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Abstract

Finding synchronization defects is difficult due to non-
deterministic orderings of parallel threads. Current tools
for detecting synchronization defects tend to miss many
data races or produce an overwhelming number of false
alarms. In this paper, we describe Helgrind+, a dynamic
race detection tool that incorporates correct handling
of condition variables and a combination of the lockset
algorithm and happens-before relation. We compare our
techniques with Intel Thread Checker and the original Hel-
grind tool on two substantial benchmark suites. Helgrind+

reduces the number of both false negatives (missed races)
and false positives. The additional accuracy incurs almost
no performance overhead.

Index Terms
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happens-before, lockset.

1. Introduction

As parallel computing enters the mainstream, synchro-
nization defects such as deadlocks and data races become
more prevalent. This paper concentrates on techniques for
automated data race detection. A data race occurs when at
least two threads access the same memory location with
no ordering constraints enforced between the accesses, and
at least one of the accesses is a write [1]. Race detectors
can easily miss races or produce false alarms.

We developed a new method for correct handling inter-
thread event notifications automatically and without rely-
ing on source code annotation. This method accurately
establishes happens-before relations implied by condition
variables and thus eliminates almost all cases of false

alarms and missed races caused by wrong or missed
detection of inter-thread event notifications.

We also propose a new memory state model, which
takes full advantage of the high accuracy in detecting
happens-before relations. The detection approach is based
on combining the lockset algorithm with happens-before
analysis. The new memory state model is optimized for
short-running programs.

Our techniques have been implemented in Helgrind+,
an extension of the race detector Helgrind [2]. The user
can choose which memory state model he or she wants to
use and switch between happens-before analysis accuracy.
Thus, the user can select the sensitivity depending on
his or her situation. Helgrind+ has been evaluated on the
data race test suite for Helgrind [3] and on the PARSEC
[4] benchmark. Results show that it is significantly more
accurate than the original Helgrind as well as Intel’s
Thread Checker, with negligible increase in overhead.

The paper is organized as follows. Section 2 discusses
motivation for this work. In Section 3, we define some of
the terms and basics used in this paper. A a short overview
of the lockset and happens-before detection is presented.
We explain our method and the new features in Section
4 and 5. In Section 6, Valgrind [5], [6], [7], the kernel
of Helgrind is introduced and then the implementation
of Helgrind+ is discussed. In Section 7, we evaluate the
accuracy and the performance of Helgrind+ compared to
other detectors. Related works are discussed in Section 8
and in the last section we conclude our paper.

2. Motivation

2.1. More Sensitive Race Detection

In [8], we proposed a race detector that significantly
reduces the false alarms. This approach is suitable for
analyzing long-running applications without overwhelming
the user with false alarms. In long-running applications, a
data race pattern is likely to be repeated. Based on this



assumption, the race detector in [8] defers certain race
reports until the race reoccurs, thus reducing false alarms.
Conversely, it does not detect those deferred races if they
occur only once.

But what happens if the program runs briefly? Then,
races may not occur several times. This situation could
happen especially during unit testing. For this reason, we
introduce the option to discover races even if they occur
only once.

2.2. Lost Signals

A higher sensitivity usually also means a higher rate of
false alarms. To avoid this, the detector has to distinguish
more accurately between real data races and harmless
accesses. Only parallel accesses can lead to data races and
the detector has to find out how accesses are ordered.

DATA++

lock(l)
FLAG = 1
signal(CV)

unlock(l)

(a) Thread 1

lock(l)
while(FLAG != 1)

wait(CV)
unlock(l)

DATA--

(b) Thread 2

Figure 1. Using synchronization primitives
signal() and wait().

In some cases, it is extremely difficult to reconstruct the
implicit ordering imposed by synchronization primitives,
see for example Figure 1. Thread 1 operates on DATA and
then signals Thread 2 that it can take over the data for
further processing. The threads are properly synchronized,
but there is an ordering in which the happens-before
relation caused by signal() and wait() is not visible
to the race detector that would issue a false warning on
DATA. This situation is as follows.

If Thread 1 finished first, Thread 2 would not call
wait(). Consequently, the signal sent by Thread 1 is
lost. Any instrumentation of signal() and wait() thus
does not detect the proper ordering of the two threads.
Thread 2 carries on and as soon as it accesses DATA, a
data race is reported, even though there is none. The proper
ordering is enforced by the condition variable FLAG, but
noticed by neither lockset nor happens-before detectors.

In Section 5 we show how to solve this problem,
without any source code annotation.

3. Definitions

Before we describe the components of our race detector
in detail, let us first define some of the terms used later
on.

3.1. Thread Segments

The instruction sequence of a thread can be sliced into
subsequent pieces, called thread segments. Synchroniza-
tion with other threads (or thread segments) happens at
the start or at the end of each thread segment. Of course,
all thread segments belong to a specific thread. Within
a thread segment, all operations are totally ordered. The
thread segments of each thread are also totally ordered.
Synchronization defines a partial order of thread segments.
If two thread segments are not ordered, they may execute
in parallel.

TS 1

TS 2

DATA++Thread 1

TS 2

TS 1

Thread 2 DATA--
wait

signal

´

´

Figure 2. A thread consists of thread seg-
ments separated by synchronization opera-
tions.

Figure 2 shows the thread segment graph of a potential
execution of the program depicted in Figure 1. Thread 1
sends a signal to Thread 2. Thus the first part of Thread 1
TS1 happens before the second part of Thread 2, TS′

2.
Both Thread 1 and 2 are accessing variable DATA. Because
of the ordering, there is no race here.

3.2. Happens-Before Relation

For further discussion, it is useful to define a concise
notation for the ordering of thread segments. Lamport’s
happens-before relation hb→ express exactly this [9]. When
a thread segment TS1 is executed before another thread
segment TS2, we say TS1

hb→ TS2.
We define the relation hb→ to be reflexive and transitive.

