
Score-P – A Joint Performance Measurement Infrastructure 1

Score-P – A Joint Performance Measurement
Run-Time Infrastructure for Periscope,
Scalasca, TAU, and Vampir

Andreas Knüpfer, Christian Rössel, Dieter an Mey, Scott Biersdorf, Kai Diethelm,
Dominic Eschweiler, Markus Geimer, Michael Gerndt, Daniel Lorenz, Allen
Malony, Wolfgang E. Nagel, Yury Oleynik, Peter Philippen, Pavel Saviankou, Dirk
Schmidl, Sameer Shende, Ronny Tschüter, Michael Wagner, Bert Wesarg, and
Felix Wolf

Abstract This paper gives an overview about the Score-P performance measure-
ment infrastructure which is being jointly developed by leading HPC performance
tools groups. It motivates the advantages of the joint undertaking from both the de-
veloper and the user perspectives, and presents the design and components of the
newly developed Score-P performance measurement infrastructure. Furthermore, it
contains first evaluation results in comparison with existing performance tools and
presents an outlook to the long-term cooperative development of the new system.

1 Introduction

The HPC community knows many established or experimental tools that assist pro-
grammers with the performance analysis and optimization of parallel target appli-
cations. Well known examples are HPCToolkit [1], Jumpshot [20], Paraver [12],
Periscope [2], Scalasca [9], TAU [16], and Vampir [11]. They form an important
contribution to the HPC ecosystem, because HPC is naturally obsessed with good
performance and high efficiency, on one hand, and with more and more complex
hardware and software systems, on the other hand – in this situation, sophisticated
tools are an absolute necessity for analyzing and optimizing complicated parallel
performance behavior.

There are several established performance tools that co-exist today and many
more experimental ones. They focus on different aspects and provide complemen-
tary specialized features, which makes it worthwhile to use them in combination.
But at the same time, there are many similarities and overlapping functionality, in
particular redundant basic functionality. This is almost necessarily so, because there
is only a small number of options for several aspects, for example:

Andreas Knüpfer
ZIH, TU Dresden, 01062 Dresden, Germany, e-mail: andreas.knuepfer@tu-dresden.de

Published in “Proc. of 5th Parallel Tools Workshop”, pp. 79–91, Springer, 2012.
The original publication is available at www.springerlink.com

andreas.knuepfer@tu-dresden.de
http://dx.doi.org/10.1007/978-3-642-31476-6_7


2 A.Knüpfer, C.Rössel, et.al.

• parallelization models (e.g. message passing, multi-threading, PGAS),
• performance data acquisition (e.g. instrumentation, sampling, assisted by hard-

ware components),
• performance data representation (events, statistics).

Usually, a particular tool covers multiple combinations from this list. Therefore,
one finds many redundancies in existing tools that serve the same purpose. Typical
examples are source code instrumentation, profiling or event recording for MPI,
and data formats. Often, one implementation could replace the other in terms of
functionality and only the development histories of different tools prevent them from
(re-)using the same components.

We argue that this fragmentation in the performance tools landscape brings some
disadvantages for both groups concerned, the developers and the users. And we are
convinced that the joint approach presented in this paper will be of mutual benefit.

Motivation for a Joint Measurement Infrastructure

The redundancies found in the tools landscape today bring a number of disadvan-
tages for the developers as well as the users of the tools. From the tool developers
perspective, redundancies are mostly found in the data acquisition parts, such as in-
strumentation, data acquisition from various sources, and in the collected data and
data formats. The actual data evaluation approaches are diverse enough to justify
separate tools. Thus, our goal is a joint measurement infrastructure that combines
the similar components and interfaces to diverse tools. This will save redundant ef-
fort for development, maintenance, porting, scalability enhancement, support, and
training in all participating groups. The freed resources will be available for enhanc-
ing analysis functionality in the individual tools.

From the user perspective, the redundancies in separated tools are a discom-
fort because it requires multiple learning curves for different measurement systems.
Incompatible configurations, different options for equivalent features, missing fea-
tures, etc. makes it harder to switch between tools or combine them in a reproducible
manner. Since parallel programming and performance analysis at large scales are
by no means trivial, the fragmentation in tools adds to the existing challenge for the
users. The same is true for incompatible data formats that in principle transport the
same data. At best, unnecessary data conversion is required, at the worst this causes
repeated measurements of the same situations with different tools. Both can become
very expensive for today’s highest-scale use cases. Last but not least, installation and
updates of the software packages require redundant effort on the user side. A joint
infrastructure will remove many of those obstacles and improve interoperability.

