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Abstract—Parallel programs contain a surprising number
of ad-hoc synchronization operations. Ad-hoc synchronization
operations are loops that busy-wait on condition variables.
Current race detectors produce unnecessary warnings (false
positives) when ad-hoc synchronization is used. False positives
are also generated when programmers use synchronization
primitives that are unknown to race detectors, for instance
when programmers switch libraries. These shortcomings may
result in an overwhelming number of false positives, dissuading
programmers from using race detectors.

This paper shows that ad-hoc synchronization operations
can be detected automatically. The method requires no user
intervention such as annotations and has been implemented
in the race detector Helgrind+. Evaluation results on various
benchmarks confirm that Helgrind+ is aware of all synchro-
nizations in programs, reliably reports true races, and produces
few false alarms. A surprising result is that with the new
technique, Helgrind+ can analyze synchronization libraries, so
special knowledge about these libraries is not needed in the
detector.

Keywords-data race detection, race conditions, debugging,
parallel programs, ad-hoc synchronization, synchronization
primitives, dynamic analysis.

I. INTRODUCTION

Programmers tend to implement their own synchroniza-

tion primitives when available synchronization constructs are

too slow. For instance, a programmer may write a spinning

loop instead of using a library-supplied wait-operation, if

the loop is entered only rarely. Furthermore, libraries may

lack certain higher-level synchronization constructs such as

barriers or task queues, forcing programmers to implement

their own. We call synchronization constructs implemented

in application programs user-defined or ad-hoc.

Ad-hoc synchronization operations occur surprisingly fre-

quently. For instance, we found that eight of the 13 PAR-

SEC benchmarks[1] contain between 32 and 329 ad-hoc

synchronizations. For race detectors, ad-hoc synchronization

presents a problem, in that race detectors are not aware of

these constructs and thus generate an avalanche of false

positives for them. For instance, Tian et al [2] observe

an average of four million false positives generated for

programs containing from 12 to 131 ad-hoc synchronization

segments.

The subject of this paper is the reliable detection and cor-

rect treatment of ad-hoc synchronization in race detectors,

with the aim of eliminating false warnings.

Krena et al[3] and Tian et al[2] identified spin loops

that check conditions as the basic pattern in user-defined

synchronization. Tian et al use a simple heuristic to identify

these spin loops at runtime and suppress warnings associated

with them. In essence, their approach treats any loop with a

control variable that does not change for three iterations as a

spin loop waiting for a signal. However, this approach may

still generate false positives if the spin loop is not executed

repeatedly. Recall that programmers expect their programs

to enter spin loops only rarely.

We provide a dynamic method that detects ad-hoc syn-

chronization constructs reliably, provided they use spin loops

that examine condition variables. The method dynamically

and automatically identifies these loops by analyzing the

object code. The signaling thread cannot be determined

through analysis, but it can be found dynamically by in-

strumenting the code. Our method detects both reads and

writes on condition variables and then establishes a happens-

before relation between signaling and signaled threads, thus

preventing the generation of false warnings. The method

has been added to the race detector Helgrind+[4], [5].

The results on substantial benchmark suits confirm that

Helgrind+ eliminates false warnings without missing true

races.

A side benefit of this approach is that it can also be applied

to unknown libraries. Helgrind+ currently uses information

about the synchronization constructs of PThreads, but if

application programmers use different libraries, then our

enhanced Helgrind+ can also detect races reliably, provided

the libraries are based on spin loops. Note that even operat-

ing system calls such as wait that relinquish the processor

are typically used inside loops and therefore detectable by

Helgrind+. A surprising result is that information about

PThreads can be removed entirely from Helgrind+, resulting

in only a minor increase in false positives. Thus, Helgrind+

with spin loop detection can be seen as a universal race
detector.

The structure of the paper is as follows. Section II

describes the basics. We deal with the problems of using syn-

chronization operations by presenting various examples and

distinguishing true races from false races in Section II-A.

Our general method for identifying ad-hoc synchronization

and unknown synchronization primitives is presented in Sec-

tion III. The algorithm to detect the common construct of ad-
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hoc synchronization is discussed in Section III-B. In Section

IV, we evaluate our method with respect to accuracy and

performance. We describe our experiences with Helgrind+.