The relation is defined to be reflexive regarding thread
segments, i.e. TS1

hb→ TS1 is possible. This is because
execution within a thread segment is strictly ordered and
throughout our algorithm, we always compare the present
point of execution with a past point of execution which
could be in the same segment. Transitivity allows us to
traverse through the thread segment graph and check if
two segments are parallel: Two thread segments TS1 and
TS2 are parallel iff there is no path of hb→-relations between
them. This situation is denoted as TS1 || TS2.

3.3. Lockset algorithm

The Lockset algorithm [10] is used to determine
whether a variable is protected by a specific lock or a



set of locks. For each shared variable d a set of candidate
locks Cd is maintained, which is refined every time the
variable is accessed. The lockset algorithm reports a race
whenever a candidate lockset Cd becomes empty.

This algorithm is insensitive to the program schedule,
but has a high rate of false alarms, because it does not con-
sider other synchronization primitives such as Fork/Join.
Combining the happens-before relation with lockset anal-
ysis results in a hybrid solution with a trade-off between
accuracy and runtime overhead. Recent race detectors [11],
[12], [13], [14], [2] use the happens-before relation to take
into consideration other synchronization primitives. These
approaches still report many false positives and even miss
races [8]. Additionally, many of them support only a subset
of synchronization primitives.

4. The Race Detector

Our detection algorithm combines the happens-before
relation and the lockset analysis in a new and efficient
way. Basically, both the lockset algorithm and the happens-
before analysis are performed. Although the lockset algo-
rithm is a reliable method to detect correct synchronization
using critical regions, the happens-before edges between
locking and unlocking of a region are ignored, similar to
previous works [11], [12], [13], [14], [15].

Our algorithm is based on the following preconditions:
1) The program uses only the following types of syn-

chronization methods:

• locks
• fork/join

• condition variables
• barriers

2) Throughout the program, each shared variable can
be protected by different types of the aforementioned
methods. For example, a variable x at the beginning
of the program could be protected by a lock, whereas
later on, a barrier could be employed.

Helgrind+ uses dynamic instrumentation to track the
program execution. Section 4.1 describes in detail which
operations are instrumented and how the current state of
program and its threads are maintained.

To detect races, each variable has an associated state.
This state indicates whether the variable is shared or
exclusively accessed by which thread segments. Every
access to a variable is instrumented to track the associated
state according to a finite state machine. This state machine
is a fundamental part of the race detector. Details appear
in Section 4.2.

4.1. Instrumentation

4.1.1. Locks. For the Lockset algorithm, we need to know
which locks are being held by each thread at any time. The

locks held by Thread t are stored in the lockset Lt. When
Thread t acquires or releases a lock, we have to update Lt

in the following way:

After t executes Lock(l) :
Lt ← Lt ∪ {l}

After t executes Unlock(l) :
Lt ← Lt\{l}

4.1.2. Happens-before. For the happens-before analysis,
Helgrind+ maintains thread segments and the happens-
before relations between them. For convenience, we de-
fine the function NewSegment(TS1, TS2, ..., TSn) that
performs the following actions. It returns a new thread
segment TSnew and adds new happens-before relations
such that ∀i : TSi

hb→ TSnew. At any point in time, each
thread t is in one of thread segments. The current thread
segment of thread t is called TSt. When a thread executes
a synchronization primitive described in this section, the
current thread segment ends and a new one is created.

Fork() / Join() are used for creation and termination
of threads. When a thread t creates a new thread u,
everything u does happens after t’s past operations before t
created u. Thread u cannot hold any locks at that moment,
so Lu is set to empty.

When thread t calls Join(u), it will wait for thread
u to terminate. That means everything thread u has done
happens before any operation t will do after the joining.
Additionally, on a Join() operation, we will scan through
all shared variables to see if some of them are not shared
anymore. Each shared variable d is accessed by a set
of threads called Sd. If Sd becomes singleton after the
terminated thread u was excluded from the set, variable d
can be reseted to non-shared or ”exclusive“ state.

Before t executes Fork(u) :
Lu ← ∅
TSu ← NewSegment(TSu, TSt)
TSt ← NewSegment(TSt)

After t executes Join(u) :
foreach shared variable d:

Sd ← Sd\{u}
if Sd is singleton:

reset d to exclusive state
TSt ← NewSegment(TSt)

Signal() / Wait() are the primitives for inter-thread
event notifications. A thread t sends a signal while another
thread u blocks until a signal was received. Operations of
thread t before sending the signals happens before opera-
tions of thread u after receiving it. The thread segment of
the signaler has to be stored so that the waiting thread can
create a happens-before relation to it. As different signals
can be sent depending on which condition variable cv is
used, each condition variable can hold a thread segment
TScv .



Before t executes Signal(cv) :
TScv ← TSt

TSt ← NewSegment(TSt)

After u executes Wait(cv) :
TSu ← NewSegment(TSu, TScv)

When using the Barrier() primitive, each thread is
allowed to leave the barrier only after all participating
threads have reached it. Thus, each thread segment after the
barrier happens after all other thread segments before the
barrier. A Barrier stores an immediate thread segment TSb.
After all participating threads have reached the barrier, TSb

happens after all thread segments. By leaving the barrier,
each thread segment synchronizes with TSb.