In the following section, the paper introduces the SILC and PRIMA projects as
the frame of all presented work. The main components of the joint infrastructure are
discussed in Sections 3 to 7, followed by early evaluations of the run-time measure-
ment component and the event trace data format in Section 8. The paper ends with
an outlook to future goals beyond the projects’ funding periods and the conclusions.



Score-P – A Joint Performance Measurement Infrastructure 3

2 The SILC and PRIMA Projects

The SILC project1 (“Skalierbare Infrastruktur zur Automatischen Leistungsanalyse
Paralleler Codes”, Engl. “Scalable Infrastructure for Automatic Performance Anal-
ysis of Parallel Codes”) and the PRIMA project2 (“Performance Refactoring of In-
strumentation, Measurement, and Analysis Technologies for Petascale Computing”)
bring together the following established performance tools groups:

• the Scalasca groups from Forschungszentrum Jülich, Germany and the German
Research School for Simulation Sciences, Aachen, Germany,

• the Vampir group at Technische Universität Dresden, Germany,
• the Persicope group at Technische Universität München, Germany, and
• the TAU group at University of Oregon, Eugene, USA,

and as further partners

• the Computing Center at RWTH Aachen, Germany, and
• the GNS mbH, Braunschweig, Germany, as industry partner.

All partners have a long history of mutual cooperation. The projects’ main goal
is to provide a joint infrastructure to address the disadvantages of separate tools as
discussed above. The new infrastructure created in SILC and PRIMA has to support
all central functionalities that were present in the partner’s tools beforehand:

Periscope is an on-line analysis tool based on profiling information. During run-
time it evaluates performance properties and tests hypotheses about typical perfor-
mance problems, which are reported to the user if detected.

Scalasca performs post-mortem analysis of event traces and automatically de-
tects performance critical situations. The results are categorized and hierarchically
arranged according to types of performance problems, source code locations, and
physical (computing hardware) or logical (computation domain) location.

TAU is a extensive profiling tool-set, which allows to collect various kinds of
profiles such as flat profiles, phase profiles, and call-path profiles. Furthermore, it
provides flexible visualization and correlation of performance data.

Vampir is an interactive event trace visualization software which allows to ana-
lyze parallel program runs with various graphical representations in a post-mortem
fashion.

A number of design goals were formulated to address the needs of the four tools
as well as new tools by other groups in the future. On the one hand, the primary
functional requirements are:

• Support profiling and event tracing,
• Initially use direct instrumentation, later also add sampling,
• Allow off-line access (post-mortem analysis) and on-line access (live analysis),
• Initially target parallelization via MPI 2.1 and OpenMP 3.0 as well as hybrid

combinations, later also include CUDA, OpenCL, and others.

1 The SILC project is funded by the BMBF Germany under grant number 01IH08006.
2 The PRIMA project is funded by the US DOE under grant number DE-SC0001621.



4 A.Knüpfer, C.Rössel, et.al.

Fig. 1 Architecture of the Score-P instrumentation and measurement system with connection
points to the currently supported analysis tools.

On the other hand, the following non-functional requirements were considered:

• Portability to all major HPC platforms and robustness,
• Scalability to petascale level,
• Low measurement overhead,
• Easy single-step installation (through the UNITE framework),
• Open source with New BSD license.

From those goals and the experience from the existing tools, the architecture
shown in Fig. 1 was derived. It contains the high-level components Score-P, OTF2,
CUBE4, and OPARI2 which are presented in detail in the following sections.

3 Score-P

The Score-P component consists of an instrumentation framework, several run-time
libraries, and some helper tools. The instrumentation allows users to insert mea-
surement probes into C/C++ and Fortran codes that collect performance-related
data when triggered during measurement runs. In order to collect relevant data, e.g.,
times, visits, communication metrics, or hardware counters, the applications need to
link against one of several provided run-time libraries for serial execution, OpenMP
or MPI parallelism or hybrid combinations. Extensions for POSIX threads, PGAS
and CUDA are planned. The collected performance data can be stored in the OTF2,
CUBE4, or TAU snapshot formats or queried via the on-line access interface.

