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52425 Jülich, Germany
Email: m.geimer@fz-juelich.de

Abstract—The critical path, which describes the longest execu-
tion sequence without wait states in a parallel program, identifies
the activities that determine the overall program runtime. Com-
bining knowledge of the critical path with traditional parallel
profiles, we have defined a set of compact performance indicators
that help answer a variety of important performance-analysis
questions, such as identifying load imbalance, quantifying the
impact of imbalance on runtime, and characterizing resource
consumption. By replaying event traces in parallel, we can
calculate these performance indicators in a highly scalable
way, making them a suitable analysis instrument for massively
parallel programs with thousands of processes. Case studies with
real-world parallel applications confirm that—in comparison
to traditional profiles—our indicators provide enhanced insight
into program behavior, especially when evaluating partitioning
schemes of MPMD programs.

I. INTRODUCTION

Rising numbers of cores per socket in combination with an
architecture ecosystem characterized by increasing diversifica-
tion and heterogeneity continue to complicate the development
of efficient parallel programs. Particularly load imbalance,
which frequently appears during simulations of irregular and
dynamic domains—a typical scenario in many engineering
codes—presents a key challenge to achieving satisfactory
parallel efficiency. This challenge creates a strong need for
effective performance-analysis methods that highlight load
balancing issues occurring at larger scales. To be useful to
an application developer, these methods must not only be
scalable themselves but also require as little effort as possible
to interpret the results.

Originally developed as a tool for planning, scheduling, and
coordinating complex engineering projects [1], which usually
involve concurrent activities, the notion of the critical path
is also helpful in understanding the performance of parallel
programs. Critical-path analysis models the execution of a
parallel program as a program activity graph (PAG), which
represents the duration and precedence order of individual
program activities. The critical path, which is the longest path
through the graph, determines the length of program execution.
The critical path itself does not have any wait states but may
induce them in other execution paths. Increases in the time
for critical activities, which are those on the critical path, pro-
long the overall execution, while shortening critical activities
reduces it. However, the overall reduction may be less than

that of the activity as the change may shift the critical path to
include other activities. Thus, while knowledge of the critical
path can identify activities for which optimizations will prove
worthwhile, knowledge of the impact of those optimizations on
the critical path can guide optimization efforts more precisely.

However, in spite of its apparent utility, as of today critical-
path analysis plays only a minor role in the optimization
of supercomputing applications. The single program multiple
data (SPMD) paradigm that is used in many, if not most,
current parallel codes contributes to the failure to embrace such
analysis. Since every process has a nearly identical sequence
of activities, critical-path analysis often fails to reduce the
activities under consideration significantly for optimization.
The iterative nature of numerical applications, which causes
many activities to appear on the path multiple times, further
reduces the value of critical-path analysis. These two char-
acteristics also set supercomputing applications apart from
typical engineering projects, for which the methodology was
originally invented. Also, the sheer length of the critical path
in realistic programs makes it an unwieldy data structure to
analyze manually with reasonable effort.

Despite these shortcomings, the fundamental properties of
the critical path remain. A critical path measurement contains
essential information for the optimization and load balance of
parallel codes. However, we need new ways to interpret and
to analyze it without sacrificing scalability.

In this paper, we present a novel and scalable performance-
analysis methodology based on knowledge of the critical
path. We propose several compact performance indicators that
illuminate the relationship between critical and non-critical
activities to guide the analysis of complex load-imbalance
phenomena intuitively. Similar to economic indicators such as
consumer price index or gross domestic product, which char-
acterize things as complex as a nation’s economic well-being
in terms of a few numbers, performance indicators improve
the understanding of labyrinthine program behavior without
letting the user drown in a flood of performance details.
The main difference to classic performance metrics such as
number of messages is the higher level of abstraction that these
indicators provide. While also offering insight into classic
SPMD programs, our indicators especially suit programs with
a multiple program multiple data (MPMD) structure, which is
popular among the increasing number of multi-physics codes.



Specifically, we make the following contributions:
• Three novel performance indicators: We base our three

performance indicators on critical-path profiles, a com-
pact representation of critical activities and their dis-
tribution across the process space. The first one, for
SPMD programs, targets general parallel efficiency, while
the other two, for MPMD programs, characterize load
imbalance within and across different partitions .

• A scalable method for calculating these performance
indicators: We design and implement a method to extract
the critical path and to calculate our indicators based on
a parallel replay of event traces that scales naturally with
the target application.

• Evaluation of our indicators on a broad range of real-
world applications: We first show the general applica-
bility and utility of our method across a broad range
of applications, before we present in-detail analyses of
both an SPMD and an MPMD code to demonstrate how
our performance indicators provide critical insights into
complex cases of load imbalance that traditional metrics
cannot provide. These results also prove the scalability of
our methodology for up to several thousand processes.

• Integration with a production-level tool: We integrate
our methodology into the Scalasca performance analysis
tool [2], which will make it available to application
developers worldwide.

Our paper is organized as follows. After reviewing the the-
ory of critical-path analysis, we describe our general methodol-
ogy along with the definitions of our performance indicators in
Section II. Section III is devoted to their scalable calculation.
In Section IV, we evaluate our indicators experimentally.
Finally, we discuss related work in Section V, before we
conclude the paper and outline future work in Section VI.

