderCallback_-
ClockOffset)(void xuserData, OTF2_TimeStamp time, int64_t offset, double
standardDeviation)

Function pointer definition for the callback which is triggered by a ClockOffset
definition record.

Clock offsets are used for clock corrections.

Parameters

222

E.8 otf2/OTF2_DefReaderCallbacks.h File Reference

userData

User data as set by OTF2_Reader_RegisterDefCallbacks or OTF2_-
DefReader_SetCallbacks.

time

Time when this offset was determined.

offset

The offset to the global clock which was determined at t ime.

standard-
Deviation

A possible standard deviation, which can be used as a metric for the
quality of the offset.

Since

Version 1.0

Returns

OTF2_CALLBACK_SUCCESS or OTF2_CALLBACK_INTERRUPT.

E.8.2.8 typedef OTF2_CallbackCode(x OTF2_DefReaderCallback_-
Comm)(void «userData, OTF2_CommRef self, OTF2_StringRef name,
OTF2_GroupRef group, OTF2_CommRef parent)

Function pointer definition for the callback which is triggered by a Comm definition

record.

The communicator definition.

Parameters

userData

User data as set by OTF2_Reader_RegisterDefCallbacks or OTF2_-
DefReader_SetCallbacks.

self

The unique identifier for this Comm definition.

name

The name given by calling MPI_Comm_set_name on this communica-
tor. Or the empty name to indicate that no name was given. References
a String definition.

group

The describing MPI group of this MPI communicator The group
needs to be of type OTF2_GROUP_TYPE_COMM_GROUP or OTF?2_-
GROUP_TYPE_COMM_SELF. References a Group definition.

parent

The parent MPI communicator from which this communicator was cre-
ated, if any. Use OTF2_UNDEFINED_COMM to indicate no parent.
References a Comm definition.

Since

Version 1.0

223

APPENDIX E. FILE DOCUMENTATION

Returns

OTF2_CALLBACK_SUCCESS or OTF2_CALLBACK_INTERRUPT.

E.8.2.9 typedef OTF2_CallbackCode(+ OTF2_DefReaderCallback_-
Group)(void xuserData, OTF2_GroupRef self, OTF2_StringRef
name, OTF2_GroupType groupType, OTF2_Paradigm paradigm,
OTF2_GroupFlag groupFlags, uint32_t numberOfMembers, const uint64_t
xmembers)

Function pointer definition for the callback which is triggered by a Group definition
record.

The group definition.

Parameters

userData | User data as set by OTF2_Reader_RegisterDefCallbacks or OTF2_-
DefReader_SetCallbacks.

self | The unique identifier for this Group definition.

name | Name of this group References a String definition.

groupType | The type of this group. Since version 1.2.

paradigm The paradigm of this communication group. Since version 1.2.

groupFlags | Flags for this group. Since version 1.2.

num- | The number of members in this group.
berOfMem-

bers

members | The identifiers of the group members.

Since

Version 1.0

Returns

OTF2_CALLBACK_SUCCESS or OTF2_CALLBACK_INTERRUPT.

E.8.2.10 typedef OTF2_CallbackCode(x OTF2_DefReaderCallback_-
Location)(void xuserData, OTF2_LocationRef self, OTF2_StringRef
name, OTF2_LocationType locationType, uint64_t numberOfEvents,
OTF2_LocationGroupRef locationGroup)

Function pointer definition for the callback which is triggered by a Location defi-
nition record.

224

E.8 otf2/OTF2_DefReaderCallbacks.h File Reference

The location definition.

Parameters

userData

User data as set by OTF2_Reader_RegisterDefCallbacks or OTF2_-
DefReader_SetCallbacks.

self

The unique identifier for this Location definition.

name

Name of the location References a String definition.

location-
Type

Location type.

numberO-

fEvents

Number of events this location has recorded.

location-
Group

Location group which includes this location. References a Location-
Group definition.

Since

Version 1.0

Returns

OTF2_CALLBACK_SUCCESS or OTF2_CALLBACK_INTERRUPT.

E.8.2.11

typedef OTF2_CallbackCode(x* OTF2_DefReaderCallback_-

LocationGroup)(void xuserData, OTF2_LocationGroupRef self,
OTF2_StringRef name, OTF2_LocationGroupType locationGroupType,
OTF2_SystemTreeNodeRef systemTreeParent)

Function pointer definition for the callback which is triggered by a LocationGroup
definition record.

The location group definition.

Parameters

userData

User data as set by OTF2_Reader_RegisterDefCallbacks or OTF2_-
DefReader_SetCallbacks.

self

The unique identifier for this LocationGroup definition.

name

Name of the group. References a String definition.

location-
GroupType

Type of this group.

Sys-
temTreePar-
ent

Parent of this location group in the system tree. References a Sys-
temTreeNode definition.

225

APPENDIX E. FILE DOCUMENTATION

Since

Version 1.0

Returns

OTF2_CALLBACK_SUCCESS or OTF2_CALLBACK_INTERRUPT.

E.8.2.12 typedef OTF2_CallbackCode(x OTF2_DefReaderCallback_-
LocationGroupProperty)(void «userData, OTF2_LocationGroupRef
locationGroup, OTF2_StringRef name, OTF2_StringRef value)

Function pointer definition for the callback which is triggered by a LocationGroup-
Property definition record.

An arbitrary key/value property for a LocationGroup definition.

Parameters

DefReader_SetCallbacks.

userData User data as set by OTF2_Reader_RegisterDefCallbacks or OTF2_-

Group | definition. References a LocationGroup definition.

location- | Parent LocationGroup definition to which this one is a supplementary

name | Name of the property. References a String definition.

value | Property value. References a String definition.

Since

Version 1.3

Returns

OTF2_CALLBACK_SUCCESS or OTF2_CALLBACK_INTERRUPT.

E.8.2.13 typedef OTF2_CallbackCode(x OTF2_DefReaderCallback_-
LocationProperty)(void xuserData, OTF2_LocationRef location,
OTF2_StringRef name, OTF2_StringRef value)

Function pointer definition for the callback which is triggered by a LocationProp-
erty definition record.

An arbitrary key/value property for a Location definition.