Let’s look at the instrumentor command scorep in more detail. It is used as a
prefix to the usual compile and link commands, i.e., instead of mpicc -c foo.c
one uses the command scorep mpicc -c foo.c. The instrumentor detects



Score-P – A Joint Performance Measurement Infrastructure 5

the programming paradigm used, MPI in this case, and adds appropriate compiler
and linker flags before executing the actual build command. Currently, the following
means of instrumentation are supported:

• Compiler instrumentation,
• MPI library interposition,
• OpenMP source code instrumentation using OPARI2 (see Sect. 6),
• Source code instrumentation via the TAU instrumentor [8], and
• User instrumentation using convenient macros.

These instrumentation variants are configurable by options to the scorep com-
mand. It is also possible to use the Score-P headers and libraries directly. In this
case, the helper tool scorep-config provides all necessary information.

Once the application is instrumented, the user just needs to run it in order to col-
lect measurement data. In contrast to the predecessor measurement systems, a flex-
ible and efficient memory management system was implemented that stores data
in thread-local chunks of pre-allocated memory. This allows an efficient distribu-
tion of the available memory to an arbitrary number of threads and minimizes the
perturbation and overhead due to run-time memory allocations.

By default, Score-P runs in profiling mode and produces data in the CUBE4
format (see Sect. 5). This data provides first insight about the hot-spots in the ap-
plication and allows to customize options for subsequent measurement runs, for
example, to select MPI groups to record, to specify the total amount of memory the
measurement is allowed to consume, to adapt trace output options, to specify a set
of hardware counters to be recorded, and more. To keep the amount of measurement
data manageable, one can include or exclude regions by name and/or wild-cards (fil-
tering). In tracing mode, one might restrict the recording to specific executions of
a region (selective tracing). In the end, the recorded data (either profiling or tracing
data or both) is written to a uniquely named experiment directory. When switching
from profiling to tracing or on-line access for successive experiments, there is no
need to recompile or re-instrument the target application.

Furthermore, two important scalability limitations of former generations of tools
have been addressed. The first affected codes using many MPI communicators,
which were not handled adequately at very large scales. A new model according
to [6] solved this for Score-P. The second affected the unification of identifiers at
the very end of measurement. It generates globally unique identifiers from the local
identifiers used during data recording. In the past, an algorithm with linear com-
plexity with respect to the number of parallel processes was used. Obviously, this
cannot match today’s and future scalability demands. The new implementation uses
a tree-based reduction as presented in [7]. With these fundamental improvements,
Score-P is fit for the scalability levels of future supercomputer generations.



6 A.Knüpfer, C.Rössel, et.al.

4 The Open Trace Format Version 2

The Open Trace Format Version 2 (OTF2) is a newly designed software package
based on the experiences of the two predecessor formats OTF1 [10] and EPILOG
[19], the native formats of Vampir and Scalasca, respectively.

Its main characteristics are similar to other record-based parallel event trace for-
mats. It contains events and definitions and distributes data storage over multiple
files. It uses one anchor file, one global definition file, n local definition files, and n
local event files for n processes or threads. Inside each event file, the event records
are stored in temporal order. The essence of OTF2 is not only the format specifica-
tion but also a read/write API and a library with support for selective access. OTF2
is available as a separate software package, but also a central part of the Score-P
run-time system where it acts as the memory buffer for event trace collection. It
uses the same binary encoding for the memory buffers and the file representation.

As a special feature, OTF2 supports multiple I/O substrates – these are exchange-
able back-ends that allow different treatment of the I/O. The standard substrate
stores the OTF2 memory buffer representation in multiple files. As an alternative,
a compression substrate uses ZLib for data compression of the individual files. A
future extension plans to pass persistent memory pages from the trace processes or
threads to post-mortem analysis processes and thus avoid I/O altogether. Last but
not least, the SION library [4] substrate will address the challenge of massively par-
allel data and meta-data requests which overcharge parallel file systems. This is a
fundamental problem on highest-scale HPC machines today. For more details about
OTF2 in general see [3].