II. CRITICAL-PATH ANALYSIS

This section defines our base terminology and describes the
basic concept of the critical path. Building upon this founda-
tion, we then introduce our three novel performance indicators
and outline how they assist in pinpointing optimizations.

Our analysis combines critical-path data with per-process
performance data. The critical path provides an overview of the
most time-consuming activities, but does not capture important
parallel performance characteristics such as load balance.
Alternatively, per-process profiles do not capture dynamic
effects that characterize a program’s execution. Our work
combines critical-path and per-process profiles to characterize
load balance and to highlight typical parallelization issues
more reliably than per-process profiles alone.

We follow Scalasca’s concept of automatically extracting
patterns of inefficiency from detailed event traces that are
too unwieldy to explore manually in their entirety. Thus,
we combine critical-path and per-process profiles to derive
a set of compact performance indicators. These indicators
provide intuitive guidance about load-balance characteristics
that quickly draw attention to potentially inefficient code
regions.

Our critical-path analysis produces two groups of perfor-
mance data structures. The first group, the critical-path profile
and the critical-path imbalance indicator, describes the impact
of program activities on execution time. The critical-path
profile represents the time that an activity spends on the critical
path. The imbalance indicator captures how much time in a call
path is lost due to load imbalance. These two metrics provide
an easily accessible overview of promising optimization targets
and parallel inefficiencies in SPMD programs.

The second group, which we call performance impact
indicators and which consists of the intra- and inter-partition
imbalance indicators, describes how program activities influ-
ence resource consumption. These indicators are especially
useful for the analysis of MPMD programs. In particular, they
classify load imbalance in MPMD programs by origin, and can
distinguish if resource waste is a result of an uneven distri-
bution of process partitions, or of imbalance among processes
performing the same activity within a single partition. In the
following, we explain the concept of the critical path and our
performance indicators in more detail.

A. The critical path

Figure 1(a) shows the execution of a parallel program as a
time-line diagram with a separate time line for each process.
We assume that the entire parallel resource is allocated from
program start t0 until program end tw. Conceptually, processes
that finish earlier than tw idle in a wait state until the
last process finishes (pseudo-synchronization). Thus, the total
resource consumption corresponds to the number of processes
P multiplied by tw − t0. Additional wait states may occur
at synchronization points during execution due to load or
communication imbalance. In the following, we use the term
wall-clock time when we refer to fractions of the length of
execution and the term allocation time when we refer to
fractions of resource consumption. While the wall-clock time
is always a value between zero and tw, the allocation time can
be as large as P ∗ (tw − t0).

An execution path through the process-time space is a
sequence of activities that are connected by time-line sections
or communication edges. An activity corresponds to a single
execution of a particular call path by a specific process
excluding inherent wait states. The call path identifies not
only the code location of an activity, but also includes the
sequence of regions/functions entered on the way to that
specific point in the execution (e.g., main() → foo() →
bar()). Using the call path instead of a function name alone
allows invocations of the same function to be distinguished
by the parent function in which they occur. The critical path
is the longest execution path in the program that does not
include wait states. Therefore, it determines the runtime of the
program: any increase in the computation time of its activities
or its communication times will increase application runtime.
An optimization on the critical path may decrease runtime;
but the improvement is not guaranteed since an execution
may have multiple critical or near-critical paths. In contrast,
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(a) SPMD program time-line diagram. Each rectangle represents an activity. Arrows between processes de-
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Fig. 1. The critical path and the associated critical-path profile of an SPMD program.

optimizing an activity not on the critical path only increases
waiting time, but does not affect the overall runtime.

B. Critical-path profile

The critical-path profile represents the total amount of
(wall-clock) time each activity spends on the critical path.
Figure 1(b) illustrates the critical-path profile for the example
program run that Figure 1(a) shows. Mathematically, the
critical path profile is defined as a mapping that assigns to
each combination of activity (i.e., call path) and process the
time attributable to the critical path. The critical-path profile
can provide a simple overview of the most time-consuming
subroutines, as shown in the middle bar, but also allows
detailed insight into each process’s time share on the critical
path, as illustrated by the bars on the right of Figure 1(b).

C. Critical-path imbalance indicator

The critical-path imbalance indicator ι is the difference
between a call path’s contribution to the critical path and
the average time spent in the call path across all processes.
Precisely, we define it for a critical-path activity i as:

ι(i) = max (dcp(i)− avg(i), 0)

avg(i) =
1

P

P∑
p=1

dp(i)

where dcp(i) denotes the duration of activity i on the critical
path, dp(i) represents the duration of the activity on process p
without wait states, and P is the number of processes. Since
an imbalance only affects overall execution time if the time
on the critical path is larger than the average, we only include
positive values. Figure 1(b) illustrates the concept graphically.
The critical-path imbalance is the hatched area of the critical-
path profile bars. Activity B exhibits no critical-path imbalance

since it is perfectly balanced. Activities A and C as well as
the communication activities exhibit critical-path imbalance,
indicating some inefficient parallelism in these activities.