Related work is discussed in Section V.

II. SYNCHRONIZATION OPERATIONS

A data race occurs when at least two threads access

the same memory location without any ordering constraints

enforced by synchronization operations between accesses,

and at least one of the accesses is a write [6]. Dynamic

data race detectors typically intercept calls to synchroniza-

tion primitives in order to find ordering constraints. For

instance, if a program calls the synchronization primitive

barrier wait, the detector intercepts this function call and

records that accesses after the barrier are not concurrent with

accesses before the barrier. For a race detector to identify all

races and to produce no false positives, it must be aware of

ordering effects of all synchronization constructs, including

locks, monitors, signal/wait, conditions variables, spurious

wakeup calls, barriers, etc. Our previous results in [4],

[5] confirmed that by tailoring the detection algorithm for

each synchronization primitive, the detector extracts highly

accurate ordering information, identifies all races, and keeps

the number of false positives low.

But what if synchronization primitives are not supported

by the detector? Then the usual detectors are not able to

intercept them, know nothing about ordering effects, and

therefore may produce numerous false positives. The number

of false positives can be so high as to overwhelm the

programmer.

The idea of this paper is to identify a basic pattern that

occurs in virtually all synchronization primitives and to

extend the detection algorithm to handle this pattern. This

pattern is the spinning read loop waiting for a condition

to change. Once this pattern is handled well, we can in

fact remove all code from the race detector dealing with

synchronization primitives built upon this loop. Moreover,

all synchronization libraries as well as ad-hoc synchro-

nization based on the spinning read loop will be handled

automatically, eliminating the need to enhance the detector

for every library.

A. True and False Races

Generally, false races can be classified as follows:

• apparent races, and

• synchronization races
If a detector is not aware of a synchronization construct,

it may report races where they are none, because they

are actually prevented by the construct. Such cases are

called apparent races. Since detectors may not support

all synchronization primitives, apparent races cause false

positives. Figure 1 depicts a simple example that uses

the synchronization primitive barrier wait(b). Assuming the

primitive is unknown to the detector, it will report races

regarding the variable DATA. The detector will consider all

read operations after the barrier as races, although there is

no concurrent write. If the synchronization primitive were

known to the detector, the false races would disappear.

Thread 1, 2, ... n:

lock(l)
DATA++

unlock(l)

barrier_wait(b)

print DATA

Figure 1. Using synchronization primitive barrier wait() from unsup-
ported library causes apparent races on DATA.

Figure 2 depicts a simple ad-hoc synchronization in which

the second thread waits for condition variable FLAG. An un-

informed detector would report an apparent race on variable

DATA.

/* Initially FLAG is 0 */

...

DATA = 1

FLAG = 1

(a) Thread 1

while(FLAG != 1)
/* do_nothing */

print DATA

(b) Thread 2

Figure 2. Ad-hoc synchronization causes apparent race on DATA and
synchronization race on FLAG.

The second major reason for false positives are synchro-
nization races. Consider FLAG in Figure 2. Its accesses are

unordered and constitute a true race. However, this race is

harmless and, in fact, intentional. The race is necessary for

proper synchronization. Intentional races are often known as

synchronization races [3], [2].

The example in Figure 1 also produces synchronization

races. To see why consider the typical implementation of

the barrier primitive in Figure 3. The intentional races on

variable counter are synchronization races and harmless.

Synchronization primitives require data races to enable

competition for entering critical sections, for locking, for

changing condition variables, etc.

lock(l)
counter++

unlock(l)

while(counter != NUMBER_THREADS)
/* do_nothing */

Figure 3. Implementation of synchronization primitive barrier wait()
causes synchronization races on counter.



Our aim is to refine Helgrind+ in such a way that it does

not report apparent or synchronization races, while reporting

all other races.

III. AD-HOC SYNCHRONIZATIONS

A good race detector should avoid false positives as-

sociated with ad-hoc synchronization and synchronization

races. In this section, we propose a dynamic detection

method that is based on the fact that the spinning read
loop is the common pattern of almost all synchronization

constructs and a major source of synchronization races.