Before t executes Barrier(b) :
TSb ← NewSegment(TSb, TSt)

After t executes Barrier(b) :
TSt ← NewSegment(TSt, TSb)

4.2. New Memory State Machine

The effect of a memory state machine on the outcome
of a detector is crucial. With Helgrind+ one can choose
between two different memory state machines. Based on
our empirical studies, the memory state machines are
tailored and carefully tuned for two different categories of
applications: long-running and short-running applications.
Compared to the memory state machine of Eraser [10]
and similar tools, our memory state machines are more
complex and accurate. We address the limitations observed
in earlier memory states by making the required lockset
and threadset refinements carefully.

We provide both versions in Helgrind+ to have a
complete solution for different kind of applications. The
user is able to choose the memory state machine depending
on the application type.

4.2.1. Memory State Machine for Long-running Ap-
plications. We proposed in [8] a memory state machine
mainly for long-running applications. It is based on the
assumption that a past data race access pattern is likely to
be repeated in the future. We refer to this state machine
as MSM-long. MSM-long has eight different states and it
defers the happens-before analysis until the lockset anal-
ysis proves enough insufficiencies. Our empirical result
with MSM-long showed a significant reduction of false
positives[8], making the tools practical for long-running
applications.

4.2.2. Memory State Machine for Short-running Ap-
plications. We propose a new state machine which is
more suitable for short-running applications. The new state
machine concentrates on accurately detecting data races

and prevents false negatives while avoiding false positives
as demonstrated in Section 7. The new state machine is
called MSM-short and compared to MSM-long, has two
states less.

4.2.3. States of MSM-short. Figure 3 depicts MSM-short
followed by description of each state and the required
steps used in the detection algorithm. Thread segments
(e.g. TSt) are used to indicate a happens-before relation
between two successive accesses to a memory location.
The function threadof(TSt) returns the thread to which
the thread segment TSt belongs to. We use this function
when updating threadset Sd. The following notation is used
in the state diagram:

d an arbitrary memory location.
write write access to d.
read read access to d.
TSnew := TSt, the thread segment of the current thread t

accessing d is called TSnew in the diagram.
TSold := TSd, the thread segment of the prior access to d

is called TSold in the diagram.
Lt current set of locks held by thread t.
Cd current candidate set of locks protecting variable d.

New: Newly allocated memory location that is not yet
accessed. No locksets are needed. On the first write/read
access, enter state Exclusive-Write/Exclusive-Read.

When t executes Read(d) ∨ Write(d) :
TSd ← TSt

set state to Exclusive-Read / Exclusive-Write

Exclusive-Write: Location d is synchronized with
happens-before relations and the last access was a write
by a particular thread segment. No locksets are needed.

Remain in exclusive state as long as successive ac-
cesses are ordered by hb→-relation, since there are no
concurrent accesses to d. When a write or read occurs
which is parallel to previous access, enter Shared-Modified.
Otherwise, switch to Exclusive-Write or Exclusive-Read
corresponding to the type of current operation.

It is possible to reach Race from exclusive states, in case
an access happens concurrently with another access and
Lt = ∅. Transitions on empty Lt prevent false negatives
in many situations. Lt is the set of locks currently held by
a thread during program execution and tracking it involves
hardly any overhead.

When t executes Read(d) ∨ Write(d) :
if TSd

hb→ TSt

TSd ← TSt

set state to Exclusive-Read / Exclusive-Write
elseif TSd || TSt ∧ Lt 6= ∅
TSd ← TSt

Cd ← Lt

Sd ← {t, threadof(TSd)}
set state to Shared-Modified

else
set state to Race



 Exclusive-
Write

 Shared-
Read

 Shared-
Modified

Race

New

 Exclusive-
Read

Figure 3. Extended memory state machine.

Exclusive-Read: Similar to Exclusive-Write except that
the last access was a read operation. We presume that
location d is synchronized with happens-before relations
and no locksets are needed.

When a parallel access occurs, this is potentially a race
except in the following cases:

• On a read operation, we enter Shared-Read, because
parallel reads are not considered a data race. At this
moment the happens-before chain is broken. Thread
segment TSd is kept to be used in Shared-Read.

• On a write operation, if the thread does hold any lock,
we assume that from now on, variable d is protected
by locks and we enter Shared-Modified.

In all other cases, we report a race.

When t executes Read(d) :
if TSd || TSt

keep TSd

Cd ← Lt

Sd ← {t, threadof(TSd)}
set state to Shared-Read

else
set state to Exclusive-Read

When t executes Write(d) :
if TSd

hb→ TSt

TSd ← TSt

set state to Exclusive-Write
elseif TSd || TSt ∧ Lt 6= ∅
TSd ← TSt

Cd ← Lt

Sd ← {t, threadof(TSd)}
set state to Shared-Modified

else
set state to Race

Shared-Read: Location d is concurrently accessed by
multiple threads, but all accesses are reads. Shared-Read

allows parallel reads. We enter this state from Exclusive-
Read when a read results in multiple concurrent accesses.

In this state, thread segments are not updated. We
track only the lockset Cd, which is initialized to Lt

and the threadset to see if a variable is shared between
threads. The lockset is updated for every access. If a write
occurs, enter Shared-Modified, except when this write is
in parallel with the TSd stored in Exclusive-Read and
no lock protecting it. This is the only case of reporting
a race in Shared-Read. Since we do not update the
thread segment in Shared-Read, the thread segment in
Exclusive-Read is stored at the point where the happens-
before chain is broken. Then, by the write operation
causing to leave Shared-Read, the thread segment of
the writing thread and the stored TSd are compared. If
there are parallel accesses and the lockset is empty, we
enter Race. This increases the chance of detecting races
raised in Shared-Read, unlike many Eraser-style tools
that lack the ability to detect races for shared-read data.

