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Abstract. Since modern high-performance computer systems consist
of many hardware components and software layers, they present severe
challenges for application developers who are primarily domain scientists
and not experts with continually evolving hardware and system software.
Effective tools for performance analysis are therefore decisive when de-
veloping performant scalable parallel applications. Such tools must be
convenient to employ in the application development process and anal-
ysis must be both clear to interpret and yet comprehensive in the level
of detail provided. We describe how the Scalasca toolset was applied in
engineering the GemsFDTD computational electromagnetics solver, and
the dramatic performance and scalability gains thereby achieved.
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1 Introduction

Parallel applications develop from initial barely-functional implementations, via
a series of debugging and performance improvement stages, into efficient and
scalable versions via disciplined performance engineering practices. This pro-
cess remains on-going throughout the productive lifetime of the application, as
larger and more complex computational problems are addressed and upgraded
hardware and system software become available. Although codes which become
accepted benchmarks are more rigorously investigated than typical applications,
they are not immune from the need for continual performance evaluation and
re-engineering.

This paper considers the GemsFDTD code from the SPEC MPI2007 bench-
mark suite [6] which was found to perform particularly poorly at larger scales on
distributed-memory computer systems. Initial analysis with the Scalasca toolset
and then other tools pinpointed aspects in the application’s initialization phase
that severely limited scalability. Scalasca is an open-source toolset for analysing
the execution behaviour of applications based on the MPI and OpenMP parallel
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programming interfaces supporting a wide range of current HPC platforms [2,3].
It combines compact runtime summaries, that are particularly suited to obtain-
ing an overview of execution performance, with in-depth analyses of concurrency
inefficiencies via event tracing and parallel replay. With its highly scalable de-
sign, Scalasca has facilitated performance analysis and tuning of applications
consisting of unprecedented numbers of processes [10,11].

Based on these performance analyses, the developers of the GemsFDTD code
could rework the initialization and further optimize the time-stepping loop, to
realize substantial application execution performance and overall scalability im-
provements, ultimately leading to an entirely updated version of the benchmark.
We review both initial and revised versions of the code, and their performance
analysis with the Scalasca toolset which revealed now resolved and still remain-
ing performance optimization opportunities.

2 GemsFDTD code versions

2.1 113.GemsFDTD — SPEC MPI2007 v1.1

The SPEC MPI2007 code 113.GemsFDTD solves the Maxwell equations using
the finite-difference time-domain (FDTD) method [8]. The radar cross-section
of a perfectly conducting object is computed. 113.GemsFDTD is written in For-
tran 90 and is a parallel version of the SPEC CFP2006 (Floating Point Compo-
nent of SPEC CPU2006) code 459.GemsFDTD. 113.GemsFDTD is a subset of
a general purpose time-domain code for the Maxwell equations developed within
the General ElectroMagnetic Solvers (GEMS) project at PSCI [5].

The core of the FDTD method is second-order accurate central-difference
approximations of Faraday’s and Ampere’s laws. These central-differences are
employed on a staggered Cartesian grid resulting in an explicit finite-difference
method. These updates are performed in the module material_class. The
FDTD method is also referred to as the Yee scheme. It is the standard time-
domain method within computational electromagnetics [8].

An incident plane wave is generated using so-called Huygens’ surfaces. This
means that the computational domain is split into a total-field part and a
scattered-field part, where the scattered-field part surrounds the total-field part.
It uses the excite_mod module to compute the shape of the incident fields.

The computational domain is truncated by an absorbing layer in order to
minimize the artificial reflections at the boundary. The uni-axial perfectly matched
layer (UPML) by Gedney [1] is used. A time-domain near-to-far-field transfor-
mation computes the radar cross-section according to Martin and Pettersson [4],
handled by the module NFT_class.

The execution time during the timestepping is concentrated in five subrou-
tines, two update routines, two UPML routines, and the routine NFT_store.

The problem size in 113.GemsFDTD is 580×580×580 FDTD cells (Nx =
Ny = Nz = 580) surrounded by a twelve cell UPML layer.



2.2 145.lGemsFDTD — SPEC MPI2007 v2.0

113.GemsFDTD was designed to be scalable up to 256 processes according to
the aim of SPEC MPI 2007. Version 2.0 of SPEC MPI demanded that the
codes were scalable up to 2048 processes. 113.GemsFDTD failed miserably at
this [7], thus an extensive rewrite was needed. The end result of this rewrite
was 145.lGemsFDTD (‘l’ signifies large) which was accepted into version 2.0 of
SPEC MPI. (The original 113.GemsFDTD is retained in SPEC MPI 2007 v2.0
medium-sized benchmark suite for compatibility with earlier releases.)