Essentially, the amount of critical-path imbalance in a
program corresponds to the wall-clock time that is lost due
to inefficient parallelization, compared to a perfectly balanced
program. Thus, the critical-path imbalance indicator provides
clear guidance in discovering parallelization bottlenecks. Also,
the ratio of critical-path imbalance and the total time of an
activity on the critical path provides a useful load imbalance
metric. Thus, it provides similar guidance as prior profile-
based load imbalance metrics (e.g., the load-imbalance per-
centage metrics defined in CrayPat [3]), but the critical-path
imbalance indicator can often draw a more accurate picture.
The critical path retains dynamic effects in program execution,
such as shifting of imbalance between processes over time,
which per-process profiles simply cannot capture. Thus, purely
profile-based imbalance metrics regularly underestimate the
actual performance impact of a given load imbalance. As an
extreme example, consider a program in which a function is
serialized across all processes but runs for the same amount of
time on each. Purely per-process profile based metrics would
not show any load imbalance. Our critical-path imbalance indi-
cator correctly characterizes the function’s serialized execution
as a performance bottleneck. In Section IV-A, we demonstrate
this effect using a synthetic benchmark.

D. Performance-impact indicators

Existing approaches to the characterization of load imbal-
ance in parallel programs mostly target SPMD codes. These
approaches often do not work with MPMD programs, in which
different groups of processes (process partitions) execute
entirely different activities. Often, multi-physics MPMD pro-
grams combine multiple SPMD codes which run in separate
process partitions. The partitioning complicates determining
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(a) Time-line diagram of an MPMD program run, showing two partitions that execute different
activities; highlighted activities mark the critical path, hatched areas represent wait states.
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Fig. 2. Parallel profile and performance impact indicators for an MPMD program.

the performance impact of load imbalance in a single code
region on the overall runtime. Achieving optimal load balance
in MPMD codes typically also involves runtime configuration
adjustments, such as finding optimal process partition sizes.
Developers currently must use trial-and-error methods to find
suitable configurations due to the lack of proper tool support.
Our performance impact indicators provide improved insight
into load balance issues in MPMD programs, which will
simplify the search for optimal configurations.

1) Intra- and inter-partition imbalance: To characterize
complex load-balance issues that arise in MPMD programs,
we define an extended load imbalance classification scheme.
We distinguish between intra- and inter-partition imbalance.
Intra-partition imbalance describes load imbalance within an
(SPMD) process partition, while inter-partition imbalance de-
scribes load imbalance across process partitions.

2) Performance impact: To obtain an accurate picture of
parallel efficiency in MPMD programs in which different code
paths execute in parallel, we cannot simply consider activities
independently. Instead, we must identify those activities that
determine the program runtime (i.e., those on the critical path)
and compare their resource consumption with the resource
consumption of remaining activities. A difference in resource
consumption of critical and non-critical activities indicates
load imbalance in the program.

Our performance-impact indicators determine the contribu-
tion of specific activities to the overall resource consumption
of MPMD programs (in particular) and identify where intra-
or inter-partition imbalance wastes resources. We base the
concept on the notion that the activities on the critical path
determine the runtime of the program and, therefore, its overall
resource consumption. Further, we distinguish between the
amount of resources that activities consume directly and the
amount that wait states occupy. Then, we map the resources

that wait states occupy as imbalance costs onto the activities on
the critical path. The sum of the time consumed by the activity
itself across all processes and its imbalance costs describe the
total performance impact of the activity. We distinguish imbal-
ance costs based on their impact on intra- and inter-partition
imbalance to provide additional insights for MPMD programs.
High imbalance costs suggest a performance bottleneck, and
the ratio of imbalance costs and overall performance impact
of an activity provides a metric for load balance. In a well-
balanced program, the aggregated imbalance costs are low.

The time-line diagram in Figure 2(a) shows an MPMD
program run in which one partition of the processes executes
activity A, and another partition executes activity B, with the
critical path running entirely on process 3. In this example,
we classify the underload in activity B on process 4 as
intra-partition imbalance costs; and we classify the resource
consumption due to the wait states on processes 1 and 2 as
inter-partition imbalance costs. Figure 2(b) shows the parallel
allocation time profile of the program on the left and the
performance impact on the right. Since activity B is the
only activity on the critical path, it accumulates the entire
critical-path imbalance costs; hence, these costs are added
as imbalance costs onto the performance impact of activity
B. In this example, inter-partition imbalance costs (hatched
area) are roughly three times as large as the intra-partition
imbalance costs (dotted area). As a result, serial optimizations
to activity B or rebalancing the partitions to assign more
processes to activity B (or fewer processes to activity A)
promise greater benefits with respect to resource consumption
than load-balancing activity B within its partition.

The mapping of imbalance costs onto critical activities does
not necessarily reflect the direct causes of wait states. Instead,
the imbalance cost indicators are a heuristic to highlight
optimization possibilities that are most likely to improve
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performance. The imbalance costs represent an upper bound
of the achievable performance improvement.

3) Calculating the imbalance costs: We can easily compute
the imbalance costs in parallel based on knowledge of the
critical-path profile. We calculate the local imbalance costs on
each process and then aggregate them using a global reduction
operation. Basically, on each process, we identify activities
that take more time on the critical path than on the process
and assign imbalance costs to these activities.