The method identifies spin-loop synchronization correctly

even if the spinning read is actually not entered (recall that

programmers assume spinning loops are entered rarely). We

first discuss the underlying pattern and then present our

detection algorithm. The algorithm identifies all spin-loop

synchronization operations, including those in libraries.

A. Common Pattern in Ad-hoc Synchronization

The so called spin-lock synchronization is the most com-

mon and simplest synchronization construct [3]. It employs

a condition shared among two threads. One thread executes

a while loop waiting for the value of the condition to be

changed by the other thread. At the moment the value

changes, the waiting thread is able to leave the loop and

proceed. Figure 4 illustrates the use of the spin-lock. Thread

2 executes a spinning read loop on the shared variable

CONDITION, until Thread 1 changes the value. The read

and write operations are the source of a harmless synchro-

nization race that need not be reported to the user.

do_before(X)

set CONDITION to TRUE

(a) Thread 1

while(!CONDITION){
/* do_nothing */

}

do_after(X)

(b) Thread 2

Figure 4. Spinning read loop pattern. Happens-before relation induced by
spin-lock synchronization.

A number of publications analyzed different implemen-

tations of synchronization operations [7], [8], [9], [3], [2]

and observed that the spinning read loop is a common

pattern used for implementing synchronization constructs.

For example, the barrier implementation in Figure 3 also

uses a spinning read loop on a flag and a write ending the

spin.

B. Detecting Ad-hoc Synchronizations

In the previous section, we found that the spinning read

loop and its counterpart write are the common construct for

ad-hoc synchronizations. Helgrind+ identifies spinning read

loops just before runtime with binary instrumentation. Later

on, runtime analysis establishes the correct happens-before

relations between spinning read loops and counterpart writes

so that the detector is aware of synchronizations.
The general idea of our method is as follows. Helgrind+

searches the binary code just before execution to find all

loops. This is done by building a control flow graph at pre-

runtime. Next, it narrows the set to spinning read loops based

on the following criteria:

• Evaluating the loop condition involves at least one load

instruction from memory.

• The value of the loop condition is not changed inside

the loop body.

We instrument each spinning read loop and mark the

variables that affect the value of the loop condition (this

may be a single flag or several variables, if the condition is

an expression). However, at this point we do not know where

the counterpart write is. Next, we discuss the instrumentation

that finds the write.
Being a runtime race detector, Helgrind+ monitors all

read/write accesses. The state of a variable indicates whether

it is used by only one thread (state exclusive ) or several

(state shared). When entering a spinning loop, the states

of the variables affecting the loop condition are set to a

special state called spin. Two cases are possible. In the first

case, the counterpart write does not happen before entering

the spin loop. In this case, Helgrind+ waits for the first

write operation that affects the loop condition. If the write

operation is performed by another thread rather than the

spinning thread, then this is the counterpart write. When

leaving the loop, Helgrind+ records a happens-before edge

between the spinning read loop and its counterpart write.
Consider the example in Figure 4. CONDITION is the

condition variable in the spinning read loop. Assume the

spinning read is entered by Thread 2 before the coun-

terpart write. The happens-before relation is constructed

based on the data dependency (write/read dependency) on

CONDITION. Thus, the detector will be aware of this

synchronization operation and no race will be reported on

X. The warning regarding the benign synchronization race

on CONDITION is also suppressed, since it is marked as

being in the special state spin.
In the second case the counterpart write happens first: One

or more variables affecting the loop condition are written

before the loop is entered. Helgrind+ sets the states of the

changed variables to exclusive and records the location of the

write instructions. As soon as the instrumented spinning read

loop is entered, the detector notices that variables affecting

the loop condition have been changed. The loop itself ter-

minates immediately. Helgrind+ records the happens-before

relation as before and sets the states of the changed variables

to spin. In this case no actual spinning happens–the loop

condition is evaluated only once.
The method by [2] fails to establish the happens-before

relation in the second case, because this method relies on

the loop spinning several times. It also fails to recognize



inter-thread event notifications with signal()/wait() in case

of lost signals. A signal is lost if a thread sends a signal

before any thread is waiting for it. In this case, no spinning

read happens at runtime. The wait() primitive is not even

executed, since the condition variable is already set earlier

by the signaling thread and the loop terminates immediately.

