
Cluster Comput (2013) 16:171–189
DOI 10.1007/s10586-011-0181-8

Extending the scope of the controlled logical clock

Daniel Becker · Markus Geimer · Rolf Rabenseifner ·
Felix Wolf

Received: 21 July 2011 / Accepted: 11 August 2011 / Published online: 23 September 2011
© Springer Science+Business Media, LLC 2011

Abstract Event traces are helpful in understanding the per-
formance behavior of parallel applications since they allow
the in-depth analysis of communication and synchroniza-
tion patterns. However, the absence of synchronized clocks
on most cluster systems may render the analysis ineffec-
tive because inaccurate relative event timings may misrep-
resent the logical event order and lead to errors when quan-
tifying the impact of certain behaviors or confuse the users
of time-line visualization tools by showing messages flow-
ing backward in time. In our earlier work, we have de-
veloped a scalable algorithm called the controlled logical
clock that eliminates inconsistent inter-process timings post-
mortem in traces of pure MPI applications, potentially run-
ning on large processor configurations. In this paper, we
first demonstrate that our algorithm also proves beneficial
in computational grids, where a single application is ex-
ecuted using the combined computational power of sev-
eral geographically dispersed clusters. Second, we present

D. Becker (�) · F. Wolf
German Research School for Simulation Sciences, 52062
Aachen, Germany
e-mail: d.becker@grs-sim.de

F. Wolf
e-mail: f.wolf@grs-sim.de

M. Geimer · F. Wolf
Jülich Supercomputing Centre, 52425 Jülich, Germany

M. Geimer
e-mail: m.geimer@fz-juelich.de

R. Rabenseifner
University of Stuttgart, 70550 Stuttgart, Germany
e-mail: rabenseifner@hlrs.de

F. Wolf
RWTH Aachen University, 52056 Aachen, Germany

an extended version of the algorithm that—in addition to
message-passing event semantics—also preserves and re-
stores shared-memory event semantics, enabling the correc-
tion of traces from hybrid applications.

Keywords Event tracing · Timestamp synchronization

1 Introduction

One technique widely used by cluster tools is event tracing
with a broad spectrum of applications ranging from perfor-
mance analysis [40], performance prediction [32] and mod-
eling [46] to debugging [27]. Recording time-stamped run-
time events in event traces is especially helpful for under-
standing parallel performance because it enables the analy-
sis of temporal relationships between concurrent activities.
Obviously, the accuracy of such analyses depends on the
comparability of timestamps taken on different processors.
Measuring the time between concurrent events necessitates
either a global clock or well-synchronized processor clocks.
While some custom-built clusters such as IBM Blue Gene
offer sufficiently accurate global clocks, most commodity
clusters provide only processor clocks that are either entirely
non-synchronized or synchronized only within disjoint par-
titions (e.g., SMP nodes). Moreover, external software syn-
chronization via NTP is usually not accurate enough for the
purpose of event tracing [38]. Assuming that potentially dif-
ferent drifts of local clocks remain constant over time, linear
offset interpolation can be applied to map local onto global
timestamps. However, given that the drift of realistic clocks
is usually time dependent, the error of timestamps derived
in this way can easily lead to a misrepresentation of the
logical event order imposed by the semantics of the under-
lying communication substrate [6]. Inaccurate timestamps

mailto:d.becker@grs-sim.de
mailto:f.wolf@grs-sim.de
mailto:m.geimer@fz-juelich.de
mailto:rabenseifner@hlrs.de

172 Cluster Comput (2013) 16:171–189

may lead to false conclusions during performance analysis,
for example, when the impact of certain behaviors is quan-
tified, or—even more strikingly—may confuse the user of
trace visualization tools by showing messages flowing back-
ward in time.

In our earlier work [7], we have introduced a scalable
timestamp-synchronization algorithm that eliminates incon-
sistent inter-process timings postmortem in traces of pure
MPI applications. This algorithm, the most recent version
of the controlled logical clock (CLC) [44], restores the con-
sistency of inter-process event timings based on happened-
before relations imposed by point-to-point and collective
MPI event semantics. Scalability is ensured by performing
the corrections for individual processes in parallel while re-
playing the original communication recorded in the trace.
The algorithm has been integrated into the Scalasca trace-
analysis framework [22]. In this paper, we extend the scope
of our algorithm and its implementation within Scalasca in
two ways.

