
CubeLib 4.9 Tools Guide
Description of Cube Command Line Tools

March 2025
The Scalasca Development Team
scalasca@fz-juelich.de

Attention

The Cube Tool Developer Guide is currently being rewritten and still incom-
plete. However, it should already contain enough information to get you
started and avoid the most common pitfalls.

ii

Contents

1 Cube Command Line Tools 3
1.1 Abstract . 3
1.2 Performance Algebra and Tools . 3

1.2.1 Difference . 3
1.2.2 Merge . 4
1.2.3 Mean . 5
1.2.4 Compare . 6

1.3 POP Metrics calculation tool . 6
1.3.1 Tool Usage . 7
1.3.2 Only MPI analysis . 7

1.3.2.1 Only-MPI POP Metrics . 8
1.3.3 Hybrid Additive POP analysis . 9

1.3.3.1 Hybrid Additive POP Metrics . 9
1.3.4 Hybrid Multiplicative POP analysis . 11

1.3.4.1 Hybrid Additive POP Metrics . 11
1.3.5 Hybrid BSC POP analysis . 13

1.3.5.1 Hybrid BSC POP Metrics . 14
1.3.6 Additional metics . 15

1.3.6.1 I/O Ffficiencies . 15
1.3.6.2 Additional Ffficiencies . 16
1.3.6.3 Control Metrics . 16

1.4 Cube Remapping tool . 17
1.4.1 Tool Usage . 17
1.4.2 Remapping algorithm . 17
1.4.3 Syntax of a .spec file . 18
1.4.4 Optimization of the remapping. 21

1.5 Supplementary utilities and helping Cube command line tools 21
1.5.1 Cube Server cube_server . 21
1.5.2 Sanity Check . 22
1.5.3 Insertion of of derived metric into the .cubex 23
1.5.4 Inspection of a call tree . 23
1.5.5 System tree partition . 24
1.5.6 Region information . 25
1.5.7 Cube Information . 32
1.5.8 Tester . 35
1.5.9 Canonizer . 35
1.5.10Clean . 36
1.5.11Reroot, Prune . 37
1.5.12Statistics . 38
1.5.13from TAU to CUBE . 39
1.5.14Common Calltree . 40

iii

Contents

1.5.15Topology Assistant . 41
1.5.16Dump . 44

Bibliography 53

iv

Contents

Copyright © 1998–2024 Forschungszentrum Jülich GmbH, Germany

Copyright © 2009–2015 German Research School for Simulation Sciences GmbH,
Jülich/Aachen, Germany

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

• Neither the names of Forschungszentrum Jülich GmbH or German Research School
for Simulation Sciences GmbH, Jülich/Aachen, nor the names of their contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTIC-
ULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROF-
ITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLI-
GENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1

1 Cube Command Line Tools

1.1 Abstract

CUBE provides a set of various command line tools for different purposes.

1.2 Performance Algebra and Tools

As performance tuning of parallel applications usually involves multiple experiments to
compare the effects of certain optimization strategies, CUBE offers a mechanism called
performance algebra that can be used to merge, subtract, and average the data from
different experiments and view the results in the form of a single “derived'' experiment.
Using the same representation for derived experiments and original experiments provides
access to the derived behavior based on familiar metaphors and tools in addition to an
arbitrary and easy composition of operations. The algebra is an ideal tool to verify and
locate performance improvements and degradations likewise. The algebra includes three
operators—diff, merge, and mean—provided as command-line utilities which take two or
more CUBE files as input and generate another CUBE file as output. The operations are
closed in the sense that the operators can be applied to the results of previous operations.
Note that although all operators are defined for any valid CUBE data sets, not all possible
operations make actually sense. For example, whereas it can be very helpful to compare two
versions of the same code, computing the difference between entirely different programs
is unlikely to yield any useful results.

1.2.1 Difference

Changing a program can alter its performance behavior. Altering the performance behavior
means that different results are achieved for different metrics. Some might increase
while others might decrease. Some might rise in certain parts of the program only, while
they drop off in other parts. Finding the reason for a gain or loss in overall performance
often requires considering the performance change as a multidimensional structure. With
CUBE's difference operator, a user can view this structure by computing the difference
between two experiments and rendering the derived result experiment like an original
one. The difference operator takes two experiments and computes a derived experiment
whose severity function reflects the difference between the minuend's severity and the
subtrahend's severity.

The possible output is presented below.

user@host: cube_diff scout.cube remapped.cube -o result.cube

3

1 Cube Command Line Tools

Reading scout.cube ... done.
Reading remapped.cube ... done.
++++++++++++ Diff operation begins ++++++++++++++++++++++++++
INFO::Merging metric dimension... done.
INFO::Merging program dimension... done.
INFO::Merging system dimension... done.
INFO::Mapping severities... done.
INFO::Adding topologies...

Topology retained in experiment.
done.

INFO::Diff operation... done.
++++++++++++ Diff operation ends successfully ++++++++++++++++
Writing result.cube ... done.

Usage: cube_diff [-o output] [-c|-C] [-h] <minuend> <subtrahend>

-o Name of the output file (default: diff.cube)

-c Reduce system dimension, if experiments are incompatible.

-C Collapse system dimension! Overrides option -c.

-h Help; Output a brief help message.

1.2.2 Merge

The merge operator's purpose is the integration of performance data from different sources.
Often a certain combination of performance metrics cannot be measured during a single run.
For example, certain combinations of hardware events cannot be counted simultaneously
due to hardware resource limits. Or the combination of performance metrics requires
using different monitoring tools that cannot be deployed during the same run. The merge
operator takes an arbitrary number of CUBE experiments with a different or overlapping
set of metrics and yields a derived CUBE experiment with a joint set of metrics.

The possible output is presented below.

user@host: cube_merge scout.cube remapped.cube -o result.cube
++++++++++++ Merge operation begins ++++++++++++++++++++++++++
Reading scout.cube ... done.
Reading remapped.cube ... done.
INFO::Merging metric dimension... done.
INFO::Merging program dimension... done.
INFO::Merging system dimension... done.
INFO::Mapping severities... done.
INFO::Merge operation...

Topology retained in experiment.

Topology retained in experiment.
done.

++++++++++++ Merge operation ends successfully ++++++++++++++++
Writing result.cube ... done.

4

1.2 Performance Algebra and Tools

Usage: cube_merge [-o output] [-c] [-C] [-h] <cube experiment>

-o Name of the output file (default: merge.cube)

-c Reduce dimension, if experiments are incompatible

-C Collapse system dimension!

-h Help; Output a brief help message.

1.2.3 Mean

The mean operator is intended to smooth the effects of random errors introduced by
unrelated system activity during an experiment or to summarize across a range of execution
parameters. You can conduct several experiments and create a single average experiment
from the whole series. The mean operator takes an arbitrary number of arguments.

The possible output is presented below.

user@host: cube_mean scout1.cube scout2.cube scout3.cube scout4.cube -o mean.cube
++++++++++++ Mean operation begins ++++++++++++++++++++++++++
Reading scout1.cube ... done.
INFO::Merging metric dimension... done.
INFO::Merging program dimension... done.
INFO::Merging system dimension... done.
INFO::Mapping severities... done.
INFO::Adding topologies... done.
INFO::Mean operation... done.
Reading scout2.cube ... done.
INFO::Merging metric dimension... done.
INFO::Merging program dimension... done.
INFO::Merging system dimension... done.
INFO::Mapping severities... done.
INFO::Adding topologies... done.
INFO::Mean operation... done.
Reading scout3.cube ... done.
INFO::Merging metric dimension... done.
INFO::Merging program dimension... done.
INFO::Merging system dimension... done.
INFO::Mapping severities... done.
INFO::Adding topologies... done.
INFO::Mean operation... done.
Reading scout4.cube ... done.
INFO::Merging metric dimension... done.
INFO::Merging program dimension... done.
INFO::Merging system dimension... done.
INFO::Mapping severities... done.
INFO::Adding topologies... done.
INFO::Mean operation... done.
++++++++++++ Mean operation ends successfully ++++++++++++++++
Writing mean.cube ... done.

Usage: cube_mean [-o output] [-c] [-C] [-h] <cube experiment>

5

1 Cube Command Line Tools

-o Name of the output file (default: mean.cube)

-c Do not collapse system dimension, if experiments are incompatible

-C Collapse system dimension

-h Help; Output a brief help message.

1.2.4 Compare

Compares two experiments and prints out if they are equal or not. Two experiments are
equal if they have same dimensions hierarchy and the equal values of the severities.

An example of the output is below.

user@host: cube_cmp remapped.cube scout1.cube
Reading remapped.cube ... done.
Reading scout1.cube ... done.
++++++++++++ Compare operation begins ++++++++++++++++++++++++++
Experiments are not equal.
+++++++++++++ Compare operation ends successfully ++++++++++++++++

Usage: cube_cmp [-h] <cube experiment 1> <cube experiment 2>

-h Help; Output a brief help message.

1.3 POP Metrics calculation tool

CUBE provides a command line tool cube_pop_metrics to calculate various POP metrics.
Attempting to optimize the performance of a parallel code can be a daunting task, and often
it is difficult to know where to start. For example, we might ask if the way computational
work is divided is a problem? Or perhaps the chosen communication scheme is inefficient?
Or does something else impact performance? To help address this issue, POP has defined
a methodology for analysis of parallel codes to provide a quantitative way of measuring
relative impact of the different factors inherent in parallelization. This article introduces
these metrics, explains their meaning, and provides insight into the thinking behind them.

Various POP models are supported:

• Only-MPI - analysis of the code using only MPI;

• Hybrid Additive - analysis of the code using hybrid parallelization MPI with OpenMP,
where different metrics are related to each other as a sum;

• Hybrid Multiplicative - analysis of the code using hybrid parallelization MPI with
OpenMP, where different metrics are related to each other as a product;

• Hybrid BSC - analysis of the code using hybrid parallelization MPI with "non-MPI"
paradigm, developed in Barcelona Supercomputing Center;

6

1.3 POP Metrics calculation tool

1.3.1 Tool Usage

Usage: ./cube_pop_metrics -r [-i] [-a <pop analysis>] [-c <FOI(s)>] [-h] [-? <pop
analysis>] <cube1> <cube2> ...

-a Name of the POP analysis. Options: mpi,hybrid-add, hybrid-mult, bsc. Default: mpi

-c Name(s) or ID(s) of FOI(s). Default: calltree root(s). Comma separated

-i Performs the calculation individually for every listed FOI. Default: if omit, the calculation
is performed in accumulated manner

-h Help; Output a brief help message.

-? Help; Output a long detailed help message.

1.3.2 Only MPI analysis

A feature of the methodology is, that it uses a hierarchy of Only-MPI Assessment, each
metric reflecting a common cause of inefficiency in parallel programs. These metrics then
allow a comparison of the parallel performance (e.g. over a range of thread/process counts,
across different machines, or at different stages of optimization and tuning) to identify
which characteristics of the code contribute to the inefficiency.

The first step to calculating these metrics is to use a suitable tool (e.g. Score-P or Extrae) to
generate trace data whilst the code is executed. The traces contain information about the
state of the code at a particular time, e.g. it is in a communication routine or doing useful
computation, and also contains values from processor hardware counters, e.g. number of
instructions executed, number of cycles.

The Only-MPI Assessment are then calculated as efficiencies between 0 and 1, with higher
numbers being better. In general, we regard efficiencies above 0.8 as acceptable, whereas
lower values indicate performance issues that need to be explored in detail. The ultimate
goal then for POP is rectifying these underlying issues by the user. Please note, that Only-
MPI Assessment can be computed only for inclusive callpaths, as they are less meaningful
for exclusive callpaths. Furthermore, Only-MPI Assessment are not available in "Flat view"
mode.

The approach outlined here is applicable to various parallelism paradigms, however for
simplicity the Only-MPI Assessment presented here are formulated in terms of a distributed-
memory message-passing environment, e.g., MPI. For this the following values are cal-
culated for each process from the trace data: time doing useful computation, time in
communication, number of instructions & cycles during useful computation. Useful compu-
tation excludes time within the overhead of parallel paradigms (Computation time).

At the top of the hierarchy is Global Efficiency (GE), which we use to judge overall quality
of parallelization. Typically, inefficiencies in parallel code have two main sources:

• Overhead imposed by the parallel nature of a code

• Poor scaling of computation with increasing numbers of processes

and to reflect this we define two sub-metrics to measure these two inefficiencies. These
are the Parallel Efficiency and the Computation Efficiency, and our top-level GE metric is

7

1 Cube Command Line Tools

the product of these two sub-metrics:

GE = Parallel Efficiency x Computation Efficiency

1.3.2.1 Only-MPI POP Metrics

Parallel Efficiency (PE)reveals the inefficiency in splitting computation over processes
and then communicating data between processes. As with GE, PE is a compound metric
whose components reflects two important factors in achieving good parallel performance
in code:

• Ensuring even distribution of computational work across processes

• Minimizing time communicating data between processes

These are measured with Load Balance Efficiency and Communication Efficiency, and PE is
defined as the product of these two sub-metrics:

PE = Load Balance x Communication Efficiency

Load Balance Efficiency can be computed as follows:

Load Balance Efficiency =
avg(computation time)

max(computation time)

Thus it shows how big is a difference between average and maximal computation.

Communication Efficiency (CommE) is the maximum across all processes of the ratio
between useful computation time and total run-time:

CommE = maximum across processes
computation time

total runtime

CommE identifies when code is inefficient because it spends a large amount of time
communicating rather than performing useful computations.

CommE is composed of two additional metrics that reflect two causes of excessive time
within communication:

• Processes waiting at communication points for other processes to arrive (i.e. seriali-
sation)

• Processes transferring large amounts of data relative to the network capacity

These are measured using Serialisation Efficiency and Transfer Efficiency.

Combination of these two sub-metrics gives us Communication Efficiency:

CommE = Serialisation Efficiency x Transfer Efficiency

To obtain these two sub-metrics we need to perform Scalasca trace analysis which identifies
serialisations and inefficient communication patterns.

Serialisation Efficiency (SerE) measures inefficiency due to idle time within communica-
tions, i.e. time where no data is transferred, and is expressed as:

SerE = maximum across processes(
computation time

total runtime on ideal network
)

8

1.3 POP Metrics calculation tool

where total run-time on ideal network is a runtime without detected by Scalasca waiting
time and MPI I/O time.

Transfer Efficiency (TE) measures inefficiencies due to time spent in data transfers:

TE =
maximum across processes(total runtime on ideal network)

maximum across processes(total measured runtime)

where total run-time on ideal network is a runtime without detected by Scalasca waiting
time and MPI I/O time.

