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Event traces are helpful in understanding the performance behavior of message-passing
applications since they allow the in-depth analysis of communication and synchronization
patterns. However, the absence of synchronized clocks may render the analysis ineffective
because inaccurate relative event timings may misrepresent the logical event order and
lead to errors when quantifying the impact of certain behaviors. Although linear offset
interpolation can restore consistency to some degree, time-dependent drifts and other
inaccuracies may still disarrange the original succession of events – especially during
longer runs. The controlled logical clock algorithm accounts for such violations in point-
to-point communication by shifting message events in time as much as needed while try-
ing to preserve the length of local intervals. In this article, we describe how the controlled
logical clock is extended to collective communication to enable the correction of realistic
message-passing traces. We present a parallel version of the algorithm scaling to more
than thousand processes and evaluate its accuracy by showing that it eliminates inconsis-
tent inter-process timings while preserving the length of local intervals.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Event tracing is a popular technique for the postmortem performance analysis of message-passing applications because it
can be used to examine temporal relationships between concurrent activities. Obviously, the accuracy of the analysis de-
pends on the comparability of timestamps taken on different processors. Inaccurate timestamps may cause a given interval
to appear shorter or longer than it actually was, or change the logical event order, which requires a message to be received
only after it has been sent. This is also referred to as the clock condition. Inaccurate timestamps may lead to false conclusions
during performance analysis, for example, when the impact of certain behaviors is quantified, or – even more strikingly –
may confuse the user of trace visualization tools such as Vampir [22] by causing arrows representing messages to point back-
ward in time-line views.

To avoid clock condition violations, the error of timestamps should ideally be smaller than one half of the message la-
tency. While some systems such as IBM Blue Gene offer a relatively accurate global clock, many other systems including
most PC clusters provide only processor-local clocks that are either entirely non-synchronized or synchronized only within
disjoint partitions (e.g., SMP-node or multicore-chip). Clock synchronization protocols such as NTP [21] can align the clocks
to a certain degree, but are often not accurate enough for our purposes. Assuming that every local clock on a parallel machine
. All rights reserved.
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runs at a different but constant speed (i.e., drift), the (global) time of an arbitrarily chosen master clock can be calculated
locally as a linear function of the local time. This approach is taken in the tracing library of Scalasca [14], a performance-anal-
ysis toolset that can be used to automatically identify wait states in event traces of large-scale MPI programs. For this pur-
pose, Scalasca performs offset measurements between all local clocks and the master clock once at program initialization
and once at program finalization. However, as the assumption of constant drifts is only an approximation, violations of
the clock condition may still occur – especially when the offset measurements are taken with long intervals in between.

While the errors of single timestamps are hard to assess, clock condition violations can be easily detected and offer a toe-
hold to increase the fidelity of inter-process timings. The controlled logical clock (CLC) [23] is a method to retroactively correct
timestamps violating the clock condition. As the modification of individual timestamps might change the length of local
intervals and even introduce new violations, the correction takes the context of the modified event into account by carefully
stretching the local time axis in the immediate vicinity of the affected event. The current CLC algorithm, however, is limited
by two factors. First, it covers only point-to-point operations and ignores collective ones. Second, it is a serial algorithm de-
signed for a single global trace file. In this article, we describe how the controlled logical clock is extended to collective com-
munication to enable a more complete correction of realistic message-passing traces. In addition, we present a parallel
version of the algorithm scaling to more than thousand processes and evaluate its accuracy by showing that it eliminates
inconsistent inter-process timings while preserving the length of local intervals.

The article is structured as follows: after reviewing related work in Section 2, we describe the original serial version of the
algorithm in Section 3. In Section 4, we specify the extensions necessary to handle collective operations. Then, we present the
parallel algorithm design in Section 5 and outline its implementation within Scalasca. We evaluate the scalability of the par-
allel version in Section 6, where we also show that the collaterally introduced deviations of local interval lengths remain
within acceptable limits. Finally, we conclude our paper and give an outlook on future work in Section 7.
2. Related work

In this section we cite several approaches for avoiding or correcting inconsistent timestamps, most of them usually applied
postmortem. Network-based synchronization protocols aim at synchronizing distributed clocks before reading them. The
clocks query the global time from reference clocks, which are often organized in a hierarchy of servers. For instance, NTP
[21] uses widely accessible and already synchronized primary time servers. Secondary time servers and clients can query time
information via both private networks and the Internet. To reduce network traffic, the time servers are accessed only at reg-
ular intervals to adjust the local clock. Jumps are avoided by changing the drift while leaving the actual time unmodified.
Unfortunately, varying network latencies limit the accuracy of NTP to about 1 ms compared to a few microseconds required
to satisfy the clock condition for MPI applications running on clusters equipped with modern interconnect technology.

Time differences among distributed clocks can be characterized in terms of their relative offset and drift (i.e., the rate at
which the offset changes over time). In a simple model assuming different but constant drifts, the global time can be estab-
lished by measuring offsets to a designated master clock using Cristian’s probabilistic remote clock reading technique [5].
After estimating the drift, the local time can be mapped onto the global (i.e., master) time via linear interpolation. Offset val-
ues among participating clocks are measured either at program initialization [9,10] or at initialization and finalization [19],
and are subsequently used as parameters of the linear correction function. So as not to perturb the program, offset measure-
ments in between are usually avoided, although a recent approach proposes periodic offset measurements during global syn-
chronization operations while limiting the effort required in each step by resorting to indirect measurements across several
hops [6]. While linear offset interpolation might prove satisfactory for short runs (or interpolation intervals), measurement
errors and time-dependent drifts may create inaccuracies and clock condition violations during longer runs. Additionally,
repeated drift adjustments caused by NTP may impede linear interpolation, as they deliberately introduce non-constant
drifts.