Failing to take signaling into account may lead to false

positives. Another tricky case involves spurious wakeups.

These can lead to false negatives (missed races). For proper

handling of spurious wakeups, see [5]. Helgrind+ handles

all of these cases correctly.

Another problem concerns the heuristic of using a thresh-

old iteration count in order to distinguish spinning read loops

from ordinary loops. If the spinning read loop dose not spin

long enough to reach the threshold value, the detector misses

the spinning read loop and generates false positives. On the

other hand, if the threshold value is too low, ordinary loops

in the program could be mistaken for spinning read loops,

which also results in missed races. Thus, without exploiting

the semantic information by dynamic code analysis just

before runtime, one may easily miss synchronizations or

misinterpret them, since actual spinning reads may not

happen at all at runtime or might not reach a preset threshold

value.

C. The Algorithm

Conceptually, our method is divided into two phases:

instrumentation and runtime. In the instrumentation phase,

all loops in the program are recognized and then only the

spinning read loops are selected to be instrumented. During

the second phase, a runtime data dependency analysis is

carried out to construct the happens-before relation between

related parts.

Recognizing the loops in the program is performed by

means of control flow analysis. We construct a control

flow graph on the fly based on the current super block

and consider loops with three to seven basic blocks in the

graph. We check whether they are spinning read loops or

not. In our experiments, we found three to seven basic

blocks deliver good results, since the spinning read loops

are typically small loops with few instructions. Decreasing

this number may result in missing some spinning read loops

and producing some false positives. On the other hand,

increasing the number of basic blocks causes additional

overhead.

Figure 5 provides a high level description of the algorithm

for spinning read loop detection. The first step constructs the

data dependency table Dl for every loop l. Dl(conditionl)
returns all variables that the loop condition conditionl

depends on within the loop l. This analysis takes function

calls into account. Step 2 examines for all variables v that

the conditionl depends on, if v is modified inside the loop.

If there is an assignment to any such v, then the loop l is

not a spinning read loop. Otherwise, the loop is marked

as performing spinning reads only, and the variables of

Dl(conditionl) are prepared for instrumentation.

for every loop l:

1) Dl(conditionl): the set of variables, on which the
condition conditionl of the loop l depends

2) ∀ v ∈ Dl(conditionl) :
if (Dl(v) �= ∅) // v is modified

return;

3) mark l as spinning read loop
prepare all v ∈ Dl(conditionl) for instrumentation

Figure 5. Basic algorithm for detecting spinning read loops.

D. Detecting Unknown Synchronization Primitives

The above method is a general approach that is able to

detect synchronization operations executed in the program,

which are implemented ultimately by spinning read loops

e.g. locks, barriers, etc.

Furthermore, all unknown synchronization primitives that

are not supported by our detector will be identified, i.e.

synchronization primitives provided by any other library

rather than PThreads. In other words, our general approach

based on spinning reads detection results in a universal race

detector that is aware of all synchronization operations (any

library) in the program by identifying them as low level

synchronizations. Thus, we overcome the serious limitation

of prior works which makes detectors limited to only syn-

chronization primitives of a particular library.

In addition, a race detector could be based only on

this general approach to detect synchronization operations

based on spinning read loops in a program. Such a race

detector is a pure happens-before detector. It cannot make

use of lockset algorithm, because it is not aware of locks.

In our case, if we turn off the support of Pthreads so

that synchronization primitives of Pthreads are not directly

intercepted, we will get a pure happens-before detector. Our

empirical results show that relying only on this general

approach for identifying synchronization operations in the

program might become too conservative in some situations.

There may be obscure implementation of spinning read

loops that are difficult to detect, leading to false positives.

We used this approach as complementary method to our

hybrid race detection algorithm [4], [5] to identify ad-hoc

synchronizations together with synchronization primitives of

unsupported libraries to achieve best results.

It should be mentioned, that our method is based on

dynamic binary instrumentation. It does not need any pro-

grams source code or user interference such as source

code annotations and therefore is non-intrusive in the build

process. The whole code and semantic analysis are done

automatically during just-in-time binary instrumentation.