1.3.3 Hybrid Additive POP analysis

Hybrid Additive This is one approach to extend POP metrics (see: 1.3.2) for hybrid
(MPI+OpenMP) applications. In this approach Parallel Efficiency split into two
components:

PE = Process Efficiency + Thread Efficiency − 1

• Process Efficiency shows the inefficiencies on MPI level, and can be broken down
into Computation Load Balance and MPI Communication Efficiency

•

• Thread Efficiency shows the inefficiencies on OpenMP level, and can be broken
down into Amdahl's Efficiency and OpenMP Region Efficiency

1.3.3.1 Hybrid Additive POP Metrics

Parallel Efficiency (PE) reveals the inefficiency in processes and threads utilization.
These are measured with Process Efficiency and Thread Efficiency, and PE can be
computed directly or as a sum of these two sub-metrics minus one:

PE =
avg(computationtime)

max(runtime)
= Process Efficiency + Thread Efficiency − 1

Process Efficiency completely ignores thread behavior, and evaluates process utilization
via two components:

• Workload across processes

• Communication across processes

These two can be measured with Computation Load Balance and Communication Efficiency
respectively. Process Efficiency can be computed directly or as a sum of these two sub-
metrics minus one:

Process Efficiency =
(avg(time in OpenMP) + avg(serial computation))

max(runtime)
= Computation Load Balance + MPI Communication Efficiency − 1

Where average time in OpenMP and average serial computation are computed as weighted
arithmetic mean. If number of threads is equal across processes average time in OpenMP
and average serial computation can be computed as ordinary arithmetic mean.

9

1 Cube Command Line Tools

Computation Load Balance can be evaluated directly by following formula:

Computation Load Balance = (max(runtime)−max(time in OpenMP + serial computation time) + avg(time in OpenMP) + avg(time in serial computation))/max(runtime)

Where average time in OpenMP and average serial computation are computed as weighted
arithmetic mean. If number of threads is equal across processes average time in OpenMP
and average serial computation can be computed as ordinary arithmetic mean.

MPI Communication Efficiency (CommE) can be evaluated directly by following formula:

CommE =
(max(time in OpenMP + serial computation time))

max(runtime)

CommE identifies when code is inefficient because it spends a large amount of time
communicating rather than performing useful computations. CommE is composed of two
additional metrics that reflect two causes of excessive time within communication:

• Processes waiting at communication points for other processes to arrive (i.e. seriali-
sation)

• Processes transferring large amounts of data relative to the network capacity

These are measured using Serialisation Efficiency and Transfer Efficiency. Combination of
these two sub-metrics gives us Communication Efficiency:

CommE = Serialisation Efficiency x Transfer Efficiency

To obtain these two sub-metrics we need to perform Scalasca trace analysis which identifies
serialisations and inefficient communication patterns.

Serialisation Efficiency (SerE) measures inefficiency due to idle time within communica-
tions, i.e. time where no data is transferred, and is expressed as:

SerE = maximum across processes(
computation time

total runtime on ideal network
)

where total run-time on ideal network is a runtime without detected by Scalasca waiting
time and MPI I/O time.

Transfer Efficiency (TE) measures inefficiencies due to time spent in data transfers:

TE =
maximum across processes(total runtime on ideal network)

maximum across processes(total measured runtime)

where total run-time on ideal network is a runtime without detected by Scalasca waiting
time and MPI I/O time.

Thread Efficiency considers two sources of inefficiency:

• Serial computation on the master outside OpenMP, i.e. reflects Amdahl's law

• Inefficiencies within threads, e.g. serialisation across threads

These two can be measured with Amdahl's Efficeincy and OpenMP region Efficiency
respectively. Thread Efficeincy can be computed directly or as a sum of these two sub-
metrics minus one:

ThreadEfficiency =
max(runtime)− avg(time in OpenMP) + avg(time in useful computation within OpenMP)− avg(idling time of OpenMP threads)

max(runtime)
= Amdahl′s Efficiency + OpenMP Region Efficiency − 1

10

1.3 POP Metrics calculation tool

Where average idling time of OpenMP threads considers that threads are idling if only
master thread is working and can be computed by following formula

avg(idling time of OpenMP threads) =

num of processes∑
process=0

serial computation
(number of threads per process − 1)

number of all available threads

Moreover, average time in OpenMP computed as weighted arithmetic mean. If number of
threads is equal across processes average time in OpenMP can be computed as ordinary
arithmetic mean.

Amdahl's Efficiency indicates serial computation and can be computed as follows:

Amdahl′s Efficiency =
(max(runtime)− avg(idling time of OpenMP threads))

max(runtime)

OpenMP Region Efficiency indicates inefficiencies within threads, and can be computed as
follows:

OpenMP Region Efficiency =
max(runtime)− avg(time in OpenMP) + avg(time in useful computation within OpenMP)

max(runtime)

Where average time in OpenMP is computed as weighted arithmetic mean. If number of
threads is equal across processes average time in OpenMP can be computed as ordinary
arithmetic mean.

1.3.4 Hybrid Multiplicative POP analysis

Hybrid Multiplicative This is one approach to extend POP metrics (see: 1.3.2) for
hybrid (MPI+OpenMP) applications. In this approach Parallel Efficiency split into two
components:

PE = Process Efficiency x Thread Efficiency

• Process Efficiency shows the inefficiencies on MPI level, and can be broken down
into Computation Load Balance and MPI Communication Efficiency

• Thread Efficiency shows the inefficiencies on OpenMP level, and can be broken
down into Amdahl's Efficiency and OpenMP Region Efficiency

1.3.4.1 Hybrid Additive POP Metrics

Parallel Efficiency (PE) reveals the inefficiency in processes and threads utilization.
These are measured with Process Efficiency and Thread Efficiency, and PE can be
computed directly or as a product of these two sub-metrics:

PE =
avg(comp)

max(runtime)
= Process Efficiency x Thread Efficiency

Process Efficiency completely ignores thread behavior, and evaluates process utilization
via two components:

• Workload across processes

11

1 Cube Command Line Tools

• Communication across processes

These two can be measured with Computation Load Balance and Communication Efficiency
respectively. Process Efficiency can be computed directly or as a product of these two
sub-metrics:

PE =
avg(timeinOpenMP) + avg(serialcomputation)

max(runtime)
= Computation Load Balance x MPI Communication Efficiency.

Where average time in OpenMP and average serial computation are computed as weighted
arithmetic mean. If number of threads is equal across processes average time in OpenMP
and average serial computation can be computed as ordinary arithmetic mean.

Computation Load Balance can be evaluated directly by following formula:

Computation Load Balance =
(avg(time in OpenMP) + avg(serial computation))

max(time in OpenMP + serial computation time)

Where average time in OpenMP and average serial computation are computed as weighted
arithmetic mean. If number of threads is equal across processes average time in OpenMP
and average serial computation can be computed as ordinary arithmetic mean.

MPI Communication Efficiency (CommE) can be evaluated directly by following formula:

CommE =
max(timeinOpenMP + serialcomputationtime)

max(runtime)

CommE identifies when code is inefficient because it spends a large amount of time
communicating rather than performing useful computations. CommE is composed of two
additional metrics that reflect two causes of excessive time within communication:

• Processes waiting at communication points for other processes to arrive (i.e. seriali-
sation)

• Processes transferring large amounts of data relative to the network capacity

These are measured using Serialisation Efficiency and Transfer Efficiency. Combination of
these two sub-metrics gives us Communication Efficiency:

CommE = Serialisation Efficiency x Transfer Efficiency

To obtain these two sub-metrics we need to perform Scalasca trace analysis which identifies
serialisations and inefficient communication patterns.

Serialisation Efficiency (SerE) measures inefficiency due to idle time within communica-
tions, i.e. time where no data is transferred, and is expressed as:

SerE = maximum across processes(
computation time

total runtime on ideal network
)

where total run-time on ideal network is a runtime without detected by Scalasca waiting
time and MPI I/O time.

Transfer Efficiency (TE) measures inefficiencies due to time spent in data transfers:

TE =
maximum across processes(total runtime on ideal network)

maximum across processes(total measured runtime)

where total run-time on ideal network is a runtime without detected by Scalasca waiting
time and MPI I/O time.

Thread Efficiency considers two sources of inefficiency:

12

1.3 POP Metrics calculation tool

• Serial computation on the master outside OpenMP, i.e. reflects Amdahl's law

• Inefficiencies within threads, e.g. serialisation across threads

These two can be measured with Amdahl's Efficeincy and OpenMP region Efficiency
respectively. Thread Efficeincy can be computed directly or as a product of these two
sub-metrics:

ThreadEfficiency =
avg(computationtime)

(avg(timeinOpenMP) + avg(serialcomputation))
= Amdahl′s Efficiency x OpenMP Region Efficiency

Where average time in OpenMP and average serial computation are computed as weighted
arithmetic mean. If number of threads is equal across processes average time in OpenMP
and average serial computation can be computed as ordinary arithmetic mean.

Thread Efficiency considers two sources of inefficiency:

• Serial computation on the master outside OpenMP, i.e. reflects Amdahl's law

• Inefficiencies within threads, e.g. serialisation across threads

These two can be measured with Amdahl's Efficeincy and OpenMP region Efficiency
respectively. Thread Efficeincy can be computed directly or as a product of these two
sub-metrics:

Thread Efficiency =
avg(computationtime)

(avg(timeinOpenMP) + avg(serialcomputation))
= Amdahl′s Efficiency x OpenMP Region Efficiency

Where average time in OpenMP and average serial computation are computed as weighted
arithmetic mean. If number of threads is equal across processes average time in OpenMP
and average serial computation can be computed as ordinary arithmetic mean.

OpenMP Region Efficiency indicates inefficiencies within threads, and can be computed as
follows:

OpenMPRegionEfficiency =
(avg(timeinusefulcomputationwithinOpenMP) + avg(serialcomputation))

(avg(timeinOpenMP) + avg(serialcomputation))

Where average time in OpenMP and average serial computation are computed as weighted
arithmetic mean. If number of threads is equal across processes average time in OpenMP
and average serial computation can be computed as ordinary arithmetic mean.

1.3.5 Hybrid BSC POP analysis

Hybrid Multiplicative This is one approach to extend POP metrics (see: 1.3.2) for
hybrid (MPI+OpenMP) applications. In this approach Parallel Efficiency split into two
components:

• Hybrid Parallel Efficiency reveals the inefficiency in processes and threads
utilization and can be broken down into Hybrid Load Balance Efficiency and
Hybrid Communication Efficiency

• MPI Parallel Efficiency reveals the inefficiency in MPI processes and can be
broken down into MPI Load Balance Efficiency and MPI Communication
Efficiency

• OpenMP Parallel Efficiency reveals the inefficiency in OpenMP threads and
can be broken down into OpenMP Load Balance Efficiency and OpenMP
Communication Efficiency

13

1 Cube Command Line Tools

1.3.5.1 Hybrid BSC POP Metrics

Hybrid Parallel Efficiency (HPE) reveals the inefficiency in processes and threads utiliza-
tion. These are measured with Hybrid Load Balance Efficiency and Hybrid Communication
Efficiency, and HPE can be computed directly or as a product of these two sub-metrics:

HPE =
avg(computationtime)

max(runtime)
= Hybrid Load Balance Efficiency x Hybrid Communication Efficiency

Hybrid Load Balance Efficiency can be computed as follows:

Hybrid Load Balance Efficiency =
computation time

maximum computation time

Hybrid Communication Efficiency can be evaluated directly by following formula

Hybrid Communication Efficiency =
max(computation time)

max(runtime)

This metric identifies when code is inefficient because it spends a large amount of time
communicating rather than performing useful computations.

MPI Parallel Efficiency (MPE) reveals the inefficiency in MPI processes. MPE can be
computed directly or as a product of MPI Load Balance Efficiency and MPI Communication
Efficiency :

MPE =
avg(time outside of MPI)

max(runtime)
= MPI Load Balance Efficiency x MPI Communication Efficiency

MPI Load Balance Efficiency can be computed as follows:

MPI Load Balance Efficiency =
avg(time outside of MPI)

max(time outside of MPI)

MPI Communication Efficiency can be evaluated directly by following formula:

MPI Communication Efficiency =
max(time outside of MPI)

max(runtime)

This metric identifies when code is inefficient because it spends a large amount of time
communicating rather than performing useful computations.

Serialisation Efficiency (SerE) measures inefficiency due to idle time within communica-
tions, i.e. time where no data is transferred, and is expressed as:

SerE = maximum across processes(
computation time

total runtime on ideal network
)

where total run-time on ideal network is a runtime without detected by Scalasca waiting
time and MPI I/O time.

Transfer Efficiency (TE) measures inefficiencies due to time spent in data transfers:

TE =
maximum across processes(total runtime on ideal network)

maximum across processes(total measured runtime)

14

1.3 POP Metrics calculation tool

where total run-time on ideal network is a runtime without detected by Scalasca waiting
time and MPI I/O time.

OpenMP Parallel Efficiency (OMPE) reveals the inefficiency in OpenMP threads. OMPE can
be computed directly or as a division Hybrid Parallel Efficiency by MPI Parallel Efficiency:

OMPE =
avg(computation time)

avg(time outside of MPI)
=

Hybrid Parallel Efficiency

MPI Parallel Efficiency

OpenMP Load Balance Efficiency can be computed as follows:

OpenMP Load Balance Efficiency =
Hybrid Load Balance Efficiency

MPI Load Balance Efficiency

OpenMP Communication Efficiency can be evaluated directly by following formula:

OpenMP Communication Efficiency =
max(computation time)

max(time outside of MPI)
=

Hybrid Communication Efficiency

MPI Communication Efficiency

1.3.6 Additional metics

cube_pop_metrics tool provides a series of additinal metrics, which help to make better
conclusion about the performance of the code

1.3.6.1 I/O Ffficiencies

I/O Efficiency is an additional metric, indicating amount of time spend not in a useful
computation, but in the processing of IO operations. IO Efficiency can be split into two
components:

• POSIX IO Efficiency shows the fraction of time spent in POSIX IO calls

• MPI IO Efficiency shows the fraction of time spent in MPI IO calls

In this analysis IO an be computed as a sum of these two sub-metrics minus one:

IO = 1− POSIX IO +MPI IO

, where 1 would indicate absence of any I/O operation (perfect usage of I/O is no I/O)

POSIX IO Efficiency shows the fraction of execution time spent in POSIX IO calls In this
analysis POSIX IO is computed as :

POSIX IO =
time in POSIX IO calls

total runtime

MPI IO Efficiency shows the fraction of execution time spent in MPI IO calls In this
analysis MPI IO is computed as :

MPI IO =
time in MPI IO calls

total runtime

15

1 Cube Command Line Tools

1.3.6.2 Additional Ffficiencies

Stalled resources indicates the fraction of computational cycles in user code that the
processor has been waiting for some resources. If PAPI counters are available, use

PAPI_RES_STL

PAPI_TOT _CY C

. Otherwise, if Perf counters are available, use one of

1.

