
CubeGUI 4.9 Plugin Developer Guide
How to develop a Cube GUI Plugin, road map
and examples

March 2025
The Scalasca Development Team
scalasca@fz-juelich.de



Attention

The Cube GUI User Guide is currently being rewritten and still incomplete.
However, it should already contain enough information to get you started
and avoid the most common pitfalls.

ii



Contents

1 Copyright 1

2 Abstract 3

3 Cube Plugin Types 5
3.1 Context sensitive Cube Plugins . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Context Free Plugins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Step by step example for CubePlugin 7
4.1 Qt project file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2 SimpleExample.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.3 SimpleExample.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5 Step by step example for ContextFreePlugin 11
5.1 Qt project file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.2 ContextFreePluginExample.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.3 ContextFreeExample.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

6 Developing plugins 15
6.1 Further examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6.1.1 Extensive example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.1.2 ValueView example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6.2 Problems loading plugins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

7 Usage of the Cube Plugin API 17
7.1 Functions to show information provided by the plugin . . . . . . . . . . . . . . 17

7.1.1 Add a new Tab next to the System tree . . . . . . . . . . . . . . . . . . . 17
7.1.2 Add a context menu to a tree view . . . . . . . . . . . . . . . . . . . . . . 17
7.1.3 Create a toolbar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7.1.4 Define a shortcut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7.1.5 Create an additional colormap . . . . . . . . . . . . . . . . . . . . . . . . 17
7.1.6 Create an alternative value view . . . . . . . . . . . . . . . . . . . . . . . 18
7.1.7 Add a metric to the metric tree . . . . . . . . . . . . . . . . . . . . . . . 18
7.1.8 Add a marker to a tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7.1.9 Add a status message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7.1.10Communication with other plugins . . . . . . . . . . . . . . . . . . . . . 18

7.2 Parallel execution of compute-intensive tasks . . . . . . . . . . . . . . . . . . . 19
7.3 Server side plugins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Bibliography 21

iii





1 Copyright

Copyright © 1998–2024 Forschungszentrum Jülich GmbH, Germany

Copyright © 2009–2015 German Research School for Simulation Sciences GmbH,
Jülich/Aachen, Germany

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

• Neither the names of Forschungszentrum Jülich GmbH or German Research School
for Simulation Sciences GmbH, Jülich/Aachen, nor the names of their contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTIC-
ULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROF-
ITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLI-
GENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1





2 Abstract

The version 4 of CUBE implementation provides support of varios types of Plugins.

This Guide helps an user to develop an additional standalone plugin which can be used within CUBE.

3





3 Cube Plugin Types

CUBE supports two types of plugins

• Context sensitive general Plugin

• Context free plugin

3.1 Context sensitive Cube Plugins

Plugins that derive from CubePlugin depend on a loaded cube file. They can react on user
actions, e.g. tree item selection, and may insert a context menu or add a new tab next to
the tree views. Examples for this type of plugins are the System Topology Plugin or the
Statistics Plugin which are part of the Cube installation.

Figure 3.1: plugin menu

3.2 Context Free Plugins

Plugins that derive from ContextFreePlugin are only active if no cube file is loaded. These
plugins create or modify Cube objects, which can be loaded and displayed.

5



3 Cube Plugin Types

Figure 3.2: context free plugin menu

6



4 Step by step example for CubePlugin

The following sections describe the steps that are required to create a plugin. For simplicity,
a separate project is created and the generated binary will to be copied to the plugin
directory of the given cube installation.

Files of the simple cube plugin project:

• example-simple.pro.in

• SimpleExample.h

• SimpleExample.cpp

4.1 Qt project file

To create a cube plugin, a makefile and source files have to be generated. The makefile can
be generated automatically from a Qt project file

First we specify the path to the "cube-config" script of the cube installation. This script
delivers correct flags for compiling and linking.

CUBELIB_CONFIG = @CUBE_CUBELIB@

INCLUDEPATH += $$system($$CUBEGUI_CONFIG --include) $$system($$CUBELIB_CONFIG --include)
LIBS += $$system($$CUBEGUI_CONFIG --ldflags) $$system($$CUBEGUI_CONFIG --libs) \

$$system($$CUBELIB_CONFIG --ldflags) $$system($$CUBELIB_CONFIG --libs)

TEMPLATE = lib
CONFIG += plugin
greaterThan(QT_MAJOR_VERSION, 4): QT += widgets

HEADERS = SimpleExample.h
SOURCES = SimpleExample.cpp
TARGET = $$qtLibraryTarget(SimpleExamplePlugin)

qmake && make will build the first plugin example libExamplePluginSimple.so. The plugin
will be copied to the plugin directory, e.g. /opt/cube/lib64/plugins.