When t executes Read(d) :
Cd ← Cd ∩ Lt

Sd ← Sd ∪ {t}
set state to Shared-Read

When t executes Write(d) :
if TSd

hb→ TSt

Cd ← Cd ∩ Lt

Sd ← Sd ∪ {t}
set state to Shared-Modified

else
set state to Race



Shared-Modified: Location d is concurrently read and
written by multiple threads. We presume that variable d
is protected by the locks in Cd. If it is entered from an
exclusive state, the lockset Cd is initialized to Lt. If this
state is entered from Shared-Read, the lockset is passed
over from this state. In addition to threadset, both lockset
and thread segments are tracked.

If the lockset Cd is empty, then d is obviously not
correctly synchronized with locks. So we check if other
synchronization patterns impose any happens-before re-
lations. If not, we generate an error and enter the Race
state. If there are hb→ relations, we return to an exclusive
state. This speeds up the algorithm because it reduces
the overhead for locksets analysis for all accesses during
program execution.

Note that this is the only state where both the happens-
before relations and the locksets are analyzed.

When t executes Read(d) ∨ Write(d) :
Cd ← Cd ∩ Lt

if Cd = ∅
if TSd

hb→ TSt

TSd ← TSt

set state to Exclusive-Read / Exclusive-Write
else

set state to Race
else

set state to Shared-Modified

Race: A potential race is detected and reported. Intro-
ducing this separate state is useful, because once the race
is reported, the tool does not spend time on this memory
location any more.

4.2.4. Discussion of MSM-short. As Figure 3 depicts,
the main idea is to avoid entering a shared state until
the happens-before analysis shows that there are con-
current accesses to a memory location. Threadset and
lockset tracking are performed only in shared states. No
thread segment tracking is performed in Shared-Read.
Only state Shared-Modified requires both lockset updates
and happens-before analysis. Tracking both locksets and
thread segments for each access during program execution
can be quite expensive in both time and space. For this
reason, the happens-before analysis in Shared-Modified is
deferred until the lockset of a location is empty. That
is, we do not track the thread segments until the lockset
would report a race, leading to performance improvement.
If there is a happens-before relation, we return to one of
the exclusive states.

Separate Exclusive-Read and Exclusive-Write states are
beneficial for several reasons. The state machine can
distinguish a read after a write or a write after a read.
We have more information about the accesses in the past,
making the detector work more precisely. In addition, this
distinction helps the detector to handle races that could

happen only once during initialization time[8], unlike the
shortcoming in Eraser-style detectors.

Compared to MSM-long [8], which has two different
Shared-Modified states, MSM-short is more sensitive. The
two distinct states in MSM-long were introduced to defer
race warnings. It is assumed that in long-running applica-
tions, races on a memory location happened several times.
So, in cases when MSM-long is not sure whether the
observed potential race is a real race, it waits until it is
repeated. In opposite, MSM-short will warn about races
immediately by the first indication of incorrect synchro-
nization.

4.2.5. Limitations. Our memory state model is a compro-
mise between detecting all races and reporting too many
false positives. There are some special cases in which a
false negative occurs. One scenario is when a variable
X in New state is initialized by a thread unprotectedly.
There is race condition when a second thread writes to
X concurrently. If the second thread holds any unrelated
lock, this race is missed. Note, that by handling inter-thread
notification events, the false negatives are significantly
reduced. In addition, reducing the false positive rate even
further is a continuing challenge.

5. Precise Happens-Before Detection

Reconstructing the precise happens-before relations is
a crucial task for our race detector. If happens-before
relations between thread segments are missed, the detector
considers them to be parallel although they were correctly
synchronized, thus producing false positives. On the other
hand, if we add false relations to the happens-before graph,
the detector loses accuracy, causing false negatives.

We discovered two problems which led to inaccuracies
in the happens-before graph. One is caused by lost signals
and the second one is caused by spurious wake ups.
Spurious wake-ups result from the usage of only one
condition variable to signal several different conditions at
the same time. These issues were not handled in other
approaches, e.g. [13], that extend data race detection for
condition variables.

5.1. Lost Signal Detector

The standard technique for happens-before detection by
intercepting library calls works fine with Fork/Join and
Barriers, as synchronization primitives are called explicitly.
That is not always the case when using condition variables.
In Section 2.2, we discussed a typical synchronization
pattern using condition variables. The problem is that
condition variables are stateless and signals are not ac-
cumulated. If the waiting thread is scheduled after the



X++

lock(l1)
FLAG1 = 1
signal(CV)

unlock(l1)

(a) S1

Y++

lock(l2)
FLAG2 = 1
signal(CV)

unlock(l2)

(b) S2

lock(l1)
while(FLAG1!=1)

wait(CV)
unlock(l1)

X--

(c) W1

lock(l2)
while(FLAG2!=1)

wait(CV)
unlock(l2)

Y--

(d) W2

Figure 4. Several signaling and waiting threads.

signaling thread, the signal will be lost and the waiting
thread will never call the corresponding wait(). Thus,
the detector does not know that synchronization has taken
place.

Our detector searches for while-loops in the binary
program code which contain a call to the wait() library
function. All these loops are instrumented so that, whether
a call to wait() is executed or not, does not matter
anymore. This way, the race detector will not miss any
signals. Details on how we find those while-loops can be
found in Section 6.3.