If linear interpolation alone turns out to be inadequate to achieve the desired level of accuracy, error estimation allows
the retroactive correction of clock values in event traces after assessing synchronization errors among all distributed clock
pairs. First, difference functions among clock values are calculated from the differences between clock values of receive
events and clock values of send events (plus the minimum message latency). Second, a medial smoothing function can be
found and used to correct local clock values because for each clock pair two difference functions exist. Regression analysis
and convex hull algorithms have been proposed by Duda [8] to determine the smoothing function. Using a minimal spanning
tree algorithm, Jezequel [17] adopted Duda’s algorithm for arbitrary processor topologies. In addition, Hofmann [15] im-
proved Duda’s algorithm using a simple minimum/maximum strategy and further proposed that the execution time should
be divided into several intervals to compensate for different clock drifts in long running applications. Using a graph-theory
algorithm to calculate the shortest paths, Hofmann and Hilgers [16] simplified Jezequel’s algorithm for handling multi-pro-
cessor topologies. Biberstein et al. [4] rewrote Hofmann’s and Hilgers’ algorithm for use on the Cell BE architecture using a
short and intelligible notation. Their version solves the clock condition problem only for short intervals (i.e., without splitting
into subintervals for handling a non-linear drift of the physical clocks). Babaog�lu and Drummond [2,7] have shown that clock
synchronization is possible at minimal cost if the application makes a full message exchange between all processors at suf-
ficiently short intervals. However, jitter in message latency, non-linear relations between message latency and message
length, and one-sided communication topologies limit the usefulness of error estimation approaches.
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In contrast, logical synchronization uses happened-before relations among send and receive pairs to synchronize distrib-
uted clocks. Lamport introduced a discrete logical clock [18] with each clock being represented by a monotonically increas-
ing software counter. As local clocks are incremented after every local event and the updated values are exchanged at
synchronization points, happened-before relations can be exploited to further validate and synchronize distributed clocks.
If a receive event appears before its corresponding send event, that is, if a clock condition violation occurs, the receive event
is shifted forward in time according to the clock value exchanged. As an enhancement of Lamport’s discrete logical clock,
Fidge [11,12] and Mattern [20] proposed a vector clock. In their scheme, each processor maintains a vector representing
all processor-local clocks. While the local clock is advanced after each local event as before, the vector is updated after receiv-
ing a message using an element-wise maximum operation between the local vector and the remote vector that has been sent
along with the message.

3. The controlled logical clock

Because we have extended and parallelized the CLC algorithm to use it within Scalasca, we describe it in terms of the Scal-
asca event model, which is similar to the VAMPIR event model [22], for which the algorithm was originally designed. As far
as message passing is concerned, the two models differ only in the way they express collective communication, which the
original algorithm ignores.

The information Scalasca records for an individual event includes at least the timestamp, the location (i.e., the process)
causing the event, and the event type. Depending on the type, additional information may be supplied. The event model dis-
tinguishes between programming-model independent events, such as entering and exiting code regions, and events related
to MPI operations. The latter include events representing point-to-point operations, such as sending and receiving messages,
and events representing the completion of collective operations. These collective exit events are specializations of normal
exit events carrying amongst other attributes information on the communicator. This information allows identifying concur-
rent collective exits belonging to the same collective operation instance. Event sequences recorded for typical MPI operations
are given in Table 1.

Non-synchronized processor clocks may cause inaccurate timestamps in event traces. However, the clock condition, which
is given in Eq. (1), requires that the happened-before relation e! e0 [18] between two events e and e0 with their respective
timestamps CðeÞ and Cðe0Þ must be satisfied
Table 1
Event s

Functio

MPI_Se
MPI_Re
MPI_Al
8 e; e0 : e! e0 ) CðeÞ < Cðe0Þ: ð1Þ
The controlled logical clock (CLC) algorithm by Rabenseifner [23,24] is an enhancement of Lamport’s logical clock [18]. The
algorithm requires timestamps with limited errors, which can be achieved through weak pre-synchronization, such as linear
offset interpolation between program start and end. The CLC algorithm retroactively corrects clock condition violations in
event traces of message-passing applications by shifting message events in time while trying to preserve the length of inter-
vals between local events. The algorithm restores the clock condition using happened-before relations derived from message
semantics. Since messages need time to travel to their destination, we can reformulate the above condition, as given in Eq.
(2), with lmin being the minimum message latency. Note that the hierarchical structure of many parallel systems allows the
definition of multiple lmin per system, for example, depending on whether messages are exchanged within the same node or
across different nodes
8 e; e0 : e! e0 ) CðeÞ þ lmin 6 Cðe0Þ: ð2Þ
If the condition is violated for a send–receive event pair, the receive event is moved forward in time. To preserve the length
of intervals between local events, events following or immediately preceding the corrected event are moved forward as well.
These adjustments are called forward and backward amortization, respectively.