We first demonstrate that the algorithm can be employed
also in grid environments that allow geographically dis-
persed clusters to be used as a single coherent system, an ar-
rangement also known as a metacomputer. This is needed if
the computational power of any single cluster available to an
application is insufficient for the computational task at hand.
A particular challenge to be addressed before the algorithm
can be applied is the accurate measurement of clock offsets
across a hierarchical network with different latency levels.
These measurements are a prerequisite of the linear interpo-
lation performed before applying our algorithm to improve
the quality of the timestamps delivered as its input.

Second, we extend the algorithm towards hybrid applica-
tions. To exploit the memory of shared-memory nodes with
larger numbers of cores more efficiently, many code devel-
opers now resort to using OpenMP for node-internal work
sharing, while employing MPI for parallelism among differ-
ent nodes, making hybrid programming increasingly popu-
lar. However, the current version of the CLC algorithm is un-
suitable for hybrid codes because it neither restores nor pre-
serves happened-before relations between shared-memory
events. To remove this limitation, we (i) identify happened-
before relations in OpenMP constructs and library calls and
integrate them into the existing algorithmic framework and
(ii) extend the parallel replay mechanism such that it can
replay traces from hybrid codes.

The remainder of this article is organized as follows: Af-
ter reviewing related work in Sect. 2, we introduce the pure
MPI version of the CLC algorithm along with its limita-
tions in Sect. 3. In Sect. 4, we describe the infrastructure
needed to run it on a metacomputer. In addition, we validate
the behavior of our algorithm in such an environment with
respect to (i) accuracy, showing that the collaterally intro-
duced deviations of local interval lengths remain within ac-
ceptable limits, and (ii) scalability. In Sect. 5, we present the

extensions required for correctly synchronizing the times-
tamps that occur in hybrid programs during the execution
of OpenMP constructs. Here, we describe the hybrid paral-
lelization of the extended algorithm and its implementation
within Scalasca, again followed by an experimental evalua-
tion of the algorithm’s accuracy and scalability. Finally, in
Sect. 6 we summarize our results and outline future work.

2 Related work

In this section we cite several approaches for avoiding or
correcting inconsistent timestamps, applied either online or
postmortem. Network-based synchronization protocols aim
at synchronizing distributed clocks before reading them. The
clocks query the global time from reference clocks, which
are often organized in a hierarchy of servers. For instance,
NTP [38] uses widely accessible and already synchronized
primary time servers. Secondary time servers and clients
can query time information via both private networks and
the Internet. To reduce network traffic, the time servers are
accessed only at regular intervals to adjust the local clock.
Jumps are avoided by changing the drift (i.e., the rate at
which the offset changes over time) while leaving the ac-
tual time unmodified. Unfortunately, varying network laten-
cies limit the accuracy of NTP to about one millisecond
compared to a few microseconds required to guarantee the
correct total event order of event traces taken on clusters
equipped with modern interconnect technology.

Time differences among distributed clocks can be charac-
terized in terms of their relative offset and drift. In a simple
model assuming different but constant drifts, the global time
can be established by measuring offsets to a designated mas-
ter clock using Cristian’s probabilistic remote clock read-
ing technique [11]. After estimating the drift, the local time
can be mapped onto the global (i.e., master) time via lin-
ear interpolation. Offset values among participating clocks
are measured either at program initialization [16] or at ini-
tialization and finalization [36], and are subsequently used
as parameters of the linear correction function. So as not
to perturb the program, offset measurements in between are
usually avoided, although a recent approach proposes peri-
odic offset measurements during global synchronization op-
erations while limiting the effort required in each step by
resorting to indirect measurements across several hops [12].
While linear offset interpolation might prove satisfactory for
short runs (or interpolation intervals), measurement errors
and time-dependent drifts may create inaccuracies and vio-
late happened-before relations during longer runs [6]. Ad-
ditionally, repeated drift adjustments caused by NTP may
impede linear interpolation, as they deliberately introduce
non-constant drifts.