(stalled_cycles_backend+ stalled_cycles_frontend)

cycles

2.

stalled_cycles_backend

cycles

3.

stalled_cycles_frontend

cycles

depending on what is available.

IPC Efficiency compares IPC to the reference, where lower values indicate that rate of
computation has slowed. Typical causes for this include decreasing cache hit rate and
exhaustion of memory bandwidth, these can leave processes stalled and waiting for data.

Instruction Efficiency is the ratio of total number of useful instructions for a reference
case (e.g. 1 processor) compared to values when increasing the numbers of processes.
A decrease in Instruction Efficiency corresponds to an increase in the total number of
instructions required to solve a computational problem.

Computation time shows the time spent in the part of the code, identified as a useful
computation. Computation time is defined in form of exclusion, namely, computation time is
part of the execution time spend NOT in MPI, NOT in OpenMP, NOT in IO, not in SHMEM,
not in service libraries, insturmented using the library wrapping, NOT in CUDA, NOT
OpenCL, NOT in OpenACC, NOT in OpenCL and so on.

GPU Computation time shows the time spent in the part of the code, identified as a
useful computation and executed on GPU.

1.3.6.3 Control Metrics

WallClock time metric is used to control the quality of the measurement and it displays :

• minimal

• average

• maximal runtime

across the system tree.

16

1.4 Cube Remapping tool

By inspecting this metric the user has an opportunity to estimate weather the measurement
is made properly to be suitable for the POP analysis. If the measurement is very skewed
(outliners, too wide range in the times from CPU to CPU, and similar) most likely is this
measurement has been made errorneously and is not suitable for the analysis. In this case,
it is advisable to redo the measurement.

1.4 Cube Remapping tool

CUBE provides an universal flexible tool, which allows to transform metric tree of an input
.cubex into an arbitrary metric hierarchy according to user defined flexible rules. This can
be used by performance analysis tools, such as Score-P or Scalasca. In particularly one
classifies different call paths according to some user defined rules.

As well one can use this tool to convert derived metrics into the data (if possible) or to add
an additional metric into the current .cubex file.

During this processing step the remapper will also create topologies that can be constructed
based on system tree information. For this the remapper will use reasonable default
settings, for more manual control over topologies the 1.5.15 tool can be used.

1.4.1 Tool Usage

Usage: ./cube_remap2 -r <remap specification file> [-o output] [-d] [-s] [-h] <cube
experiment>

-r Name of the remapping specification file. By omitting this option the specification file
from the cube experiment is taken if present.

-c Create output file with the same structure as an input file. It overrides option "-r"

-o Name of the output file (default: remap)

-d Convert all prederived metrics into usual metrics, calculate and store their values as a
data.

-s Add hardcoded SCALASCA metrics "Idle threads" and "Limited parallelizm"

-h Help; Output a brief help message.

1.4.2 Remapping algorithm

The main idea behind the working way of the remapping tool is simple: user formulates the
target hierarchy of the metrics in an external file (.spec) and defines rules how they are
calculated using CubePL syntax. Remapping tool creates then an output cube with this
metric hierarchy.

In particularly remapping tool performs following steps:

1. Is command-line option -c specified, remapping tool works in "Copy" mode: it creates
output cube with identical metrics hierarhy. One combines it usual with the options
-d and -s. Otherwise...

17

1 Cube Command Line Tools

2. Is command-line option -r omit, remapping tool looks for the .spec file within the input
.cubex file. Score-P starting with version v5 stores its .spec file within profile.cubex.
Otherwise...

3. Is command-line option -r specified, remapping tools looks for .spec file and creates
the new (working) cube object with the metric hierarchy as metric dimension specified
in .spec file

4. Then it merges metric hierarchy of the input file into the current metric hierarchy. All
metrics from the input file which present in .spec hierarchy gets mapped to them. All
missing metrics will be added as additional metrics.

5. Is the command-line option -s specified, tool adds additional SCALASCA metrics "Idle
threads" and "Limited parallelism"

6. Other dimensions and elements of the input .cubex file (topologies, mirrors and
similar) get merged into the new cube object one-to-one (as the freshly created cube
object doesn't have any)

7. If the command-line option -d is omit, remapping tool saves created cube on disk as
it is. All derived metrics in .spec file will stay as derived metrics and will be executed
only while working with the stored .cubex file in GUI or with command-line tools.

8. Did user specified command-line option -d, the second phase of the remapping is
executed: calculation of derived metrics and converting them into the data. Note,
that no all metrics are convertible (such as rates or similar) into data and should stay
derived in the target file. To do so remapping tool creates an additional cube object
with the identical structure (only convertible derived metrics are turned into the
regular data metrics) of the intermediate working cube and copies metric-by-metric
its data. As result, derived metrics are calculated and their value is stored as a data
into the target cube.

9. Resulting cube object is saved on disk.

As one can see user can use remapping tool for different purposes:

1. Convert derived metrics of the current .cubex file into the data metrics. For that it is
enough to execube remapping tool as:

./cube_remap2 -d <input>

2. Add an additional derived metric into the current .cubex cube

3. Create a new .cubex with the user specified metrics hierarchy. (standard usage)

1.4.3 Syntax of a .spec file

Examples for .spec files are shipped with the CUBE package ans stored in the directory
[prefix]/share/doc/cubelib/examples

Here we provide some commented examples of .spec files.

1. In first case we add an additional metric IPC into the cube file

1 <metrics>
2 <metric type="POSTDERIVED" convertible="false">

18

1.4 Cube Remapping tool

3 <disp_name>IPC, ipc</disp_name>
4 <uniq_name>ipc</uniq_name>
5 <dtype>FLOAT</dtype>
6 <uom></uom>
7 <descr>Value of IPC (instructions per cycle),
8 computed as PAPI_TOT_INS() / PAPI_TOT_CYC()
9 </descr>
10 <cubepl>
11 metric::PAPI_TOT_INS() / metric::PAPI_TOT_CYC()
12 </cubepl>
13 </metric>
14 </metrics>

Here the whole hierarchy consist of only one metric IPC, which is "non convertible"
into data as it is a POSTDERIVED metric and usual aggregation rules are not applica-
ble. This metric has a data type FLOAT and requires, that input file contains metrics
PAPI_TOT_CYC and PAPI_TOT_INS. Otherwise this metric will be always evaluated to
0.

2. In second case we add two sub metrics to the metric "Time", in order to classify time
spend in "MPI" regions and "Other"

1 <metrics>
2 <metric>
3 <!-- This metric is copied from the trace analysis -->
4 <disp_name>Time</disp_name>
5 <uniq_name>time</uniq_name>
6 <dtype>FLOAT</dtype>
7 <uom>sec</uom>
8 <url>@mirror@scalasca_patterns-2.1.html#time</url>
9 <descr>Total CPU allocation time
10 (includes time allocated for idle threads)
11 </descr>
12 <metric type="PREDERIVED_EXCLUSIVE">
13 <disp_name>MPI regions</disp_name>
14 <uniq_name>mpiregions</uniq_name>
15 <dtype>FLOAT</dtype>
16 <uom>sec</uom>
17 <url></url>
18 <descr> Time spend in MPI regions </descr>
19 <cubepl>
20 {
21 ${a}=0;
22 if (${cube::region::name}[${calculation::region::id}] =~ /^MPI_/)
23 {
24 ${a}=metric::time();
25 };
26 return ${a};
27 }
28 </cubepl>
29 </metric>
30 <metric type="PREDERIVED_EXCLUSIVE">
31 <disp_name>Other regions</disp_name>
32 <uniq_name>nonmpi</uniq_name>
33 <dtype>FLOAT</dtype>
34 <uom>sec</uom>
35 <url></url>
36 <descr>Time spend in non-MPI regions</descr>
37 <cubepl>
38 {
39 ${a}=0;
40 if (not(${cube::region::name}[${calculation::region::id}] =~ /^MPI_/))
41 {
42 ${a}=metric::time();
43 };
44 return ${a};
45 }
46 </cubepl>
47 </metric>
48 </metric>
49 </metrics>

19

1 Cube Command Line Tools

Here target hierarchy consist of the top metric "Time" and two sub metrics "MPI
regions" and "Other regions". Clearly that they both will sum up to the total "Time"
metric. Hence one expects that expanded metric "Time" will be always zero. Note
that sub metrics are defined as PREDERIVED_EXCLUSIVE as their value is valid only
for the one call path and not their children.

3. In third case we would like to split the time metric into two metrics and to hide the
metric itself. For that we declare it as "GHOST" metric and declare sub metrics as
root metrics.

1 <metrics>
2 <metric viztype="GHOST">
3 <!-- This metric is copied from the trace analysis -->
4 <disp_name>Time</disp_name>
5 <uniq_name>time</uniq_name>
6 <dtype>FLOAT</dtype>
7 <uom>sec</uom>
8 <url>@mirror@scalasca_patterns-2.1.html#time</url>
9 <descr>Total CPU allocation time
10 (includes time allocated for idle threads)
11 </descr>
12 </metric>
13 <metric type="PREDERIVED_EXCLUSIVE">
14 <disp_name>MPI regions</disp_name>
15 <uniq_name>mpiregions</uniq_name>
16 <dtype>FLOAT</dtype>
17 <uom>sec</uom>
18 <url></url>
19 <descr> Time spend in MPI regions </descr>
20 <cubepl>
21 {
22 ${a}=0;
23 if (${cube::region::name}[${calculation::region::id}] =~ /^MPI_/)
24 {
25 ${a}=metric::time();
26 };
27 return ${a};
28 }
29 </cubepl>
30 </metric>
31 <metric type="PREDERIVED_EXCLUSIVE">
32 <disp_name>Other regions</disp_name>
33 <uniq_name>nonmpi</uniq_name>
34 <dtype>FLOAT</dtype>
35 <uom>sec</uom>
36 <url></url>
37 <descr>Time spend in non-MPI regions</descr>
38 <cubepl>
39 {
40 ${a}=0;
41 if (not(${cube::region::name}[${calculation::region::id}] =~ /^MPI_/))
42 {
43 ${a}=metric::time();
44 };
45 return ${a};
46 }
47 </cubepl>
48 </metric>
49 </metrics>

As result, the target .cubex file will have only two new root metrics, "MPI regions"
and "Other regions". Metric "Time" will be not visible in GUI and command line tools.

20

1.5 Supplementary utilities and helping Cube command line tools

1.4.4 Optimization of the remapping.

As remapping process is defined in very general way, naive approach in .spec file formula-
tion might take significant calculation time. Using advanced technics in CubePL one can
optimize remapping process. For example one can:

• Using CubePL variables in order to avoid string comparison by every calculation step

• Using CubePL initialization step in order to perform some calculation only once

• Use bitmask multiplication for the evaluation of values along the system tree

Great example of usage of the optimization technics are the .spec files provided with
Score-P or Scalasca.

Internal computation is performed asynchronously via tasking paradigm. To control level of
concurrency one can set the environment variable CUBE_MAX_CONCURRENCY. Possible
values are

N - utilize maximal N thread simultaneously.

max - utilize maximal #cores threads simultaneously (default).

Value larget than #cores will lead to oversubscription of the CPUs and might lead to
regression of the performance.

1.5 Supplementary utilities and helping Cube command

line tools

Besides of the remapping utility and the algebra tools CUBE provides various tool for
different testing, checking, inspection tasks.

1.5.1 Cube Server cube_server

This tool starts a server and provide cube reports "as they are" for clients without needing
to copy them to the client machine. The cube_server performs also all required calculations,
so one uses computational power of the HPC system and not of the client system (which
might be unsufficient).

user@host: cube_server
[12044] Cube Server(<name>): CubeLib-4.7.0 (e15c4008) [POSIX]

Usage: cube_server [options]

-h, -? Print this help message.

-n <name> Use <name> as a name of the server in report messages.

-v <level> Verbosity <level>, one of "mute", "launch", "full" (default "mute")

-p N Bind socket on port N (default port: 3300)

-c Close server when last taks is finished.

21

1 Cube Command Line Tools

Many hosts don't allow ports to be accessed from the outside. You may use SSH tunneling
(also referred to as SSH port forwarding) to route the local network traffic throught SSH to
the remote host.
In the following example, cube_server is started with the default port 3300 on the remote
server server.example.com. The traffic, which is sent to localhost:3000, will be forwarded
to server.example.com on the same port.

If <name> is omit, the name is either generated by the cube_server or value of the
environment variable CUBE_SERVER_NAME is taken.

Usually cube_server runs infinitely long, till user kills the process (Ctrl∧C or command
'kill'). If one starts the cube_server with the command line option "-c", one connection is
served and if it is disconnected, cube_server finishes.

[client]$ ssh -L 3300:server.example.com:3300 server.example.com
[server.example.com]$ cube_server
Cube Server: CubeLib-4.7.0 (external) [POSIX]
cube_server[5247] Waiting for connections on port 3300.

1.5.2 Sanity Check

This tool performs series of checks to confirm that stored data has a semantic sense, e.g.
"non-negative time" and similar. It is being used as a correctness tool for the Score-P and
Scalasca measurements.

user@host: cube_sanity profile.cubex
Name not empty or UNKNOWN ... 71 / 71 OK
No ANONYMOUS functions ... 71 / 71 OK
No TRUNCATED functions ... 71 / 71 OK
File name not empty ... 71 / 71 OK

Proper line numbers ... 0 / 71 OK
No TRACING outside Init and Finalize ... 123 / 123 OK

No negative inclusive metrics ... 409344 / 440832 OK
No negative exclusive metrics ... 409344 / 440832 OK

Usage: cube_sanity [flags] <cube experiment>

-h Help; Output a brief help message.

-n Disables the (time consuming) check for negative inclusive metric values.

-x Disables the (time consuming) check for negative exclusive metric values.

-l Disables checks for line numbers.

-f <file.filt> Checks whether a node's name is matched by a pattern in file.filt.

-o <output_file> Path of the output file. If no output file is given, detailed output will be
suppressed. A summary will always be printed out to stdout.

-v <0|1|2|3> Verbosity level of output

22

1.5 Supplementary utilities and helping Cube command line tools

1.5.3 Insertion of of derived metric into the .cubex

One small tool, which does nothing but adding an additional user-defined derived metric
into the input .cubex file. Functionality of this tool is provided by remapping tool 1.4 tool
as well, but from historical reasons we still deliver this tool.

user@host: cube_derive -t postderived -r exclusive -e "metric::time()/metric::visits(e)" -p root kenobi profile.cubex -o result.cubex

user@host: cube_dump -m kenobi -c 0 -t aggr -z incl result.cubex
===================== DATA ===================

Print out the data of the metric kenobi

All threads

MAIN__(id=0) 1389.06

Usage: cube_derive [-h] [-t prederived|postderived] -r exclusive|inclusive -e <cubepl
expression> -p <parent_metric> <targetmetric> <cube experiment> [-o <output
experiment>]

-h Help; Output a brief help message.