Parameters

226

E.8 otf2/OTF2_DefReaderCallbacks.h File Reference

userData | User data as set by OTF2_Reader_RegisterDefCallbacks or OTF2_-
DefReader_SetCallbacks.

location | Parent Location definition to which this one is a supplementary defini-
tion. References a Location definition.

name | Name of the property. References a String definition.

value | Property value. References a String definition.

Since

Version 1.3

Returns

OTF2_CALLBACK_SUCCESS or OTF2_CALLBACK_INTERRUPT.

E.8.2.14 typedef OTF2_CallbackCode(x* OTF2_DefReaderCallback_-
MappingTable)(void userData, OTF2_MappingType mappingType, const
OTF2_IdMap *idMap)

Function pointer definition for the callback which is triggered by a MappingTable
definition record.

Mapping tables are needed for situations where an ID is not globally known at
measurement time. They are applied automatically at reading.

Parameters

userData | User data as set by OTF2_Reader_RegisterDefCallbacks or OTF2_-
DefReader_SetCallbacks.

mapping- | Says to what type of ID the mapping table has to be applied.
Type

idMap | Mapping table.

Since

Version 1.0

Returns

OTF2_CALLBACK_SUCCESS or OTF2_CALLBACK_INTERRUPT.

227

APPENDIX E. FILE DOCUMENTATION

E.8.2.15 typedef OTF2_CallbackCode(x OTF2_DefReaderCallback_-
MetricClass)(void xuserData, OTF2_MetricRef self, uint8_t
numberOfMetrics, const OTF2_MetricMemberRef «xmetricMembers,
OTF2_MetricOccurrence metricOccurrence, OTF2_RecorderKind
recorderKind)

Function pointer definition for the callback which is triggered by a MetricClass
definition record.

For a metric class it is implicitly given that the event stream that records the metric
is also the scope. A metric class can contain multiple different metrics.

Parameters

userData

User data as set by OTF2_Reader_RegisterDefCallbacks or OTF2_-
DefReader_SetCallbacks.

self

The unique identifier for this MetricClass definition.

numberOf-
Metrics

Number of metrics within the set.

metricMem-
bers

List of metric members. References a MetricMember definition.

metricOc-
currence

Defines occurrence of a metric set.

recorderKind

What kind of locations will record this metric class, or will this metric
class only be recorded by metric instances. Since version 1.2.

Since

Version 1.0

Returns

OTF2_CALLBACK_SUCCESS or OTF2_CALLBACK_INTERRUPT.

E.8.2.16 typedef OTF2_CallbackCode(x* OTF2_DefReaderCallback_-
MetricClassRecorder)(void xuserData, OTF2_MetricRef metricClass,
OTF2_LocationRef recorder)

Function pointer definition for the callback which is triggered by a MetricClass-
Recorder definition record.

The metric class recorder definition.

Parameters

228

E.8 otf2/OTF2_DefReaderCallbacks.h File Reference

userData

User data as set by OTF2_Reader_RegisterDefCallbacks or OTF2_-
DefReader_SetCallbacks.

metricClass

Parent MetricClass definition to which this one is a supplementary def-
inition. References a MetricClass definition.

recorder

The location which recorded the referenced metric class. References a
Location definition.

Since

Version 1.2

Returns

OTF2_CALLBACK_SUCCESS or OTF2_CALLBACK_INTERRUPT.

E.8.2.17 typedef OTF2_CallbackCode(x OTF2_DefReaderCallback_-
MetricInstance)(void xuserData, OTF2_MetricRef self,
OTF2_MetricRef metricClass, OTF2_LocationRef recorder,
OTF2_MetricScope metricScope, uint64_t scope)

Function pointer definition for the callback which is triggered by a Metriclnstance
definition record.

A metric instance is used to define metrics that are recorded at one location for
multiple locations or for another location. The occurrence of a metric instance is
implicitly of type OTF2_METRIC_ASYNCHRONOUS.

Parameters

userData

User data as set by OTF2_Reader_RegisterDefCallbacks or OTF2_-
DefReader_SetCallbacks.

self

The unique identifier for this MetricClass definition.

metricClass

The instanced MetricClass. This metric class must be of kind OTF2_-
RECORDER_KIND_ABSTRACT. References a MetricClass definition.

recorder

Recorder of the metric: location ID. References a Location definition.

metric-
Scope

Defines type of scope: location, location group, system tree node, or a
generic group of locations.

scope

Scope of metric: ID of a location, location group, system tree node, or a
generic group of locations.

Since

Version 1.0

229

APPENDIX E. FILE DOCUMENTATION

Returns

OTF2_CALLBACK_SUCCESS or OTF2_CALLBACK_INTERRUPT.

E.8.2.18 typedef OTF2_CallbackCode(x OTF2_DefReaderCallback_-
MetricMember)(void userData, OTF2_MetricMemberRef
self, OTF2_StringRef name, OTF2_StringRef description,
OTF2_MetricType metricType, OTF2_MetricMode metricMode,
OTF2_Type valueType, OTF2_MetricBase metricBase, int64_t exponent,
OTF2_StringRef unit)

Function pointer definition for the callback which is triggered by a MetricMember
definition record.

A metric is defined by a metric member definition. A metric member is always a
member of a metric class. Therefore, a single metric is a special case of a metric
class with only one member. It is not allowed to reference a metric member id in a
metric event, but only metric class IDs.

Parameters
userData | User data as set by OTF2_Reader_RegisterDefCallbacks or OTF2_-
DefReader_SetCallbacks.
self | The unique identifier for this MetricMember definition.
name | Name of the metric. References a String definition.
description | Description of the metric. References a String definition.
metricType Metric type: PAPI, etc.
metricMode | Metric mode: accumulative, fix, relative, etc.
valueType | Type of the value. Only OTF2_TYPE_INT64, OTF2_TYPE_UINT64,
and OTF2_TYPE_DOUBLE are valid types. If this metric member is
recorded in an Metric event, than this type and the type in the event
must match.
metricBase The recorded values should be handled in this given base, either binary
or decimal. This information can be used if the value needs to be scaled.
exponent | The values inside the Metric events should be scaled by the factor
base”exponent, to get the value in its base unit. For example, if the
metric values come in as KiBi, than the base should be OTF2_BASE_-
BINARY and the exponent 10. Than the writer does not need to scale the
values up to bytes, but can directly write the KiBi values into the Metric
event. At reading time, the reader can apply the scaling factor to get the
value in its base unit, ie. in bytes.
unit | Unit of the metric. This needs to be the scale free base unit, ie. "bytes",
"operations", or "seconds". In particular this unit should not have any
scale prefix. References a String definition.