In detail, we first compute the critical-path headroom hp
for each process p. This auxiliary construct is the difference
between the duration of the critical path and the duration of
the activities on p, which equals the overall waiting time on
the process. We then proportionally assign this headroom to
the call paths of those activities that spend less time on the
process than on the critical path. Thus, for each critical-path
activity i we calculate its critical-path excess time δ(i):

δ(i) = max (dcp(i)− dp(i), 0)

We then apply a scaling factor α:

α =
hp∑
j δ(j)

,

that matches the sum of the excess times to the headroom,
to obtain the local imbalance costs αδ(i) for activity i. If
the critical-path activity i does not occur on the local process
at all, its imbalance costs are inter-partition imbalance costs;
otherwise they are intra-partition imbalance costs.

III. IMPLEMENTATION

We implement our critical-path analysis as an exten-
sion to the automatic wait-state detection of the Scalasca
performance-analysis tool, leveraging its scalable trace-
analysis approach. In the following, we describe how we
extract the critical path from event traces in a scalable way,
and how we use it to calculate the performance indicators that
we introduced in Section II. We start with a brief review of
Scalasca’s event-tracing methodology [2].

A. Scalable trace analysis in Scalasca

Scalasca is a performance-analysis toolset specifically de-
signed for large-scale systems, such as IBM Blue Gene and
Cray XT/XE. It provides an integrated performance-analysis
approach and includes support for call-path profiling. It fea-
tures a scalable, automated, post-mortem event trace analysis

that can identify wait states that occur in program execution,
for example, as the result of unevenly distributed workloads.

Figure 3 illustrates Scalasca’s trace-analysis workflow. To
collect event traces, we first instrument the target application,
that is, we insert extra code that intercepts relevant events
at runtime at specific program points. Such events include
entering and leaving of source-code regions and sending and
receiving of messages. These instrumentation hooks generate
corresponding event records, which are subsequently stored in
a memory buffer before they are flushed to disk, typically at
the end of measurement. Limiting tracing to selected intervals
supports focused analyses of long-running codes.

After the target application finishes execution and writes
its trace data, we launch the trace analyzer with one analysis
process per (target) process. This approach exploits the dis-
tributed memory and processing capabilities of the underlying
parallel system, which is the key to achieving good scalability.
During forward replay, the analyzer traverses the traces in
parallel, iterating over each process-local trace from beginning
to end. The analyzer re-enacts the original communication,
exchanging the data required for the wait-state search at
each recorded synchronization point using communication
similar to that originally used by the program. The analysis
identifies wait states in synchronization and communication
operations by measuring temporal differences between local
and remote events. We categorize every wait-state instance
detected by type, and accumulate the associated waiting time
in a process-local [type, call path] matrix. At the end of the
trace traversal, Scalasca gathers the distributed analysis results
into a three-dimensional [metric, call path, process] structure
that characterizes the entire experiment. Scalasca then stores
this global analysis result on disk for subsequent interactive
examination with a graphical report explorer.

B. Critical-path detection

We now present our technique to obtain a critical-path
profile to calculate our performance indicators. We build
directly on Scalasca’s parallel trace replay to extract the critical
path from an event trace in a scalable way. The critical-
path extraction algorithm needs information on which MPI
operation instances incur wait states. Thus, we need the results
of the wait-state analysis outlined in Section III-A to start the
critical-path search. We extend the wait-state search algorithm
to annotate communication/synchronization events at which
wait states occur. The critical-path search then again replays
the trace. Since we must know the end of the execution to
determine the critical path, we perform this pass in backward
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direction, replaying the trace in reverse order. During the
backward replay, we follow the critical path from the end to
the beginning. In the unlikely case of more than one critical
path, our algorithm arbitrarily selects one of them.

For MPI programs, the critical path runs between MPI Init
and MPI Finalize. As the backward replay starts at the end
of the trace, we first determine the MPI rank that entered
MPI Finalize last. This point marks the endpoint of the critical
path. Since the critical path only runs on a single process at
any given time, we set a flag on the corresponding analysis
process to signal its “ownership” of the critical path.

The rest of the critical-path search exploits the lack of wait
states on the critical path. As the backward replay progresses,
the critical path remains on the flagged process until it reaches
a communication event in the trace that the wait-state analysis
pass marked as incurring waiting time. In this case, the critical
path continues at the corresponding communication event on
the process that is responsible for the wait state (i.e., the
communication peer). We transfer critical-path ownership to
this process via backward communication replay. In the case of
a point-to-point communication event, the replay uses a point-
to-point message for the ownership transfer; in the case of a
collective communication event, it uses a reduction operation.

Figure 4 illustrates the backward replay, which starts from
the end of the trace shown on the right. Since process 2
finished execution last, it owns the final critical path segment.
Moving backwards through the trace, we find a wait state at
communication event R1. Now, the critical-path flag moves
to the wait state’s origin on process 1 using a point-to-point
message transfer from the original receiver to the original
sender. During the course of the replay, the processes that own
the critical-path flag accumulate their individual contributions
to the critical-path profile locally. While in principle our
approach can capture the entire dynamic structure of the
critical path, Scalasca currently collects and reports only the
critical-path profile. However, future extensions that make use
of the dynamic structure are conceivable, such as a trace time-
line display with critical-path highlighting.

After Scalasca completes the critical-path extraction, we
derive our performance indicators. The nature of this task lends
itself to parallel computation. We therefore accumulate the
global critical-path profile using a global reduction operation

(a) Balanced execution (b) Static imbalance

(c) Dynamic imbalance (d) Mixed imbalance

Fig. 5. Time-line diagrams illustrating the time distribution of the work()
function in the synthetic load balance scenarios.

and distribute it to all processes, which then calculate their
individual contributions to each indicator.