-t prederived|postderived Specifies, whether derived metric is PREDERIVED or POST-
DERIVED

-r exclusive|inclusive Specifies, whether derived metric is EXCLUSIVE or INCLUSIVE
(has no effect for POSTDERIVED metrics)

-e CubePL expression of the derived metric

-p New metric will be added as a child of this metric. "root" is possible

Name of the created metric. It should not clash with the existing metric.

Name of the input file

-o Name of the output file. Default "derived.cubex"

1.5.4 Inspection of a call tree

A small tool to inspect aggregated values in call tree of a specific metric. Functionality of
this tool is reproduced in one ot another way by cube_dump 1.5.16 utiluty.

user@host:cube_calltree -m time -a -t 1 -i -p -c ~/Studies/Cube/Adviser/4n_256_/scorep_casino_1n_256x1_sum_br/profile.cubex
Reading /home/zam/psaviank/Studies/Cube/Adviser/4n_256_/scorep_casino_1n_256x1_sum_br/profile.cubex... done.
355599 (100%) MAIN__ USR:/MAIN__

353588 (99.435%) + monte_carlo_ USR:/MAIN__/monte_carlo_

8941.95 (2.515%) | + monte_carlo_IP_read_wave_function_ USR:/MAIN__/monte_carlo_/monte_carlo_IP_read_wave_function_

5980.68 (1.682%) | | + MPI_Bcast USR:/MAIN__/monte_carlo_/monte_carlo_IP_read_wave_function_/MPI_Bcast
343175 (96.506%) | + monte_carlo_IP_run_dmc_ USR:/MAIN__/monte_carlo_/monte_carlo_IP_run_dmc_

4657.85 (1.31%) | | + MPI_Ssend USR:/MAIN__/monte_carlo_/monte_carlo_IP_run_dmc_/MPI_Ssend
303193 (85.263%) | | + dmcdmc_main.move_config_ USR:/MAIN__/monte_carlo_/monte_carlo_IP_run_dmc_/dmcdmc_main.move_config_

21668.4 (6.093%) | | | + wfn_utils.wfn_loggrad_ USR:/MAIN__/monte_carlo_/monte_carlo_IP_run_dmc_/dmcdmc_main.move_config_/wfn_utils.wfn_loggrad_

23

1 Cube Command Line Tools

19722.3 (5.546%) | | | | + pjastrow.oneelec_jastrow_ USR:/MAIN__/monte_carlo_/monte_carlo_IP_run_dmc_/dmcdmc_main.move_config_/wfn_utils.wfn_loggrad_/pjastrow.oneelec_jastrow_

28878.5 (8.121%) | | | + wfn_utils.wfn_ratio_ USR:/MAIN__/monte_carlo_/monte_carlo_IP_run_dmc_/dmcdmc_main.move_config_/wfn_utils.wfn_ratio_

6907.92 (1.943%) | | | | + slater.wfn_ratio_slater_ USR:/MAIN__/monte_carlo_/monte_carlo_IP_run_dmc_/dmcdmc_main.move_config_/wfn_utils.wfn_ratio_/slater.wfn_ratio_slater_

19721.7 (5.546%) | | | | + pjastrow.oneelec_jastrow_ USR:/MAIN__/monte_carlo_/monte_carlo_IP_run_dmc_/dmcdmc_main.move_config_/wfn_utils.wfn_ratio_/pjastrow.oneelec_jastrow_

241626 (67.949%) | | | + energy_utils.eval_local_energy_ USR:/MAIN__/monte_carlo_/monte_carlo_IP_run_dmc_/dmcdmc_main.move_config_/energy_utils.eval_local_energy_

20785.6 (5.845%) | | | | + wfn_utils.wfn_loggrad_ USR:/MAIN__/monte_carlo_/monte_carlo_IP_run_dmc_/dmcdmc_main.move_config_/energy_utils.eval_local_energy_/wfn_utils.wfn_loggrad_

20298.1 (5.708%) | | | | | + pjastrow.oneelec_jastrow_ USR:/MAIN__/monte_carlo_/monte_carlo_IP_run_dmc_/dmcdmc_main.move_config_/energy_utils.eval_local_energy_/wfn_utils.wfn_loggrad_/pjastrow.oneelec_jastrow_

211484 (59.473%) | | | | + non_local.calc_nl_projection_ USR:/MAIN__/monte_carlo_/monte_carlo_IP_run_dmc_/dmcdmc_main.move_config_/energy_utils.eval_local_energy_/non_local.calc_nl_projection_

208516 (58.638%) | | | | | + wfn_utils.wfn_ratio_ USR:/MAIN__/monte_carlo_/monte_carlo_IP_run_dmc_/dmcdmc_main.move_config_/energy_utils.eval_local_energy_/non_local.calc_nl_projection_/wfn_utils.wfn_ratio_

8588.87 (2.415%) | | | | | | + slater.wfn_ratio_slater_ USR:/MAIN__/monte_carlo_/monte_carlo_IP_run_dmc_/dmcdmc_main.move_config_/energy_utils.eval_local_energy_/non_local.calc_nl_projection_/wfn_utils.wfn_ratio_/slater.wfn_ratio_slater_

176779 (49.713%) | | | | | | + pjastrow.oneelec_jastrow_ USR:/MAIN__/monte_carlo_/monte_carlo_IP_run_dmc_/dmcdmc_main.move_config_/energy_utils.eval_local_energy_/non_local.calc_nl_projection_/wfn_utils.wfn_ratio_/pjastrow.oneelec_jastrow_

14252.4 (4.008%) | | | | | | + scratch.get_eevecs1_ch_ USR:/MAIN__/monte_carlo_/monte_carlo_IP_run_dmc_/dmcdmc_main.move_config_/energy_utils.eval_local_energy_/non_local.calc_nl_projection_/wfn_utils.wfn_ratio_/scratch.get_eevecs1_ch_

34390.8 (9.671%) | | + parallel.qmpi_reduce_d1_ USR:/MAIN__/monte_carlo_/monte_carlo_IP_run_dmc_/parallel.qmpi_reduce_d1_

34384.3 (9.669%) | | | + MPI_Reduce USR:/MAIN__/monte_carlo_/monte_carlo_IP_run_dmc_/parallel.qmpi_reduce_d1_/MPI_Reduce

Usage: cube_calltree -a -m metricname -t threashold -c -i -u -h [-f] filename

-m metricname print out values for the metric <metricname>;

-a annotate call path;

-t treashold print out only call path with a value, which is larger than <treashold>% of
the total metric value. 0<=treashold<=100;

-i calculate inclusive values instead of exclusive.

-f open <filename>;

-p diplay percent value;

-c diplay callpath for every region;

-h display this help.

1.5.5 System tree partition

Is one interested on performance profile of a PART of the system, e.g. only nodeplane 0, or
ranks from 0 to N, one can set other locations to VOID and create a .cubex file, which has
only data for the remaining part.

Partition some of system tree (processes) and void the remainder

user@host:cube_part -R 0-3,5 profile.cubex
Open the cube profile.cubex...done.
Copy the cube object...done.
++++++++++++ Part operation begins ++++++++++++++++++++++++++
Voiding 251 of 256 processes.
++++++++++++ Part operation ends successfully ++++++++++++++++
Writing part ... done.

Usage: cube_part [-h] [-I] [-R ranks] [-o output] <cubefile>

-I Invert sense of partition

-R List of process ranks for partition (e.g., "0-3,7,13-")

24

1.5 Supplementary utilities and helping Cube command line tools

-o Name of the output file (default: part)

-h Help; Show this brief help message and exit.

1.5.6 Region information

This tool displays a flat profile for the selected metrics and with the classification of regions.
Similar functionality is provide by the tool 1.5.16

Short call displays an overview across types of regions.

user@host:cube_regioninfo -m time,visits profile.cubex
done.
bl type time % visits % region

ANY 355599 100.00 664724749 100.00 (summary) ALL
MPI 0 0.00 0 0.00 (summary) MPI
USR 355599 100.00 664724749 100.00 (summary) USR
COM 0 0.00 0 0.00 (summary) COM

If one wants a detailed view of the flat profile, one uses -r command line option. Note that
can provide list of regions for filtering (file filter.txt)

user@host:cube_regioninfo -l filter.txt -m time,visits -r profile.cubex
done.
bl type time % visits % region

USR 0 0.00 0 0.00 MEASUREMENT OFF
USR 0 0.00 0 0.00 TRACE BUFFER FLUSH
USR 0 0.00 0 0.00 THREADS
USR 0 0.00 0 0.00 MPI_Accumulate
USR 68 0.02 6912 0.00 MPI_Allgather
USR 0 0.00 0 0.00 MPI_Allgatherv
USR 10 0.00 256 0.00 MPI_Allreduce
USR 0 0.00 0 0.00 MPI_Alltoall
USR 0 0.00 0 0.00 MPI_Alltoallv
USR 0 0.00 0 0.00 MPI_Alltoallw
USR 0 0.00 0 0.00 MPI_Attr_delete
USR 0 0.00 0 0.00 MPI_Attr_get
USR 0 0.00 0 0.00 MPI_Attr_put
USR 2843 0.80 7168 0.00 MPI_Barrier
USR 6392 1.80 51072 0.01 MPI_Bcast
USR 0 0.00 0 0.00 MPI_Bsend
USR 0 0.00 0 0.00 MPI_Bsend_init
USR 0 0.00 0 0.00 MPI_Buffer_attach
USR 0 0.00 0 0.00 MPI_Buffer_detach
USR 0 0.00 0 0.00 MPI_Cancel
USR 0 0.00 0 0.00 MPI_Cart_coords
USR 0 0.00 0 0.00 MPI_Cart_create
USR 0 0.00 0 0.00 MPI_Cart_get
USR 0 0.00 0 0.00 MPI_Cart_map
USR 0 0.00 0 0.00 MPI_Cart_rank
USR 0 0.00 0 0.00 MPI_Cart_shift

25

1 Cube Command Line Tools

USR 0 0.00 0 0.00 MPI_Cart_sub
USR 0 0.00 0 0.00 MPI_Cartdim_get
USR 0 0.00 0 0.00 MPI_Comm_call_errhandler
USR 0 0.00 0 0.00 MPI_Comm_compare
USR 113 0.03 1792 0.00 MPI_Comm_create
USR 0 0.00 0 0.00 MPI_Comm_create_errhandler
USR 0 0.00 0 0.00 MPI_Comm_create_group
USR 0 0.00 0 0.00 MPI_Comm_create_keyval
USR 0 0.00 0 0.00 MPI_Comm_delete_attr
USR 0 0.00 0 0.00 MPI_Comm_dup
USR 0 0.00 0 0.00 MPI_Comm_dup_with_info
USR 0 0.00 0 0.00 MPI_Comm_free
USR 0 0.00 0 0.00 MPI_Comm_free_keyval
USR 0 0.00 0 0.00 MPI_Comm_get_attr
USR 0 0.00 0 0.00 MPI_Comm_get_errhandler
USR 0 0.00 0 0.00 MPI_Comm_get_info
USR 0 0.00 0 0.00 MPI_Comm_get_name
USR 0 0.00 1024 0.00 MPI_Comm_group
USR 0 0.00 0 0.00 MPI_Comm_idup
USR 0 0.00 512 0.00 MPI_Comm_rank
USR 0 0.00 0 0.00 MPI_Comm_remote_group
USR 0 0.00 0 0.00 MPI_Comm_remote_size
USR 0 0.00 0 0.00 MPI_Comm_set_attr
USR 0 0.00 0 0.00 MPI_Comm_set_errhandler
USR 0 0.00 0 0.00 MPI_Comm_set_info
USR 0 0.00 0 0.00 MPI_Comm_set_name
USR 0 0.00 512 0.00 MPI_Comm_size
USR 55 0.02 256 0.00 MPI_Comm_split
USR 0 0.00 0 0.00 MPI_Comm_split_type
USR 0 0.00 0 0.00 MPI_Comm_test_inter
USR 0 0.00 0 0.00 MPI_Compare_and_swap
USR 0 0.00 0 0.00 MPI_Dims_create
USR 0 0.00 0 0.00 MPI_Dist_graph_create
USR 0 0.00 0 0.00 MPI_Dist_graph_create_adjacent
USR 0 0.00 0 0.00 MPI_Dist_graph_neighbors
USR 0 0.00 0 0.00 MPI_Dist_graph_neighbors_count
USR 0 0.00 0 0.00 MPI_Exscan
USR 0 0.00 0 0.00 MPI_Fetch_and_op
USR 0 0.00 0 0.00 MPI_File_c2f
USR 0 0.00 0 0.00 MPI_File_call_errhandler
USR 0 0.00 0 0.00 MPI_File_close
USR 0 0.00 0 0.00 MPI_File_create_errhandler
USR 0 0.00 0 0.00 MPI_File_delete
USR 0 0.00 0 0.00 MPI_File_f2c
USR 0 0.00 0 0.00 MPI_File_get_amode
USR 0 0.00 0 0.00 MPI_File_get_atomicity
USR 0 0.00 0 0.00 MPI_File_get_byte_offset
USR 0 0.00 0 0.00 MPI_File_get_errhandler
USR 0 0.00 0 0.00 MPI_File_get_group
USR 0 0.00 0 0.00 MPI_File_get_info
USR 0 0.00 0 0.00 MPI_File_get_position
USR 0 0.00 0 0.00 MPI_File_get_position_shared
USR 0 0.00 0 0.00 MPI_File_get_size