230

E.8 otf2/OTF2_DefReaderCallbacks.h File Reference

Since

Version 1.0

Returns

OTF2_CALLBACK_SUCCESS or OTF2_CALLBACK_INTERRUPT.

E.8.2.19 typedef OTF2_CallbackCode(x OTF2_DefReaderCallback_-
Parameter)(void xuserData, OTF2_ParameterRef self, OTF2_StringRef
name, OTF2_ParameterType parameterType)

Function pointer definition for the callback which is triggered by a Parameter def-
inition record.

The parameter definition.

Parameters

userData User data as set by OTF2_Reader_RegisterDefCallbacks or OTF2_-
DefReader_SetCallbacks.

self The unique identifier for this Parameter definition.

name | Name of the parameter (variable name etc.) References a String defini-
tion.

parameter- | Type of the parameter, OTF2_ParameterType for possible types.
Type

Since
Version 1.0
Returns

OTF2_CALLBACK_SUCCESS or OTF2_CALLBACK_INTERRUPT.

E.8.2.20 typedef OTF2_CallbackCode(x OTF2_DefReaderCallback_-
Region)(void xuserData, OTF2_RegionRef self, OTF2_StringRef
name, OTF2_StringRef canonicalName, OTF2_StringRef description,
OTF2_RegionRole regionRole, OTF2_Paradigm paradigm,
OTF2_RegionFlag regionFlags, OTF2_StringRef sourceFile, uint32_t
beginLineNumber, uint32_t endLineNumber)

Function pointer definition for the callback which is triggered by a Region defini-
tion record.

The region definition.

231

APPENDIX E. FILE DOCUMENTATION

Parameters
userData | User data as set by OTF2_Reader_RegisterDefCallbacks or OTF2_-
DefReader_SetCallbacks.
self | The unique identifier for this Region definition.
name | Name of the region (demangled name if available). References a String
definition.
canonical- | Alternative name of the region (e.g. mangled name). References a
Name | String definition. Since version 1.1.
description | A more detailed description of this region. References a String defini-
tion.
regionRole | Region role. Since version 1.1.
paradigm Paradigm. Since version 1.1.
regionFlags | Region flags. Since version 1.1.
sourceFile | The source file where this region was declared. References a String
definition.
beginLi- | Starting line number of this region in the source file.
neNumber
endLi- | Ending line number of this region in the source file.
neNumber
Since
Version 1.0
Returns

OTF2_CALLBACK_SUCCESS or OTF2_CALLBACK_INTERRUPT.

E.8.2.21

typedef OTF2_CallbackCode(x* OTF2_DefReaderCallback_-

RmaWin)(void «xuserData, OTF2_RmaWinRef self, OTF2_StringRef
name, OTF2_CommRef comm)

Function pointer definition for the callback which is triggered by a RmaWin defini-

tion record.

A window defines the communication context for any remote-memory access op-

eration.

Parameters

userData

User data as set by OTF2_Reader_RegisterDefCallbacks or OTF2_-
DefReader_SetCallbacks.

self

The unique identifier for this RmaWin definition.

name

Name, e.g. *"GASPI Queue 1°, ’NVidia Card 2’, etc.. References a String
definition.

232

E.8 otf2/OTF2_DefReaderCallbacks.h File Reference

comm

Communicator object used to create the window. References a Comm
definition.

Since

Version 1.2

Returns

OTF2_CALLBACK_SUCCESS or OTF2_CALLBACK_INTERRUPT.

E.8.2.22 typedef OTF2_CallbackCode(x OTF2_DefReaderCallback_-
String)(void xuserData, OTF2_StringRef self, const char
xstring)

Function pointer definition for the callback which is triggered by a String definition

record.

The string definitions.

Parameters

userData

User data as set by OTF2_Reader_RegisterDefCallbacks or OTF2_-
DefReader_SetCallbacks.

self

The unique identifier for this String definition.

string

The string, null terminated.

Since

Version 1.

Returns

0

OTF2_CALLBACK_SUCCESS or OTF2_CALLBACK_INTERRUPT.

E.8.2.23 typedef OTF2_CallbackCode(x OTF2_DefReaderCallback_-
SystemTreeNode)(void «userData, OTF2_SystemTreeNodeRef
self, OTF2_StringRef name, OTF2_StringRef className,
OTF2_SystemTreeNodeRef parent)

Function pointer definition for the callback which is triggered by a SystemTreeNode
definition record.

The system tree node definition.

233

APPENDIX E. FILE DOCUMENTATION

Parameters

userData

User data as set by OTF2_Reader_RegisterDefCallbacks or OTF2_-
DefReader_SetCallbacks.

self

The unique identifier for this SystemTreeNode definition.

name

Free form instance name of this node. References a String definition.

className

Free form class name of this node References a String definition.

parent

Parent id of this node. May be OTF2_UNDEFINED_SYSTEM_TREE_-
NODE to indicate that there is no parent. References a SystemTreeNode
definition.

Since

Version 1.0

Returns

OTF2_CALLBACK_SUCCESS or OTF2_CALLBACK_INTERRUPT.

E.8.2.24

typedef OTF2_CallbackCode(x* OTF2_DefReaderCallback_-

SystemTreeNodeDomain)(void xuserData, OTF2_SystemTreeNodeRef
systemTreeNode, OTF2_SystemTreeDomain systemTreeDomain)

Function pointer definition for the callback which is triggered by a SystemTreeN-
odeDomain definition record.

The system tree node domain definition.

Parameters

userData

User data as set by OTF2_Reader_RegisterDefCallbacks or OTF2_-
DefReader_SetCallbacks.

Sys-
temTreeN-
ode

Parent SystemTreeNode definition to which this one is a supplementary
definition. References a SystemTreeNode definition.

systemTree-
Domain

The domain in which the referenced SystemTreeNode operates in.

Since

Version 1.2

Returns

OTF2_CALLBACK_SUCCESS or OTF2_CALLBACK_INTERRUPT.