The problem size in 145.lGemsFDTD is 960×960×960 FDTD cells (Nx =
Ny = Nz = 960) surrounded by a twelve cell UPML layer. This was selected in
order to meet the SPEC request that the memory footprint should be slightly
less than 64 GiB.

Initial performance analysis with Scalasca showed clearly that 113.GemsFDTD
performed a lot of 4-byte broadcasts during initialization. Time measurements
inside the code itself showed that the multiblock_partition routine on the
master rank was a serial bottleneck. In fact, the execution time increased with
the number of blocks, which increases linearly with the number of MPI pro-
cesses. This performance analysis made it clear where the hotspots in the code
were and was very useful to the programmer.

2.3 Domain decomposition of GemsFDTD

The original Gems code (MBfrida) lets the user select the number of processes
(p) and the number of FDTD blocks in all three dimensions (Nbx, Nby,Nbz),
where the total number of FDTD blocks are NbF = Nbx×Nby×Nbz. If the
user selects Nbx = Nby = Nbz = 0, then the code sets NbF = p and uses
MPI_Dims_create to set (Nbx, Nby, Nbz). The size of the FDTD blocks are
(Nbx/Nx, Nby/Ny, Nbz/Nz) (or slightly smaller). If a layer of UPML is added,
then the total number of blocks become NbT = (Nbx+2)×(Nby+2)×(Nbz+2).

In 113.GemsFDTD it was chosen to always use MPI_Dims_create, but setting
NbF to p−2 or p−3 instead of p so that NbF is an even number. This was done
in order to get at least two processes that only have UPML blocks. NbF is then
sometimes further decreased in order to avoid getting elongated FDTD-blocks
which is undesirable since that will lead to more UPML-blocks and more data
to communicate between the blocks. A precalculated table decides which NbF
values are accepted. In the case of p = 256, 254 and 253 are not accepted values,
while 252 (=6×6×7) is. Due to a bug in the code only 252+2=254 processes are
used when computing a distribution of the 576 blocks (252 FDTD blocks and
324 UPML blocks).

When the number of blocks and their sizes are decided, the master computes
the workload of each block and then, in the routine multiblock_partition,
computes a distribution of the blocks onto the MPI ranks.

For 145.lGemsFDTD, NbF is the largest approved value that is less than
or equal to the number of processes p. For p <= 256, the same precalculated
table as for 113.GemsFDTD is used to decide whether a NbF value is approved,



whereas for p > 256 we demand that (NbT/NbF )/(1 + 6/ 3
√

NbF ) < 1.3 in order
to approve NbF . This makes sure that NbT/NbF is bounded.

After a block distribution is computed, the master loops through the blocks
and broadcasts information about each block. In 113.GemsFDTD this part had
65×NbT+25 four-byte broadcasts. In 145.lGemsFDTD this has been reduced to
7×NbT+11 small broadcasts by merging adjacent broadcasts. Further reductions
were possible but would have meant extensive rewrites of the code.

2.4 Summary of the main changes

The major improvements in 145.lGemsFDTD compared to 113.GemsFDTD for
the phases where they apply:

Initialization

1. Develop a new multiblock_partition routine designed for larger numbers
of processes, which produces a completely different domain decomposition.

2. Use of fewer MPI_Bcast operations within multiblock_distribute and as-
sociated routines.

3. Separation of broadcasts and allocations in the block distribution phase,
such that the rank that owns the block delays allocations for the block until
after block information has been broadcasted for all blocks.

Time-stepping iterations

1. Removal of expensive recomputation of the communication pattern used to
exchange blocks in multiblock_communicate, since the same communica-
tion pattern is used in each timestep.

2. Replacement of MPI_Sendrecv with non-blocking MPI_Isend and MPI_Irecv
communication.

3. Interchanging loops in the near-to-far-field transformation computations.
(This improvement was found analyzing the serial code 459.GemsFDTD.)

3 Performance measurements & analyses

During the course of development of GemsFDTD, performance measurements
of each version were done on a variety of platforms and with different compilers
to verify the portability and effectiveness of each of the modifications. Although
benefits depend on the respective processor, network and compiler/optimizer
capabilities, execution performance analysis with Scalasca and the improvement
achieved for a representative example system are studied in detail.