IV. EXPERIMENTS

In this section, we present the results and evaluate our

approach by applying it to a number of benchmarks. We

show that by implementing the new method in Helgrind+,

we are able to report true races and improve the accuracy

by eliminating synchronization races and false alarms. We

evaluate the overhead caused by the method. The overhead

is reasonable.

A. Experimental Setup

We implement the presented approach into our race de-

tector Helgrind+. Helgrind+ is built on top of a dynamic

binary instrumentation tool called Valgrind [10], [11], [12].

Valgrind is a disassemble and resynthesize dynamic just-in-

time instrumentation framework. The framework translates

binary code into a platform independent Intermediate Rep-
resentation (IR). Helgrind+ instruments the IR and hands it

back to the framework which resynthesizes machine code

from the instrumented IR.

Loops are converted to conditional branches at low level

code. Hence, for the implementation of our algorithm, we

consider all conditional branches in the IR code. We search

the control flow graph for loops that span a maximum

number of three to seven basic blocks. Then, we track the

dependencies of each variable within these basic blocks by

constructing a data dependency table. The data dependency

table is built up with respect to registers at the IR level.

All temporaries and addresses in basic blocks are traced

to identify the registers they depend on. By means of the

dependency table we can now check if the loop condition

variable depends on a register that is target of a load instruc-
tion. We instrument the spinning read loop and insert the

required instructions to intercept and analyze it at runtime,

if the load addresses stay constant. Helgrind+ is also able to

intercept calls to library functions. It instruments direct calls

to library functions of PThreads (POSIX Threads) Library

for runtime checking.

We also used shadow memory [13] for each memory

location to maintain the information needed during runtime,

namely state information and vector clocks. A special state

called spin in shadow memory indicates variables that are

used in spinning read loops.

All our experiments and measurements in this section

were conducted on a machine with 2x Intel XEON E5320

Quadcore at 1.86GHz, 8 GB RAM, running Linux Ubuntu

8.10.2 x64. All programs were compiled with gcc 4.2.3. No

source code annotation was used. We employed Helgrind+

with the new features based on a 64 bit version of Valgrind

3.4.1 for our experiments and measurements.

B. Results

We applied Helgrind+ to programs provided in data-
race-test [14], a test suite for race detectors. It provides

more than 150 short programs (test cases) that implement

different scenarios which could occur while running multi-

threaded programs. The scenarios represent tricky situations,

which are difficult to discover by race detectors. Currently,

120 of these test cases can be classified into two main

categories: ”racy” cases that involve at least one data race,

and ”race-free” cases. We examine and analyze the effect

of each test case on Helgrind+. Table I shows the result

of our experiment on the test suite. All test cases are

short programs implemented in C/C++ using PThreads with

a varying number of threads and executed without any

annotation.

Tools False
Positives

False
Negatives

FP+FN Passed
Cases

Helgrind+ lib 32 8 40 80

Helgrind+

lib+spin(7)
8 7 15 105

Helgrind+

nolib+spin(7)
9 7 16 104

DRD 13 20 33 87

Helgrind+

lib+spin(3)
24 7 31 89

Helgrind+

lib+spin(6)
23 7 30 90

Helgrind+

lib+spin(7)
8 7 15 105

Helgrind+

lib+spin(8)
8 7 15 105

Table I
RESULTS OF HELGRIND+ ON THE TEST SUITE data-race-test THAT

CONTAINS 120 PROGRAMS AS UNIT TEST CASES. FP AND FN DENOTE

FALSE POSITIVES AND FALSE NEGATIVES, RESPECTIVELY. THE OPTION

lib MEANS INTERCEPTION OF PTHREAD LIBRARY AND spin STANDS FOR

SPINNING READ DETECTION WITH THE NUMBER OF BASIC BLOCKS AS A

PARAMETER.

The basic version of Helgrind+ denoted by lib option in

Table I failed on 40 test cases out of 120. The option lib
denotes that Helgrind+ intercepts Pthread synchronization

primitives calls. It produces 32 false positives and eight

false negatives. By enabling the new option spin(7) for

detecting spinning read loops up to seven basic blocks and

identifying ad-hoc synchronizations, 24 false positives and

one false negative are removed, i.e., 105 test cases out

of 120 pass. The removed false positives are all apparent

races or synchronization races that arise from using ad-hoc

synchronization. The removed false negative was because

of spurious wake ups when using same condition variable

between several threads. We consider spinning read loops up

to maximum seven basis blocks. All synchronization primi-

tives in programs are used from PThreads which Helgrind+

intercepts directly.