Fig. 1 illustrates the different steps of the CLC algorithm using a simple example consisting of two processes exchanging a
single message. The subfigures show the time lines of the two processes along with their send (S) or receive (R) event, each of
them enclosed by two other events ðEiÞ. Fig. 1a shows the initial event trace based on the measured timestamps with insuf-
ficiently synchronized local clocks. It exhibits a violation of the clock condition by having the receive event appear earlier
than the matching send event. To restore the clock condition, R is moved forward in time to be lmin ahead of S (Fig. 1b). Since
now the distance between R and E4 becomes too short, E4 is adjusted during the forward amortization to preserve the length
of the interval between the two events (Fig. 1c). However, the jump discontinuity introduced by adjusting R affects not only
equences recorded for typical MPI operations.

n name Event sequence

nd() (enter, send, exit)
cv() (enter, receive, exit)
lreduce() (enter, collective exit) for each participating process



Fig. 1. Backward and forward amortization in the controlled logical clock algorithm.
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events later than R but also events earlier than R. This is corrected during the backward amortization, which shifts E2 closer
to the new position of R (Fig. 1d).

While the forward amortization is at least initially applied to all events following R, the backward amortization is applied
only to a limited amortization interval before R using a linearly increasing correction. However, not to violate the clock con-
dition anew, the correction must not advance any send event located in this interval farther than its matching receive event
(minus the minimum message latency). In such a case, we apply the linear correction piecewise, advancing the send events
as far as possible and calculating different slopes for subintervals before, after, or between those sends [24] (Fig. 2).

Note that the algorithm only moves events forward in time. To prevent an increase of the overall time represented by the
trace that may occur as a result of a domino-style propagation of forward amortizations, the algorithm scales the timestamps
of events beyond the corrected one using control variables to ensure that the overall error remains within predefined bound-
aries. Below, we give a formal explanation of forward and backward amortization.

3.1. Forward amortization

In the following, we use the symbol LC0 to denote timestamps computed by the CLC algorithm. LC0 is modeled with t as the
wall clock time and TðtÞ as the global time to which the process clocks CiðtÞ ði ¼ 0; . . . ;n� 1Þ are synchronized. Next, n is the
number of processes, ej

i is the jth event on process i, and so is E ¼ ej
i j i ¼ 0; . . . ;n� 1; j ¼ 0; . . . ; jmaxðiÞ

n o
the set of all events

in the trace. In addition, the set of matching send and receive pairs is defined as
M ¼ el
k; e

n
m

� �
jel

k ¼ send event; en
m ¼matching receive event

� �
: ð3Þ
Note that the send event always marks the beginning of a send operation, whereas a receive event marks the end of a receive
operation. Moreover, ej

i is an internal event if it is neither a send nor a receive event. Furthermore, di is the minimal difference
X

X

X

i ris3s2is1

Amortization interval LA

LCi
b

with LCi
b := LC’i without jump Δt

Jump Δt due to LC’k(ek
l)+μi.k in Eq.(4a)

(LC’m(em
n) - μi.m)

Clocks – LCi
b

of process i

Corresponding receive 
event, i.e., (s3,em

n) M∈

Clocks: LCi’
 LCi

I ideal backward amortization
 in the absence of conflicting sends
 LCi

A piece-wise linear
 backward amortization

Events: r = Receive event
 s = Send event
 i = Internal event

Fig. 2. Backward amortization algorithm.
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between two events on process i and lk;i is the minimum message delay of messages from process k to process i. Finally, cj
i is

a control variable with cj
i 2 ½0;1�. For each process i, LC0i is now defined as
LC 0i ej
i

� �
:¼

max LC0k el
k

� �
þ lk;i;

�

LC0i ej�1
i

� �
þ di;

LC0i ej�1
i

� �
þ cj

i Ci t ej
i

� �� �
� Ci t ej�1

i

� �� �� �
;

Ci t ej
i

� �� ��
if 9el

k : el
k; e

j
i

� �
2 M ðaÞ

max LC0i ej�1
i

� �
þ di;

�

LC0i ej�1
i

� �
þ cj

i Ci t ej
i

� �� �
� Ci t ej�1

i

� �� �� �
;

Ci t ej
i

� �� ��
otherwise: ðbÞ

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

ð4Þ
As can be seen, the algorithm consists of two equations. Eq. (4a) adjusts the timestamps of receive events while Eq. (4b)
modifies timestamps of internal and send events. Note that for each process, the terms LC0i ej�1

i

� �
þ di and

LC0i ej�1
i

� �
þ cj

i Ci t ej
i

� �� �
� Ci t ej�1

i

� �� �� �
must be omitted for the first event ðj ¼ 0Þ.

Through the term Ci t ej
i

� �� �
in Eqs. (4a) and (4b), the algorithm ensures that a correction is only applied if the trace vio-

lates the clock condition. The new timestamps satisfy the clock condition because the term LC0k el
k

� �
þ lk;i in Eq. (4a) guaran-

tees that LC0 ej
i

� �
is put forward compared to Ci t ej

i

� �� �
if required in the case of a clock condition violation. To make sure that

the clock does not stop after a clock condition violation, the term LC0i ej�1
i

� �
þ cj

i Ci t ej
i

� �� �
� Ci t ej�1

i

� �� �� �
in Eqs. (4a) and

(4b) approximates the duration of the original communication after a clock condition violation.
Moreover, Rabenseifner has shown that cj

i with a constant value can cause LC0 to be faster than the fastest clock among all
process-local clocks Ci [24]. Cyclic changes of physical clock drifts may cause an avalanche effect that enlarges the value of
clock corrections and propagates until the end. To avoid this effect, a control loop is used to find the optimal value of cj

i. The
controller tries to limit the differences between LC0 and T, that is, the controller estimates the output error indirectly because