4.2 SimpleExample.h

The example describes a minimal cube plugin, which is inserted as an additional tab next to
the SystemTree. It shows the text of the recently selected tree item. The complete source of
the example can be found in $CUBE_INSTALL_PREFIX/share/doc/cube/example/gui/plugin-example.

7



4 Step by step example for CubePlugin

Every cube plugin has to derive from cubepluginapi::CubePlugin. To use Qt's signal and
slot mechanism it also has to derive from QObject. If the plugin should be added as a tab
next to a tree widget, it has to derive from cubegui::TabInterface.

class SimpleExample : public QObject, public cubepluginapi::CubePlugin, cubepluginapi::TabInterface

The class header is followed by the following macro definitions:

• Q_OBJECT is required to handle signals and slots.

• Q_INTERFACES( cubepluginapi::CubePlugin ) tells Qt that the class implements
the CubePlugin interface and generates the method qt_metacast(char∗) to cast the
plugin object to CubePlugin using the class name given as as character array.

• For Qt versions >= 5.0 the plugin has to be exported using the Q_PLUGIN_METADATA()
macro. The unique plugin name "SimpleExamplePlugin" is assigned. For Qt versions
< 5.0, Q_EXPORT_PLUGIN2 has be be used (see Section 4.3).

class SimpleExample : public QObject, public cubepluginapi::CubePlugin, cubepluginapi::TabInterface
{

Q_OBJECT
Q_INTERFACES( cubepluginapi::CubePlugin )
Q_PLUGIN_METADATA( IID "SimpleExamplePlugin" ) // unique plugin name

public:
SimpleExample();

// CubePlugin implementation
virtual bool
cubeOpened( cubepluginapi::PluginServices* service );
virtual void
cubeClosed();
virtual QString
name() const;
virtual void
version( int& major,

int& minor,
int& bugfix ) const;

virtual QString
getHelpText() const;

// TabInterface implementation
virtual QString
label() const;
virtual QWidget*
widget();

private slots:
void
treeItemIsSelected( cubepluginapi::TreeItem* item );

private:
QWidget* widget_;
QLabel* qlabel_;
cubepluginapi::PluginServices* service;

// TabInterface interface
};
}

#endif // TESTPLUGIN1_H

The class SimpleExample has to implement the pure virtual methods from cubeplugi-
napi::CubePlugin and cubegui::TabInterface.

8



4.3 SimpleExample.cpp

4.3 SimpleExample.cpp

SimpleExample.cpp

For Qt versions < 5.0, Q_EXPORT_PLUGIN2 is used to export the plugin. The first argument
is a unique name for the plugin, the second the name of the class.

using namespace cubepluginapi;

The function cubeOpened(PluginServices∗ service) is the starting point of our plugin.
Allocation of data and GUI objects should be done here, not in the constructor. This allows
to free the resources, if the plugin is deactivated.

Here we create the main widget, which should be added as a system tab. Our plugin
derives from TabInterface, so service->addTab(SYSTEMTAB, this) can be called.

If the user selects a tree item, service will emit a corresponding signal. To react on this
event, the signal has to be connected to the slot treeItemIsSelected() of our plugin class.

The function returns true, if the plugin should be started. It it returns false, the plugin is
closed and deleted.

The function cubeClosed() is called if the cube file is closed or if the plugin is unloaded by
the user. All resources which have been allocated in cubeOpened have to be deleted here.

Each plugin has to set a version number. If several plugins with the same identifier (see
function name()) exist, the one with the highest version number will be loaded.

This function returns the unique plugin name. Only one plugin with this name will be
loaded.

The following function returns a text to describe the plugin. It will be used by help menu of
the cube GUI.

The following two functions contain the implementation of TabInterface.

The function widget() returns the QWidget that will be placed into the tab, which has
been created with service->addTab in initialize().

The function label() returns the label of the new tab.

9



4 Step by step example for CubePlugin

This method is a slot, which is called if a tree item is selected. The argument provides
information about the selected item. With item->getDisplayType(), the location (METRIC,
CALL, SYSTEM) can be identified.

10



5 Step by step example for
ContextFreePlugin

The following sections describe the steps that are required to create a plugin which derives
from ContextFreePlugin. For simplicity, a separate project is created and the generated
binary will to be copied to the plugin directory of the given cube installation.