A few failed test cases used ad-hoc synchronization.

However, it is not easy to detect them, as they do not follow

the standard pattern in ad-hoc synchronization and use a

function pointer call to evaluate the loop condition in spin-

ning read loops. This is a limitation in the implementation

of our algorithm. We aim to remove this limitation in future



work to further decrease the number of false positives.

If we switch off the support of PThreads library indicated

by option nolib, synchronization primitives are no longer

intercepted directly and therefore unknown to Helgrind+.

In this case the detector acts as a pure happens-before

detector. We symbolize this situation with nolib+spin(7)
option in the table above. Only one additional test case

fails (one false positive). However, we observe that the

best results are achieved when using the new feature as

a complementary method to our race detection algorithm

(shown as lib+spin(7)) .

We compare these results with the results produced by

DRD 3.4.1 [15] a pure happens-before detector. Helgrind+

achieves considerably better results. In particular, the num-

ber of false negatives with DRD is more than doubled than

the false negatives with nolib+spin(7) option. Having false

negatives is the main drawback of happens-before detectors.

Second part of the Table I depicts the results when using

different number of basic blocks for detecting spinning read

loops. By increasing the number of basic blocks, the number

of false positives are decreased considerably. We got the

best result with seven basic blocks and increasing it further

will not improve the results. This is because the test suit

uses function templates and complex function calls. Thus,

spinning read loops in most test cases contain more than

three basic blocks.

The second benchmark suite we used to evaluate our

method is PARSEC 2.0 [1]. PARSEC 2.0 contains thirteen

diverse multi-threaded programs from different domains.

Table II depicts the summary of the programs. Except

for freqmine, which uses OpenMP and vips that uses

Glib[16], all programs use the standard PThreads for par-

allelization. At least eight applications use ad-hoc syn-

chronizations in addition to standard synchronization prim-

itives (locks, barriers and condition variables). We analyzed

the result of executions with two threads per application

on Helgrind+. The empirical study in [17] implies that

most concurrency bugs manifest themselves with only two

threads. Also, Valgrind schedules threads in a more fine-

grained way than the operating system would do. Conse-

quently, we assume that many races can already be observed

with two threads.

The result of our experiments on PARSEC is demon-

strated in Table III. The presented numbers are distinct

program code locations that produced at least one potential

data race, which are called racy contexts. Because of the

large memory consumption and computational cost, we did

not perform simulations with the native input set. Instead,

we used the simsmall or simmedium inputs for all

simulations and ran each program five times, averaging the

results. All numbers for read/write instructions are totals

across all threads. The authors of the PARSEC Benchmarks

claim the programs to be race free, however we cannot be

absolutely sure that they are. Table III provides the false

positives under the assumption that the programs are race

free.

The results in Table III are as expected. Compared to

basic version with option lib, the number of warnings

produced by enabling the new feature spin is reduced con-

siderably in many programs. In case of dedup, facesim,

streamcluster, vips and raytrace all false warn-

ings are eliminated. Two benchmarks freqmine and vips
use unknown libraries: OpenMP and Glib. The number of

warnings decreases to two and zero respectively. In x264,

dedup the basic version of Helgrind+ produces more

than 1000 warnings (only a maximum of 1000 warnings

is reported by the tools), whereas with the new feature

(lib+spin) only 19 for x264 remain. ferret generates only

two warnings. Nine out of 13 applications do not produce

any warnings.

We examine the warnings produced by our race detector

with the new feature. All other warnings are benign races

that can be counted as false warnings. The reasons for false

warnings in some cases are synchronization constructs e.g. a

task queue defined by the programmer that do not match the

spinning loop pattern. For instance, consider ferret that

uses a task queue and contains two benign races: A variable

is used as counter for input packets. A single thread modifies

it, while other threads read it without any synchronization.

Another benign race is a variable that is used as signal

to show if the input is read completely. In both cases, the

condition variables are not used in a while loop.