The SIONlib OTF2 Substrate

OTF2 distributes the records for each thread or process into separate files to avoid
additional synchronization during measurement. While this is not problematic for
lower scales (e.g., smaller than 1000 ranks), it becomes a severe problem for parallel
file systems at large scales. The main reason is insufficient scalability of meta-data
handling in parallel file systems. The write bandwidth is usually no limitation.

The problem with huge amounts of file handles is a widely known issue also
for other applications in high-performance computing. SIONlib is a parallel I/O li-
brary which was developed at Forschungszentrum Jülich to overcome this problem
by mapping virtual file handles onto a single physical file. This approach has been
shown to scale up to several thousands of processes [4] and is, therefore, suitable to
enhance the scalability of OTF2. In OTF2, the SION library is integrated as an addi-
tional I/O substrate which produces two separate multi-files, one for all definitions
and one for all events.



Score-P – A Joint Performance Measurement Infrastructure 7

5 The CUBE4 Format and GUI

CUBE is a profiling data model and file format. The data model describes the per-
formance behavior of an application along three dimensions. The first dimension is
a set of performance metrics. They characterize the kind of the performance issues
under consideration. The second dimension is the call tree, which shows the place
in the application execution where a certain issue appears. The third dimension is a
description of the system which executed the application. Each triple of coordinates
in this three-dimensional performance space is mapped onto a numeric value, which
represents the severity of a given performance metric while visiting a given call path
at a given system location.

To store measured profile data, Score-P uses the CUBE4 framework [7]. Like
its predecessor CUBE3, CUBE4 provides a set of libraries and tools to store and
analyze performance profiles. It consists of a writer library designed for scalability,
a general-purpose C++ reader and re-writer library, a set of tools for manipulating
measured profiles, and a graphical user interface for visual inspection of profiles.
In contrast to its predecessor, CUBE4 also provides a Java reader library. The data
format differs from CUBE3 in that the severity values, which constitute the bulk of
the data, are now stored in a binary format. XML is retained only for the metadata
part, since using XML for everything turned out to be too inefficient when large-
scale data had to be written. GUI response times are improved using techniques
such as dynamic loading, inclusive storage, and sparse representation of the data.

6 The OPARI2 Instrumentor for OpenMP

The source-to-source instrumentor OPARI is used to automatically wrap OpenMP
constructs like parallel regions with calls to the performance monitoring interface
POMP [14]. OPARI is used in many performance tools like Scalasca, Vampir and
ompP [5]. In order to support version 3.0 of the OpenMP specification [15], OPARI
was enhanced to support OpenMP tasking and to provide POMP implementers with
information for OpenMP nesting.

The new way to exploit parallelism in OpenMP programs using tasks posed two
critical challenges for event-based analysis tools. Firstly, with OpenMP tasking,
where tasks can be suspended and resumed, it is no longer guaranteed that the order
of region enter and exit events follows a strict LIFO semantics per thread (the call
stack). The solution to this problem is to distinguish individual task instances and to
track their suspension and resumption points [13].

Secondly, with OpenMP nesting the number of threads in a parallel region is a
priori unknown and the thread IDs are no longer unique, whereas performance tools
traditionally rely on pre-allocated buffers for a fixed set of threads indexed by the
thread IDs. Therefore, OPARI2 provides an upper bound for the number of threads
used in the next parallel region as assistance for the run-time system.



8 A.Knüpfer, C.Rössel, et.al.

In addition, OPARI2 comes with an enhanced linking procedure that allows to
keep all instrumentation information within the compilation units themselves. Addi-
tional index files are no longer needed, which improves the usability of OPARI2 for
multi-directory builds and pre-compiled libraries. With the presented improvements,
the new major version OPARI2 addresses all aspects of state-of-the-art paralleliza-
tion with OpenMP, either alone or in combination with MPI.

7 The On-line Access Interface

The On-line Access interface offers a remote access path to the rich profiling capa-
bilities of Score-P. It allows to configure measurement parameters, retrieve profile
data, and to interrupt and resume the application execution. This functionality en-
ables tools for iterative on-line performance analysis.

The On-line Access interface accepts socket connections from a remote analysis
tool and communicates via the extensible and easy to use text-based Monitoring
Request Interface (MRI) protocol which supports three classes of requests:

• Monitoring requests to select performance metrics to be recorded and to adjust
measurement parameters,

• Data retrieval requests to fetch selected performance data, and
• Application execution control requests to control the measurement window based

on predefined suspension points during application execution.