IV. EVALUATION

To evaluate the critical-path search and our critical-path
based performance indicators, we apply our analyses to mea-
surements of several real-world simulation codes. However,
we first demonstrate the benefit of critical-path based load
imbalance analysis using a small synthetic benchmark. We
then present our experiences from analyzing the SPECMPI
2007 benchmark suite to demonstrate the applicability of
our methods to a broad set of HPC codes; afterwards we
discuss the application of our performance indicators using
an SPMD example (PEPC) and an MPMD example (ddcMD).
We perform the SPECMPI experiments on the Intel/Infiniband
cluster system Juropa and the PEPC and ddcMD experiments
on the 72-rack IBM Blue Gene/P supercomputer Jugene at the
Jülich Supercomputing Centre.

A. Synthetic load imbalance benchmark

To validate the benefit of our critical-path based load
imbalance characterization in comparison to traditional profile-
based solutions, we apply it to a small benchmark application
that can simulate different load-imbalance scenarios. The ap-
plication executes a loop in which it runs a work() function for
a configurable amount of time and synchronizes all processes
with a barrier at the end of each loop iteration.

We run four different scenarios using 32 processes on
the Juropa cluster. The overall workload (i.e., the total CPU
allocation time spent in the work function) is constant in the
scenarios, but the workload distribution across the processes
varies. In the first scenario, the simulated workload is perfectly
balanced across all processes. We run three imbalanced sce-
narios (static, dynamic, and mixed) in which we increase the
program runtime by 25% compared to the balanced scenario
with three different ways of adding artificial imbalance to the
work function. In the static imbalance scenario, each process
retains a constant (positive or negative) deviation from the
average workload in every iteration. In the dynamic imbalance
scenario, a different process in every iteration spends more
time in work() than the others; however, the overall aggregate
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workload is equal on every process (i.e., the workload is
statically balanced). Finally, in the mixed imbalance scenario,
one process is overloaded for the first half of the iterations,
and a different one for the remaining iterations. Figure 5 shows
time-line diagrams that illustrate the scenarios.

We let each scenario run 320 loop iterations. In total, the
balanced scenario takes 16.15 seconds (wall-clock time), and
the scenarios with artificial imbalance take between 19.98 and
20.04 seconds. The critical-path analysis uncovers between
3.87 and 3.99 seconds of critical-path imbalance in the work
function for each of the imbalanced scenarios, closely match-
ing the preconfigured 25% runtime increase (which amounts to
4 seconds) inflicted by the artificial imbalance. The critical-
path imbalance indicates to a user that improving the load
balance of the work function can save up to 3.99 seconds of
runtime in each of the imbalanced scenarios. We can draw
the same conclusion based on per-process metrics, such as
the maximum and average time spent in work(), for the static
imbalance scenario. However, those metrics are insufficient
for the dynamic imbalance scenario, in which the aggregate
time spent in the work function is the same on each process.
Here, the profile-based metrics show that the program spends
a significant amount of time in barrier synchronization, but we
cannot relate this time to a specific load imbalance.

Figure 6 compares the amount of load imbalance that the
critical-path imbalance indicator and per-process profile met-
rics (using the difference of maximum and average workload)
find. The figure shows the imbalance percentage, that is, the
ratio of the detected imbalance and the average workload.
Unsurprisingly, none of the methods finds any imbalance
in the balanced scenario. For the static imbalance scenario,
both methods correctly determine approximately 25% load
imbalance in the work function, which corresponds to the
preconfigured amount. However, the profile-based method fails
to detect any load imbalance in the dynamic scenario and
detects only half of the actual imbalance in the mixed scenario.
Hence, relying on per-process profiles alone can severely
underestimate dynamically changing load imbalances while
our critical-path imbalance indicator accurately determines the
impact of load imbalance under all circumstances.
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B. SPECMPI 2007

The SPECMPI benchmark suite [4] consists of various real-
world MPI codes that represent a broad range of application
domains and parallelization schemes. We use 256 MPI process
runs of each of the eleven SPECMPI applications for which
a large reference input data set (“lref”) is available. We also
include the 104.milc benchmark, for which only a medium-
size (“mref”) configuration is provided. The “lref” benchmarks
take between 5 and 15 minutes each on our cluster. For
our event tracing experiments, we create custom filters for
each application to omit frequently executed but otherwise
unimportant user functions from the trace. With the exception
of 128.GAPgeofem, for which we had to decrease the number
of iterations from 10,000 to 1,500 due to a massive amount of
MPI point-to-point events, we can perform trace measurements
for all of the original reference benchmark configurations,
producing between 170MB and 9GB of compressed trace
data per application. Figure 7 compares the runtime of the
uninstrumented benchmark executables1 with their runtimes
while recording the trace (excluding the additional overhead
of writing trace data to disk at the end of the execution,
which does not perturb measurement itself). The comparison
shows that the measurement perturbation is acceptably low in
most cases, only 122.tachyon, 129.tera tf and 147.l2wrf2 show
more than 10% dilation. With more advanced methods such
as direct binary instrumentation combined with prior static
analysis [5], we expect to reduce instrumentation overhead
further to less than 10% in all cases.