This approach is working very well, since the code to
correctly wait for a signal (as depicted in Figure 1(b))
always follows specific rules:

• The wait() library function is called within a loop,
when a specific condition was not met

• It is assured that at the time the program leaves the
loop, the signal was definitely sent

• Locks are used to protect the condition variables
A similar workaround to address this problem is source

code annotation [16]. The major drawback of this method
is the inconvenience of recompiling the source code and of
course, the source code must be available. Our approach
uses dynamic instrumentation, which means we do not
need the source code to handle these situations.

On the other hand, our approach can detect where a
signal should be waited for. But it does not know exactly,
which signal to wait for, i.e. in the lost signal case, when
the loop body is not executed, it is hard to find out,
what the parameters of the wait() function are. The
correct parameters are also crucial to set up the happens-
before relation correctly. Our approach does a stack walk
to extract the parameter set.

5.2. Spurious Wake ups

Figure 4 shows a situation with two pairs of signaling
and waiting threads. Each pair accesses a different set
of data. But only one condition variable was used for
conceptually two different signals. This way, a signal
would wake up both pairs which means one signal would
spuriously wake up a wrong thread. The correct happens-
before relations are shown in Figure 5(a). There are no

S1 W1S2 W2

X
Y

X Y...

...

...

...

(a) Correct happens-before graph

S1 W1S2 W2

X
Y

X Y...

...

...

...

(b) New segment per condition
variable used in Helgrind

S1 W1S2 W2F

X
Y

X Y...

...

...

...

(c) Introducing fake segments (F)

S1 W1S2 W2F

X
Y

X Y...

...

...

...

(d) Write/read relation used in
Helgrind+

Figure 5. Happens-before graphs generated
by different tools. X and Y denote variable
accesses in a thread segment.

races since accesses to identical data are strictly ordered.
The algorithm depicted in Section 4.1 is not able to handle
this situation correctly, as it is only capable of storing one
thread segment per condition variable. This would result
in a happens-before graph like in Figure 5(b). By contrast,
our original algorithm would report a race for variable X
due to the false happens-before graph.

In [16] fake thread segments are introduced to compen-
sate for this kind of situation. This results in a graph that
is still incorrect (Figure 5(c)). By introducing the fake
segments, happens-before edges are redirected to and from
fake segments. According to this graph, waiting threads
W1 and W2 are synchronized after both signaling threads
S1 and S2. But if by a mistake W1 accesses Y instead of
X, the race between S2 and W1 on Y is not detected and
we would have a false negative based on this schema.



5.3. Write/Read Relations

You can also see in Figure 4 that the difference between
the pairs lies in the condition they check. This condition
can be indirectly derived from the variables used in the
condition, FLAG1 and FLAG2. These variables are pro-
tected by locks.

We say that there is a write/read-relation between thread
segments, if there is a variable which is modified by one
thread segment shortly before sending a signal and the
other thread segment reads this variable shortly before
receiving a signal. That means that there is a write/read-
relation between signaling thread S1 and waiting thread
W1 on variable FLAG1. These write/read-relations de-
scribe the happens-before relations of threads more accu-
rately. Our race detector uses the happens-before relations
imposed by write/read relations whenever they can be
detected. Otherwise, fake thread segments are still used
to back off. Figure 5(d) shows the happens-before graph
constructed by Helgrind+.

To extract the variables potentially used in a write/read-
relation, we record all variables modified between lock()
and signal() and bind them to the current thread
segment at signaler side. On the waiter side, all read
accesses between lock() and while(expression)
(including the expression) are observed and compared with
the recorded accesses. This comparison marks the thread
segment of the real signaler. The thread segments of the
signaler and the waiter are bound in a happens-before
relation based on this write/read relation.

This extension in our race detection algorithm is de-
picted in Figure 6.

Whenever thread t enters a lock-protected region with
lock(), we start to record all following read operations
into Rt and all write operations to Wt. Rt and Wt are reset
when we leave a lock-protected region with unlock().
In a lock-region, a call to signal() causes the detector
to map all modified variables since the beginning of the
lock-region to the current thread segment. This is done by
DS(d) in the algorithm, i.e. DS : d 7→ ts where ts denotes
the thread segment of last signaler which modified d. Addi-
tionally, a fake thread segment is created which is ordered
after every signaler segment. When a wait() is called
or annotated, all recorded read operations Rt are checked
if there is a mapping DS(d) indicating any write/read
relation on d. If it exists, a happens-before relation between
waiter and the real signaler is constructed. Otherwise, we
have to back off with the fake segment, which was created
by our signal()-handler previously. As far as we know,
the solution presented to proper handling of condition
variables without source code annotation is beyond the
current state of the art.

After t executes Lock(l) :
Rt ← ∅
Wt ← ∅

After t executes Unlock(l) :
Rt ← ∅
Wt ← ∅

After t executes read(d) :
Rt ← Rt ∪ {d}

After t executes write(d) :
Wt ←Wt ∪ {d}

Before t executes Signal(cv) :
foreach d in Wt :

DS(d)← TSt

TScv ← NewSegment(TSt, TScv)
TSt ← NewSegment(TSt)

After t executes Wait(cv) :
foreach d in Rt :

if DS(d) exists:
TSt ← NewSegment(TSt, DS(d))

if ∀x ∈ Rt : DS(d) not exists:
TSt ← NewSegment(TSt, TScv)

Figure 6. Basic detection algorithm and lock-
set update rules with write/read relation.