3.1 Execution scalability

The original version of the GemsFDTD benchmark code (113.GemsFDTD SPEC
in MPI2007 v1.1) and revised version (145.lGemsFDTD in SPEC MPI2007 v2.0)
were executed on the HECToR Cray XT4 [9] with varying numbers of processes.
The XT4 has quad-core 2.3 GHz AMD Opteron processors in four-socket com-
pute blades sharing 8 GiB of memory, allowing the benchmark code to run with
32 or more MPI processes. The codes were built with PGI 9.0.4 compilers using
typical optimization flags “-fastsse -O3 -Mipa=fast,inline” as well as processor-
specific optimization. Although 113.GemsFDTD would normally be run with
a ‘medium-sized’ input dataset (sphere.pec), to allow comparison of the two
versions we ran both with the ‘large-sized’ training (i.e., ltrain) dataset using
RAk_funnel.pec. It was convenient to use only 50 timesteps rather than the
lref benchmark reference number of 1500 timesteps, since previous analysis of
GemsFDTD [7] determined that there was no significant variation in execution
performance for each timestep. Full benchmark execution time can be estimated
by multiplying the time for 50 iterations by a factor of 30 and adding the ini-
tialization/finalization time.

Execution times reported for the entire code and only for the 50 timestep loop
iterations of both versions are shown in Figure 1. While the iterations are seen
to scale well in both versions, the initialization phases only scale to 128 and 512
processes, respectively. For the original code, the initialization phase becomes
particularly dominant, even with only 256 processes, and makes it prohibitive
to run at larger scales.

3.2 Scalasca performance analyses

Both versions of GemsFDTD were prepared for measurement with the Scalasca
instrumenter (1.3 release), which configured the Cray/PGI compiler to auto-
matically instrument each user-level source routine entry and exits, and linked
with its measurement library which include instrumented wrappers for MPI li-
brary routines. The instrumented executables were then run under the control of
the Scalasca measurement and analysis nexus within single batch jobs (to avoid
impact of acquiring different partitions of compute nodes in separate jobs).

By default, a Scalasca runtime summarization experiment consisting of a
full call-path execution profile with auxilliary MPI statistics for each process
is collected and stored in a unique archive directory. With all of the user-level
source routines instrumented, there can be undesirable measurement overheads
for small frequently-executed routines. An initial summary experiment is there-
fore scored to identify which routines should be filtered: with GemsFDTD, the
names of nine routines were placed in a text file and specified to be filtered from
subsequent measurements in Scalasca summary and trace experiments.

Scalasca summary analysis reports contain a breakdown of the total run time
into pure (local) computation time and MPI time, the latter split into time for
collective synchronization (i.e., barriers), collective communication and point-
to-point communication, as detailed in Figure 2. Both code versions show good
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Fig. 1. Execution times of original and revised GemsFDTD versions with ‘ltrain’
dataset for a range of configuration sizes on Cray XT4.
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Fig. 2. Scalasca summary analysis breakdown of executions of original and revised
GemsFDTD versions with ‘ltrain’ dataset on Cray XT4 (averages of all processes).



scaling of the computation time, with the new version demonstrating better ab-
solute performance (at any particular scale) and better scalability overall. The
extremely poor scalability of the original code version is due to the rapidly in-
creasing time for collective communication, isolated to the numerous MPI_Bcast
calls during initialization. Collective communication in the revised version is
seen growing significantly at the largest scale, however, the primary scalability
impediment is the increasing time for explicit barrier synchronization (which
is not a factor in the original version). Point-to-point communication time is
notably reduced in the revised version, but also scales less well than the local
computation, which it exceeds for 1024 or more processes.

Scalasca automatic trace analysis profiles are similar to those produced by
runtime summarization, however, they include assessments of waiting times in-
herent in MPI collective and point-to-point operations, such as Late Sender time
when an early receiver process must block until the associated message transfer
is initiated. Trace analysis profiles from 256-process experiments as presented by
the Scalasca analysis report explorer GUI are shown in Figures 3 and 4 compar-
ing the original and improved GemsFDTD execution performance. In Figure 3,
with the metric for total time selected from the metric trees in the leftmost
panes, and the routines that constitute the initialization phase of GemsFDTD
selected from the central call-tree panes, the distribution of times per process
is shown with the automatically acquired Cray XT4 machine topology in the
right panes. The MPI process with rank 0 is selected in the v2.0 display, and the
two processes in the uppermost row of compute nodes that idled throughout the
v1.1 execution can be distinguished. (Only the subset of the HECToR Cray XT4
associated with the measured execution is shown, with non-allocated compute
nodes grayed or dashed.) In contrast, Figure 4 features Point-to-point communi-
cation time selected from the metric tree and the associated MPI routines within
multiblock communicate of the solver iteration phase.