Figure 7 also shows the time for parallel trace replay,
including wait-state search and critical-path analysis. In all
cases other than the communication-intensive 128.GAPge-
ofem, analysis time is negligible compared to the runtime.

Since our study does not intend to survey the performance
characteristics of all SPECMPI benchmarks, we do not discuss
each benchmark in detail. Instead, we consider only selected
cases for which the critical-path based metrics provide insight.
Figure 8 shows the imbalance percentage, a measure of the

1The uninstrumented 143.dleslie executable segfaulted on our system.



overall load imbalance in the execution, derived from profile-
based metrics (difference of maximum and average non-
waiting execution time per process) and from critical-path
metrics (ratio of critical imbalance and critical-path length).
As we explained in Section II-C and demonstrated in the
artificial imbalance example, the critical-path based approach
incorporates dynamic execution effects, such as shifting of
load between processes over time, that profile-based metrics
miss. We would therefore expect the imbalance determined by
the critical-path approach to be higher than the imbalance cal-
culated from per-process profiles. Indeed, in 9 out of 12 cases,
the profile-based metrics underestimate the overall imbalance,
which indicates that the dynamic effects that the critical-path
based metrics address are a common phenomenon.

The master-worker code, 125.RAxML, is interesting. The
critical path and our performance impact indicators are ideally
suited for the analysis of this parallelization scheme; in par-
ticular, we can easily assess the load balance, and determine
whether the master process is a bottleneck. On an abstract
level, we can regard a master-worker parallelization as MPMD,
with the master forming one (trivial) partition and all workers
forming another. In the case of 125.RAxML, the analysis
shows that the program’s main loop is well-balanced and the
master process is not a bottleneck, but we identify a serial
initialization procedure on the master process that is on the
critical path as a source of inter-partition imbalance. Related
problems also occur in 145.lGemsFDTD and 147.l2wrf2,
in which serial initialization routines, executed only on the
root process, become performance bottlenecks. In all cases,
the inter-partition imbalance indicator quickly identifies the
responsible function. In 104.milc, 11 out of the 256 allocated
cores do not participate in the computation at all, resulting
in 4% inter-partition imbalance cost. Finally, the critical-
path imbalance indicators also detect imbalanced functions in
SPMD codes. For example, in 145.lGemsFDTD, the function
nft_class.nft_apply uses 11.4% of the accumulated
allocation time, but is responsible for 41% of the load imbal-
ance costs in the program. Including the imbalance costs, the
overall performance impact of this function is actually 18.2%
of the total allocation time. The load imbalance alone wastes
more than 18 seconds of wall-clock time. In conclusion, the
SPECMPI examples show that we can straightforwardly apply
our critical-path analysis to a broad range of real-world HPC
codes to identify performance bottlenecks.

C. PEPC

PEPC (“Pretty Efficient Parallel Coulomb-solver”) is an
SPMD N-body simulation code developed by the Simulation
Laboratory Plasma Physics at the Jülich Supercomputing Cen-
tre [6]. We use the 1.4 benchmark version of the code for our
experiments and simulate 1.6 million particles over 20 time
steps on 512 cores. We conduct trace analysis to obtain the
critical-path profile, our performance indicators, and a per-
process performance profile.

The measured wall-clock execution time for the example
configuration is 70.6 seconds. The major fraction of this
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tree walk sum force
Runtime per process
Minimum 14.44 s 20.15 s
Average 15.07 s 20.63 s
Maximum 16.68 s 21.17 s
Imbalance time
(Maximum-Average) 1.61 s 0.54 s
Critical-path time 20.78 s 21.29 s
Critical-path imbalance
(Crit.time-Average) 5.71 s 0.66 s

TABLE I
PEPC PROFILE STATISTICS FOR “TREE WALK” AND “SUM FORCE”

time is spent in two code regions: a computational tree-
balancing loop (“tree walk”) and the calculation of particle
forces (“sum force”). Table I summarizes runtime and critical-
path profile data for these two code regions and the associated
load imbalance metrics. The per-process profiles suggest that
the “sum force” calculation takes around 5 seconds longer
than the “tree walk” loop. However, even though no single
process spends more than 16.7 seconds in the “tree walk”
loop, the critical-path profile reveals that both code regions
are responsible for around 21 seconds of the total wall-
clock time. The iterative nature of the program and load
imbalance in the “tree walk” loop explains this discrepancy.
Since PEPC employs a dynamic load-balancing scheme, the
load imbalance is not static. Instead, load maxima appear
on different processes in different iterations. Due to global
synchronizations within each iteration, the per-iteration load
maxima accumulate on the critical path, so that the total impact
of the “tree-walk” loop on program runtime is actually larger
than the time it consumes on any process. As shown in the
artificial example earlier, runtime profiles cannot capture this
effect and underestimate the loop’s runtime influence. The
critical-path based metrics clearly provide more insight; in
particular, the critical-path imbalance indicator shows that the
load imbalance in “tree walk” wastes 5.7 seconds of wall-
clock time. These results demonstrate that the critical-path im-
balance indicator estimates the influence of load imbalance on
program runtime with higher accuracy than indicators based on
per-process profiles alone do, making it a highly valuable tool
to assess load balance and to detect parallelization bottlenecks.