The main advantage of the Score-P On-line Access is that on-line analysis tools
can decouple measurement from analysis, which reduces perturbation of the results.
Furthermore, profile data don’t need to be stored to files but can be consumed by
analysis components directly. One example is the Periscope on-line analysis tool [2]
which queries profile data for pre-selected phases of an iterative parallel application.
Based on this, it derives hypotheses about performance problems and refines the
measurement for following phases to prove or disprove them.

8 Early Evaluation

Minimal overhead and resource consumption are essential requirements for the
Score-P infrastructure. Therefore, the run-time overhead of the Score-P measure-
ment system was compared to the existing VampirTrace infrastructure and the mem-
ory consumption of OTF2 was compared to both well-established predecessor trace
formats OTF and EPILOG and the internal representation in VampirTrace.



Score-P – A Joint Performance Measurement Infrastructure 9

Run-Time Measurement Overhead

As initial evaluation of the run-time overhead, the Score-P measurement system was
tested with the COSMO code using 16, 64, and 256 MPI processes on an SGI Altix
4700. COSMO is an atmospheric model code mainly developed by the DWD3 [17].

The baseline of this comparison are executions of the uninstrumented COSMO
code. In addition, the application was executed with VampirTrace event tracing and
with Score-P both in profiling and tracing mode. Figure 2 shows the resulting run-
times. All values are normalized to the uninstrumented case and contain only the
measurement phase excluding post-processing or output of measurement results to
the file system. In the typical tools workflow, this indicates how close the measure-
ment data reflects the original execution situation.

Fig. 2 Comparison of the run-times of the COSMO code in different modes: without instrumenta-
tion (base), with VampirTrace event tracing, with Score-P profiling, and with Score-P tracing. All
times are relative to the uninstrumented run.

In all cases, Score-P only slightly increases the run-time compared to the unistru-
mented case as expected; the overhead stays below 4%. Score-P profiling has the
largest observed overhead at 16 processes (3.8%) and the smallest one at 256 pro-
cesses (0.2%). Score-P tracing generates an overhead of 1% to 3.2%. In all cases
the overhead is below the overhead caused by VampirTrace (4.6− 7.3%). This in-
dicates that Score-P is competitive in terms of overhead to VampirTrace, which has
long proven its practical usefulness. All numbers show the average of at least three
experiments and there were no notable outliers.

3 Deutscher Wetterdienst (German Meteorological Service), see also http://www.cosmo-
model.org/content/model/general/default.htm



10 A.Knüpfer, C.Rössel, et.al.

Fig. 3 Comparison of the event trace data memory consumption of VampirTrace, OTF, EPILOG,
and OTF2 for a series of experiments with typical HPC benchmark codes.

Trace Format Memory Consumption

Secondly, the memory consumption for event trace data is evaluated. The OTF2
data representation, which is identical to the Score-P memory buffer representation,
is compared to the EPILOG format, the OTF (version 1) format, and VampirTrace’s
memory representation. This evaluation reveals how long the event recording can
be continued with a given buffer size before it has to be interrupted for writing out
data. As examples the following applications and benchmarks are used:

• The SPEC MPI20074 benchmarks with the test cases 104.milc . . . 137.lu
• The previously mentioned COSMO code5 from DWD
• The NAS Parallel Benchmarks6 with nas pb bt (block tridiagonal solver)
• The SMG2000 Benchmark7 (semicoarsening multigrid solver)
• The ASCI SWEEP3D benchmark8(3D discrete neutron transport)

Figure 3 shows a comparison of the memory consumption of VampirTrace as the
baseline, OTF, EPILOG, and OTF2. The results show that OTF2 and Score-P per-
form better than both predecessor tool sets and the situation behaves very similar
for all test cases. OTF2 reduces the memory consumption by about 70% compared
to VampirTrace, 20% to 35% compared to OTF, and 14% to 17% compared to EPI-
LOG.