T t ej
i

� �� �
is unknown. If 1� c is chosen smaller than the maximal drift differences, the controller will enlarge 1� c (e.g., to

1%) to guarantee that any propagation is bounded by this factor. To calculate cj
i for each event, the controller requires a global

view of the event data. Typically, cj
i is kept less than 1 minus the maximum drift of the clocks, however, in most cases a fixed

c ¼ 0:99 or 0:999 is good enough because physical clock drifts are normally less than 10�4. For subsequent events of the

same process, the term LC0i ej�1
i

� �
þ di in Eqs. (4a) and (4b) causes LC0 to advance at least a small number of ticks di if the con-

troller has reduced cj
i to nearly zero. Rabenseifner describes the control mechanism in more detail in [24].

A jump discontinuity in LC0 of Dt is caused by the term LC0k el
k

� �
þ lk;i in Eq. (4a) if LC0 ej

i

� �
of the violating receive event is

put forward compared to Ci t ej
i

� �� �
. The term LC 0i ej�1

i

� �
þ cj

i Ci t ej
i

� �� �
� Ci t ej�1

i

� �� ��
in Eq. (4a) implements the forward

amortization of such a jump. That is, the clock LC0i for subsequent events of process i runs with the speed of Ci reduced
by the factor cj

i.

3.2. Backward amortization

Backward amortization is applied to smooth jump discontinuities caused by forward amortization. This is achieved by
slowly building up the ascension to a jump Dt using a piecewise process-local linear correction in an amortization interval
LA of appropriate size before the violating receive event (Fig. 2) [24]. The compensation is realized by setting the timestamps
forward. If there is no violating send event in the backward amortization interval of a process i, then the dash-dotted linear
interpolation can be used. In Fig. 2, the horizontal axis represents LCb

i , which is equal to LC0i (i.e., the state after forward amor-
tization) but without the jump Dt at the corrected receive event r (shown on the right). The vertical axis shows offsets to LCb

i

after applying different stages of backward amortization. Naturally, the offset at r corresponds to the jump Dt. Note that the
smaller the gradient of a clock in this figure, the better the correction and the smaller the perturbation of preceding events.
Therefore, the ratio Dt=LA should be only a few percent. Clearly, adjacent clock condition violations cause a larger
perturbation.

In order to avoid new violations of the clock condition, the correction must not advance the timestamps of send events
farther than LC0m � li;m of the corresponding receive event en

m of a remote process m. These upper limits are shown as circled
values above the locations of the send events. If these limits are smaller than the dashed-dotted line (here at events s1 and
s2), then a reduced piecewise linear interpolation function must be used (see the dotted line in Fig. 2).As can be seen, the
clock error rate is higher than the desired Dt=LA in the interval ðs2; rÞ. For each receive event with a jump, the backward amor-
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tization algorithm is applied independently. If there are additional receive events inside the amortization interval during
such a calculation step, then these events can be treated like internal events, because advancing the timestamp of a receive
event further cannot violate the clock condition.

4. Collective operations

Unfortunately, the original CLC algorithm has been designed to correct clock condition violations only related to point-to-
point communication. Collective communication semantics are ignored. In this section, we explain how the algorithm can be
made suitable for realistic MPI applications that perform not only point-to-point but also collective communication. We start
with a discussion of forward amortization, followed by a discussion of backward amortization.

4.1. Forward amortization for collectives

The CLC algorithm synchronizes the timestamps of concurrent events based on happened-before relations. A receive
event is put forward in time whenever the matching send event appears too late in the trace to satisfy the clock condition.
In our event model, a collective operation instance consists of multiple pairs of enter and collective exit events (i.e., one pair
for each participating process). The basic idea behind our extension is to map these events onto point-to-point communica-
tion events. For this purpose, we consider a single collective operation as being composed of multiple point-to-point oper-
ations, taking the semantics of the different flavors of MPI collective operations into account (e.g., 1- to-N, N-to-1, etc.). For
instance, in an N-to-1 operation one root process receives data from N other processes. Given that the root process is not
allowed to exit the operation before it has received data from the last process to enter the operation, the clock condition
must be observed between the enter events of all sending processes and the exit event of the receiving root process. Depend-
ing on the flavor of the collective operation, different enter and exit events are mapped onto send and receive events, respec-
tively. In reference to the fact that our method is based on logical clocks, we call the send and receive event types assigned
during this mapping the logical event types as opposed to the actual event types (e.g., enter or collective exit) specified in the
event trace.

Below, we review the different types of collective operations to identify happened-before relationships based on the
decomposition of collective operations into send and receive pairs. With S and R we denote the set of logical send and receive
events in a collective operation instance, respectively. For each call to a collective operation, the set of all send–receive pairs
M is enlarged by adding S� R with two exceptions, which are discussed later.

1-to-N: One root process sends its data to N other processes. Examples are MPI_Bcast(), MPI_Scatter(), and
MPI_Scatterv(). S only contains the send event of the root process (i.e., its enter event), whereas R contains receive events
from all processes in the communicator (i.e., all collective exit events) with a data length greater zero, that is, the set may be
smaller than the size of the communicator in the case of variable length operations (MPI_. . ..v()).