If we switch off the support of PThreads (nolib+spin)

so that the detector works as a happens-before detector

based on identifying only spinning read loops (nolib+spin),

approximately the same results are achieved. Only in four

cases the number of false positives increased slightly. DRD

produces more than 1000 warnings for some programs.

Overall, the results on various benchmarks confirm that

Helgrind+ with the new complementary method is able to

discover ad-hoc synchronization and synchronization opera-

tions of unknown libraries without modifying or upgrading

the race detector. The programmer is not overwhelmed with

too many false alarms and the results appear acceptable for

real world applications.

C. Performance Evaluation

We measured the runtime behavior and the memory

requirements of our detector in different features on the

basis of the PARSEC benchmark. Firstly, we measured the

memory usage of instrumented code run by the detector.

All measurements are average values of five executions

with two threads using the simsmall or simmedium
inputs for all simulations. We used simmedium inputs

for streamcluster and swaptions, as the runtime

with simsmall was too short. Figure 6(a) depicts the

average memory consumption. The memory consumption

of Helgrind+ is approximately constant across different



Program Thread LOC Synchronization Method
modell Locks Barriers CVs Ad-hoc

blackscholes POSIX 812 -
√

- -
bodytrack POSIX 10,279

√ √ √ √
canneal POSIX 4,029

√
- - -

dedup POSIX 3,689
√

-
√ √

facesim POSIX 29,310
√

-
√ √

ferret POSIX 9,735
√

-
√ √

fluidanimate POSIX 1,391
√

- - -
freqmine OpenMP 2,706 - - - -
streamcluster POSIX 1,255

√ √ √ √
swaptions POSIX 1,494 - - - -
vips Glib 3,228

√
-

√ √
x264 POSIX 40,393

√
-

√ √
raytrace POSIX 13,302

√
-

√ √

Table II
SUMMARY OF PARSEC 2.0 BENCHMARKS.

Program
Instructions (109) Racy Contexts

Reads Writes Helgrind+ Helgrind+ Helgrind+ DRD
lib lib+spin nolib+spin

blackscholes 0.092 0.045 0 0 0 0
bodytrack 0.425 0.102 36.8 3.6 32.4 34.6
canneal 0.435 0.187 0 0 0 0
dedup 0.658 0.254 1000 0 2 0
facesim 9.632 4.191 113.8 0 0 1000
ferret 0.005 0.002 111 2 47 214.6
fluidanimate 0.584 0.144 0 0 0 0
freqmine 0.744 0.283 153.4 2 2 1000
streamcluster 1.795 0.033 4 0 1 1000
swaptions 1.414 0.365 0 0 0 0
vips 0.758 0.199 50.8 0 0 858.6
x264 0.500 0.204 1000 19 28 1000
raytrace 19.260 13,746 106.4 0 0 1000

Table III
NUMBER OF RACY CONTEXTS REPORTED ON PARSEC 2.0 BENCHMARKS. ALL PROGRAMS ARE EXECUTED FOR INPUT SET SIMSMALL EXCEPT

SWAPTIONS AND STREAMCLUSTER THAT IS FOR SIMMEDIUM .

modes. There is some overhead caused by the new features

implemented for the ad-hoc feature. Compared to DRD the

memory overhead is higher. However, the memory overhead

in Helgrind+ is small enough that real world applications

with higher memory requirements are still testable. Opti-

mizing our implementation could help reduce the memory

overhead, which we intend to do as a future work.

The execution time of instrumented code versus the actual

execution time is typically slowed down by a factor of 10

to 50 on Helgrind+. We measured the execution time of

instrumented code on different modes. The measurements

are shown in Figure 6(b). There is also some overhead of

Helgrind+ over the basic mode (lib option). In the worst

cases, x264 and vips on Helgrind+ with lib+spin and

nolib+spin options increase the execution time significantly.

In most cases, Helgrind+ delivers approximately equal exe-

cution times in all modes. As the figure shows, compared to

DRD, there is an execution overhead. But in case of dedup
and fluidanimate DRD’s execution time is much higher

than the Helgrind+. This is because many locks are used

in these two benchmarks compared to the other programs.