26

1.5 Supplementary utilities and helping Cube command line tools

USR 0 0.00 0 0.00 MPI_File_get_type_extent
USR 0 0.00 0 0.00 MPI_File_get_view
USR 0 0.00 0 0.00 MPI_File_iread
USR 0 0.00 0 0.00 MPI_File_iread_all
USR 0 0.00 0 0.00 MPI_File_iread_at
USR 0 0.00 0 0.00 MPI_File_iread_at_all
USR 0 0.00 0 0.00 MPI_File_iread_shared
USR 0 0.00 0 0.00 MPI_File_iwrite
USR 0 0.00 0 0.00 MPI_File_iwrite_all
USR 0 0.00 0 0.00 MPI_File_iwrite_at
USR 0 0.00 0 0.00 MPI_File_iwrite_at_all
USR 0 0.00 0 0.00 MPI_File_iwrite_shared
USR 0 0.00 0 0.00 MPI_File_open
USR 0 0.00 0 0.00 MPI_File_preallocate
USR 0 0.00 0 0.00 MPI_File_read
USR 0 0.00 0 0.00 MPI_File_read_all
USR 0 0.00 0 0.00 MPI_File_read_all_begin
USR 0 0.00 0 0.00 MPI_File_read_all_end
USR 0 0.00 0 0.00 MPI_File_read_at
USR 0 0.00 0 0.00 MPI_File_read_at_all
USR 0 0.00 0 0.00 MPI_File_read_at_all_begin
USR 0 0.00 0 0.00 MPI_File_read_at_all_end
USR 0 0.00 0 0.00 MPI_File_read_ordered
USR 0 0.00 0 0.00 MPI_File_read_ordered_begin
USR 0 0.00 0 0.00 MPI_File_read_ordered_end
USR 0 0.00 0 0.00 MPI_File_read_shared
USR 0 0.00 0 0.00 MPI_File_seek
USR 0 0.00 0 0.00 MPI_File_seek_shared
USR 0 0.00 0 0.00 MPI_File_set_atomicity
USR 0 0.00 0 0.00 MPI_File_set_errhandler
USR 0 0.00 0 0.00 MPI_File_set_info
USR 0 0.00 0 0.00 MPI_File_set_size
USR 0 0.00 0 0.00 MPI_File_set_view
USR 0 0.00 0 0.00 MPI_File_sync
USR 0 0.00 0 0.00 MPI_File_write
USR 0 0.00 0 0.00 MPI_File_write_all
USR 0 0.00 0 0.00 MPI_File_write_all_begin
USR 0 0.00 0 0.00 MPI_File_write_all_end
USR 0 0.00 0 0.00 MPI_File_write_at
USR 0 0.00 0 0.00 MPI_File_write_at_all
USR 0 0.00 0 0.00 MPI_File_write_at_all_begin
USR 0 0.00 0 0.00 MPI_File_write_at_all_end
USR 0 0.00 0 0.00 MPI_File_write_ordered
USR 0 0.00 0 0.00 MPI_File_write_ordered_begin
USR 0 0.00 0 0.00 MPI_File_write_ordered_end
USR 0 0.00 0 0.00 MPI_File_write_shared
USR 349 0.10 256 0.00 MPI_Finalize
USR 0 0.00 0 0.00 MPI_Finalized
USR 0 0.00 25 0.00 MPI_Gather
USR 0 0.00 0 0.00 MPI_Gatherv
USR 0 0.00 0 0.00 MPI_Get
USR 0 0.00 0 0.00 MPI_Get_accumulate
USR 0 0.00 0 0.00 MPI_Get_library_version

27

1 Cube Command Line Tools

USR 0 0.00 0 0.00 MPI_Graph_create
USR 0 0.00 0 0.00 MPI_Graph_get
USR 0 0.00 0 0.00 MPI_Graph_map
USR 0 0.00 0 0.00 MPI_Graph_neighbors
USR 0 0.00 0 0.00 MPI_Graph_neighbors_count
USR 0 0.00 0 0.00 MPI_Graphdims_get
USR 0 0.00 0 0.00 MPI_Group_compare
USR 0 0.00 0 0.00 MPI_Group_difference
USR 0 0.00 0 0.00 MPI_Group_excl
USR 0 0.00 0 0.00 MPI_Group_free
USR 0 0.00 1792 0.00 MPI_Group_incl
USR 0 0.00 0 0.00 MPI_Group_intersection
USR 0 0.00 0 0.00 MPI_Group_range_excl
USR 0 0.00 0 0.00 MPI_Group_range_incl
USR 0 0.00 0 0.00 MPI_Group_rank
USR 0 0.00 0 0.00 MPI_Group_size
USR 0 0.00 0 0.00 MPI_Group_translate_ranks
USR 0 0.00 0 0.00 MPI_Group_union
USR 0 0.00 0 0.00 MPI_Iallgather
USR 0 0.00 0 0.00 MPI_Iallgatherv
USR 0 0.00 0 0.00 MPI_Iallreduce
USR 0 0.00 0 0.00 MPI_Ialltoall
USR 0 0.00 0 0.00 MPI_Ialltoallv
USR 0 0.00 0 0.00 MPI_Ialltoallw
USR 0 0.00 0 0.00 MPI_Ibarrier
USR 0 0.00 0 0.00 MPI_Ibcast
USR 0 0.00 0 0.00 MPI_Ibsend
USR 0 0.00 0 0.00 MPI_Iexscan
USR 0 0.00 0 0.00 MPI_Igather
USR 0 0.00 0 0.00 MPI_Igatherv
USR 0 0.00 0 0.00 MPI_Improbe
USR 0 0.00 0 0.00 MPI_Imrecv
USR 0 0.00 0 0.00 MPI_Ineighbor_allgather
USR 0 0.00 0 0.00 MPI_Ineighbor_allgatherv
USR 0 0.00 0 0.00 MPI_Ineighbor_alltoall
USR 0 0.00 0 0.00 MPI_Ineighbor_alltoallv
USR 0 0.00 0 0.00 MPI_Ineighbor_alltoallw
USR 1411 0.40 256 0.00 MPI_Init
USR 0 0.00 0 0.00 MPI_Init_thread
USR 0 0.00 0 0.00 MPI_Initialized
USR 0 0.00 0 0.00 MPI_Intercomm_create
USR 0 0.00 0 0.00 MPI_Intercomm_merge
USR 0 0.00 0 0.00 MPI_Iprobe
USR 0 0.00 14337 0.00 MPI_Irecv
USR 0 0.00 0 0.00 MPI_Ireduce
USR 0 0.00 0 0.00 MPI_Ireduce_scatter
USR 0 0.00 0 0.00 MPI_Ireduce_scatter_block
USR 0 0.00 0 0.00 MPI_Irsend
USR 0 0.00 0 0.00 MPI_Is_thread_main
USR 0 0.00 0 0.00 MPI_Iscan
USR 0 0.00 0 0.00 MPI_Iscatter
USR 0 0.00 0 0.00 MPI_Iscatterv
USR 1 0.00 14337 0.00 MPI_Isend

28

1.5 Supplementary utilities and helping Cube command line tools

USR 0 0.00 0 0.00 MPI_Issend
USR 0 0.00 0 0.00 MPI_Keyval_create
USR 0 0.00 0 0.00 MPI_Keyval_free
USR 0 0.00 0 0.00 MPI_Mprobe
USR 0 0.00 0 0.00 MPI_Mrecv
USR 0 0.00 0 0.00 MPI_Neighbor_allgather
USR 0 0.00 0 0.00 MPI_Neighbor_allgatherv
USR 0 0.00 0 0.00 MPI_Neighbor_alltoall
USR 0 0.00 0 0.00 MPI_Neighbor_alltoallv
USR 0 0.00 0 0.00 MPI_Neighbor_alltoallw
USR 0 0.00 0 0.00 MPI_Probe
USR 0 0.00 0 0.00 MPI_Put
USR 0 0.00 0 0.00 MPI_Query_thread
USR 0 0.00 0 0.00 MPI_Raccumulate
USR 302 0.08 24728 0.00 MPI_Recv
USR 0 0.00 0 0.00 MPI_Recv_init
USR 34384 9.67 6400 0.00 MPI_Reduce
USR 0 0.00 0 0.00 MPI_Reduce_local
USR 0 0.00 0 0.00 MPI_Reduce_scatter
USR 0 0.00 0 0.00 MPI_Reduce_scatter_block
USR 0 0.00 0 0.00 MPI_Register_datarep
USR 0 0.00 0 0.00 MPI_Request_free
USR 0 0.00 0 0.00 MPI_Rget
USR 0 0.00 0 0.00 MPI_Rget_accumulate
USR 0 0.00 0 0.00 MPI_Rput
USR 0 0.00 0 0.00 MPI_Rsend
USR 0 0.00 0 0.00 MPI_Rsend_init
USR 0 0.00 0 0.00 MPI_Scan
USR 0 0.00 0 0.00 MPI_Scatter
USR 0 0.00 0 0.00 MPI_Scatterv
USR 0 0.00 0 0.00 MPI_Send
USR 0 0.00 0 0.00 MPI_Send_init
USR 0 0.00 0 0.00 MPI_Sendrecv
USR 0 0.00 0 0.00 MPI_Sendrecv_replace
USR 4695 1.32 24728 0.00 MPI_Ssend
USR 0 0.00 0 0.00 MPI_Ssend_init
USR 0 0.00 0 0.00 MPI_Start
USR 0 0.00 0 0.00 MPI_Startall
USR 0 0.00 0 0.00 MPI_Test
USR 0 0.00 0 0.00 MPI_Test_cancelled
USR 0 0.00 0 0.00 MPI_Testall
USR 0 0.00 0 0.00 MPI_Testany
USR 0 0.00 0 0.00 MPI_Testsome
USR 0 0.00 0 0.00 MPI_Topo_test
USR 0 0.00 0 0.00 MPI_Wait
USR 0 0.00 2982 0.00 MPI_Waitall
USR 0 0.00 0 0.00 MPI_Waitany
USR 0 0.00 0 0.00 MPI_Waitsome
USR 0 0.00 0 0.00 MPI_Win_allocate
USR 0 0.00 0 0.00 MPI_Win_allocate_shared
USR 0 0.00 0 0.00 MPI_Win_attach
USR 0 0.00 0 0.00 MPI_Win_call_errhandler
USR 0 0.00 0 0.00 MPI_Win_complete

29

1 Cube Command Line Tools

USR 0 0.00 0 0.00 MPI_Win_create
USR 0 0.00 0 0.00 MPI_Win_create_dynamic
USR 0 0.00 0 0.00 MPI_Win_create_errhandler
USR 0 0.00 0 0.00 MPI_Win_create_keyval
USR 0 0.00 0 0.00 MPI_Win_delete_attr
USR 0 0.00 0 0.00 MPI_Win_detach
USR 0 0.00 0 0.00 MPI_Win_fence
USR 0 0.00 0 0.00 MPI_Win_flush
USR 0 0.00 0 0.00 MPI_Win_flush_all
USR 0 0.00 0 0.00 MPI_Win_flush_local
USR 0 0.00 0 0.00 MPI_Win_flush_local_all
USR 0 0.00 0 0.00 MPI_Win_free
USR 0 0.00 0 0.00 MPI_Win_free_keyval
USR 0 0.00 0 0.00 MPI_Win_get_attr
USR 0 0.00 0 0.00 MPI_Win_get_errhandler
USR 0 0.00 0 0.00 MPI_Win_get_group
USR 0 0.00 0 0.00 MPI_Win_get_info
USR 0 0.00 0 0.00 MPI_Win_get_name
USR 0 0.00 0 0.00 MPI_Win_lock
USR 0 0.00 0 0.00 MPI_Win_lock_all
USR 0 0.00 0 0.00 MPI_Win_post
USR 0 0.00 0 0.00 MPI_Win_set_attr
USR 0 0.00 0 0.00 MPI_Win_set_errhandler
USR 0 0.00 0 0.00 MPI_Win_set_info

* USR 0 0.00 0 0.00 MPI_Win_set_name

* USR 0 0.00 0 0.00 MPI_Win_shared_query

* USR 0 0.00 0 0.00 MPI_Win_start

* USR 0 0.00 0 0.00 MPI_Win_sync

* USR 0 0.00 0 0.00 MPI_Win_test

* USR 0 0.00 0 0.00 MPI_Win_unlock

* USR 0 0.00 0 0.00 MPI_Win_unlock_all

* USR 0 0.00 0 0.00 MPI_Win_wait

* USR 0 0.00 0 0.00 PARALLEL

* USR 155 0.04 256 0.00 MAIN__

* USR 0 0.00 256 0.00 get_nnpsmp_

* USR 1 0.00 126669 0.02 run_control.check_alloc_

* USR 8 0.00 256 0.00 get_smp_list_

* USR 0 0.00 256 0.00 set_shm_numablock

* USR 401 0.11 256 0.00 monte_carlo_

* USR 0 0.00 256 0.00 monte_carlo_IP_set_defaults_

* USR 124 0.03 256 0.00 monte_carlo_IP_set_input_parameters_

* USR 10 0.00 256 0.00 monte_carlo_IP_read_particles_

* USR 3 0.00 256 0.00 monte_carlo_IP_read_custom_spindep_

* USR 6 0.00 256 0.00 monte_carlo_IP_assign_spin_deps_

* USR 2 0.00 256 0.00 monte_carlo_IP_check_input_parameters_

* USR 0 0.00 256 0.00 monte_carlo_IP_input_setup_

* USR 0 0.00 1 0.00 monte_carlo_IP_print_input_parameters_

* USR 0 0.00 62 0.00 monte_carlo_IP_wout_iparam_

* USR 0 0.00 1 0.00 monte_carlo_IP_print_particles_

* USR 107 0.03 256 0.00 monte_carlo_IP_read_wave_function_

* USR 2 0.00 256 0.00 alloc_shm_

* USR 0 0.00 256 0.00 alloc_shm_sysv

* USR 0 0.00 256 0.00 monte_carlo_IP_flag_missing_dets_

30

1.5 Supplementary utilities and helping Cube command line tools

* USR 0 0.00 1 0.00 monte_carlo_IP_check_wave_function_

* USR 36 0.01 256 0.00 monte_carlo_IP_calculate_geometry_

* USR 27 0.01 256 0.00 monte_carlo_IP_read_pseudopotentials_

* USR 0 0.00 256 0.00 monte_carlo_IP_geometry_printout_

* USR 1 0.00 256 0.00 monte_carlo_IP_orbital_setup_

* USR 0 0.00 256 0.00 monte_carlo_IP_check_orbital_derivatives_

* USR 0 0.00 256 0.00 monte_carlo_IP_setup_expectation_values_

* USR 0 0.00 256 0.00 monte_carlo_IP_setup_interactions_

* USR 0 0.00 256 0.00 monte_carlo_IP_check_nn_

* USR 98 0.03 256 0.00 monte_carlo_IP_read_jastrow_function_

* USR 0 0.00 256 0.00 monte_carlo_IP_read_backflow_

* USR 8 0.00 256 0.00 monte_carlo_IP_init_vcpp_

* USR 0 0.00 256 0.00 monte_carlo_IP_print_part_title_

* USR 281 0.08 256 0.00 monte_carlo_IP_run_dmc_

* USR 11021 3.10 25041 0.00 dmcdmc_main.move_config_

USR 2434 0.68 45059225 6.78 wfn_utils.wfn_loggrad_

USR 236521 66.51 175964383 26.47 pjastrow.oneelec_jastrow_

USR 9886 2.78 144014658 21.67 wfn_utils.wfn_ratio_

USR 15497 4.36 144014658 21.67 slater.wfn_ratio_slater_

USR 15512 4.36 144014658 21.67 scratch.get_eevecs1_ch_

USR 9356 2.63 25041 0.00 energy_utils.eval_local_energy_

USR 2967 0.83 11268450 1.70 non_local.calc_nl_projection_

USR 7 0.00 6400 0.00 parallel.qmpi_reduce_d1_

USR 0 0.00 6400 0.00 parallel.qmpi_bcast_d1_

USR 0 0.00 12800 0.00 parallel.qmpi_bcast_d_

USR 16 0.00 9382 0.00 dmc.branch_and_redist_

USR 39 0.01 6144 0.00 dmc.branch_and_redist_send_

USR 1 0.00 2982 0.00 dmc.branch_and_redist_recv_

USR 4 0.00 256 0.00 dmc.branch_and_redist_sendrecv_

USR 0 0.00 256 0.00 dealloc_shm_

USR 445 0.13 256 0.00 dealloc_shm_sysv
USR 0 0.00 256 0.00 clean_shm_

ANY 355599 100.00 664724749 100.00 (summary) ALL
MPI 0 0.00 0 0.00 (summary) MPI
USR 355599 100.00 664724749 100.00 (summary) USR
COM 0 0.00 0 0.00 (summary) COM
BL 12291 3.46 159199 0.02 (summary) BL