If linear interpolation alone turns out to be inadequate to
achieve the desired level of accuracy, error estimation allows

Cluster Comput (2013) 16:171–189 173

Fig. 1 Duda et al. and Hofmann calculate clock errors through the
differences of message transfer times in both directions between two
processes

the retroactive correction of clock values in event traces after
assessing synchronization errors among all distributed clock
pairs. First, difference functions among clock values are cal-
culated from the differences between clock values of receive
events and clock values of send events (plus the minimum
message latency). Second, a medial smoothing function can
be found and used to correct local clock values because for
each clock pair two difference functions exist. Regression
analysis and convex hull algorithms have been proposed by
Duda et al. [15] to determine the smoothing function. Using
a minimal spanning tree algorithm, Jezequel [30] adopted
Duda’s algorithm for arbitrary processor topologies. In ad-
dition, Hofmann [25] improved Duda’s algorithm using a
simple minimum/maximum strategy and further proposed
that the execution time should be divided into several in-
tervals to compensate for different clock drifts in long run-
ning applications. Figure 1 shows the principles underlying
Duda’s and Hofmann’s algorithms with two processes ex-
changing messages. Figure 1(a) shows the time lines of two

processes i and k along with the process-local clock values
Ci and Ck . The clock errors Ei and Ek of the process-local
clocks can be described as the difference between the local
clock values and the physical time t (i.e., wall-clock time),
respectively. As can be seen, message arrows from process
i to k are shown in light gray, whereas message arrows from
process k to i are shown in dark gray. In Figs. 1(b) and 1(c),
clock differences Ck.recv − Ci.send of messages from process
i to k are located in the upper part, whereas clock differences
Ck.send − Ci.recv of messages from process k to i are located
in the bottom part. These differences are equal to the clock
error differences plus (upper part) or minus (bottom part) the
individual message delays. Any line between these areas is
an approximation of the clock error differences. Using such
an approximation function to correct clock values guaran-
tees the logical event order. In Fig. 1(b), these time differ-
ences are enclosed by their convex hulls (i.e., light gray and
dark gray areas). In addition, two of the dotted lines repre-
sent the lines with the largest and smallest possible slope
between both convex hulls. Duda et al. calculate the ap-
proximation function as the interior bisector of the angle
between the two linear functions, shown as the third dot-
ted line. As can be seen in Fig. 1(c), Hofmann reduced the
computational effort by introducing distinct analysis inter-
vals, in which the convex hulls are determined by a simple
minimum/maximum strategy.

Hofmann and Hilgers [26] also simplified Jezequel’s
algorithm for handling multi-processor topologies with a
shortest path algorithm from graph theory. A modifica-
tion aimed at handling cases of non-existing communica-
tion relations between some of the application processes
is described in [45]. Biberstein et al. [8] rewrote Hofmann
and Hilgers’s algorithm for use on the Cell BE architec-
ture [10] using a short and intelligible notation. Their ver-
sion solves the clock condition problem only for short inter-
vals (i.e., without splitting them into sub-intervals for han-
dling non-linear drifts of physical clocks). Babaoǧlu and
Drummond [2, 14] have shown that clock synchronization is
possible at minimal cost if the application makes a full mes-
sage exchange between all processors at sufficiently short
intervals. However, jitter in message latency, nonlinear re-
lations between message latency and message length, and
one-sided communication topologies limit the usefulness of
error estimation approaches. References to additional error
estimation approaches can be found in a survey by Yang and
Marsland [52].