5.1 Qt project file

To create a cube plugins, a makefile and source files have to be generated. The makefile
can be generated automatically from a Qt project file

First we specify the path to the "cube-config" script of the cube installation. This script
delivers correct flags for compiling and linking.

CUBEGUI_CONFIG = @prefix@/bin/cubegui-config
CUBELIB_CONFIG = @CUBE_CUBELIB@

INCLUDEPATH += $$system($$CUBEGUI_CONFIG --include) $$system($$CUBELIB_CONFIG --include)
LIBS += $$system($$CUBEGUI_CONFIG --ldflags) $$system($$CUBEGUI_CONFIG --libs) \

$$system($$CUBELIB_CONFIG --ldflags) $$system($$CUBELIB_CONFIG --libs)

TEMPLATE = lib
CONFIG += plugin
greaterThan(QT_MAJOR_VERSION, 4): QT += widgets

HEADERS = ContextFreePluginExample.h
SOURCES = ContextFreePluginExample.cpp
TARGET = $$qtLibraryTarget(ContextFreeExamplePlugin)

qmake && make will build the first plugin example libContextFreeExamplePlugin.so. The
plugin will be copied to the plugin directory, e.g. /opt/cube/lib64/plugins.

5.2 ContextFreePluginExample.h

The example ContextFreePluginExample.h describes a minimal context free plugin. The
plugin becames active, if Cube is started without an input file, or if the cube file is closed.

The complete source of the example can be found in $CUBE_INSTALL_PREFIX/share/doc/cube/example/gui/context-free.

A context free plugin has to derive from ContextFreePlugin. To use Qt's signal and slot
mechanism it also has to derive from QObject.

class ContextFreePluginExample : public QObject, public cubepluginapi::ContextFreePlugin

11



5 Step by step example for ContextFreePlugin

The class header is followed by the following macro definitions:

• Q_OBJECT is required to handle signals and slots.

• Q_INTERFACES( ContextFreePlugin ) tells Qt that the class implements the Con-
textFreePlugin interface and generates the method qt_metacast(char∗) to cast the
plugin object to ContextFreePlugin using the class name given as as character array.

• For Qt versions >= 5.0 the plugin has to be exported using the Q_PLUGIN_METADATA()
macro. The unique plugin name "ContextFreePlugin" is assigned. For Qt versions <

5.0, Q_EXPORT_PLUGIN2 has be be used (see Section 5.3).

class ContextFreePluginExample : public QObject, public cubepluginapi::ContextFreePlugin
{

Q_OBJECT
Q_INTERFACES( cubepluginapi::ContextFreePlugin )
Q_PLUGIN_METADATA( IID "ContextFreePluginExample" )

public:
// ContextFreePlugin interface
virtual QString
name() const;

virtual void
opened( cubepluginapi::ContextFreeServices* service );

virtual void
closed();

virtual void
version( int& major,

int& minor,
int& bugfix ) const;

virtual QString
getHelpText() const;

private slots:
void
startAction();

private:
cubepluginapi::ContextFreeServices* service;

};
}

#endif // ContextFreePluginExample_H

The class ContextFreePluginExample has to implement all pure virtual methods from
ContextFreePlugin.

5.3 ContextFreeExample.cpp

ContextFreePluginExample.cpp
For Qt versions < 5.0, Q_EXPORT_PLUGIN2 is used to export the plugin. The first argument
is a unique name for the plugin, the second the name of the plugin class.

using namespace contextfreepluginexample;

12



5.3 ContextFreeExample.cpp

The function opened(ContextFreeServices∗ service) is the starting point of our plugin.
With service->getWidget() we get a widget on Cube's main screen, in which we can
place the GUI elements of our plugin. In this example, only one button will be placed on
the main screen. Activation of this button will call the slot function startAction().

The function closed() is called if the plugin gets inactive because a cube file is loaded or
the Cube GUI is closed. All resources which have been allocated in opened() have to be
deleted here.

void
ContextFreePluginExample::closed()
{

qDebug() << "context free plugin closed";
// free all resources allocated in ContextFreePluginExample::opened()
// children of service->getWidget() will be deleted automatically

}

This function is called, if the user clicks on the Button "Load cube file". Usually, a context
free plugin will create cube data. In this small example, it simply loads the cube file which
is choosen from a file dialog.