ANY 343308 96.54 664565550 99.98 (summary) ALL-BL
MPI 0 0.00 0 0.00 (summary) MPI-BL
USR 343308 96.54 664565550 99.98 (summary) USR-BL
COM 0 0.00 0 0.00 (summary) COM-BL

Usage: cube_regioninfo [-l filename] [-m filename] [-h] [-s] cubefile

-h Help; Output this help message

-r be verbose, print info about any region

-l Specify a list of regions for the blacklist

-m Specify a list of metrics, the list has to be comma-seperated, no spaces allowed

31

1 Cube Command Line Tools

1.5.7 Cube Information

Another tool which allows to examine performance data along the call tree with ability to
filter accordingly to user defined criteria. Partially same functionality is implemented by
1.5.16 and call tree.

user@host: cube_info -t -m bytes_sent profile.cubex
| Time | bytes_sent | Diff-Calltree
| 355598 | 14204637004 | * MAIN__

| 1411 | 0 | | * MPI_Init
| 0 | 0 | | * MPI_Comm_size
| 0 | 0 | | * MPI_Comm_rank
| 0 | 0 | | * get_nnpsmp_

| 0 | 0 | | * run_control.check_alloc_

| 69 | 917504 | | * get_smp_list_

| 0 | 0 | | | * MPI_Comm_rank
| 0 | 0 | | | * MPI_Comm_size
| 9 | 262144 | | | * MPI_Allreduce
| 0 | 0 | | | * set_shm_numablock
| 27 | 655360 | | | * MPI_Allgather
| 0 | 0 | | | * MPI_Comm_group
| 0 | 0 | | | * MPI_Group_incl
| 25 | 0 | | | * MPI_Comm_create
| 0 | 0 | | * MPI_Comm_group
| 0 | 0 | | * MPI_Group_incl
| 24 | 0 | | * MPI_Comm_create
| 353588 | 14203719500 | | * monte_carlo_

| 0 | 0 | | | * monte_carlo_IP_set_defaults_

| 142 | 0 | | | * monte_carlo_IP_set_input_parameters_

| 0 | 0 | | | | * run_control.check_alloc_

| 10 | 0 | | | | * monte_carlo_IP_read_particles_

| 0 | 0 | | | | | * run_control.check_alloc_

| 3 | 0 | | | | * monte_carlo_IP_read_custom_spindep_

| 5 | 0 | | | | * monte_carlo_IP_assign_spin_deps_

| 0 | 0 | | | | | * run_control.check_alloc_

| 174 | 1024 | | | * monte_carlo_IP_check_input_parameters_

| 172 | 1024 | | | | * MPI_Bcast
| 0 | 0 | | | * monte_carlo_IP_input_setup_

| 0 | 0 | | | * monte_carlo_IP_print_input_parameters_

| 0 | 0 | | | | * monte_carlo_IP_wout_iparam_

| 0 | 0 | | | * monte_carlo_IP_print_particles_

| 68 | 12288 | | | * MPI_Bcast
| 0 | 0 | | | * run_control.check_alloc_

| 0 | 0 | | | * MPI_Comm_group
| 0 | 0 | | | * MPI_Group_incl
| 23 | 0 | | | * MPI_Comm_create
| 8941 | 12811606784 | | | * monte_carlo_IP_read_wave_function_

| 2792 | 0 | | | | * MPI_Barrier
| 55 | 0 | | | | * MPI_Comm_split
| 5980 | 12811605760 | | | | * MPI_Bcast
| 0 | 0 | | | | * run_control.check_alloc_

| 5 | 1024 | | | | * alloc_shm_

| 4 | 1024 | | | | | * alloc_shm_sysv

32

1.5 Supplementary utilities and helping Cube command line tools

| 3 | 1024 | | | | | | * MPI_Bcast
| 0 | 0 | | | | | | * MPI_Barrier
| 0 | 0 | | | | * monte_carlo_IP_flag_missing_dets_

| 0 | 0 | | | | | * run_control.check_alloc_

| 0 | 0 | | | * monte_carlo_IP_check_wave_function_

| 36 | 0 | | | * monte_carlo_IP_calculate_geometry_

| 0 | 0 | | | | * run_control.check_alloc_

| 27 | 0 | | | * monte_carlo_IP_read_pseudopotentials_

| 0 | 0 | | | | * run_control.check_alloc_

| 0 | 0 | | | * monte_carlo_IP_geometry_printout_

| 0 | 0 | | | | * run_control.check_alloc_

| 0 | 0 | | | * monte_carlo_IP_orbital_setup_

| 0 | 0 | | | | * run_control.check_alloc_

| 0 | 0 | | | * monte_carlo_IP_check_orbital_derivatives_

| 0 | 0 | | | * monte_carlo_IP_setup_expectation_values_

| 0 | 0 | | | * monte_carlo_IP_setup_interactions_

| 0 | 0 | | | | * run_control.check_alloc_

| 46 | 2048 | | | * monte_carlo_IP_check_nn_

| 0 | 0 | | | | * run_control.check_alloc_

| 46 | 2048 | | | | * MPI_Bcast
| 97 | 0 | | | * monte_carlo_IP_read_jastrow_function_

| 0 | 0 | | | | * run_control.check_alloc_

| 0 | 0 | | | * monte_carlo_IP_read_backflow_

| 7 | 0 | | | * monte_carlo_IP_init_vcpp_

| 0 | 0 | | | * monte_carlo_IP_print_part_title_

| 343175 | 1392097356 | | | * monte_carlo_IP_run_dmc_

| 0 | 0 | | | | * run_control.check_alloc_

| 0 | 0 | | | | * MPI_Comm_group
| 0 | 0 | | | | * MPI_Group_incl
| 38 | 0 | | | | * MPI_Comm_create
| 64 | 747520 | | | | * MPI_Bcast
| 4657 | 11140276 | | | | * MPI_Ssend
| 303193 | 0 | | | | * dmcdmc_main.move_config_

| 0 | 0 | | | | | * run_control.check_alloc_

| 21668 | 0 | | | | | * wfn_utils.wfn_loggrad_

| 19722 | 0 | | | | | | * pjastrow.oneelec_jastrow_

| 28878 | 0 | | | | | * wfn_utils.wfn_ratio_

| 6907 | 0 | | | | | | * slater.wfn_ratio_slater_

| 1259 | 0 | | | | | | * scratch.get_eevecs1_ch_

| 19721 | 0 | | | | | | * pjastrow.oneelec_jastrow_

| 241625 | 0 | | | | | * energy_utils.eval_local_energy_

| 20785 | 0 | | | | | | * wfn_utils.wfn_loggrad_

| 20298 | 0 | | | | | | | * pjastrow.oneelec_jastrow_

| 211483 | 0 | | | | | | * non_local.calc_nl_projection_

| 208516 | 0 | | | | | | | * wfn_utils.wfn_ratio_

| 8588 | 0 | | | | | | | | * slater.wfn_ratio_slater_

| 176779 | 0 | | | | | | | | * pjastrow.oneelec_jastrow_

| 14252 | 0 | | | | | | | | * scratch.get_eevecs1_ch_

| 34390 | 819200 | | | | * parallel.qmpi_reduce_d1_

| 34384 | 819200 | | | | | * MPI_Reduce
| 56 | 0 | | | | * MPI_Recv
| 0 | 800 | | | | * MPI_Gather
| 21 | 102400 | | | | * parallel.qmpi_bcast_d1_

33

1 Cube Command Line Tools

| 21 | 102400 | | | | | * MPI_Bcast
| 34 | 102400 | | | | * parallel.qmpi_bcast_d_

| 34 | 102400 | | | | | * MPI_Bcast
| 429 | 1378922616 | | | | * dmc.branch_and_redist_

| 379 | 1319421620 | | | | | * dmc.branch_and_redist_send_

| 0 | 0 | | | | | | * run_control.check_alloc_

| 25 | 6291456 | | | | | | * MPI_Allgather
| 230 | 0 | | | | | | * MPI_Recv
| 33 | 152036 | | | | | | * MPI_Ssend
| 50 | 0 | | | | | | * MPI_Barrier
| 0 | 1312978128 | | | | | | * MPI_Isend
| 0 | 0 | | | | | | * MPI_Irecv
| 1 | 0 | | | | | * dmc.branch_and_redist_recv_

| 0 | 0 | | | | | | * MPI_Waitall
| 0 | 0 | | | | | | * run_control.check_alloc_

| 32 | 59500996 | | | | | * dmc.branch_and_redist_sendrecv_

| 0 | 0 | | | | | | * run_control.check_alloc_

| 8 | 262144 | | | | | | * MPI_Allgather
| 14 | 0 | | | | | | * MPI_Recv
| 4 | 59238852 | | | | | | * MPI_Ssend
| 6 | 262144 | | | | * MPI_Allgather
| 444 | 0 | | | * dealloc_shm_

| 444 | 0 | | | | * dealloc_shm_sysv
| 0 | 0 | | * clean_shm_

| 348 | 0 | | * MPI_Finalize

Usage: cube_info [flags] <cube experiments>

-h Help; Output a brief help message.

-t Shows the metric "time" (inclusive, aggregated over all threads.)

-v Shows the metric "visits" (exclusive, aggregated over all threads.)

-w Shows the number of visitors for each Cnode, i.e. the number of threads that have a
visits counter of 1 or higher.

-m met Shows the metric described by the string met.

-l Lists all available metrics.

-b Shows some basic information about the cube file.

-a met,thrh Checks whether a node's value for a certain metric is below a given threshold
with respect to the node's absolute value. Affected nodes are aggregated to a single
node and output of their children is suppressed.

-r met,thrh Like –absolute, but based on a percentage of the root's value.

-x met,thrh Like –absolute, but based on selecting most relevant children of a node at
each level.

met must have the following form: unique_metric_name:[incl|excl]:process_number.thread_number
It is allowed to omit anything except for the metric's unique name, so "time" would compute
the inclusive time aggregated over all threads or "time:excl:2" would compute the exclusive
time aggregated over all threads that belong to the process with the id 2.

34

1.5 Supplementary utilities and helping Cube command line tools

1.5.8 Tester

With the tool cube_test one can perform various test on .cubex file such as range test
on metric values and similar. This is used usually in the correctness tests of Score-P and
SCALASCA.

Usage: cube_test [flags] <cube1> <cube2>

-? Help; Output a brief help message.

-h Help; Output a long help message.

-o Set the output file. If omitted, STDOUT is used.

-c tree1[,tree2] Create a new copy of the tree "tree2" that is called "tree1". If "tree2" is
omitted, "tree1" will be a copy of the "ALL"

-e metric[,tree] Checks whether the metric described by the string "metric" is equal
for all provided CUBE files and for all nodes of the tree "tree". If tree is omitted, all
nodes are checked.

-s metric,type,tol[,tree] Checks whether the metric described by the string "metric" is
sufficiently similar for all CUBE files, according to the qualifiers type and "tol". "tol"
specifies the tolerance which is given as a real number. The meaning of the tolerance
value depends on the "type". "type" is either ABS or REL. If "type" is ABS than the
nodes are similar if the difference between all values for that metric is below "tol". If
"type" is REL than the nodes are similar if the difference between all values for that
metric is below:

∑n
i=1 tol ∗ vmi , where n is the number of CUBE files, i-th file and V is

value of metric If "tree" is omitted, all nodes are checked.

-a metric,thrh[,tree] Removes all nodes from the tree "tree" whose values are below
"thrh" for the metric "metric". If tree is omitted, nodes are removed from the default
tree ALL.

-r metric,thrh[,tree] Removes all nodes from the tree "tree" whose values are below
"thrh" percent of the sum of all roots values. "thrh" is supposed to be a value between
0 and 1. If "tree" is omitted, nodes are removed from the default tree ALL.

-x metric,thrh[,tree] For each node of the tree tree we consider all children N of that
node. Let vi be the value for the given metric and the node i in N. Then we select a
maximal subset M (smaller than N) with the property

∑
i∈N vi ≤ thrh×

∑
i∈M vi and

remove all nodes from M. If tree is omitted, nodes are removed from the default tree
ALL.

-v [0,1,2,3] Verbosity level: 0 - silent, 1 - report only summary, 2 - report only errors, 3 -
report status of all tests

WARNING: The order of the options matters.

1.5.9 Canonizer

With this tool user can convert all regions into canonical form, names into lower case,
removing lines and filenames, in order to be able to compare measurements results.