In contrast, logical clock synchronization uses happened-
before relations among send and receive pairs to synchro-
nize distributed clocks. Lamport introduced a discrete logi-
cal clock [33] with each clock being represented by a mono-
tonically increasing software counter. As local clocks are in-
cremented after every local event and the updated values are
exchanged at synchronization points, happened-before rela-
tions can be exploited to further validate and synchronize

174 Cluster Comput (2013) 16:171–189

Fig. 2 Lamport’s discrete logical clock: the clock value of the encir-
cled event on process B is updated based on the maximum of both the
incremented local clock value on process B and the incremented clock
value of the sending event on process A

distributed clocks. If a receive event appears before its cor-
responding send event, that is, if a clock condition violation
occurs, the receive event is shifted forward in time according
to the clock value exchanged. Figure 2 illustrates the differ-
ent steps of Lamport’s logical clock using a simple example
consisting of three processes exchanging messages. The fig-
ure shows the time lines of the three processes along with
different events and messages. While events are depicted as
small squares, messages are shown as arrows pointing in the
direction of the communication. The clock value is shown
for each event in the center of its square. As can be seen, lo-
cal clock values are incremented after every local event. The
incremented values of send events are sent along with the
message. The clock value of a receive event is calculated as
the maximum of the incremented local clock value and the
incremented clock value of the corresponding send event.
For instance, the encircled event on process B (Fig. 2) is
the second local event on that process and so its local clock
value would be 2. Given that this event receives a message
from process A, its clock value is updated based on both the
local and remote clock value. Here, the incremented local
clock value is 2 and the incremented clock value of the send
event on process A is 3. Since the maximum of both is 3,
the new value is set to 3. While Lamport’s logical clock pre-
serves the relative order of events, it does not account for
different temporal distances between events. In particular,
events happening at different wall-clock times may have the
same logical clock value, as can be seen in Fig. 2 for the sec-
ond events of processes A and C. Therefore, Lamport’s log-
ical clock cannot be used for certain performance-analysis
applications such as measuring wait states.

As an enhancement of Lamport’s discrete logical clock,
Fidge [18, 19] and Mattern [37] proposed a vector clock.
In their scheme, each processor maintains a vector repre-
senting all processor-local clocks. While the local clock is
advanced with each local event as before, the local vector
is updated after receiving a message using an element-wise
maximum operation between the local vector and the remote
vector that has been sent along with the message. The vec-
tor clock is used in some monitoring tools [17, 49] and, in

a modified form, to distinguish in event traces between pri-
mary wait states and secondary ones that are merely caused
by propagation [28]. Furthermore, global events (e.g., break-
points) are introduced in [23], while in [43] spontaneous
events (e.g., collisions on a network) are taken into account.
Limits of the logical clock and the vector clock are eventu-
ally illustrated in [47].

Finally, Rabenseifner’s controlled logical clock (CLC)
algorithm [44], which is the subject of this paper, retroac-
tively corrects clock condition violations in event traces of
message-passing applications by shifting message events in
time while trying to preserve the length of intervals between
local events. The algorithm, which was recently extended
and parallelized by Becker et al. [7], restores the clock con-
dition using happened-before relations derived from both
point-to-point and collective MPI event semantics. Starting
from the parallel MPI version of the algorithm, this paper
describes its application in grid environments and its hy-
bridization, retaining its good accuracy and scalability char-
acteristics.

3 Controlled logical clock

Recording time-stamped runtime events in event traces is es-
pecially helpful for understanding the parallel performance
behavior because it enables the postmortem analysis of com-
munication and synchronization patterns. For instance, time-
line browsers such as Vampir [40] allow these patterns to
be visually explored, while the Scalasca toolset [22] scans
traces automatically for wait states that occur when pro-
cesses or threads fail to reach synchronization points in a
timely manner, for example, as a result of unevenly dis-
tributed workloads. Because we focus on a scalable times-
tamp synchronization method to be used within the Scalasca
trace-analysis toolset, we further explain Scalasca’s analysis
workflow, which is depicted in Fig. 3. To ensure scalability
of the wait-state search, the traces are scanned in parallel us-
ing as many processors as have been used to execute the tar-
get application itself. After loading the process-local traces
into the potentially distributed main memory of the machine,
Scalasca traverses them simultaneously while replaying the
original communication recorded in the trace to exchange
information relevant to the search. To increase the accuracy
of this analysis on clusters without global clock, Scalasca
applies the parallel CLC algorithm after the traces have been
loaded and before the wait-state analysis takes place. To op-
timize the fidelity of the correction, the timestamps first un-
dergo a pre-synchronization step, which performs linear off-
set interpolation based on offset measurements taken during
initialization and finalization of the target application. As an
alternative to the wait-state search, the corrected traces can
also be rewritten and visualized using a third-party time-line
browser such as Vampir.