6. Implementation

6.1. Valgrind

Our race tracker is a modification of Helgrind, which
is a tool based on Valgrind [5], [6], [7]. Valgrind is
a disassemble and resynthesize dynamic instrumentation
framework for Linux executables. The framework trans-
lates a binary into a platform independent intermediate
representation (IR). Helgrind+ instruments this interme-
diate representation and hands it back to the framework
which resynthesizes machine code from the instrumented
IR. Instrumentation is done just-in-time and does not need
the source code of the program. Valgrind is also able to
intercept calls to library functions through dynamic library
preloading. This makes the tools based on the Valgrind
framework powerful and flexible for all kinds of runtime
checking.

Helgrind+ supports the POSIX Threads API for multi-
threading. The GCC implementation of OpenMP is indi-
rectly supported as it ultimately uses POSIX threads.

6.2. Shadow memory

Helgrind must maintain state information not only for
each thread, but also for each data used by the program.
As Helgrind is unaware of high level data structures, it
can only operate on memory locations with granularity at
byte level. State information about memory locations can
be stored with shadow memory [17], that is, for every byte



of memory used in the program, a shadow word is stored.
Valgrind provides an extra memory pool for the shadow
memory and other data structures such as mutex or thread
segment information so that Helgrind’s data will not mix
with the data of program. Original Helgrind 3.3.1 used 32-
bit shadow words, which proved to be too small for our
race checker, so we use 64-bit shadow values.

As Figure 7 shows, we use the 64 bits differently
depending on in which state the memory location is. The
state is stored in the first three bits. Not all information
are relevant in every state. Threadsets for example are not
tracked in exclusive states, so we do not need to store
them in these states. An identifier of the thread segment
is stored in the remaining bits of the first 32-bit word and
the candidate lockset and threadset are stored in the second
32-bit word.

……00 ……New

TSTSID11 ……Exclusive-Write

TSTSID22 ……Exclusive-Read

locksetlocksetthreadsetthreadsetTSTSID44Shared-Read

locksetlocksetthreadsetthreadsetTSTSID66Shared-Modified

……77 ……Race

Figure 7. Structure of 64-bit word shadow
value and state encoding for MSM-short

6.3. Instrumenting while-loops in Interme-
diate Representation (IR)

As described earlier, we can catch all lost signals by
instrumenting the while-loops which enclose a call to
the wait() library function. Loops are represented by
conditional jumps in machine code, which is visible in
Valgrind’s IR. There are many conditional jumps in a
program, so we had to focus on a specific patterns, which
were typical for wait()-enclosing while loops. The loop
condition is usually not very complex (e.g. just evaluate
one flag) and the loop body often just contains a call to
wait(). That means that the jumping distance is very
small: We only considered jumping distances between 12
to 100 instruction bytes. The wait()-enclosing while
loops of programs in our experiments were all smaller than
100 instruction bytes, except only in one case.

The next step is to look inside the loop body and
detemine whether there is a call to wait(). Helgrind+

does that by searching for jumps to the wait() function
address in the IR of the loop body. The function address
can be found in the relocation tables of the Linux ELF
file [18]. We had to modify Valgrind so that Helgrind+

was able to request arbitrary machine code blocks to

be translated into IR. Additionally, Valgrind had to read
out the relocation tables of the Linux ELF file [18]. We
implemented this function only for the x86 and amd64
ELF type.

Finally, when a wait() was found in the loop body,
the parameters are of interest to determine which signal
should be received. We simulate a portion of the program
stack to determine the parameters, which does not work
well for few cases. When we are not able to get the
parameters, we back off by letting the thread synchronize
to signals which has been recently sent.

The presented method cannot cope with wrapper func-
tions, that encapsulate the call to wait(). Fortunately,
the compiler inlines the wrapper function during code
optimization, which can be enforced by the -O2 compiler
switch. In our experiments, these wrapper functions were
all inlined and opposed no problem to the lost signal
detector.

7. Experiments and Evaluation

In the following section, we present our experiences
with the extended Helgrind+ and evaluate our approach
by applying it to a number of applications. We show
that with the extended techniques, we are able to detect
races more precisely while reducing false positives. The
overhead caused by Helgrind+ is reasonable, so that it
can be used by applications from a variety of domains
to produce more accurate reports.

All experiments and measurements in this section were
conducted on a machine with 2x Intel XEON E5320
Quadcore at 1.86GHz, 8 GB RAM, running Linux Ubuntu
8.04.1 x64. All programs were compiled with gcc 4.2.3. No
source code annotation was used. We employed different
detectors for our experiments and measurements. Intel TC
denotes the commercial tool Intel Thread Checker 3.1 [19].
HG-64 denotes a 64 bit version of recent development
version from Helgrind repository[2], revision 8520. It is the
improved version of the recently released Helgrind 3.3.1.
HG-64-precise denotes the initial 64 bit version with our
extension for lost signal detection and write/read relation
(precise mode). HG+-long symbolizes Helgrind+ based
on MSM-long and HG+-long-precise is in precise mode.
Similarly, HG+-short is based based on MSM-short.

7.1. Test Suite — data-race-test

We applied Helgrind+ to unit test cases provided in
data-race-test [3], a test suite for Helgrind. The test suite
aims to create a framework to check a race detector and
evaluate the effect of each test case on the tool. This suite
provides more than one hundred test cases that imple-
ment different scenarios which could occur while running



multi-threaded programs. Most of these scenarios represent
tricky situations, which are difficult to discover by race
detectors. Currently, 79 of these test cases are categorized
into two main categories: ”racy” cases that involve at least
one data race, and race-free cases. We examine and analyze
the effect of each test case on Helgrind+. Table 1 shows
the result of our experiment on the test suite. All test cases
are short programs implemented in C/C++ with a varying
number of threads. All test cases are executed without any
annotation at source code level for all detectors.