Here is an example of execution

35

1 Cube Command Line Tools

cube_canonize -p -m 10 -c -f -l profile.cubex canonized.cubex

cube_dump -w profile.cubex
....
-------------------------- LIST OF REGIONS --------------------------

MEASUREMENT OFF:MEASUREMENT OFF (id=0, -1, -1, paradigm=user, role=artificial, url=, descr=, mod=)
TRACE BUFFER FLUSH:TRACE BUFFER FLUSH (id=1, -1, -1, paradigm=measurement, role=artificial, url=, descr=, mod=)
THREADS:THREADS (id=2, -1, -1, paradigm=measurement, role=artificial, url=, descr=, mod=THREADS)
MPI_Accumulate:MPI_Accumulate (id=3, -1, -1, paradigm=mpi, role=atomic, url=, descr=, mod=MPI)
...
PARALLEL:PARALLEL (id=270, -1, -1, paradigm=mpi, role=artificial, url=, descr=, mod=)
MAIN__:MAIN__ (id=271, -1, -1, paradigm=compiler, role=function, url=, descr=, mod=/marconi/home/userexternal/izhukov0/work/pop/casino/CASINO/src/main.f90)
get_nnpsmp_:get_nnpsmp_ (id=272, -1, -1, paradigm=compiler, role=function, url=, descr=, mod=/marconi/home/userexternal/izhukov0/work/pop/casino/CASINO/src/alloc_shm.c)
run_control.check_alloc_:run_control.check_alloc_ (id=273, -1, -1, paradigm=compiler, role=function, url=, descr=, mod=/marconi/home/userexternal/izhukov0/work/pop/casino/CASINO/src/run_control.f90)
get_smp_list_:get_smp_list_ (id=274, -1, -1, paradigm=compiler, role=function, url=, descr=, mod=/marconi/home/userexternal/izhukov0/work/pop/casino/CASINO/src/alloc_shm.c)
set_shm_numablock:set_shm_numablock (id=275, -1, -1, paradigm=compiler, role=function, url=, descr=, mod=/marconi/home/userexternal/izhukov0/work/pop/casino/CASINO/src/alloc_shm.c)
monte_carlo_:monte_carlo_ (id=276, -1, -1, paradigm=compiler, role=function, url=, descr=, mod=/marconi/home/userexternal/izhukov0/work/pop/casino/CASINO/src/monte_carlo.f90)

...

cube_dump -w canonized.cubex
-------------------------- LIST OF REGIONS --------------------------
off:MEASUREMENT OFF (id=0, 0, 0, paradigm=user, role=artificial, url=, descr=, mod=)
flush:TRACE BUFFER FLUSH (id=1, 0, 0, paradigm=measurement, role=artificial, url=, descr=, mod=)
threads:THREADS (id=2, 0, 0, paradigm=measurement, role=artificial, url=, descr=, mod=)
mpi_accumu:MPI_Accumulate (id=3, 0, 0, paradigm=mpi, role=atomic, url=, descr=, mod=)
...
parallel:PARALLEL (id=270, 0, 0, paradigm=mpi, role=artificial, url=, descr=, mod=)
main:MAIN__ (id=271, 0, 0, paradigm=compiler, role=function, url=, descr=, mod=)
get_nnpsmp:get_nnpsmp_ (id=272, 0, 0, paradigm=compiler, role=function, url=, descr=, mod=)
run_contro:run_control.check_alloc_ (id=273, 0, 0, paradigm=compiler, role=function, url=, descr=, mod=)
get_smp_li:get_smp_list_ (id=274, 0, 0, paradigm=compiler, role=function, url=, descr=, mod=)
set_shm_nu:set_shm_numablock (id=275, 0, 0, paradigm=compiler, role=function, url=, descr=, mod=)
monte_carl:monte_carlo_ (id=276, 0, 0, paradigm=compiler, role=function, url=, descr=, mod=)

...

Usage: cube_canonize [flags] <input> <output>

-h Print this help

-p Use PDT format

-m <num> Maximum length

-c Lower case

-f Remove file names

-l Remove line numbers

1.5.10 Clean

CUBE files may contain more data in the definition part than absolutely necessary. The
cube_clean utility creates a new CUBE file with an identical structure as the input experi-
ment, but with the definition part cleaned up.

36

1.5 Supplementary utilities and helping Cube command line tools

An example of the output is presented below.

user@host: cube_clean remapped.cube -o cleaned.cube
++++++++++++ Clean operation begins ++++++++++++++++++++++++++
Reading remapped.cube ... done.

Topology retained in experiment.
++++++++++++ Clean operation ends successfully ++++++++++++++++
Writing cleaned.cube ... done.

Usage: cube_clean [-o output] [-c|-C] [-h] <cube experiment>

-o Name of the output file (default: clean.cube|.gz)

-c Reduce system dimension, if experiments are incompatible.

-C Collapse system dimension! Overrides option -c.

-h Help; Output a brief help message.

1.5.11 Reroot, Prune

For the detailed study of some part of the execution, the CUBE file can be modified based
on a given call-tree node. Two different operations are possible:

• The call tree may be re-rooted, i.e., only sub-trees with the given call-tree node as
root are retained in the experiment.

• An entire sub-tree may be pruned, i.e., removed from the experiment. In this case,
all metric values for that sub-tree will be attributed to it's parent call-tree node (=
“inlined'').

One can have multiple -p and -r options, none of regions (in -p and in -r separately) should
have eachother as parents and wrong regions names are ignored.

An example of the output is presented below.

user@host: cube_cut -r inner_auto_ -p flux_err_ -o cutted.cube remapped.cube
Reading remapped.cube ... done.
++++++++++++ Cut operation begins ++++++++++++++++++++++++++

Topology retained in experiment.
++++++++++++ Cut operation ends successfully ++++++++++++++++
Writing cutted.cube ... done.

Usage: cube_cut [-h] [-c|-C] [-r nodename] [-p nodename] [-o output] <cube experiment
>

-r Re-root calltree at named node(s)

-p Prune calltree from named node(s) (= ''inline'')

-o Name of the output file (default: cut)

37

1 Cube Command Line Tools

-c Reduce system dimension, if experiments are incompatible.

-C Collapse system dimension! Overrides option -c.

-h Help; Output a brief help message.

1.5.12 Statistics

Extracts statistical information from the CUBE files.

user@host: ./cube_stat -m time,mpi -p remapped.cube -%
MetricRoutine Count Sum Mean Variance Minimum ... Maximum
time INCL(MAIN__) 4 143.199101 35.799775 0.001783 35.759769 ... 35.839160
time EXCL(MAIN__) 4 0.078037 0.019509 0.000441 0.001156 ... 0.037711
time task_init_ 4 0.568882 0.142221 0.001802 0.102174 ... 0.181852
time read_input_ 4 0.101781 0.025445 0.000622 0.000703 ... 0.051980
time decomp_ 4 0.000005 0.000001 0.000000 0.000001 ... 0.000002
time inner_auto_ 4 142.361593 35.590398 0.000609 35.566589 ... 35.612125
time task_end_ 4 0.088803 0.022201 0.000473 0.000468 ... 0.043699

mpi INCL(MAIN__) 4 62.530811 15.632703 2.190396 13.607989 ... 17.162466
mpi EXCL(MAIN__) 4 0.000000 0.000000 0.000000 0.000000 ... 0.000000
mpi task_init_ 4 0.304931 0.076233 0.001438 0.040472 ... 0.113223
mpi read_input_ 4 0.101017 0.025254 0.000633 0.000034 ... 0.051952
mpi decomp_ 4 0.000000 0.000000 0.000000 0.000000 ... 0.000000
pi inner_auto_ 4 62.037503 15.509376 2.194255 13.478049 ... 17.031288
mpi task_end_ 4 0.087360 0.021840 0.000473 0.000108 ... 0.043333

user@host: ./cube_stat -t33 remapped.cube -p -m time,mpi,visits
Region NumberOfCalls ExclusiveTime InclusiveTime time mpi visits
sweep_ 48 76.438435 130.972847 76.438435 0.000000 48
MPI_Recv 39936 36.632249 36.632249 36.632249 36.632249 39936
MPI_Send 39936 17.684986 17.684986 17.684986 17.684986 39936
MPI_Allreduce 128 7.383530 7.383530 7.383530 7.383530 128
source_ 48 3.059890 3.059890 3.059890 0.000000 48
MPI_Barrier 12 0.382902 0.382902 0.382902 0.382902 12
flux_err_ 48 0.380047 1.754759 0.380047 0.000000 48
TRACING 8 0.251017 0.251017 0.251017 0.000000 8
MPI_Bcast 16 0.189381 0.189381 0.189381 0.189381 16
MPI_Init 4 0.170402 0.419989 0.170402 0.170402 4
snd_real_ 39936 0.139266 17.824251 0.139266 0.000000 39936
MPI_Finalize 4 0.087360 0.088790 0.087360 0.087360 4
initialize_ 4 0.084858 0.168192 0.084858 0.000000 4
initxs_ 4 0.083242 0.083242 0.083242 0.000000 4
MAIN__ 4 0.078037 143.199101 0.078037 0.000000 4
rcv_real_ 39936 0.077341 36.709590 0.077341 0.000000 39936
inner_ 4 0.034985 142.337220 0.034985 0.000000 4
inner_auto_ 4 0.024373 142.361593 0.024373 0.000000 4
task_init_ 4 0.014327 0.568882 0.014327 0.000000 4
read_input_ 4 0.000716 0.101781 0.000716 0.000000 4
octant_ 416 0.000581 0.000581 0.000581 0.000000 416

38

1.5 Supplementary utilities and helping Cube command line tools

global_real_max_ 48 0.000441 1.374712 0.000441 0.000000 48
global_int_sum_ 48 0.000298 5.978850 0.000298 0.000000 48
global_real_sum_ 32 0.000108 0.030815 0.000108 0.000000 32
barrier_sync_ 12 0.000105 0.383007 0.000105 0.000000 12
bcast_int_ 12 0.000068 0.189395 0.000068 0.000000 12
timers 2 0.000044 0.000044 0.000044 0.000000 2
initgeom_ 4 0.000042 0.000042 0.000042 0.000000 4
initsnc_ 4 0.000038 0.000050 0.000038 0.000000 4
task_end_ 4 0.000013 0.088803 0.000013 0.000000 4
bcast_real_ 4 0.000010 0.000065 0.000010 0.000000 4
decomp_ 4 0.000005 0.000005 0.000005 0.000000 4
timers_ 2 0.000004 0.000048 0.000004 0.000000 2

Usage: cube_stat [-h] [-p] [-m <metric>[,<metric>...]] [-%] [-r <routine>[,<routine>...]]
<cubefile>

OR

[-t \<topN\>] \<cubefile\>
-t topN cubefile</dd>

-h Display this help message

-p Pretty-print statistics (instead of CSV output)

-% Provide statistics about process/thread metric values

-m List of metrics (default: time)

-r List of routines (default: main). Use mangeled name, if available.

-t Number for topN regions flat profile

Output of the tool 1.5.16 as

cube_dump -w <profile.cubex>

lists next to the display name of the region its mangeled name as well.

1.5.13 from TAU to CUBE

Converts a profile generated by the TAU Performance System into the CUBE format.
Currently, only 1-level, 2-level and full call-path profiles are supported.

An example of the output is presented below.

user@host: ./tau2cube3 tau2 -o b.cube
Parsing TAU profile...
tau2/profile.0.0.2
tau2/profile.1.0.0
Parsing TAU profile... done.
Creating CUBE profile...

39

1 Cube Command Line Tools

Number of call paths : 5
Childmain int (int, char **)
Number of call paths : 5
ChildsomeA void (void)
Number of call paths : 5
ChildsomeB void (void)
Number of call paths : 5
ChildsomeC void (void)
Number of call paths : 5
ChildsomeD void (void)
Path to Parents : 5
Path to Child : 1
Number of roots : 5
Call-tree node created
Call-tree node created
Call-tree node created
Call-tree node created
Call-tree node created
value time :: 8.0151
value ncalls :: 1
value time :: 11.0138
value ncalls :: 1
value time :: 8.01506
value ncalls :: 1
value time :: 11.0138
value ncalls :: 1
value time :: 5.00815
value ncalls :: 1
value time :: 11.0138
value ncalls :: 1
value time :: 0.000287
value ncalls :: 1
value time :: 11.0138
value ncalls :: 1
value time :: 0
value ncalls :: 0
value time :: 9.00879
value ncalls :: 1
done.

Usage: tau2cube [tau-profile-dir][-o cube]

1.5.14 Common Calltree

Common Calltree is a tool to reduce call trees of a set of cube files to the common part.

Usage: cube_commoncalltree [-h] <cube experiment> ...

-h Help; Output a brief help message.

The tool cube_commoncalltree takes set of input cubefiles

(cubefile1 cubefile2 ... cubefileN)

40

1.5 Supplementary utilities and helping Cube command line tools

and creates corresponding set of cube files

(cubefile1_commoncalltree cubefile2_commoncalltree ... cubefileN_commoncalltree).

Output cube files cubefileX_commoncalltree do have the equal system and metric dimen-
sions like corresponding cubefileX file.

Call trees among cubefileX_commoncalltree files are reduced to the maximal (up to a
special case in region naming scheme) common part. Inclusive value of the "missing" part
is added as a exclusive value to its parent (which is a part of common part of call tree)

This tool is particulary useful for comparison of exprerimens with the different recursion
depth or with the additional sub call trees depending on some loop iteration index.

1.5.15 Topology Assistant

Topology assistant is a tool to handle topologies in cube files. It is able to add or edit a
topology.

Usage: cube_topoassist [opts] <cube experiment>

The current available options are:

• To manually create a new topology in an existing cube file,

• To automatically generate new topologies based on existing system tree data,

• To [re]name an existing virtual topology, and

• To remove an existing virtual topology, and

• To [re]name the dimensions of a virtual topology.

The command-line switches for this utility are:

-c: create a new topology in the existing CUBE file.

-g: generate global topologies in the existing CUBE file.

-n: [re]name an existing topology

-r: remove an existing topology

-d: name dimensions of a topology

-o: output CUBE file (default: topologies.cubex)

The default output is a topologies.cube[.gz] file in the current directory.

When using the -d, -r or -n command-line options, a numbered list of the current topologies
will appear, showing the topology names, its dimension names (when existing), and the
number of coordinates in each dimension, as well as the total number of threads. This is an
example of the usage:

$ cube_topoassist topo.cube.gz -n
Reading topo.cube.gz . Please wait... Done.
Processes are ordered by rank. For more information about this file,
use cube_info -S <cube experiment>

This CUBE has 3 topologie(s).

41

1 Cube Command Line Tools

0. <Unnamed topology>, 3 dimensions: x: 3, y: 1, z: 4. Total = 12 threads.
1. Test topology, 1 dimensions: dim_x: 12. Total = 12 threads.
2. <Unnamed topology>, 3 dimensions: 3, 1, 4. Total = 12 threads. <Dimensions are not named>

Topology to [re]name?
1
New name:
Hardware topology
Topology successfully [re]named.

Writing topo.cube.gz ... done.

The process is similar for [re]naming dimensions within a topology. One characteristic is
that either all dimensions are named, or none.

One could easily create a script to generate the coordinates according to some algo-
rithm/equation, and feed this to the assistant as an input. The only requirement is to
answer the questions in the order they appear, and after that, feed the coordinates. Coordi-
nates are asked for in rank order, and inside every rank, in thread order.

The sequence of questions made by the assistant when creating a new topology (the -c
switch) is:

• New topology's name

• Number of dimensions

• Will the above dimensions be named? (Y/N)

• If yes, asks the name. Empty is not valid.

• Number of coordinates in that dimension

• Asks if this dimension is either periodic or not (Y/N)

• Repeat the previous three steps for every dimension

• After that, it expects the coordinates for each thread in this topology, separated by
spaces, in the order described above.

This is a sample session of the assistant:

$ cube_topoassist -c experiment.cube.gz
Reading experiment.cube.gz. Please wait... Done.
Processes are ordered by rank. For more information about this file, use cube_info -S <cube experiment>

So far, only cartesian topologies are accepted.
Name for new topology?
Test topology
Number of Dimensions?
3
Do you want to name the dimensions (axis) of this topology? (Y/N)
y
Name for dimension 0
torque
Number of elements for dimension 0
2000
Is dimension 0 periodic?

42

1.5 Supplementary utilities and helping Cube command line tools

y
Name for dimension 1
rotation
Number of elements for dimension 1
1500
Is dimension 1 periodic?
n
Name for dimension 2
period
Number of elements for dimension 2
50
Is dimension 2 periodic?
n
Alert: The number of possible coordinates (150000000) is bigger than the number of threads
on the specified cube file (12). Some positions will stay empty.