234

E.8 otf2/OTF2_DefReaderCallbacks.h File Reference

E.8.2.25 typedef OTF2_CallbackCode(x OTF2_DefReaderCallback_-
SystemTreeNodeProperty)(void xuserData, OTF2_SystemTreeNodeRef
systemTreeNode, OTF2_StringRef name, OTF2_StringRef value)

Function pointer definition for the callback which is triggered by a SystemTreeN-
odeProperty definition record.

An arbitrary key/value property for a SystemTreeNode definition.

Parameters

userData

User data as set by OTF2_Reader_RegisterDefCallbacks or OTF2_-
DefReader_SetCallbacks.

Sys-
temTreeN-
ode

Parent SystemTreeNode definition to which this one is a supplementary
definition. References a SystemTreeNode definition.

name

Name of the property. References a String definition.

value

Property value. References a String definition.

Since

Version 1.2

Returns

OTF2_CALLBACK_SUCCESS or OTF2_CALLBACK_INTERRUPT.

E.8.2.26 typedef OTF2_CallbackCode(x OTF2_DefReaderCallback_-
Unknown)(void xuserData)

Function pointer definition for the callback which is triggered for an unknown def-

inition.
Parameters
userData User data as set by OTF2_Reader_RegisterDefCallbacks or OTF2_-
DefReader_SetCallbacks.
Returns

OTF2_CALLBACK_SUCCESS or OTF2_CALLBACK_INTERRUPT.

235

APPENDIX E. FILE DOCUMENTATION

E.8.3 Function Documentation

E.8.3.1 void OTF2_DefReaderCallbacks_Clear (OTF2_DefReaderCallbacks
defReaderCallbacks)

Clears a struct for the definition callbacks.

Parameters
defReader- Handle to a struct previously allocated with OTF2_-
Callbacks | DefReaderCallbacks_New.

E.8.3.2 void OTF2_DefReaderCallbacks_Delete (OTF2_DefReaderCallbacks *

defReaderCallbacks)

Deallocates a struct for the definition callbacks.

Parameters
defReader- Handle to a struct previously allocated with OTF2_-

Callbacks | DefReaderCallbacks_New.

E.8.3.3 OTF2_DefReaderCallbacks* OTF2_DefReaderCallbacks_New (void)
Allocates a new struct for the definition callbacks.

Returns

A newly allocated struct of type OTF2_DefReaderCallbacks.

E.8.3.4 OTF2_ErrorCode OTF2_DefReaderCallbacks_SetAttributeCallback
(OTF2_DefReaderCallbacks * defReaderCallbacks,
OTF2_DefReaderCallback_Attribute attributeCallback)

Registers the callback for the Attribute definition.

Parameters

defReader- | Struct for all callbacks.
Callbacks

attribute- | Function which should be called for all Attribute definitions.
Callback

236

E.8 otf2/OTF2_DefReaderCallbacks.h File Reference

Since

Version 1.0

Returns

OTF2_SUCCESS if successful

OTF2_ERROR_INVALID ARGUMENT for aninvalid defReaderCallbacks

argument

E.8.3.5 OTF2_ErrorCode OTF2_DefReaderCallbacks_SetCallpathCallback
(OTF2_DefReaderCallbacks * defReaderCallbacks,
OTF2_DefReaderCallback_Callpath callpathCallback)

Registers the callback for the Callpath definition.

Parameters

defReader- | Struct for all callbacks.
Callbacks

Callback

callpath- | Function which should be called for all Callpath definitions.

Since

Version 1.0

Returns

OTF2 _SUCCESS if successful

OTF2_ERROR_INVALID ARGUMENT for aninvalid defReaderCallbacks

argument

E.8.3.6 OTF2_ErrorCode OTF2_DefReaderCallbacks_SetCallsiteCallback
(OTF2_DefReaderCallbacks * defReaderCallbacks,
OTF2_DefReaderCallback_Callsite callsiteCallback)

Registers the callback for the Callsite definition.

Parameters

defReader- | Struct for all callbacks.
Callbacks

callsite- | Function which should be called for all Callsite definitions.

Callbaek
CTartoaer

237

APPENDIX E. FILE DOCUMENTATION

Since

Version 1.0

Returns

OTF2_SUCCESS if successful

OTF2_ERROR_INVALID_ARGUMENT for aninvalid defReaderCallbacks
argument

E.8.3.7 OTF2_ErrorCode OTF2_DefReaderCallbacks_SetCartCoordinateCallback
(OTF2_DefReaderCallbacks * defReaderCallbacks,
OTF2_DefReaderCallback_CartCoordinate cartCoordinateCallback)

Registers the callback for the CartCoordinate definition.

Parameters

defReader- | Struct for all callbacks.
Callbacks
cartCoordi- | Function which should be called for all CartCoordinate definitions.
nateCall-
back

Since

Version 1.3

Returns

OTF2_SUCCESS if successful

OTF2_ERROR _INVALID_ARGUMENT for aninvalid defReaderCallbacks
argument

E.8.3.8 OTF2_ErrorCode OTF2_DefReaderCallbacks_SetCartDimensionCallback
(OTF2_DefReaderCallbacks * defReaderCallbacks,
OTF2_DefReaderCallback_CartDimension cartDimensionCallback)

Registers the callback for the CartDimension definition.

Parameters

defReader- | Struct for all callbacks.
Callbacks

238

E.8 otf2/OTF2_DefReaderCallbacks.h File Reference

cartDimen- Function which should be called for all CartDimension definitions.

sionCall-
back

Since

Version 1.3

Returns

OTF2_SUCCESS if successful

OTF2_ERROR_INVALID_ARGUMENT for aninvalid defReaderCallbacks
argument

E.8.3.9 OTF2_ErrorCode OTF2_DefReaderCallbacks_SetCartTopologyCallback
(OTF2_DefReaderCallbacks * defReaderCallbacks,
OTF2_DefReaderCallback_CartTopology cartTopologyCallback)

Registers the callback for the CartTopology definition.

Parameters

defReader- | Struct for all callbacks.