Tools FP
Cases

FN
Cases

Failed
Cases

Passed
Cases

Intel TC 3 21 24 55
HG 64 39 8 47 32
HG 64 precise 37 9 46 33
HG+ long 8 16 24 55
HG+ long precise 3 15 18 61
HG+ short 17 5 22 57
HG+ short precise 11 4 15 64

Table 1. Comparing the results of Helgrind+

with other race detectors on the test suite.
FP and FN denote False Positives and False
Negatives, respectively. The sum of both are
failed test cases.

Notice that the result of Helgrind+ based on MSM-
short with the enabled features of lost signal detection
and write/read relation (HG+-short-precise) is significantly
improved. Since each test case is considered to be a short
program, the results are as expected. For HG+-short, 22
test cases out of 79 failed (17 false positives and 5 false
negatives). By enabling the precise mode (HG+-short-
precise), 6 false positives and 1 false negative are removed,
i.e., 64 cases of 79 cases pass. Two test cases provided in
the test suite are similar to the example provided in Figure
4. These tests pass only in HG+ in the precise mode, while
all other detectors fail. Also, all cases regarding lost signal
detection passed in HG+ precise mode. Most cases that
failed had user defined synchronization; they are difficult to
detect, since they do not follow the standard pattern given
by synchronization primitives. A few test cases produced
benign races.

When using HG+-long, the false positives are con-
siderably reduced to 8 but on the other hand, the false
negatives increase to 16. This indicates that HG+-long is
not adequate to find the masked races in short programs
in the test suite. Applying the precise mode increases the
accuracy of HG+-long and reduces both false positives and
false negatives.

Comparing the result of Helgrind+ to the initial version
of Helgrind (HG-64), a significant improvement is the
number of passed cases, which doubled in the best case.
Applying HG-64 in precise mode hardly improved the

result. This is because of the Eraser-like memory state
model used in HG-64 is rather simple.

In addition, we compared the behavior of Helgrind+

with the commercial tool Intel TC for the test suite. The
false positives by Intel TC are as few as in HG+-long. But
on the other hand, Intel TC did not detect races in 21 test
cases, whereas Helgrind+ masked only 4 racy cases for
HG+-short-precise.

The results on unit test confirm that Helgrind+ is able
to discover masked races more accurately compared to
other race detectors mentioned here. Especially when using
HG+-short-precise, the fault detection ratio is promising
for small and short-running applications.

7.2. PARSEC Benchmark

We evaluate our detector with the recently released
PARSEC 1.0 benchmark [4]. PARSEC contains twelve
diverse multi-threaded programs from different areas such
as computer vision, video encoding or financial analytics.

Table 2 depicts the result of the experiments on different
tools. We analyzed the result of executions with two
threads per application. The empirical study in [20] implies
that most concurrency bugs manifest themselves with only
2 threads. Also, Valgrind schedules threads in a more
fine-grained way than the operating system would do.
Consequently, we assume that many races can already be
observed with 2 threads. The presented numbers are dis-
tinct program code locations which produced at least one
potential data race, which are called racy contexts. Because
of the large memory consumption and computational cost,
we did not perform simulations with the native input set.
Instead, we used the simsmall or simmedium inputs
for all simulations and ran each program five times, aver-
aging the results. All numbers for read/write instructions
and synchronization primitives are totals across all threads.
Numbers for synchronization primitives include primitives
in system libraries. Locks are all lock-based synchroniza-
tions including Read-Write locks (rwlocks). Barriers are
barrier-based synchronizations, Conditions are waits on
condition variables. Except for freqmine, which uses
OpenMP, all programs used the standard Pthread library
for parallelization.

It should be mentioned that the authors of the PARSEC
Benchmarks claim the programs to be race free, however
we cannot be absolutely sure that they are. Table 2 provides
the false positives under the assumption that the programs
are race free. Future work will be to analyze the warnings
to see whether some of them are true positives.

In Table 2, the number of warnings produced by
HG+-long-precise is reduced considerably. That is because
HG+-long is based on the assumption that a race ac-
cess pattern will be repeated again. Since the PARSEC



Program LOC
Instructions (109) Synchronization Primitives Racy Contexts

Reads Writes Locks Barr. CVs Intel HG 64 HG 64 HG+ long HG+ short
TC precise precise precise

blackscholes 812 0.092 0.045 0 2 0 0 0 0 0 0
bodytrack 10,279 0.425 0.102 35,849 215 90 1 51 51 0 2
canneal 4,029 0.435 0.187 88 0 0 6 1 1 0 1
dedup 3,689 0.658 0.254 18,436 0 3,536 - 3 0 0 0
facesim 29,310 9.632 4.191 10,460 0 1,795 - 128 131 37 115
ferret 9,735 0.005 0.002 6,660 0 10 0 111 13 1 6
fluidanimate 1,391 0.584 0.144 923,750 0 0 0 56 56 0 0
freqmine 2,706 0.744 0.283 78 0 0 1,011 228 224 28 159
streamcluster 1,255 1.795 0.033 146 12,998 34 2 19 20 0 0
swaptions 1,494 1.414 0.365 78 0 0 0 0 0 0 0
vips 3,228 0.758 0.199 10,575 0 2,698 0 105 103 41 49
x264 40,393 0.500 0.204 1,339 0 157 - 734 702 173 44

Table 2. Number of racy contexts reported on PARSEC 1.0 benchmarks. All programs are executed
for input set simsmall except swaptions and streamcluster that is for simmedium.

benchmarks are long-running applications, the results are
acceptable compared to other detectors. HG+-short-precise
is more accurate and targeted for short-running applica-
tions, therefore producing more warnings than expected.
Comparing the result of Helgrind+ to the initial version of
Helgrind (HG-64), a remarkable reduction in the number of
false warnings can be observed. Running HG-64 in precise
mode did not improve the results. Only in a few cases
minor improvements are achieved. As mentioned before,
this is due to the simple memory model used in HG-64.