N-to-1: One root process receives its data from N processes. Examples are MPI_Reduce(), MPI_Gather(), and
MPI_Gatherv(). R only contains the receive event on the root process (i.e., its collective exit event). S is the set of send
events (i.e., all enter events) from all processes in the communicator with a data length greater zero. Given that the root pro-
cess is not allowed to exit the operation until the last process has entered it, the latest enter event is the relevant send event
to fulfill the collective clock condition. Hence, if S contains more than one element, the term LC0k el

k

� �
þ lk;i in Eq. (4a) must be

replaced by the maximum of LC0k el
k

� �
þ lk;i over all el

k 2 S. That is, Eq. (4) must be replaced by Eq. (4
0
). 8
LC0i ej
i

� �
:¼

max max
el

k
j el

k
;ej

ið Þ2Mf g
LC0k el

k

� �
þ lk;i

� �
;

LC0i ej�1
i

� �
þ di;

LC0i ej�1
i

� �
þ cj

i Ci t ej
i

� �� �
� Ci t ej�1

i

� �� �� �
;

Ci t ej
i

� �� ��
if 9el

k : el
k; e

j
i

� �
2 M ðaÞ

. . . ½same asð4bÞ�: ðbÞ

>>>>>>>>>>>><
>>>>>>>>>>>>:

ð4 0Þ
N� to�N0: All processes of the communicator are at the same time sender and receiver. Examples are MPI_Allreduce(),
MPI_Allgather(), MPI_Alltoall(), and MPI_Barrier() with N0 ¼ N, and the variable length operations MPI_Redu-
ce_scatter(), MPI_Allgatherv(), and MPI_Alltoallv(). S and R are defined by all those enter and collective exit
events whose processes contribute input data or receive output data, respectively. For a call to MPI_Barrier(), all pro-
cesses in the communicator contribute to S and R.

Special cases: For MPI_Scan() and MPI_Exscan(), the set of messages added to M cannot be expressed as the Cartesian
product S� R. Instead, the set of messages added to M has the form
el
k; e

j
i

� �
jk ¼ 0; . . . ;N � 1; i ¼ 0; . . . ; k� x

n o
with el
k referring to the enter event and ej

i to the collective exit event of a collective operation instance, and with x ¼ 0 for
MPI_Scan() and x ¼ 1 for MPI_Exscan().
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Regardless of the collective operation type, it is important to optimize the handling of S� R in Eq. (40a). Our parallelized
version of the CLC algorithm achieves this by taking advantage of the way collectives are usually implemented, typically
reducing the effort to Oðlog NÞ.

4.2. Backward amortization for collectives

To extend the backward amortization algorithm for collective routines, the upper bounds for the send events (see Fig. 2)
must be adapted to collective events: if ej�m

i is the send event of a collective routine, an upper bound for the piecewise linear
interpolation at ej�m

i is defined by minel
k
2RLC0k el

k

� �
� li;k with R being the set of receive events defined in Section 4.1.
5. Parallel timestamp synchronization

Scalasca, a performance analysis toolset specifically designed for large-scale systems, scans event traces of parallel appli-
cations for wait states that occur when processes fail to reach synchronization points in a timely manner, for example, as a
result of an unevenly distributed workload. Such wait states can present major challenges to achieving good performance,
especially when trying to scale communication-intensive applications to large processor counts.

Similar to the wait-state analysis [14] performed by Scalasca, the CLC algorithm requires comparing events involved in
the same communication operation, which makes it a suitable candidate for the same parallelization strategy. Instead of
sequentially processing a single global trace file, Scalasca processes separate process-local trace files in parallel by replaying
the original communication on as many CPUs as have been used to execute the target application itself. Since trace process-
ing capabilities (i.e., processors and memory) grow proportionally with the number of application processes, we can achieve
good scalability at very large scales. During the replay, sending and receiving processes exchange relevant information
needed to analyze the communication operation being replayed. The parallel CLC algorithm is divided into two replay
phases: a forward phase for the forward amortization and a backward phase for the backward amortization. The backward
phase is only needed if clock condition violations appear during the forward phase.

5.1. Integration with Scalasca

Almost all the postmortem trace-analysis functionality of Scalasca including the parallel CLC algorithm is implemented
on top of PEARL [13], a parallel library that offers higher-level abstractions to read and analyze large volumes of trace data.
A typical PEARL application is a parallel program having as many processes as the target application that generated the trace
data, resulting in a one-to-one mapping of target application and analysis processes. All analysis processes read the trace
data of ‘‘their” application process into main memory and traverse the traces in parallel while exchanging information at
synchronization points.

In Scalasca, the parallel CLC algorithm is applied after the traces have been loaded and before the wait-state analysis takes
place. To increase the fidelity of the correction, the timestamps first undergo a pre-synchronization step. This step performs
linear offset interpolation based on offset measurements taken during initialization and finalization of the target application.
Once the offset values are known to each analysis process, the operation is performed locally and does not require any fur-
ther communication. The resulting timestamps are taken as the Ci. Inaccurate Ci can occur for two reasons: (i) inaccurate
offset measurements and (ii) time-dependent clock drifts. Fig. 3 shows the non-linear behavior of hardware clocks on an
Infiniband cluster after linear begin-to-end offset interpolation. As can be seen, clock deviations are still significantly larger
than point-to-point or collective latencies, which implies that clock condition violations can still occur and must be ac-
counted for.