Callbacks
cartTopolo- | Function which should be called for all CartTopology definitions.
gyCallback

Since

Version 1.3

Returns

OTF2 _SUCCESS if successful

OTF2_ERROR_INVALID_ARGUMENT for aninvalid de fReaderCallbacks
argument

E.8.3.10 OTF2_ErrorCode OTF2_DefReaderCallbacks_SetClockOffsetCallback
(OTF2_DefReaderCallbacks * defReaderCallbacks,
OTF2_DefReaderCallback_ClockOffset clockOffsetCallback)

Registers the callback for the ClockOffset definition.

239

APPENDIX E. FILE DOCUMENTATION

Parameters

defReader- | Struct for all callbacks.

Callbacks

clockOffset- Function which should be called for all ClockOffset definitions.
Callback

Since

Version 1.0

Returns

OTF2 _SUCCESS if successful

OTF2_ERROR_INVALID_ARGUMENT for aninvalid de fReaderCallbacks
argument

E.8.3.11 OTF2_ErrorCode OTF2_DefReaderCallbacks_SetCommCallback
(OTF2_DefReaderCallbacks * defReaderCallbacks,
OTF2_DefReaderCallback_Comm commCallback)

Registers the callback for the Comm definition.

Parameters
defReader- | Struct for all callbacks.
Callbacks

commCall- | Function which should be called for all Comm definitions.
back

Since
Version 1.0
Returns

OTF2 _SUCCESS if successful

OTF2_ERROR_INVALID_ARGUMENT for aninvalid defReaderCallbacks
argument

E.8.3.12 OTF2_ErrorCode OTF2_DefReaderCallbacks_SetGroupCallback
(OTF2_DefReaderCallbacks * defReaderCallbacks,
OTF2_DefReaderCallback_Group groupCallback)

Registers the callback for the Group definition.

240

E.8 otf2/OTF2_DefReaderCallbacks.h File Reference

Parameters

defReader- | Struct for all callbacks.
Callbacks
groupCall- | Function which should be called for all Group definitions.
back

Since

Version 1.0

Returns

OTF2 _SUCCESS if successful

OTF2_ERROR_INVALID_ARGUMENT for aninvalid de fReaderCallbacks
argument

E.8.3.13 OTF2_ErrorCode OTF2_DefReaderCallbacks_SetLocationCallback
(OTF2_DefReaderCallbacks * defReaderCallbacks,
OTF2_DefReaderCallback_Location locationCallback)

Registers the callback for the Location definition.

Parameters

defReader- | Struct for all callbacks.
Callbacks
location- | Function which should be called for all Location definitions.
Callback

Since
Version 1.0
Returns

OTF2 _SUCCESS if successful
OTF2_ERROR_INVALID_ARGUMENT for aninvalid defReaderCallbacks
argument

E.8.3.14 OTF2_ErrorCode OTF2_DefReaderCallbacks_SetLocationGroupCallback
(OTF2_DefReaderCallbacks * defReaderCallbacks,
OTF2_DefReaderCallback_LocationGroup locationGroupCallback)

Registers the callback for the LocationGroup definition.

241

APPENDIX E. FILE DOCUMENTATION

Parameters

defReader- | Struct for all callbacks.
Callbacks
location- | Function which should be called for all LocationGroup definitions.
GroupCall-
back

Since

Version 1.0

Returns

OTF2_SUCCESS if successful

OTF2_ERROR_INVALID_ARGUMENT for aninvalid defReaderCallbacks
argument

E.8.3.15 OTF2_ErrorCode OTF2_DefReaderCallbacks_-
SetLocationGroupPropertyCallback (OTF2_DefReaderCallbacks
* defReaderCallbacks, OTF2_DefReaderCallback_-
LocationGroupProperty locationGroupPropertyCallback
)

Registers the callback for the LocationGroupProperty definition.

Parameters

defReader- | Struct for all callbacks.
Callbacks
location- | Function which should be called for all LocationGroupProperty defini-

GroupProp- | tions.
ertyCall-
back

Since

Version 1.3

Returns

OTF2_SUCCESS if successful

OTF2_ERROR_INVALID_ARGUMENT for aninvalid de fReaderCallbacks
argument

242

E.8 otf2/OTF2_DefReaderCallbacks.h File Reference

E.8.3.16 OTF2_ErrorCode OTF2_DefReaderCallbacks_SetLocationPropertyCallback
(OTF2_DefReaderCallbacks * defReaderCallbacks,
OTF2_DefReaderCallback_LocationProperty locationPropertyCallback

)

Registers the callback for the LocationProperty definition.

Parameters

defReader- | Struct for all callbacks.
Callbacks
location- | Function which should be called for all LocationProperty definitions.
Property-
Callback

Since

Version 1.3

Returns

OTF2_SUCCESS if successful

OTF2_ERROR INVALID ARGUMENT foraninvalid defReaderCallbacks
argument

E.8.3.17 OTF2_ErrorCode OTF2_DefReaderCallbacks_SetMappingTableCallback
(OTF2_DefReaderCallbacks * defReaderCallbacks,
OTF2_DefReaderCallback_MappingTable mappingTableCallback)

Registers the callback for the MappingTable definition.

Parameters

defReader- | Struct for all callbacks.
Callbacks
map- | Function which should be called for all MappingTable definitions.
pingTable-
Callback

Since

Version 1.0

243

APPENDIX E. FILE DOCUMENTATION

Returns

OTF2_SUCCESS if successful

OTF2_ERROR_INVALID_ARGUMENT for aninvalid defReaderCallbacks
argument

E.8.3.18 OTF2_ErrorCode OTF2_DefReaderCallbacks_SetMetricClassCallback
(OTF2_DefReaderCallbacks * defReaderCallbacks,
OTF2_DefReaderCallback_MetricClass metricClassCallback)

Registers the callback for the MetricClass definition.

Parameters

defReader- | Struct for all callbacks.
Callbacks
metric- Function which should be called for all MetricClass definitions.
ClassCall-
back

Since

Version 1.0

Returns

OTF2 _SUCCESS if successful

OTF2_ERROR_INVALID_ARGUMENT for aninvalid defReaderCallbacks
argument

E.8.3.19 OTF2_ErrorCode OTF2_DefReaderCallbacks_SetMetricClassRecorderCallback
(OTF2_DefReaderCallbacks * defReaderCallbacks,
OTF2_DefReaderCallback_MetricClassRecorder
metricClassRecorderCallback)

Registers the callback for the MetricClassRecorder definition.