Cluster Comput (2013) 16:171–189 175

Fig. 3 Parallel trace-analysis
workflow in Scalasca. Gray
rectangles denote programs and
white rectangles with the upper
right corner turned down denote
files. Stacked symbols indicate
multiple instances of programs
or files running or being
processed in parallel

Table 1 Event sequences
recorded for typical MPI and
OpenMP operations

Operation name Event sequence

MPI

MPI_Send() (enter, send, exit)

MPI_Recv() (enter, receive, exit)

MPI_Allreduce() (enter, MPI collective exit)

for each participating process

OpenMP

parallel construct (fork, enter, OpenMP collective exit, join) for the participating master thread

(enter, OpenMP collective exit) for each participating worker thread

Implicit and explicit barrier (enter, OpenMP collective exit) for each participating thread

omp_set_lock (enter, lock-acquisition, exit)

omp_unset_lock (enter, lock-release, exit)

critical construct (lock-acquisition, enter, exit, lock-release)

atomic construct (enter, exit)

As the algorithm’s foundation, the information Scalasca
records for an individual event includes at least the time-
stamp, the location (e.g., the process or thread) causing the
event, and the event type. Depending on the type, addi-
tional information may be supplied. The event model distin-
guishes between programming-model independent events,
such as entering and exiting code regions, and events related
to MPI and OpenMP operations. MPI-related events include
events representing point-to-point operations, such as send-
ing and receiving messages, and an event representing the
completion of collective MPI operations. OpenMP-related
events, which are fashioned according to the POMP event
model [39], include events that represent the creation and
termination of a team of threads, leaving a parallel or bar-
rier region, and acquiring or releasing lock variables. A fork
event indicates that the master thread creates a team of
threads (i.e., workers) and a join event record indicates that
the team of threads is terminated. In addition, the collective
OpenMP exit event indicates that the program leaves either a
parallel or a barrier region. Furthermore, a lock-acquisition
event indicates that a lock variable is set, whereas a lock-
release event indicates that this variable is unset. Nested par-
allelism and tasking is not yet supported in POMP, although
an extension for tasking is already in preparation [34]. Event
sequences recorded for typical MPI and OpenMP operations
are given in Table 1. In preparation of its extensions, we

now briefly recapitulate the basic principles of the CLC al-
gorithm in the remainder of this section, where we explain
how it is currently used to synchronize the timestamps of
pure MPI applications.

In general, clock errors may have both quantitative and
qualitative effects. The first category includes changing the
absolute position of an event in the trace or the distance
between two consecutive events. As shown in a recent
study [6], the second category of effects, which manifests
as a change of the logical event order, are also very com-
mon as soon as an application is traced for more than a
few minutes. If an event e happened before another event
e′, the happened-before relation e → e′ between both events
requires that their respective timestamps C(e) and C(e′) sat-
isfy the clock condition [33]:

∀ e, e′ : e → e′ �⇒ C(e) < C(e′). (1)

The equation given above can be refined by requiring a
temporal minimum distance (i.e., latency) between the two
events—if its amount is known. While the errors of sin-
gle timestamps are hard to assess, obvious violations of the
clock condition between events with a logical happened-
before relation, such as sending and receiving a message,
can be easily detected and offer a toehold to increase the
fidelity of inter-process timings. If the clock condition is vi-

176 Cluster Comput (2013) 16:171–189

Fig. 4 Backward and forward amortization in the controlled logical
clock algorithm

olated for a send-receive event pair, the receive event is cor-
rected (i.e., moved forward in time). To preserve the length
of intervals between local events, events following or im-
mediately preceding the corrected event are also adjusted.
These adjustments are called forward and backward amorti-
zation, respectively.