As an alternative to the native Scalasca wait-state analysis, the traces can also be rewritten with modified timestamps,
converted, and visualized using standard trace browsers such as Vampir. The full analysis process is illustrated in Fig. 4.
Fig. 3. Non-constant drifts of physical clocks measured on an Infiniband cluster in comparison to the send–recv and allreduce latencies.
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5.2. Parallel forward amortization

During the forward phase, the communication replay proceeds in the same direction as the original communication did
while the target application was running. For every pair of send and receive events, the sending process sends the timestamp
of the send event to the receiving process, which compares it to the timestamp of the matching receive event and, if neces-
sary, applies the forward amortization expressed in Eqs. (4a) and (40a). Recall that, in addition to actual send and receive
events, events pertaining to entering or leaving collective communication operations may be classified as (logical) send or
receive events for the purpose of the algorithm. In this case, the logical event type is derived from the name of the collective
operation and the role (e.g., root) a particular process plays in the operation.

In its treatment of events the algorithm distinguishes between send/receive events and internal events that neither send
nor receive any kind of message. A different action is performed for each of the three types. Since the correction of an internal
event does not require any extra communication, the timestamp adjustment is immediately applied. A send event is ad-
justed locally and the new timestamp is sent via forward-replay to the receiving process. On the receiver side, the order
of these two steps is reversed. The adjusted send timestamp must be obtained from the sender before the correction can
be performed. Finally, the receiver saves detected clock condition violations temporarily along with the associated error
so that this information can be reused during the backward amortization phase.

While the direction of inter-process exchange of timestamps is determined by the (logical) type of an event (i.e., send or
receive), the actual communication operation invoked to accomplish the transfer depends on the operation originally used
by the target application. For this purpose, communication operations are classified according to the number of peers in-
volved on either side: point-to-point, 1-to-N, N-to-1, N-to-N, and two special classes for scan and exscan operations. The cor-
responding operations used during the replay are listed in Table 2 (top) along with the events which will have their
timestamps exchanged.

For the sake of simplicity, our current implementation uses only two different values for lk;i: the minimum inter-node
and the minimum intra-node latency. Following a conservative approach aimed at avoiding overcorrection, we refrained
from considering an extra collective latency, as the duration of collective operations may depend on many factors that
are hard to identify, some of them even hidden inside the underlying MPI implementation. Now, the parallel calculation
of the maximum over all corresponding send events via max el

k
j el

k
;ej

ið Þ2Mf g LC0k el
k

� �
þ lk;i

� �
in the case of N-to-1, N � to� N0,

MPI_Scan(), and MPI_Exscan() according to Eq. (40a) only requires exchanging the timestamps and the node identifiers
to know which of the two latency values must be used.

As mentioned earlier, the CLC algorithm uses so-called control variables. The control variable cj
i 2 ½0;1� for ej

i (the jth)
event on process i) is a scaling factor that is applied to interval expressions when calculating the new timestamp for ej

i. This
Table 2
Timestamps exchanged during replay for different communication types.

Type of operation Timestamp exchanged MPI function

Forward
P2P send MPI_Send()
1-to-N root enter MPI_Bcast()
N-to-1 max (all enters) MPI_Reduce()
N � to� N0 max (all enters) MPI_Allreduce()
MPI_Scan() max (some enters) MPI_Scan()
MPI_Exscan() max (some enters) MPI_Exscan()

Backward
P2P receive MPI_Send()
1-to-N min (all exits) MPI_Reduce()
N-to-1 root exit MPI_Bcast()
N-to-N min (all exits) MPI_Allreduce()
MPI_Scan() min (some exits) MPI_Scan()
MPI_Exscan() min (some exits) MPI_Exscan()
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fulfills the purpose of preserving the length of local intervals and avoiding an avalanche-like propagation of corrections [3].
To determine the exact value for cj

i, however, a global view of the trace data is needed, which is too expensive to establish in
our parallel scheme as global communication would be required for every single event. Instead, we approximate a suitable
value for c by performing multiple passes of forward replay through the trace data until the maximum error across all pro-
cesses is below a predefined threshold. During the first pass through the trace, we propose to use c ¼ const < 1� �; for sub-
sequent passes a cjþ1 < cj should be used. In practice, however, more than one pass is seldom needed.

5.3. Parallel backward amortization

The purpose of the backward amortization phase is to smooth jump discontinuities introduced during the forward amor-
tization by slowly building up the ascension to the jump. This is achieved by applying a process-local linear correction to the
interval immediately preceding the jump. However, in order to preserve the clock condition, the algorithm must not advance
the timestamp of any send event located in this interval farther than that of the matching receive event (minus the minimum
message latency), leading to the piecewise linear interpolation mentioned earlier. A backward replay is needed to determine
these upper limits. While replaying the communication backward, with each logical send event we store the timestamp of
the matching receive event after forward amortization. With this information available, an appropriate piecewise linear
interpolation function can be calculated for the amortization interval behind every receive event shifted during the forward
replay. Note that the backward amortization must be performed as a backward replay starting at the end of the trace with
communication proceeding in backward direction to avoid the danger of deadlocks. During the backward amortization the
roles of sender and receiver are reversed: the timestamp of a logical receive event must be made available to the process of
the matching send event.

Table 2 (bottom) shows the operations used during backward replay along with the events which will have their time-
stamps exchanged. For MPI_Scan() and MPI_Exscan(), a communicator with reverse rank ordering must be used. The ex-
changed timestamps reflect the state after forward amortization.