On average, the slowdown factor is reasonable to apply for

different kind of applications and get accurate results.

V. RELATED WORK

Prior work can be divided into two categories with respect

to the data race detection approach: static and dynamic.

Static approaches are not accurate, produce many false pos-

itives and false negatives. They consider all potential thread

interleavings including those that are not feasible [18], [19].

Dynamic approaches report only races that actually occur

during the program execution. They are either based on

the lockset algorithm [20] or happens-before analysis [21].

The lockset algorithm produces too many false positives but

it is simple and can be implemented with low overhead.

On the other hand, happens-before analysis is difficult to

implement. It may miss races, i.e. produce false negatives,

as it is sensitive to the order of execution.



(a) Memory consumption on PARSEC 2.0

(b) Execution time on PARSEC 2.0

Figure 6. Memory consumption and execution time on PARSEC 2.0 by different tools.

Recent dynamic approaches [22], [23], [24], [25], [26],

[27] have combined these two methods into a hybrid method

with the strengths of each. But no one really succeeded and

they still produce many false positives and even miss races.

Basically this is because they suffer from two serious

limitations. Firstly, they are not able to detect ad-hoc syn-

chronizations implemented in user code itself. Secondly, the

detectors are restricted to synchronization primitives of a

specific library and any synchronization primitive used from

another library in the program is simply ignored. Thus,

they are not able to produce accurate reports and applying

these detectors to real applications overwhelms the user with

too many number of false alarms. Our work removes these

limitations by introducing a general approach for detect-

ing ad-hoc synchronizations and unknown synchronization

primitives. We are able to eliminate false positives including

benign synchronization races and possible false negatives

caused due to missed or incorrect synchronizations.

In our previous works[4], [5], we proposed a dynamic

hybrid approach that employed heuristics to combine lockset

algorithm and happens-before. We presented two mem-

ory state models optimized for short-running and long-
running applications with an automatic technique that is

able to detect synchronization caused by inter-thread event

notifications (condition variables). The current work is a

complement to our previous works. It identifies ad-hoc

synchronizations and unknown synchronization primitives

that are hidden to race detectors. This work could be used

as complementary method to any other race detector.

Also, the method presented in this work is general and

could be used as a complete race detection approach in

a race detector. The resulted race detector is a universal

happens-before race detector. Compared to other happens-

before race detectors such as DRD [15], this method induces

also happens-before edges when using ad-hoc synchroniza-

tion or unknown synchronizations primitives, resulting in

substantial accuracy.

A dynamic technique in [2] is used to identify synchro-

nization operations in programs. The method is only able to

partially suppress false positives caused by apparent races

and benign synchronization races. It is merely based on

actual spinning reads occur at runtime and set a thresh-

old value for the number of spinning reads to identify

them during execution. The value of the threshold is set

heuristically (they set the number of spin reads to three). If

the spinning read does not happen, the detector will miss

the synchronization. As discussed earlier, this could happen

when using condition variables or in ad-hoc synchronization



that causes false alarms. Furthermore, the method could

detect by mistake loops in the program as spinning reads

and interpret them as synchronization operation. This could

lead to misinterpretation of synchronizations for the detector

and causes false negatives (missed races).

VI. CONCLUSION

In this work, we have shown that the knowledge of all

synchronization taking place in the program is crucial for

accurate data race detection. We demonstrated that missing

ad-hoc synchronization causes a lot of false positives. The

presented dynamic method in this paper is able to identify

ad-hoc synchronizations. It is also able to detect synchro-

nization primitives of unknown libraries eliminating the need

of upgrading the detectors. Our empirical results confirm

that our method could be used as a complementary method

to achieve the optimum results removing false alarms with

almost no false negatives. Furthermore, the evaluation shows

that the overhead caused by the new method in our race de-

tector is moderate enough to apply in practical applications.

Using the method alone as a complete race detection

approach results in a universal happens-before race detector

that is able to detect all different synchronization operations

with minor increase in false positives. A direction for our

future work is improving the accuracy of the universal

race detector by identifying lock operations, enabling lock-

set analysis. Helgrind+ is open source and available at

http://svn.ipd.uni-karlsruhe.de/trac/helgrindplus.
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