Topology on THREAD level.
Thread 0’s (rank 0) coordinates in 3 dimensions, separated by spaces
0 0 0
0 0 1
0 0 2
...
...
...
Writing topologies.cube.gz ... done.
$

So, a possible input file for this cube experiment could be:

Test topology
3
y
torque
2000
y
rotation
1500
n
period
50
n
0 0 0
0 0 1
0 0 2
... (the remaining coordinates)

And then call the assistant: cube_topoassist -c cubefile.cube < input.txt

For the generation option -g the user can choose the following options that control the
generation procedure:

• Use default parameters,

• include dimensions of size 1, and

43

1 Cube Command Line Tools

• generate separate topologies on either machine or module level.

The default settings use the split into multiple topologies, when there are multiple ma-
chines or modules in the system tree hierarchy, and discard singular dimensions as those
contribute no practical topology information and increase the dimensionality. This is the
same default as the remapper uses for its non-interactive generation.

The maximum amount of dimensions that can be generated for CUBE results based on
Score-P measurements without splitting of topologies or removal of dimensions are these:

• CPU: Machine x Module x Node x Process x Thread

• GPU: Machine x Module x Node x Device x Context x Stream

• GPU pre Score-P 8.0: Machine x Module x Node x Process x Stream

For most standard cases and default settings, that will likely result in something like
"Node x Process x Thread" and similar. The case of CUBE files prior to Score-P 8.0 is a
compatibility variant to allow for the different system tree layout of older measurements.

1.5.16 Dump

To export values from the cube report into another tool or to examine internal structure
of the cube report CUBE framework provedes a tool cube_dump tool, which prints out
different values. It calculates inclusive and exclusive values along metric tree and call
tree, agregates over system tree or displays values for every thread separately. In addition
it provides user to define new metrics(see file CubeDerivedMetrics.pdf). Results are
calculated and shown. For convenience user can invoke defined metrics along with new
once in any order. For doing so one lists unique names of metrics separated by commas.
For access to more than one callpaths, user can specify the ids or a range of them like "2-9".
This also can be done for threads. Additionally provides a calculation of the flat profile
values.

Usage: cube_dump [-m <metrics>|<new metrics>|all|<filename>] [-c <cnode ids>|all|leafs|roots|level>X|level=X|level<X|name=/regext/|<filename>]
[-x incl|excl] [-z incl|excl|stored] [-t thread_id|aggr] [-r]] [-f name] [-w] [-g]- [-s
human|gnuplot|csv|csv2] [-h|-?] [-o output] <cube experiment>

-m <metrics>|<new metrics>|all|<filename> Select one or more of metrics (unique
names) for data dump.

By giving a CubePL expression one can define one or more new metrics by giving cor-
respond formula. If the expression prefixed with ''<name>:'', <name> is used as a
unique name for the new metric.

<filename> - takes a CubePL expression from file <filename> and defines a derived
metric with it

all - all metrics will be printed.

Combination of these three is possible.

-c <cnode ids>|all|leafs|roots|level>X|level=X|level<X|name=/regexp/|<filename>

Select one or more call paths to be printed out .

<cnode ids> - list or range of call path ids: 0,3,5-10,25

44

1.5 Supplementary utilities and helping Cube command line tools

all - all call paths are printed

leafs - only call paths without children are printed

roots - only root cnodes are printed

level<X, level=X or level>X - only cnodes of the level more, equal or less than N are
printed

name=/regexp/- only cnodes of with the name matching to the regular expression 'regexp'

<filename> - takes a CubePL expression from file <filename> and evaluates it for every
callpath.

If the result is non-zero - call path is included into the output.

-x incl|excl Selects, if the data along the metric tree should be calculated as an inclusive
or an exclusive value.

(Default value: incl).

-z incl|excl|stored Selects, if the data along the call tree should be calculated as an
inclusive or an exclusive value.

(Default value: excl).

-t <thread id>|aggr Show data for one or more selected threads or aggregated over
system tree.

-r Prints aggregated values for every region (flat profile), sorted by id.

-f < name > Selects a stored data with the name < name > to display

-d Shows the coordinates for every topology as well.

-y Disables expansion of clusters and shows bare stored meta structure.

-w Prints out the information about structure of the cube.

-g Show ghost metrics (only in combination with -w).

-o <filename>|- Uses a device or STDOUT for the output. If omit, STDOUT is used.

-s human|gnuplot|gnuplot2|csv|csv2|csv3|(R) Uses either human readable form,
GNUPLOT or CSV format (both with different layouts) or binary R matrix (in case R is
installed) for data export.

-h|-? Help; Output a brief help message.

This is examples of the usage.

Example 1:

$cube_dump -m time,"metric::visits(e)","metric::time(i)/metric::visits(e)" -c 0 \
-z incl -s gnuplot profile.cubex

===================== DATA ===================
Print out the data of the metric time
#main(id=0)
0 0 80.549003343
0 1 44.115097986
0 2 43.486614165

45

1 Cube Command Line Tools

0 3 43.940738098
0 4 80.539393011
0 5 42.723353088
0 6 42.61159706
0 7 43.108220977
0 8 80.635220741
0 9 43.788284208
0 10 43.831524441
0 11 43.652044759
0 12 80.629776666
0 13 42.692885677
0 14 42.719330066
0 15 42.732487708

Print out the data of the metric New Metric1
#main(id=0)
0 0 80.549003343
0 1 1.79769313486e+308
0 2 1.79769313486e+308
0 3 1.79769313486e+308
0 4 80.539393011
0 5 1.79769313486e+308
0 6 1.79769313486e+308
0 7 1.79769313486e+308
0 8 80.635220741
0 9 1.79769313486e+308
0 10 1.79769313486e+308
0 11 1.79769313486e+308
0 12 80.629776666
0 13 1.79769313486e+308
0 14 1.79769313486e+308
0 15 1.79769313486e+308

Print out the data of the metric New Metric2
#main(id=0)
0 0 1
0 1 0
0 2 0
0 3 0
0 4 1
0 5 0
0 6 0
0 7 0
0 8 1
0 9 0
0 10 0
0 11 0
0 12 1
0 13 0
0 14 0
0 15 0

Example 2:

46

1.5 Supplementary utilities and helping Cube command line tools

$cube_dump -m time -s gnuplot2 profile.cubex

===================== CONFIGURE GNUPLOT ===================
set logscal x ; set logscal y ; set grid ; set xrange [16:300000]
; set terminal png size "600,400"

===================== DATA ===================
Print out the data of the metric time

;set output "0.png"
; plot 6.4e-18*x**(5.0/2.0) + 5.2e-05 t "setPrecision(int, PrecisionFormat)(id=18)" ,
1.2e-17*x**(7.0/3.0) + 3.6e-05 t "setRoundNr(int, PrecisionFormat)(id=19)" ,
2.1e-17*x**(9.0/4.0) + 3.1e-05 t "setUpperExpNr(int, PrecisionFormat)(id=20)" ,
7.1e-19*x**(5.0/2.0) + 8.8e-06 t "getInstance()(id=21)" ,
2.8e-18*x**(2.0/1.0)*log(x) + 3.3e-06 t "getCubePluginCount()(id=24)"

;set output "1.png"
; plot 1.3e-20*x**(5.0/2.0)*log(x) + 4.2e-06 t "PluginList()(id=25)" ,
9.7e-18*x**(7.0/3.0) + 1.1e-05 t "loadContextFreePlugin(PluginData&)(id=28)" ,
1e-17*x**(9.0/4.0) + 8.8e-06 t "loadCubePlugin(PluginData&)(id=29)" ,
1e-18*x**(9.0/4.0) + 1.1e-06 t "name() const(id=35)" ,
2.6e-18*x**(2.0/1.0)*log(x) + 3.7e-06 t "getCubePlugin(int)(id=44)"

Example 3:

$cube_dump -m time,"metric::visits(e)","metric::time(i)/metric::visits(e)" -c 0 \
-t aggr -z incl -s human profile.cubex

===================== DATA ===================
Print out the data of the metric time

All threads

main(id=0) 841.755571994
Print out the data of the metric New Metric1

All threads

main(id=0) 210.438892999
Print out the data of the metric New Metric2

All threads

main(id=0) 4

Example 4:

$cube_dump -m time,"metric::visits(e)","metric::time(i)/metric::visits(e)" -c 20 \
-z incl -s csv profile.cubex

47

1 Cube Command Line Tools

20,0,8.9812e-05
20,1,0
20,2,0
20,3,0
20,4,9.7463e-05
20,5,0
20,6,0
20,7,0
20,8,0.000132327
20,9,0
20,10,0
20,11,0
20,12,7.2788e-05
20,13,0
20,14,0
20,15,0

20,0,8.9812e-05
20,1,-1.79769313486e+308
20,2,-1.79769313486e+308
20,3,-1.79769313486e+308
20,4,9.7463e-05
20,5,-1.79769313486e+308
20,6,-1.79769313486e+308
20,7,-1.79769313486e+308
20,8,0.000132327
20,9,-1.79769313486e+308
20,10,-1.79769313486e+308
20,11,-1.79769313486e+308
20,12,7.2788e-05
20,13,-1.79769313486e+308
20,14,-1.79769313486e+308
20,15,-1.79769313486e+308

20,0,1
20,1,0
20,2,0
20,3,0
20,4,1
20,5,0
20,6,0
20,7,0
20,8,1
20,9,0
20,10,0
20,11,0
20,12,1
20,13,0
20,14,0
20,15,0

Example 5:

48

1.5 Supplementary utilities and helping Cube command line tools

$cube_dump -m time,"metric::visits(e)","metric::time(i)/metric::visits(e)" -c 1 \
-z incl -s csv2 profile.cubex

Cnode ID, Thread ID,time,New Metric1,New Metric2
1,0,80.548967177,80.548967177,1
1,1,44.115097986,1.79769313486e+308,0
1,2,43.486614165,1.79769313486e+308,0
1,3,43.940738098,1.79769313486e+308,0
1,4,80.539359524,80.539359524,1
1,5,42.723353088,1.79769313486e+308,0
1,6,42.61159706,1.79769313486e+308,0
1,7,43.108220977,1.79769313486e+308,0
1,8,80.635176341,80.635176341,1
1,9,43.788284208,1.79769313486e+308,0
1,10,43.831524441,1.79769313486e+308,0
1,11,43.652044759,1.79769313486e+308,0
1,12,80.629742485,80.629742485,1
1,13,42.692885677,1.79769313486e+308,0
1,14,42.719330066,1.79769313486e+308,0
1,15,42.732487708,1.79769313486e+308,0

Example 6:

$cube_dump -m time,"metric::visits(e)","metric::time(i)/metric::visits(e)" -c 20 -z incl -s csv3 profile.cubex
Cnode ID,Region Name, Thread ID,New Metric1,New Metric2,time
20,"cuDeviceGetUuid",0,5.29572e-07,1,5.29572e-07
20,"cuDeviceGetUuid",1,0,0,0
20,"cuDeviceGetUuid",2,0,0,0
20,"cuDeviceGetUuid",3,9.14558e-06,1,9.14558e-06
20,"cuDeviceGetUuid",4,0,0,0
20,"cuDeviceGetUuid",5,0,0,0

Example 7:

$cube_dump -m time,"metric::visits(e)","metric::time(i)/metric::visits(e)" -c 1 \
-z incl -s R profile.cubex -o output_file

This will generate binary file "output_file" which can be loaded in R. In consists of three
matrices, each one corresponding to one metric. Each matrix is named after the metric
and it contains values for all threads and nodes.

Example 7: We select only call path names, starting with "main" using the CubePL expres-
sion (stored in file name "selection.cubepl") :

{
${a}=0;
if (${cube::region::name}[${calculation::region::id}] =~ /^main/)
{ ${a}=1; }; return ${a};
}

49

1 Cube Command Line Tools

Then:

cube_dump -m time,"metric::visits(e)","metric::time(i)/metric::visits(e)" -c selection.cubepl \
-z incl -t aggr profile.cubex

===================== DATA ===================
Print out the data of the metric time

All threads

main(id=0) 841.755571994
main_loop(id=12) 840.73706946

Print out the data of the metric New Metric1
All threads

main(id=0) 210.438892999
main_loop(id=12) 0.210184267365

Print out the data of the metric New Metric2
All threads

main(id=0) 4
main_loop(id=12) 4000

Options "leafs", "roots", "level=", "level<", "level>" and "name=/regexp/" are shortcuts for
a build-in CubePL expression, which is used to select a call path.

• "leafs" : stands for:

{
${a}=0;
if (${cube::callpath::#children}[${calculation::callpath::id}] == 0)
{ ${a}=1; }; return ${a};
}

• "roots" : stands for:

{
${a}=0;
if (${cube::callpath::parent::id}[${calculation::callpath::id}] == -1)
{ ${a}=1; }; return ${a};
}

• "level=N" : stands for:

{
${level}=N;
${index}=0;
${i}=${calculation::callpath::id};
while (${cube::callpath::parent::id}[${i}] != -1)
{ ${i}= ${cube::callpath::parent::id}[${i}]; ${index}=${index}+1; };
${a}=0;
if (${index} == ${level})
{${a}=1; };
return ${a};

50

1.5 Supplementary utilities and helping Cube command line tools

}

• "name=/regexp/" : stands for:

{
${a}=0;
if (${cube::region::name}[${calculation::region::id}] =~ /regexp/)

{ ${a}=1; }; return ${a};
};

"level<N" and "level>N" differ from "level=N" in the boolean operation in the line 8. For
detailed documentation of the syntax of CubePL please see.

==== BASE ==== ==== BASE ====

==== BASE ==== ==== BASE ====

51

www.scalasca.org

	Cube Command Line Tools
	Abstract
	Performance Algebra and Tools
	Difference
	Merge
	Mean
	Compare

	POP Metrics calculation tool
	Tool Usage
	Only MPI analysis
	Only-MPI POP Metrics

	Hybrid Additive POP analysis
	Hybrid Additive POP Metrics

	Hybrid Multiplicative POP analysis
	Hybrid Additive POP Metrics

	Hybrid BSC POP analysis
	Hybrid BSC POP Metrics

	Additional metics
	I/O Ffficiencies
	Additional Ffficiencies
	Control Metrics

	Cube Remapping tool
	Tool Usage
	Remapping algorithm
	Syntax of a .spec file
	Optimization of the remapping.

	Supplementary utilities and helping Cube command line tools
	Cube Server cube_server
	Sanity Check
	Insertion of of derived metric into the .cubex
	Inspection of a call tree
	System tree partition
	Region information
	Cube Information
	Tester
	Canonizer
	Clean
	Reroot, Prune
	Statistics
	from TAU to CUBE
	Common Calltree
	Topology Assistant
	Dump

	Bibliography