D. ddcMD

To demonstrate the functionality of our critical-path anal-
ysis with an MPMD code, we perform experiments with
the molecular dynamics simulation code ddcMD [7]. This
code partitions simulation components in a heterogeneous
decomposition according to their scaling properties to cir-
cumvent the scaling problems of long-range interaction force
calculations [8]. ddcMD uses a particle-particle/particle-mesh
algorithm that divides the force calculation into an explicit
short-range pair-interaction piece, and a long-range piece that
is solved in Fourier space. While the short-range interaction
scales well, the long-range force calculation does not. In
ddcMD, this problem is solved by calculating the long-range
forces (mesh calculation) on a small partition of around 5-10%
of the available processes, and the short-range pair interactions
(particle calculation) on a partition of the remaining processes.
Both tasks can run in parallel, but must be carefully load-
balanced in order to achieve high efficiency. In particular, the
mesh calculation should run slightly faster than the particle
calculation, so that the mesh processes do not block the large
group of particle processes.

Load balance between the particle and mesh tasks can be
tuned in various ways. Obviously, the partition sizes them-
selves are crucial parameters. However, on systems with a
highly regular network interconnect, such as the Blue Gene/P,
the placement of processes on the system is also an important
factor for achieving optimal efficiency in ddcMD, which leaves
only few reasonable options for the partition sizes. Thus, a use-
ful strategy is to first choose a fixed partitioning scheme and
process mapping that optimally fits the Blue Gene’s network
topology, and then fine-tune the load balance between particle
and mesh tasks using two other parameters that significantly
impact efficiency: the inverse screening length α and the mesh
size δ. By changing α and δ one can shift workload from
mesh tasks to the particle tasks and vice-versa without loss
of accuracy. Increasing the mesh size increases the workload
of the mesh processes, and the accompanying decrease in α
reduces the workload of the particle processes.

Our experiments study the influence on program perfor-
mance of various combinations of α and δ (with αδ kept
constant). We run simulations of 38 million particles on 4,096
cores of Blue Gene/P, with fixed partition sizes of 3,840 cores
for the particle tasks and 256 cores for the mesh tasks. The
application itself runs for 374 seconds in the worst case. Our
parallel trace analysis (including trace I/O and report collation)
on the 4,096 processes runs another 285 seconds, 113 seconds
of which is for the parallel replay.

Figure 9 summarizes the analysis results. The bars in the
background show the duration of particle and mesh calcula-
tions on the critical path. The line at the top (shown in red)
represents the overall resource consumption (i.e., critical-path
length multiplied by the number of processes), the remaining
lines visualize the attribution of resource consumption to the
two activity classes and the inter-partition imbalance costs
(this graph does not show intra-partition imbalance costs). The
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Fig. 9. Influence of mesh size δ and inverse screening length α on ddcMD
performance.

spectrum of configurations ranges from small mesh sizes that
place little workload on the mesh tasks and a large workload
on the particle tasks on the left to large mesh sizes that shift
workload from particle to mesh tasks on the right. On the
left of the spectrum, the critical path visits only particle tasks
while it shifts some to the mesh tasks on the right.

As expected, the workload of mesh tasks increases with
larger mesh sizes, while the workload of the particle tasks
decreases due to the complementary change in α. Since the
overall resource demand of the particle calculations is much
higher than the demand of the mesh tasks, the shift in αδ
combinations in favor of lower α values also leads to an overall
decrease of resource consumption, and, consequently, runtime.
The runtime difference between particle and mesh tasks also
shrinks, further decreasing resource consumption and improv-
ing resource utilization. The inter-partition imbalance costs
clearly illustrate this effect. For small mesh sizes, the inter-
partition imbalance costs represent the resource loss due to the
excess time on the particle tasks, which leads to wait states
among the mesh tasks. The inter-partition imbalance costs
and the resources employed for mesh computations exhibit
a noticeable gap that indicates that the resources wasted by
wait states are larger than those used by mesh computations.
At a mesh size of 576, we reach an optimal configuration.

Once the mesh size exceeds that threshold, the performance
characteristics change completely. The mesh calculation takes



longer than the particle calculation, so the critical path now
visits the mesh tasks. While the resources consumed by the
particle computations continue to decrease, the particle tasks
must now wait for the mesh calculations to finish, which
leads to an overall increase in runtime and total resource
consumption. Considerable resources are wasted since the
large number of processes in the particle partition must wait
for the mesh computations, as indicated by large inter-partition
imbalance costs that originate from the mesh tasks. With
further increases of the mesh size, the resource waste due
to the poor workload distribution between the two partitions
grows rapidly.

The figure shows that the load balance between the particle
and mesh partitions is key to efficient execution of ddcMD.
In contrast, intra-partition imbalance costs, which Figure 9
does not include, only vary between 3 and 5% of the overall
resource consumption, which indicates that the particle- and
mesh-workloads themselves are well balanced.

In conclusion, the ddcMD example clearly demonstrates the
usefulness of our performance indicators for characterizing
load balance in MPMD programs. They provide appropriate
guidance for choosing an optimization strategy. For example,
the mesh sizes of 528 and 616 points lead to roughly the
same overall runtime, but our performance indicators reveal
radically different performance characteristics. With a 528
point mesh size, some remaining inter-partition imbalance
costs of the particle computations suggests optimization by
shifting workload from the particle to the mesh tasks. In
the other case, the occurrence of mesh tasks on the critical
path and the high inter-partition imbalance costs of the mesh
computations indicate a poor workload distribution that leads
to wait states among the particle processes.