The Scalasca analysis reports from GemsFDTD v1.1 and v2.0 trace experi-
ments with 256 processes on the Cray XT4 are compared in Table 1 to examine
the 12-fold speedup in total execution time of the revised version. Dilation of
the application execution time with instrumentation and measurement process-
ing was under 2% compared to the uninstrumented reference version.

Initialization is more than 40 times faster through the combination of re-
working the multiblock_partition calculation and using almost 9 times fewer
broadcasts in multiblock_distribute (even though 3% more bytes are broad-
cast). Note that in v1.1 the majority of broadcast time (measured in MPI_Bcast)
is actually Late Broadcast time on the processes waiting for rank 0 to complete
multiblock_partition, however, the non-waiting time for broadcasts is also
reduced 20-fold for v2.0. Improvement in the solver iterations is a more modest
33%, however, still with speedup in both calculation and communication times.
Significant gains were therefore realized through use of non-blocking communica-
tion and improved load balance (including exploiting the two previously unused
processes), despite 5% more data being transfered in multiblock_communicate.



Fig. 3. Scalasca analysis report explorer presentations of GemsFDTD trace experi-
ments with ‘ltrain’ dataset for 256 processes on Cray XT4 (v1.1 above and v2.0 below)
highlighting 675-fold improvement of total time for the initialization phase.



Fig. 4. Scalasca analysis report explorer presentations of GemsFDTD trace experi-
ments with ‘ltrain’ dataset for 256 processes on Cray XT4 (v1.1 above and v2.0 below)
highlighting 2-fold improvement of point-to-point communication time in solver phase.



Table 1. Selected performance metrics and statistics for Scalasca trace experiments
for GemsFDTD versions with ‘ltrain’ dataset for 256 MPI processes on Cray XT4.
(Maximum of any individual measured process where qualified.)

GemsFDTD v1.1 v2.0

Reference execution time [s] 611.3 47.8
Measured execution time [s] 613.8 48.6

Initialization 561.1 13.1
– multiblock partition time [s] (max) 509.5 0.2
– multiblock distribute time [s] (max) 554.9 0.9

– broadcast time [s] (max) 554.1 0.3
– Late Broadcast time [s] (max) 552.0 0.2

– number of broadcasts (max) 37465 4214
– bytes incoming by broadcast [kiB] (max) 146.3 150.1

Time-stepping iterations 52.6 35.0
– Calculation time [s] (max) 47.6 34.4
– Communication time [s] (max) 33.9 25.3

– number of sends/receives (max) 2900 2200
– bytes sent [MiB] (max) 134.5 140.7
– Late Sender time [s] (max) 33.7 25.2

– number of Late Senders (max) 1455 50

Scalasca tracing
– Trace total size [MiB] 410 96
– Trace collection time [s] 0.5 0.4
– Trace analysis time [s] 227.6 2.3

– event replay analysis [s] 2.2 0.5
– event timestamp correction [s] 223.8 1.3

– number of violations corrected 2529 762

The Scalasca traces are less than one quarter of the size for the v2.0 version
due to the reduced number of broadcasts, requiring less than half a second to
write the traces to disk and unify the associated definitions. Replay of recorded
events requires correspondingly less time, however, the time processing event
timestamps to correct logical inconsistencies arising from the unsynchronized
clocks on Cray XT compute nodes is reduced by over 170-fold, since correcting
timestamps of collective operations is particularly expensive. For the v2.0 version
of GemsFDTD at this scale, Scalasca trace collection and automatic analysis
require only 6% additional job runtime compared to the usual execution time.

4 Conclusions

The comprehensive analyses provided by the Scalasca toolset were instrumental
in directing the developer’s performance engineering of a much more efficient
and highly scalable GemsFDTD code. Since these analyses show that there are
still significant optimization opportunities at larger scales, further engineering
improvements can be expected in future.
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