We also apply Intel TC to PARSEC. Two packages
of PARSEC, i.e. facesim and dedup, crashed while
running with ITC due to high memory consumption. Also
x264 may not be instrumented properly by Intel TC, since
the execution time of instrumented code was equal to non-
instrumented code using the same memory consumption.
For this reason, we excluded x264, along with facesim
and dedup from our discussion when using Intel TC. But
the results of Intel TC on other packages are approximately
comparable with HG+-long, producing a small number of
warnings. It should be noted that vips uses the GLIB [21]
library that is not supported by Valgrind. That is why HG+

produced many alarms, since it is not able to intercept
all function calls inside vips. The outcome on PARSEC
shows that Helgrind+ with the new features reports races
only in cases where they actually occurred. However, if any
correct synchronization is implied, no race is reported. This
reduces false positives and makes real-world applications
easier to handle.

7.3. Performance

To validate our method, we compared the runtime
behavior and the memory requirements of detectors on
the basis of PARSEC benchmark. Firstly, we mea-
sured the memory usage of instrumented code running
by different detectors. All measurements are average

values of five executions with two threads using the
simsmall or simmedium inputs for all simulations.
We used simmedium inputs for streamcluster and
swaptions, as the runtime with simsmall was too
short. Figure 8(a) depicts the average memory consump-
tion on PARSEC benchmarks by different detectors. The
memory consumption of Helgrind+ in different modes is
approximately constant. There is little overhead caused by
the extended memory state machines or the new features
implemented for the precise mode. Compared to the basic
version of Helgrind (HG-64), the overhead by Helgrind+

is only significant in the case of dedup. Intel TC caused
fairly large memory overhead, especially in the case of
memory-intensive programs, e.g. facesim or dedup
that crashed while with Intel TC. Memory overhead in
Helgrind+ is small enough that applications with higher
memory requirements are still testable.

The execution time of instrumented code versus the
actual execution time is typically slowed down by a factor
of 10 to 60 on Helgrind+. We measured the execution
time of instrumented code on different detectors. The
measurements are shown in Figure 8(b) for the PARSEC
benchmark. There is minor overhead of Helgrind+ over
basic Helgrind. In the worst case, facesim on HG+-long-
precise increases the execution time significantly. In other
cases, different version of Helgrind+ in different modes
have approximately equal execution times. As the figure
shows, compared to Helgrind+, Intel TC increased the
execution time remarkably. On average, the slowdown is
a factor of 2 compared to Helgrind+.

Overall, the results confirm that the methods presented
in this work cause a modest overhead. They are fast enough
and need less memory for different kind of applications.
The fault detection ratio is comparable to other tools, and
reports are more accurate for the case of short-running as
well as long-running applications.
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Figure 8. Memory consumption and execution time on PARSEC 1.0 by different detectors.

8. Related Work

Many recent approaches have combined the happens-
before relation and lockset algorithm [11], [12], [13], [2],
[22], [14], but they still produce many false alarms or miss
races. Our dynamic detection approach is also based on the
lockset algorithm and happens-before analysis, however,
the employed heuristics and the combination of these
methods differentiate our detector from other approaches.
We propose a new memory state model that is optimized
for short-running programs. Compared to the memory
state model presented in our previous work [8], the current
model is more sensitive to potential races and is adequate
when a race pattern occurs only once, as in short-running
applications or during development. The previous state
model, on the other hand, is based on the assumption that a
race pattern is likely to be repeated as in the case of long-
running applications or integration testing. It is therefore
somewhat less sensitive, but produces fewer false positives.

Detectors in [13], [2], [16] produce a lot of false
warnings and miss races, since the ordering induced by
inter-thread event notifications (via condition variables) is
not taken into account. Our work eliminates almost all
false positives in this situation, while detecting all races
(false positives and false negatives caused by lost signals
and spurious wake-ups are detected, see Section 5). The
write/read relation is a new method used to proper handle
condition variables. In [23], a dynamic software technique
is used to identify the user-defined synchronizations ex-

ercised during program execution. This technique is not
able to handle condition variables, while our method is
more general; it can be applied to identify the user-defined
synchronizations and other synchronization constructs, e.g.
spin-locks.

9. Conclusion and Future Work

An adequate memory state model is essential for ac-
curate race detection. In this paper, we combined the
lockset algorithm with a happens-before analysis in a new
and more efficient way. Our approach achieves a higher
accuracy by making the race detector adaptable to short-
running and long-running applications.

Several other improvements over state-of-the art were
achieved. Our analysis was extended to work more pre-
cisely in situations where certain synchronization patterns
were caused by condition variables. By taking lost signals
and the write/read relation into account, we reduced the
number of false positives and false negatives. Our em-
pirical data substantiates that our improvements lead to
better results, with almost no increase in execution time
and memory overhead.

There are many opportunities for future work to im-
prove Helgrind+. For example, program analysis might be
used to automatically select the appropriate memory state
machine. Extending the write/read relation to identify the
user-defined synchronizations could improve the accuracy
of the happens-before detection. Classification techniques



for warnings might draw upon the state machine’s history.
The identification of benign races is another important
issue. Applying a runtime analysis that excludes variables
that are only accessed by a single thread could improve
performance as well.
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