void
ContextFreePluginExample::startAction()
{

QString openFileName = QFileDialog::getOpenFileName( service->getWidget(),
tr( "Choose a file to open" ),
"",
tr( "Cube3/4 files (*cube *cube.gz *.cubex);;Cube4

files (*.cubex);;Cube3 files (*.cube.gz *.cube);;All files (*.*);;All files (*)" ) );
std::vector<std::string> fileNames;
fileNames.push_back( openFileName.toStdString() );
cube::CubeProxy* cube = cube::CubeProxy::create( cube::ALGORITHM_EMPTY, fileNames );
service->openCube( cube ); // will be deleted automatically, if user closes cube

}

Each plugin has to set a version number. If several plugins with the same identifier (see
function name()) exist, the one with the highest version number will be loaded.

void
ContextFreePluginExample::version( int& major, int& minor, int& bugfix ) const
{

major = 1;
minor = 0;
bugfix = 0;

}

This function returns the unique plugin name. Only one plugin with this name will be
loaded.

QString
ContextFreePluginExample::name() const
{

return "Context Free Demo";
}

13



5 Step by step example for ContextFreePlugin

The following function returns a text to describe the plugin. It will be used by help menu of
the cube GUI.

QString
ContextFreePluginExample::getHelpText() const
{

return "context free plugin help text";
}

14



6 Developing plugins

6.1 Further examples

6.1.1 Extensive example

The example in $CUBE_INSTALL_PREFIX/share/doc/cube/example/gui/plugin uses all
major functions of PluginServices. It contains functions to handle

• settings, global preferences e.g. number formats

• further tab functions

• selections

• menus, context menus and toolbars

• global values to communicate with other plugins

See also
cubepluginapi::PluginServices
DemoPlugin.h
DemoPlugin.cpp
demo-plugin.pro.in

6.1.2 ValueView example

$CUBE_INSTALL_PREFIX/share/doc/cube/example/gui/value-view is an example of a
plugin that offers an additional value view. It adds a boxplot view for tau metrics. The
example

• implements cubepluginapi::ValueView and replaces the colored box with a boxplot

• adds a user dialog which allows the user to change the icon size

• implements cubepluginapi::SettingsHandler to save the icon size settings

See also
cubepluginapi::PluginServices
TauValueView.h
TauValueView.cpp
tau-value.pro.in

6.2 Problems loading plugins

If the plugin doesn't load, start cube with -verbose to get further information. The most
likely reason is an undefined reference:

15



6 Developing plugins

plugin /opt/cube/lib64/cube-plugins/libSimpleExamplePlugin.so is not a valid
CubePlugin version cubeplugin/1.1

Cannot load library /opt/cube/lib64/cube-plugins/libSimpleExamplePlugin.so:
(undefined symbol: _ZN13SimpleExample10cubeClosedEv)

If we remove the definition of the method cubeClosed() in SimpleExample.cpp, the plugin
is created without errors, but it cannot be loaded. cube -verbose shows the error message
above.

When building plugins, it is important to ensure that the plugin is configured in the same
way as cube. A plugin build with incompatible options shows the following error:

Plugin verification data mismatch in ’/opt/cube/lib64/cube-plugins/libSimpleExamplePlugin.so’

The same compiler, the same Qt library and the same configuration options have to be used.
Only plugins which are created using a Qt library with a lower minor version can also be
loaded.

16



7 Usage of the Cube Plugin API

The class cubepluginapi::PluginServices is used by the plugins to interact with the cube
GUI. This Chapter will provide an overview about the most important functions.

7.1 Functions to show information provided by the

plugin

7.1.1 Add a new Tab next to the System tree

To add one ore more tabs next to the system tree, the plugin has to call cubeplugi-
napi::PluginServices::addTab. This function requires a cubegui::TabInterface as parameter.
The tab has to define a label and a widget. See 4 for a simple demo.

7.1.2 Add a context menu to a tree view

A context menu is shown, if the user clicks with the right mouse button on a tree. With
cubepluginapi::PluginServices::addContextMenuItem, the plugin can add a menu item to
the context menu.

7.1.3 Create a toolbar

Cube provides toolbars, if they are enabled ( e.g. Preferences, Synchronisation). A plugin
may create additional toolbars with cubepluginapi::PluginServices::addToolBar. A toolbar
may be assigned to a tab. In this case, the toolbar is only visible, if the tab is also visible. If
the tab gets detached, the toolbar will be moved to the new window.

7.1.4 Define a shortcut

Shortcuts can be defined with QAction::setShortcut. To ensure that the plugin short-
cuts don't interfere with the default shortcuts, the context should be set using QAc-
tion::setShortcutContext( Qt::WidgetWithChildrenShortcut ).