Parameters

defReader- | Struct for all callbacks.
Callbacks
metric- Function which should be called for all MetricClassRecorder defini-
Class- | tions.
Recorder-
044 Callback

E.8 otf2/OTF2_DefReaderCallbacks.h File Reference

Since

Version 1.2

Returns

OTF2_SUCCESS if successful

OTF2_ERROR_INVALID_ARGUMENT for aninvalid defReaderCallbacks
argument

E.8.3.20 OTF2_ErrorCode OTF2_DefReaderCallbacks_SetMetricinstanceCallback
(OTF2_DefReaderCallbacks * defReaderCallbacks,
OTF2_DefReaderCallback_MetricInstance metricinstanceCallback)

Registers the callback for the Metriclnstance definition.

Parameters

defReader- | Struct for all callbacks.
Callbacks
metricIn- | Function which should be called for all MetricInstance definitions.

stanceCall-
back

Since

Version 1.0

Returns

OTF2_SUCCESS if successful

OTF2_ERROR _INVALID_ARGUMENT for aninvalid defReaderCallbacks
argument

E.8.3.21 OTF2_ErrorCode OTF2_DefReaderCallbacks_SetMetricMemberCallback
(OTF2_DefReaderCallbacks * defReaderCallbacks,
OTF2_DefReaderCallback_MetricMember metricMemberCallback)

Registers the callback for the MetricMember definition.

Parameters

defReader- | Struct for all callbacks.
Callbacks

245

APPENDIX E. FILE DOCUMENTATION

metricMem- | Function which should be called for all MetricMember definitions.
berCallback

Since

Version 1.0

Returns

OTF2 _SUCCESS if successful

OTF2_ERROR_INVALID_ARGUMENT for aninvalid de fReaderCallbacks
argument

E.8.3.22 OTF2_ErrorCode OTF2_DefReaderCallbacks_SetParameterCallback
(OTF2_DefReaderCallbacks * defReaderCallbacks,
OTF2_DefReaderCallback_Parameter parameterCallback)

Registers the callback for the Parameter definition.

Parameters

defReader- | Struct for all callbacks.
Callbacks
parameter- | Function which should be called for all Parameter definitions.

Callback

Since

Version 1.0

Returns

OTF2_SUCCESS if successful

OTF2_ERROR_INVALID_ARGUMENT for aninvalid de fReaderCallbacks
argument

E.8.3.23 OTF2_ErrorCode OTF2_DefReaderCallbacks_SetRegionCallback
(OTF2_DefReaderCallbacks * defReaderCallbacks,
OTF2_DefReaderCallback_Region regionCallback)

Registers the callback for the Region definition.

246

E.8 otf2/OTF2_DefReaderCallbacks.h File Reference

Parameters

defReader- | Struct for all callbacks.
Callbacks
regionCall- | Function which should be called for all Region definitions.
back

Since

Version 1.0

Returns

OTF2 _SUCCESS if successful

OTF2_ERROR_INVALID_ARGUMENT for aninvalid de fReaderCallbacks
argument

E.8.3.24 OTF2_ErrorCode OTF2_DefReaderCallbacks_SetRmaWinCallback
(OTF2_DefReaderCallbacks * defReaderCallbacks,
OTF2_DefReaderCallback_RmaWin rmaWinCallback)

Registers the callback for the RmaWin definition.

Parameters

defReader- | Struct for all callbacks.
Callbacks
rmaWin- | Function which should be called for all RmaWin definitions.
Callback

Since
Version 1.2
Returns

OTF2 _SUCCESS if successful
OTF2_ERROR_INVALID_ARGUMENT for aninvalid defReaderCallbacks
argument

E.8.3.25 OTF2_ErrorCode OTF2_DefReaderCallbacks_SetStringCallback
(OTF2_DefReaderCallbacks * defReaderCallbacks,
OTF2_DefReaderCallback_String stringCallback)

Registers the callback for the String definition.

247

APPENDIX E. FILE DOCUMENTATION

Parameters
defReader- | Struct for all callbacks.
Callbacks

stringCall- | Function which should be called for all String definitions.
back

Since

Version 1.0

Returns

OTF2 _SUCCESS if successful

OTF2_ERROR_INVALID_ARGUMENT for aninvalid de fReaderCallbacks
argument

E.8.3.26 OTF2_ErrorCode OTF2_DefReaderCallbacks_SetSystemTreeNodeCallback
(OTF2_DefReaderCallbacks * defReaderCallbacks,
OTF2_DefReaderCallback_SystemTreeNode systemTreeNodeCallback)

Registers the callback for the SystemTreeNode definition.

Parameters

defReader- | Struct for all callbacks.
Callbacks
sys- | Function which should be called for all SystemTreeNode definitions.
temTreeN-
odeCall-
back

Since

Version 1.0

Returns

OTF2 _SUCCESS if successful

OTF2_ERROR_INVALID_ARGUMENT for aninvalid defReaderCallbacks
argument

248

E.8 otf2/OTF2_DefReaderCallbacks.h File Reference

E.8.3.27 OTF2_ErrorCode OTF2_DefReaderCallbacks -
SetSystemTreeNodeDomainCallback (OTF2_DefReaderCallbacks
x defReaderCallbacks, OTF2_DefReaderCallback_-
SystemTreeNodeDomain systemTreeNodeDomainCallback

)

Registers the callback for the SystemTreeNodeDomain definition.

Parameters

defReader- | Struct for all callbacks.
Callbacks
sys- | Function which should be called for all SystemTreeNodeDomain defini-

temTreeN- | tions.
odeDo-
mainCall-
back

Since

Version 1.2

Returns

OTF2_SUCCESS if successful

OTF2_ERROR_INVALID_ARGUMENT for aninvalid defReaderCallbacks
argument

E.8.3.28 OTF2_ErrorCode OTF2_DefReaderCallbacks_-
SetSystemTreeNodePropertyCallback (OTF2_DefReaderCallbacks
x defReaderCallbacks, OTF2_DefReaderCallback_-
SystemTreeNodeProperty systemTreeNodePropertyCallback

)

Registers the callback for the SystemTreeNodeProperty definition.