4 http://www.spec.org/mpi/
5 http://www.cosmo-model.org/content/model/general/default.htm
6 http://www.nas.nasa.gov/Resources/Software/npb.html
7 https://asc.llnl.gov/computing resources/purple/archive/benchmarks/smg/
8 http://www.ccs3.lanl.gov/pal/software/sweep3d/



Score-P – A Joint Performance Measurement Infrastructure 11

9 Conclusion and Outlook

With Score-P, the user community will have a single platform for large-scale per-
formance measurements that can be interpreted with a rich collection of analysis
tools. This is a first big step towards integrating the so far fragmented performance
tools landscape. The primary benefits for the user are simplified installation of our
tool suite, as only one measurement system has to be installed, and reduced learning
effort, as the user has to read only one set of measurement instructions. Less obvi-
ous but equally important, eliminating redundancy among individual tools will free
substantial tool development resources that can from now on be redirected to more
powerful analysis features. At the time of writing, version 1.0 of the Score-P tool
set is going to be released.

While the objective of the projects SILC and PRIMA has been the creation of
an initial version, the software is already subject of a number of ongoing follow-up
projects. The European project H4H (2010–2013) in the ITEA-2 framework will add
extensions needed for heterogeneous architectures to Score-P with funding from the
German Ministry of Education and Research (BMBF). Capabilities for compression
of time-series call-path profiles [18], a feature to study the dynamic performance
behavior of long-running codes, will be integrated in the EU/FP7 project HOPSA.
Finally, the BMBF project LMAC will not only further refine this method but also
provide functionality for the semantic compression of event traces, a prerequisite
for analyzing traces of long-running applications more effectively. In addition to
adding new technical features, it will also establish rules that govern Score-P’s fur-
ther evolution, striking a balance between robustness and stability on the one hand
and innovation on the other.

References

1. Adhianto, L., Banerjee, S., Fagan, M., Krentel, M., Marin, G., Mellor-Crummey, J., Tal-
lent, N.R.: HPCTOOLKIT: tools for performance analysis of optimized parallel programs.
Concurrency and Computation: Practice and Experience 22(6), 685–701 (2010). DOI
10.1002/cpe.1553. URL http://dx.doi.org/10.1002/cpe.1553

2. Benedict, S., Petkov, V., Gerndt, M.: PERISCOPE: An online-based distributed performance
analysis tool. In: M.S. Müller, M.M. Resch, A. Schulz, W.E. Nagel (eds.) Tools for High
Performance Computing 2009, pp. 1–16. Springer, Berlin/Heidelberg (2010). URL http:
//dx.doi.org/10.1007/978-3-642-11261-4_1

3. Eschweiler, D., Wagner, M., Geimer, M., Knüpfer, A., Nagel, W.E., Wolf, F.: Open Trace
Format 2 - the next generation of scalable trace formats and support libraries. In: Proc. of the
International Conference on Parallel Computing (ParCo), Ghent, Belgium (2011). (to appear)

4. Frings, W., Wolf, F., Petkov, V.: Scalable massively parallel i/o to task-local files. In: Proceed-
ings of the Conference on High Performance Computing Networking, Storage and Analysis,
SC ’09, pp. 17:1–17:11. ACM, New York, NY, USA (2009). DOI http://doi.acm.org/10.1145/
1654059.1654077. URL http://doi.acm.org/10.1145/1654059.1654077

5. Fürlinger, K., Gerndt, M.: ompP — A Profiling Tool for OpenMP. In: Proc. of 1st Int. Work-
shop on OpenMP (IWOMP), LNCS, vol. 4315, pp. 15–23. Springer, Berlin (2008)

http://dx.doi.org/10.1002/cpe.1553
http://dx.doi.org/10.1007/978-3-642-11261-4_1
http://dx.doi.org/10.1007/978-3-642-11261-4_1
http://doi.acm.org/10.1145/1654059.1654077


12 A.Knüpfer, C.Rössel, et.al.

6. Geimer, M., Hermanns, M.A., Siebert, C., Wolf, F., Wylie, B.J.N.: Scaling performance tool
MPI communicator management. In: Proc. of the 18th European MPI Users’ Group Meeting
(EuroMPI), Santorini, Greece, Lecture Notes in Computer Science, vol. 6960, pp. 178–187.
Springer (2011). DOI 10.1007/978-3-642-24449-0 21

7. Geimer, M., Saviankou, P., Strube, A., Szebenyi, Z., Wolf, F., Wylie, B.J.N.: Further improving
the scalability of the Scalasca toolset. In: Proc. of PARA 2010: State of the Art in Scientific
and Parallel Computing, Minisymposium Scalable tools for High Performance Computing,
Reykjavik, Iceland. Springer (2010). (to appear)