Given that most MPI implementations use binomial tree algorithms to perform their collective operations, our replay-
based approach reduces the communication complexity automatically to Oðlog NÞ. Moreover, the stepwise parallel replay
during the backward amortization phase can, in theory, be replaced by a single collective operation per communicator for
the entire trace, but would impose impractical memory requirements.
6. Experimental evaluation

Here we evaluate the scalability and accuracy of the parallel controlled logical clock algorithm for point-to-point and col-
lective communication and also give evidence of the frequency and the extent of clock condition violations in event traces of
a realistic MPI application. We ran experiments on the following two platforms:

MareNostrum consists of 2560 JS21 blade computing nodes, each with two dual-core IBM 64-bit PowerPC 970MP pro-
cessors running at 2.3 GHz. The computing nodes of MareNostrum communicate primarily through a Myrinet network
with Myrinet adapters integrated on each server blade. The measured MPI inter-node latency was 7.7 ls, the measured
MPI intra-node latency was 1.3 ls.
Cacau consists of 200 compute nodes, each with one dual-core Intel Xeon EM64T CPU running at 3.2 GHz. The nodes are
linked with a Voltaire Infiniband Network and a Gigabit Ethernet. The measured MPI inter-node latency was 4.7 ls, the
measured MPI intra-node latency was 1.0 ls.

As a test application, we used the MPI version of the ASC SMG2000 benchmark, a parallel semi-coarsening multigrid sol-
ver that uses a complex communication pattern and performs a large number of non-nearest-neighbor point-to-point com-
munication operations. Applying a weak scaling strategy, a fixed 16� 16� 8 problem size per process with five solver
iterations was configured.

While linear interpolation can remove most of the clock condition violations in traces of short runs, it is usually insuffi-
cient for longer runs. We therefore emulated a longer run by inserting sleep statements immediately before and after the
main computational phase so that it was carried out 10 min after initialization and 10 min before finalization. This corre-
sponds to a scenario, in which only distinct intervals of a longer run are traced with tracing being switched off in between.
Since full traces of long running applications may consume a prohibitive amount of storage space, the ‘‘partial” tracing emu-
lated here mimics the recommended practice of tracing only pivotal points that warrant a more detailed analysis. For our
purposes, the artificial chronological distance to the offset measurements on either end of the run adjusted the interpolation
interval to roughly 20 min execution time. However, with many realistic codes running for hours, this can still be regarded as
an optimistic assumption. Compared to true partial tracing of a longer SMG2000 run, our method had the advantage that the
total runtime including the actual computational activity and therefore the distance between the two offset measurements
was roughly the same for all configurations.

Fig. 5 shows the frequency of clock condition violations on MareNostrum and Cacau for a range of scales. Since the num-
ber of violations varies between runs, the numbers represent averages across three measurements for each configuration.
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Fig. 5. Percentage of messages with the order of send and receive events being reversed, of messages with clock condition violations, and of clock condition
violations explicitly corrected by the CLC algorithm during forward amortization.
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The numbers show the percentage of messages with the order of send and receive events being reversed in the original trace,
of messages with clock condition violations ðtrecv < tsend þ lminÞ in the original trace, and of clock condition violations explic-
itly corrected by the CLC algorithm during forward amortization. We also counted logical messages that can be derived by
mapping collective communication onto point-to-point semantics. When visualized, messages with the order of send and
receive events being reversed seem to flow backward in time. The number of violations explicitly corrected by the CLC algo-
rithm is usually smaller than the initial number of violations because some of them are already implicitly removed during
forward amortization before a correction can be applied. On MareNostrum, around 1% of the messages flow backward in
time, while on Cacau the percentage ranges between 1% and 6%. Lower latencies on Cacau offer a potential explanation
for the higher number of violations detected on this system because lower latencies naturally insert a smaller temporal dis-
tance between send and receive events of the same message and so even slight clock deviations may lead to infringements of
the logical event ordering. Although the number of inconsistent messages on Cacau seem to decrease with growing numbers
of processes, the results on MareNostrum do not confirm a clear correlation between the two indicators. Table 3 lists the
average and maximum displacement errors (i.e., the time the receive event appears earlier than the send event) of message
events in backward order, as seen in the original trace.

6.1. Scalability

Because it is the larger system, we evaluated our algorithm’s scalability on MareNostrum. According to Fig. 6, the parallel
timestamp synchronization, the Scalasca wait-state analysis, and the execution time of SMG2000 itself exhibit roughly
equivalent scaling behavior – a result of the replay-based nature of the two analysis mechanisms and the communica-
tion-bound performance characteristics of SMG2000. The fact that the total time needed by the integrated Scalasca analysis
(synchronization and wait-state analysis) including loading the traces grows more steeply suggests that I/O will increasingly
dominate the overall behavior beyond 1024 processes, rendering the additional cost of the synchronization negligible.

6.2. Accuracy

The transformation performed by the CLC algorithm raises the question of how accurate the modified traces actually are.
To answer this question, it must first be acknowledged that traces with clock condition violations are inaccurate because
they are inconsistent. The behavior they reflect violates causation and is therefore impossible. The CLC algorithm eliminates
Table 3
Average and maximum errors of message events in reversed order.