Parameters

defReader- | Struct for all callbacks.
Callbacks
sys- | Function which should be called for all SystemTreeNodeProperty defi-
temTreeN- | nitions.
odeProper-
tyCallback

249

APPENDIX E. FILE DOCUMENTATION

Since

Version 1.2

Returns

OTF2_SUCCESS if successful

OTF2_ERROR_INVALID_ARGUMENT for aninvalid defReaderCallbacks
argument

E.8.3.29 OTF2_ErrorCode OTF2_DefReaderCallbacks_SetUnknownCallback
(OTF2_DefReaderCallbacks * defReaderCallbacks,
OTF2_DefReaderCallback_Unknown unknownCallback)

Registers the callback for an unknown definition.

Parameters
defReader- | Struct for all callbacks.

Callbacks
unknown- | Function which should be called for all unknown definitions.

Callback

Returns

OTF2_SUCCESS if successful

OTF2_ERROR _INVALID _ARGUMENT for aninvalid defReaderCallbacks
argument

E.9 otf2/OTF2_DefWriter.h File Reference

This file provides all routines that write definition records of a single location.
#include <stdint.h>

#include <otf2/0OTF2_ErrorCodes.h>

#include <otf2/0TF2_Definitions.h>

finclude <otf2/0TF2_IdMap.h>

Typedefs

¢ typedef struct OTF2_DefWriter_struct OTF2_DefWriter

Handle definition for the external definition writer.

250

E.9 otf2/OTF2_DefWriter.h File Reference

Functions

e OTF2_ErrorCode OTF2_DefWriter_GetLocationID (const OTF2_DefWriter
swriter, OTF2_LocationRef xlocation)

Returns the location ID of the location which is related to the writer object.

e OTF2_ErrorCode OTF2_DefWriter_WriteAttribute (OTF2_DefWriter xwriter,
OTF2_AttributeRef self, OTF2_StringRef name, OTF2_StringRef descrip-
tion, OTF2_Type type)

Writes a Attribute definition record into the DefWriter.

* OTF2_ErrorCode OTF2_DefWriter_WriteCallpath (OTF2_DefWriter xwriter,

OTF2_CallpathRef self, OTF2_CallpathRef parent, OTF2_RegionRef region)

Writes a Callpath definition record into the DefWriter.
e OTF2_ErrorCode OTF2_DefWriter_WriteCallsite (OTF2_DefWriter xwriter,
OTF2_CallsiteRef self, OTF2_StringRef sourceFile, uint32_t lineNumber,
OTF2_RegionRef enteredRegion, OTF2_RegionRef leftRegion)

Writes a Callsite definition record into the DefWriter.

e OTF2_ErrorCode OTF2_DefWriter_WriteCartCoordinate (OTF2_DefWriter
wxwriter, OTF2_CartTopologyRef cartTopology, uint32_t rank, uint8_t num-
berOfDimensions, const uint32_t xcoordinates)

Writes a CartCoordinate definition record into the DefWriter.

¢ OTF2_ErrorCode OTF2_DefWriter_WriteCartDimension (OTF2_DefWriter
xwriter, OTF2_CartDimensionRef self, OTF2_StringRef name, uint32_t size,
OTF2_CartPeriodicity cartPeriodicity)

Writes a CartDimension definition record into the DefWriter.

e OTF2_ErrorCode OTF2_DefWriter_WriteCartTopology (OTF2_DefWriter
sxwriter, OTF2_CartTopologyRef self, OTF2_StringRef name, OTF2_CommRef
communicator, uint8_t numberOfDimensions, const OTF2_CartDimensionRef
xcartDimensions)

Writes a Cartlopology definition record into the DefWriter.

¢ OTF2_ErrorCode OTF2_DefWriter_WriteClockOffset (OTF2_DefWriter xwriter,

OTF2_TimeStamp time, int64_t offset, double standardDeviation)
Writes a ClockOffset definition record into the DefWriter.

e OTF2_ErrorCode OTF2_DefWriter_WriteComm (OTF2_DefWriter xwriter,
OTF2_CommRef self, OTF2_StringRef name, OTF2_GroupRef group, OTF2_-
CommRef parent)

Writes a Comm definition record into the DefWriter.

¢ OTF2_ErrorCode OTF2_DefWriter_WriteGroup (OTF2_DefWriter xwriter,
OTF2_GroupRef self, OTF2_StringRef name, OTF2_GroupType groupType,
OTF2_Paradigm paradigm, OTF2_GroupFlag groupFlags, uint32_t numberOfMem-
bers, const uint64_t xmembers)

251

APPENDIX E. FILE DOCUMENTATION

Writes a Group definition record into the DefWriter.

e OTF2_ErrorCode OTF2_DefWriter_WriteLocation (OTF2_DefWriter xwriter,
OTF2_LocationRef self, OTF2_StringRef name, OTF2_LocationType lo-
cationType, uint64_t numberOfEvents, OTF2_LocationGroupRef location-
Group)

Writes a Location definition record into the DefWriter.

¢ OTF2_ErrorCode OTF2_DefWriter_WriteLocationGroup (OTF2_DefWriter
sxwriter, OTF2_LocationGroupRef self, OTF2_StringRef name, OTF2_LocationGroupType
locationGroupType, OTF2_SystemTreeNodeRef systemTreeParent)

Writes a LocationGroup definition record into the DefWriter.

* OTF2_ErrorCode OTF2_DefWriter_WriteLocationGroupProperty (OTF2_-
DefWriter swriter, OTF2_LocationGroupRef locationGroup, OTF2_StringRef
name, OTF2_StringRef value)

Writes a LocationGroupProperty definition record into the DefWriter.

e OTF2_ErrorCode OTF2_DefWriter_WriteLocationProperty (OTF2_DefWriter
sxwriter, OTF2_LocationRef location, OTF2_StringRef name, OTF2_StringRef
value)

Writes a LocationProperty definition record into the DefWriter.