8. Geimer, M., Shende, S.S., Malony, A.D., Wolf, F.: A Generic and Configurable Source-Code
Instrumentation Component. In: ICCS 2009: Proc. of the 9th Int. Conf. on Computational
Science, pp. 696–705. Springer, Berlin (2009)

9. Geimer, M., Wolf, F., Wylie, B.J., Ábrahám, E., Becker, D., Mohr, B.: The Scalasca Perfor-
mance Toolset Architecture. Concurrency and Computation: Practice and Experience 22(6),
702–719 (2010). DOI 10.1002/cpe.1556

10. Knüpfer, A., Brendel, R., Brunst, H., Mix, H., Nagel, W.E.: Introducing the Open Trace For-
mat (OTF). In: Computational Science ICCS 2006: 6th International Conference, LNCS 3992.
Springer, Reading, UK (2006)

11. Knüpfer, A., Brunst, H., Doleschal, J., Jurenz, M., Lieber, M., Mickler, H., Müller, M.S.,
Nagel, W.E.: The Vampir Performance Analysis Tool Set. In: Tools for High Performance
Computing, pp. 139–155. Springer (2008)

12. Labarta, J., Gimenez, J., Martı́nez, E., González, P., Harald, S., Llort, G., Aguilar, X.: Scal-
ability of Tracing and Visualization Tools. In: G.R. Joubert, W.E. Nagel, F.J. Peters, O.G.
Plata, P. Tirado, E.L. Zapata (eds.) Parallel Computing: Current & Future Issues of High-End
Computing, Proceedings of the International Conference ParCo 2005, 13-16 September 2005,
Department of Computer Architecture, University of Malaga, Spain, John von Neumann In-
stitute for Computing Series, vol. 33, pp. 869–876. Central Institute for Applied Mathematics,
Jülich, Germany (2005)

13. Lorenz, D., Mohr, B., Rössel, C., Schmidl, D., Wolf, F.: How to Reconcile Event-Based Per-
formance Analysis with Tasking in OpenMP. In: Proc. of 6th Int. Workshop on OpenMP
(IWOMP), LNCS, vol. 6132, pp. 109–121. Springer, Berlin (2010)

14. Mohr, B., Malony, A.D., Shende, S., Wolf, F.: Design and Prototype of a Performance Tool
Interface for OpenMP. J. Supercomput. 23(1), 105–128 (2002)

15. OpenMP Architecture Review Board: OpenMP Application Program Interface, Version 3.0.
http://www.openmp.org/mp-documents/spec30.pdf

16. Shende, S., Malony, A.D.: The TAU Parallel Performance System, SAGE Publications. Inter-
national Journal of High Performance Computing Applications 20(2), 287–331 (2006)

17. Steppeler, J., Doms, G., Schättler, U., Bitzer, H.W., Gassmann, A., Damrath, U., Gre-
goric, G.: Meso-gamma scale forecasts using the nonhydrostatic model lm. Meteorology
and Atmospheric Physics 82, 75–96 (2003). URL http://dx.doi.org/10.1007/
s00703-001-0592-9. 10.1007/s00703-001-0592-9

18. Szebenyi, Z., Wolf, F., Wylie, B.J.N.: Space-efficient time-series call-path profiling of parallel
applications. In: Proc. of the ACM/IEEE Conference on Supercomputing (SC09), Portland,
OR, USA. ACM (2009)

19. Wolf, F., Mohr, B.: EPILOG Binary Trace-Data Format. Tech. Rep. FZJ-ZAM-IB-2004-06,
Forschungszentrum Jülich (2004)

20. Wu, C.E., Bolmarcich, A., Snir, M., Wootton, D., Parpia, F., Chan, A., Lusk, E., Gropp, W.:
From Trace Generation to Visualization: A Performance Framework for Distributed Parallel
Systems. In: Proc. of SC2000: High Performance Networking and Computing. Dallas, TX,
USA (2000)

http://www.openmp.org/mp-documents/spec30.pdf
http://dx.doi.org/10.1007/s00703-001-0592-9
http://dx.doi.org/10.1007/s00703-001-0592-9