7.1.5 Create an additional colormap

The colormap plugin example (ColorMapPlugin.h, ColorMapPlugin.cpp) demonstrates how
to use cubepluginapi::PluginServices::addColorMap

17



7 Usage of the Cube Plugin API

7.1.6 Create an alternative value view

The default value view shows a colored square next to the numerical value. The function
cubepluginapi::PluginServices::addValueView adds the given value view to the list of
available views from which the user can choose the active one. See 6.1.2 for an example
implementation.

7.1.7 Add a metric to the metric tree

To add a new metric to the metric tree, call cubepluginapi::PluginServices::addMetric.

7.1.8 Add a marker to a tree

A plugin may define one or more tree item marker to tag items of interest.

Tree items are marked in different ways:

• Items with a colored background show that a plugin has set a marker

• Items with a colored frame indicate that a collapsed child has been marked.

• Items with a black frame indicate that there are several collapsed children with
different marker.

• Items with a dotted frame show a dependency. A marked item of the right neighbor
tree depends on

• Items can be grayed out. These items are either marked as unimportant by a plugin,
or the user has choosen to gray out all items, for which no marker is set. this item.
The dependent item is only marked, if the dotted item is selected.

To create a new marker, cubepluginapi::PluginServices::getTreeItemMarker has to be
called. Then, the marker cann be added in two different ways:

• for one TreeItem
cubepluginapi::PluginServices::addMarker(TreeItem ∗item, const TreeItemMarker
∗marker, bool isDependency)

• for a set of dependent items
cubepluginapi::PluginServices::addMarker(const TreeItemMarker ∗marker, TreeItem
∗metric, TreeItem ∗call, TreeItem ∗system)

See 6.1.1 for an example implementation.

7.1.9 Add a status message

To write a message to the status line at the bottom of the cube window, call cubeplugi-
napi::PluginServices::setMessage.

7.1.10 Communication with other plugins

To communicate with other plugins, a named value can be send with cubeplugi-
napi::PluginServices::setGlobalValue. After a value has been set, the SIGNAL cube-

18



7.2 Parallel execution of compute-intensive tasks

pluginapi::PluginServices::globalValueChanged is emitted and the value can be read
by other plugins. After a plugin is successfully started, the global value <plugin
name>="">::started is set to true.

7.2 Parallel execution of compute-intensive tasks

The API function cubepluginapi::PluginServices::createFuture( TabInterface∗ tab = 0 )
creates a Future object to execute a task in parallel. The Future object is deleted after the
plugin has been closed. If a TabInterface is given, a progress bar will be displayed in the
given tab while the tasks are running.

The parallel plugin example (ParallelPlugin.h, ParallelPlugin.cpp) demonstrates how to use
cubepluginapi::Future

7.3 Server side plugins

If a remote cube file is opened, plugins like the editor plugin should also be able to show
source files from remote. This is done using a server side plugin, e.g. the predefined
plugin "FileServerPlugin", which sends the contents of a requested file. Also context
free plugins like cube diff can retreive files or execute operations on the remote side.

Both plugins types can access the function cubepluginapi::PluginServices::sendToPlugin/
cubepluginapi::ContextFreeServices::sendToPlugin to send data to a server side plugin.
The server side plugin is identified by its name.

std::vector<unsigned char>
sendToPlugin( const QString& serverPluginName,

const std::vector<unsigned char>& data );

The example in examples/GUI/plugins/client-server contains a minimal example of a
client and a server plugin, which communicate using the function above. It consists of the
following files:

• ClientPlugin.h, ClientPlugin.cpp

• ServerPlugin.h, ServerPlugin.cpp

19







www.scalasca.org


	Copyright
	Abstract
	Cube Plugin Types
	Context sensitive Cube Plugins
	Context Free Plugins

	Step by step example for CubePlugin
	Qt project file
	SimpleExample.h
	SimpleExample.cpp

	Step by step example for ContextFreePlugin
	Qt project file
	ContextFreePluginExample.h
	ContextFreeExample.cpp

	Developing plugins
	Further examples
	Extensive example
	ValueView example

	Problems loading plugins

	Usage of the Cube Plugin API
	Functions to show information provided by the plugin
	Add a new Tab next to the System tree
	Add a context menu to a tree view
	Create a toolbar
	Define a shortcut
	Create an additional colormap
	Create an alternative value view
	Add a metric to the metric tree
	Add a marker to a tree
	Add a status message
	Communication with other plugins

	Parallel execution of compute-intensive tasks
	Server side plugins

	Bibliography