* OTF2_ErrorCode OTF2_DefWriter_WriteMappingTable (OTF2_DefWriter

xwriter, OTF2_MappingType mappingType, const OTF2_IdMap *idMap)
Writes a MappingTable definition record into the DefWriter.

e OTF2_ErrorCode OTF2_DefWriter_WriteMetricClass (OTF2_DefWriter xwriter,
OTF2_MetricRef self, uint8_t numberOfMetrics, const OTF2_MetricMemberRef
smetricMembers, OTF2_MetricOccurrence metricOccurrence, OTF2_RecorderKind
recorderKind)

Writes a MetricClass definition record into the DefWriter:

¢ OTF2_ErrorCode OTF2_DefWriter_WriteMetricClassRecorder (OTF2_DefWriter

swriter, OTF2_MetricRef metricClass, OTF2_LocationRef recorder)
Writes a MetricClassRecorder definition record into the DefWriter.

e OTF2_ErrorCode OTF2_DefWriter_WriteMetricInstance (OTF2_DefWriter
swriter, OTF2_MetricRef self, OTF2_MetricRef metricClass, OTF2_LocationRef
recorder, OTF2_MetricScope metricScope, uint64_t scope)

Writes a Metriclnstance definition record into the DefWriter.
¢ OTF2_ErrorCode OTF2_DefWriter_WriteMetricMember (OTF2_DefWriter
sxwriter, OTF2_MetricMemberRef self, OTF2_StringRef name, OTF2_StringRef
description, OTF2_MetricType metricType, OTF2_MetricMode metricMode,
OTF2_Type valueType, OTF2_MetricBase metricBase, int64_t exponent,
OTF2_StringRef unit)
Writes a MetricMember definition record into the DefWriter.
e OTF2_ErrorCode OTF2_DefWriter_WriteParameter (OTF2_DefWriter xwriter,
OTF2_ParameterRef self, OTF2_StringRef name, OTF2_ParameterType pa-
rameter Type)

252

E.9 otf2/OTF2_DefWriter.h File Reference

Writes a Parameter definition record into the DefWriter.

* OTF2_ErrorCode OTF2_DefWriter_WriteRegion (OTF2_DefWriter *writer,
OTF2_RegionRef self, OTF2_StringRef name, OTF2_StringRef canonical-
Name, OTF2_StringRef description, OTF2_RegionRole regionRole, OTF2_-
Paradigm paradigm, OTF2_RegionFlag regionFlags, OTF2_StringRef source-
File, uint32_t beginLineNumber, uint32_t endLineNumber)

Writes a Region definition record into the DefWriter.

¢ OTF2_ErrorCode OTF2_DefWriter_WriteRmaWin (OTF2_DefWriter xwriter,

OTF2_RmaWinRef self, OTF2_StringRef name, OTF2_CommRef comm)
Writes a RmaWin definition record into the DefWriter.

* OTF2_ErrorCode OTF2_DefWriter_WriteString (OTF2_DefWriter xwriter,
OTF2_StringRef self, const char *string)

Writes a String definition record into the DefWriter.

* OTF2_ErrorCode OTF2_DefWriter_WriteSystemTreeNode (OTF2_DefWriter
sxwriter, OTF2_SystemTreeNodeRef self, OTF2_StringRef name, OTF2_-
StringRef className, OTF2_SystemTreeNodeRef parent)

Writes a SystemTreeNode definition record into the DefWriter.

* OTF2_ErrorCode OTF2_DefWriter_WriteSystemTreeNodeDomain (OTF2_-
DefWriter xwriter, OTF2_SystemTreeNodeRef systemTreeNode, OTF2_-
SystemTreeDomain systemTreeDomain)

Writes a SystemTreeNodeDomain definition record into the DefWriter.

* OTF2_ErrorCode OTF2_DefWriter_WriteSystemTreeNodeProperty (OTF2_-
DefWriter xwriter, OTF2_SystemTreeNodeRef systemTreeNode, OTF2_-
StringRef name, OTF2_StringRef value)

Writes a SystemTreeNodeProperty definition record into the DefWriter.
E.9.1 Detailed Description
This file provides all routines that write definition records of a single location.

Source Template:

templates/OTF2_DefWriter.tmpl.h

E.9.2 Function Documentation

E.9.21 OTF2_ErrorCode OTF2_DefWriter_GetLocationID (const OTF2_DefWriter
+ writer, OTF2_LocationRef x location)

Returns the location ID of the location which is related to the writer object.

253

APPENDIX E. FILE DOCUMENTATION

Parameters

‘ writer | Writer object.

‘ location | Return location reference.

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.9.22 OTF2_ErrorCode OTF2_DefWriter_WriteAttribute (OTF2_DefWriter
x writer, OTF2_AttributeRef self, OTF2_StringRef name,
OTF2_StringRef description, OTF2_Type type)

Writes a Attribute definition record into the DefWriter.
The attribute definition.

Parameters

writer | Writer object.

self | The unique identifier for this Attribute definition.

name | Name of the attribute. References a String definition.

description | Description of the attribute. References a String definition. Since ver-
sion 1.4.

type | Type of the attribute value.

Since

Version 1.0

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.9.2.3 OTF2_ErrorCode OTF2_DefWriter_WriteCallpath (OTF2_DefWriter
+ writer, OTF2_CallpathRef self, OTF2_CallpathRef parent,
OTF2_RegionRef region)

Writes a Callpath definition record into the DefWriter.
The callpath definition.

Parameters

writer ‘ Writer object.

254

E.9 otf2/OTF2_DefWriter.h File Reference

self The unique identifier for this Callpath definition.

parent | The parent of this callpath. References a Callpath definition.

region | The region of this callpath. References a Region definition.

Since

Version 1.0

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.9.24 OTF2_ErrorCode OTF2_DefWriter_WriteCallsite (OTF2_DefWriter * writer,
OTF2_CallsiteRef self, OTF2_StringRef sourceFile, uint32_t lineNumber,
OTF2_RegionRef enteredRegion, OTF2_RegionRef leftRegion)

Writes a Callsite definition record into the DefWriter.

The callsite definition.

Parameters

writer | Writer object.

self | The unique identifier for this Callsite definition.

sourceFile | The source file where this call was made. References a String definition.

lineNumber | Line number in the source file where this call was made.

enteredRe- | The region which was called. References a Region definition.
gion

leftRegion The region which made the call. References a Region definition.

Since

Version 1.0

Returns

OTF2_SUCCESS if successful, an error code if an error occurs.

E.9.25 OTF2_ErrorCode OTF2 DefWriter_WriteCartCoordinate (OTF2_DefWriter
+ writer, OTF2_Cart