Platform Avg. error (ls) Max. error (ls)

MareNostrum 2.6 323
Cacau 4.3 186
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these inconsistencies, improving the accuracy of inter-process timings. A very simple metric quantifying this improvement is
the fraction of clock condition violations found in the original trace (second column in Fig. 5), which are removed in the mod-
ified trace.

However, the necessary corrections applied in the course of the algorithm also modify – as a collateral effect – relative
process-local event timings, which may lead to differences in the lengths of local intervals when comparing the original with
the modified trace. Again, since the original timestamps have been taken with clocks that exhibit unstable drifts, there is, of
course, no guarantee that the measured interval lengths are correct, although the deviation can be expected to be small in
comparison to the total interval length. In addition, the original timings are all we ‘‘know” about the target application’s local
execution behavior. For this reason, we decided to evaluate how this knowledge has been preserved in the modified trace.

To assess the fidelity of process-local timings after applying the CLC algorithm, we determined the relative deviation of
local interval lengths, considering two different types of intervals: (i) intervals between an event and the first event of the
same process, which roughly corresponds to the timestamp of an event relative to the begin of the trace and (ii) intervals
between adjacent process-local events (i.e., intervals between an event and its immediate successor). We refer to the first
interval type as the event position and to the second interval type as the event distance.

The maximum relative deviation of the event position across all our measurements was below 0.0001%; the maximum
absolute deviation was 425.18 ls, roughly corresponding to the maximum displacement error observed (Table 3). Table 4
shows the relative deviation of the event distance across different combinations of platform and number of processes.
The numbers in individual columns are percentages and are rounded to two digits after the decimal point. They represent
the maximum across three measurements. To account for the relatively long ‘‘correct” stretches artificially introduced by
the sleep statements before and after the main computation, only the middle section of the trace between the sleep state-
Table 4
Relative deviation of event distance. All numbers are given in percent and rounded to two digits after the decimal point.

# CPUs MareNostrum Cacau

64 128 256 512 1024 32 64 128

Average 0.00 0.01 0.01 0.00 0.01 0.00 0.01 0.00
Maximum 27.17 461.74 411.52 311.64 974.44 82.78 69.31 16.77

Percentage of intervals with deviation above threshold
> 0% 80.80 96.21 97.34 98.23 99.07 92.43 93.67 24.27
> 0.01% 0.15 0.63 0.39 0.48 0.81 0.47 0.27 0.04
> 0.1% 0.15 0.61 0.38 0.46 0.79 0.45 0.26 0.04
> 1% 0.01 0.10 0.06 0.07 0.18 0.09 0.04 0.00
> 10% 0.00 0.01 0.00 0.00 0.01 0.01 0.00 0.00
> 100% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Percentage of execution time consumed by intervals with deviation above threshold
> 0% 80.51 96.22 96.86 92.20 95.17 50.37 92.50 23.00
> 0.01% 0.41 0.95 0.58 0.71 0.72 0.24 0.68 0.05
> 0.1% 0.20 0.23 0.28 0.21 0.24 0.19 0.55 0.04
> 1% 0.01 0.02 0.03 0.02 0.02 0.04 0.11 0.00
> 10% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
> 100% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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ments was considered. Furthermore, since deviations in larger intervals are more relevant to performance analysis than
those in smaller intervals, the average was calculated using

P
jDtj=

P
jtj to assign appropriate weight to larger intervals,

with Dt being the absolute deviation and t being the original interval length.
In the top section of Table 4, it can be seen that in spite of very small averages, deviations of occasionally more than 100%

are still possible. Although the backward amortization is designed to smooth sudden jumps introduced by the forward amor-
tization, it can happen that a send event cannot be advanced far enough without causing a new clock condition violation
when passing the matching receive event. To evaluate frequency and extent of such situations, we calculated (i) the percent-
age of intervals whose deviation exceeds a certain threshold and (ii) the percentage of execution time (accumulated across
all processes) consumed by intervals whose deviation exceeds the threshold. The results given in Table 4 indicate that larger
deviations are rare and that their influence on performance-analysis results will usually be negligible.

7. Conclusion

Event traces of parallel applications may suffer from inaccurate timestamps in the absence of synchronized clocks. As a
consequence, the analysis of such traces may yield wrong quantitative results and confuse the users of time-line visualiza-
tions with messages flowing backward in time. Because linear offset interpolation can account for such deficiencies only for
very short runs, a retroactive correction of timestamps is required. For this reason, we have extended the controlled logical
clock, an algorithm that eliminates inconsistent inter-process timings in point-to-point messages, to take collective commu-
nication semantics into account so that a more complete correction of realistic message-passing traces can be achieved. In
addition, we have parallelized the extended version of the algorithm to make it more suitable for large-scale parallel appli-
cations. Finally, the algorithm has been incorporated into the Scalasca trace-analysis framework to facilitate trace analyses of
longer runs on larger cluster configurations. The scalability and accuracy of our implementation has been validated using a
real-world application example.

Although the new version of the algorithm only needs information about the respective event semantics (e.g., root sends
to all other processes), we would like to point out that the accuracy of our model could be improved if the MPI-internal mes-
saging inside collective operations was exposed using interfaces such as PERUSE [1]. In this case, the decomposition into
(additional) send and receive events is given naturally.

In our future work, we want to extend our algorithm to hybrid applications employing a mix of message passing and
shared-memory parallelism, which will require paying attention to happen-before relationships, for example, imposed by
Open MP barrier event semantics.
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