V. RELATED WORK

Several researchers have explored critical-path analysis as a
means to identify performance problems and to steer optimiza-
tions. For example, Barford and Crovella [9] use it to study
the performance of TCP in the context of HTTP transactions,
while Tullsen and Calder [10] reduce dependencies in binary
codes based on critical-path information. In the context of
parallel message-passing programs, the critical path is used
in several prior tools to describe the actual computational
demands of an application. ParaGraph [11] is an early tool
that could visualize the critical path of a parallel program in
a space-time diagram. Miller et al. [12] describe a distributed
algorithm to capture the critical path. Schulz [13] describes
techniques to extract the critical path from a message-passing
program in the form of a graph, which can then be used for
further post-mortem analysis. Hollingsworth [14] employs a
sophisticated on-line mechanism built on top of dynamic in-
strumentation to collect the necessary input. This information
is then aggregated per function to reduce the memory required
to store the results.

However, the critical path itself is not overly expressive.
We must understand the impact of changes to the critical
path and execution time. To address this problem Alexander et

al. [15] compute near-critical paths through search algorithms
on execution graphs. They weigh each program edge with
the computational complexity of the corresponding program
section. Their algorithm requires global searches across the
entire graph, which is not scalable. Further, the algorithm
results in a large number of paths that are considered near-
critical. Each near-critical path typically varies little from the
primary critical path, which reduces its usefulness.

In general, critical-path techniques play only a minor role
in current performance-analysis tools—despite the power and
expressiveness of the abstraction. This minor role arises partly
from the difficulty of isolating the critical path. Since it is
a global a posteriori property, it is hard to obtain online.
Also, the sheer size of the critical path makes its scalable
extraction challenging. Here, our parallel post-mortem event-
trace analysis is ideally suited to extract the critical path
reliably and in a scalable manner. More importantly, prior
work has not fully exploited the information provided by
critical-path analysis. In particular, the structure of the graph is
either exposed in its entirety or lost in aggregated metrics. Our
work targets this gap through compact performance indicators
that retain some of the dynamic information that the critical
path provides.

Apart from the generation and analysis of critical paths, sev-
eral tools explore the communication characteristics of parallel
programs to find potential optimization targets. Two traditional
approaches exist. Profiling aggregates communication behav-
ior over time. mpiP [16] is an example of this class of tools.
Many tools, including TAU [17], Open|SpeedShop [18], Vam-
pir [19], and Paraver [20], generate trace files to be analyzed
postmortem, often manually with the help of visualization. The
PARADIS project [21] uses event graphs, which are similar
to the execution graphs we show in this paper, to detect per-
formance anomalies and bottlenecks. Similarly, Kranzlmüller
et al. [22] use event graphs for debugging purposes.

Several performance tools analyze load imbalance. Cray-
Pat [3] calculates imbalance metrics from profiles that pro-
vide measures of absolute and relative load imbalance. HPC-
TOOLKIT [23] attributes the costs of idleness at global syn-
chronization points to overloaded call paths, highlighting im-
balances in call-path profiles. However, profiling-based ap-
proaches, which aggregate performance data along the time
dimension, can generally express only static imbalances reli-
ably and do not capture dynamic load shifts between processes
over time. As an alternative, both Huck et al. [24] and Gamblin
et al. [25] monitor dynamic load changes by instrumenting
individual iterations of the main loop in parallel programs.
However, these approaches are limited to the analysis of
SPMD programs; to our knowledge, none of the currently
available performance tools addresses the more complicated
load-balance issues in MPMD programs. As many applications
are adopting a more heterogenous or MPMD model, we
therefore decided to revisit the critical path as a key structure.



VI. CONCLUSION

Using the critical path to determine those activities that
are responsible for the execution length of a parallel pro-
gram is a well-known concept of characterizing application
performance. However, prior work failed to strike a good
balance between the unmanageable size of the full critical
path on the one hand and radical aggregations that obscure
important dynamic aspects on the other. In this paper, we have
shown how to generate compact performance indicators that
can be easily analyzed but nevertheless retain critical dynamic
elements well-suited for the analysis of load imbalance.

The critical-path imbalance provides an easy-to-use tool
for estimating the parallel efficiency of a message-passing
code. Targeting SPMD applications, it relies on the assumption
that all processes execute more or less the same mix of
activities. Most suitable for MPMD codes in contrast, our
imbalance cost indicators provide instruments to assess the
overall resource consumption as a result of load imbalance,
and to decide whether to attribute it to load imbalance within
or across partitions. By applying our novel indicators to real-
world simulation codes, we have demonstrated their usefulness
(i) in identifying the load imbalance with the most severe
effects on application performance in an SPMD code and
(ii) in finding the most efficient configuration of an MPMD
molecular dynamics application.

As part of our future work, we will exploit knowledge
of the dynamic structure of the critical path to improve our
analyses further. Moreover, due to the increasing number of
cores per CPU and the growing trend to employ OpenMP
for node-internal work sharing while using MPI for inter-
node communication, we will extend our analysis approach
to support hybrid OpenMP/MPI applications.
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