Figure 4 illustrates the different steps of the CLC algo-
rithm using a simple example consisting of two processes
exchanging a single message. The subfigures show the time
lines of the two processes along with their send (S) or re-
ceive (R) event, each of them enclosed by two other events
(Ei). Figure 4(a) shows the initial event trace based on the
measured timestamps with insufficiently synchronized local
clocks. It exhibits a violation of the clock condition by hav-
ing the receive event appear earlier than the matching send
event. To restore the clock condition, R is moved forward
in time to be lmin ahead of S (Fig. 4(b)), with lmin being the

minimum message latency. Because the distance between R

and E4 is now too short, E4 is adjusted during the forward
amortization to preserve the length of the interval between
the two events (Fig. 4(c)). However, the jump discontinuity
introduced by adjusting R affects not only events later than
R but also events earlier than R. This is corrected during the
backward amortization, which shifts E2 closer to the new
position of R (Fig. 4(d)). As can be seen in this example,
the algorithm only moves events forward in time.

Moreover, happened-before relations also exist among
the constituent events of collective MPI operations. The al-
gorithm considers a single collective message-passing oper-
ation as being composed of multiple point-to-point opera-
tions, taking the semantics of the different flavors of such
operations into account (e.g., 1-to-N, N-to-1, . . .). For in-
stance, let us consider an N-to-1 operation such as gather
where one root process receives data from N other pro-
cesses. Given that the root process is not allowed to exit
the operation before it has received data from the last pro-
cess to enter the operation, the clock condition must be ob-
served between the enter events of all sending processes and
the exit event of the receiving root process. Because the al-
gorithm synchronizes the timestamps of concurrent events
using happened-before relations, the respective “receive”
event is put forward in time whenever the matching “send”
event appears too late in the trace to satisfy the clock condi-
tion. In reference to the fact that this method is based on log-
ical clocks, the send and receive event types assigned during
this mapping are called the logical event types as opposed
to the actual event types (e.g., enter, collective exit) spec-
ified in the event trace. The logical event type can usually
be derived from the name of the MPI operation and the role
a process plays in it. For the sake of simplicity, the current
implementation uses two different values for the latency: the
inter-node and the intra-node latency. Following a conser-
vative approach aimed at avoiding overcorrection, an extra
collective latency was not considered, as the duration of col-
lective operations may depend on many factors that are hard
to identify, some of them even hidden inside the underlying
MPI implementation.

Although the CLC algorithm removes residual inconsis-
tencies (i.e., those left after applying linear offset interpola-
tion) in event traces of MPI applications postmortem, it is
limited by the following factors:

– The offset interpolation, as discussed in Sect. 2, does not
account for the hierarchy of latencies as found in a meta-
computer and thus may generate timestamps not suitable
as input data for the CLC algorithm [4].

– The current implementation of the CLC algorithm does
not account for inter-machine latencies during wide-area
communications as found in a metacomputer.

– The CLC algorithm does not account for direct violations
of shared-memory event semantics in the original trace.

Cluster Comput (2013) 16:171–189 177

Although rare, instances of such violations have been re-
ported [6].

– Probably most important, the CLC algorithm does not
preserve happened-before relations in shared-memory op-
erations, because the constituent events of such constructs
are currently treated as events not involved in happened-
before relations with events of other threads. Thus, the
restoration of message-passing semantics may introduce
violations of shared-memory event semantics even though
they were not violated in the original trace.

For the reasons mentioned above, the current CLC algorithm
is not suitable for metacomputer applications that use dis-
tributed clusters simultaneously and hybrid cluster applica-
tions that use MPI and OpenMP in combination.

To address the limitations for metacomputing applica-
tions, Sect. 4 describes the necessary infrastructure changes
for metacomputing environments and demonstrates that the
CLC algorithm is beneficial in such an environment. Fi-
nally, to address the limitations for hybrid cluster applica-
tions, Sect. 5 describes the algorithmic extensions required
to restore and preserve not only point-to-point and collective
message-passing but also shared-memory event semantics,
which are relevant for hybrid codes. Since rapidly increas-
ing parallelism demands that this correction scales to large
numbers of processes and threads, this section also shows
how the hybrid version is parallelized and integrated into
the scalable Scalasca trace-analysis framework.

4 Metacomputer

The solution of critical numerical problems may require
more processing power and memory capacity than is avail-
able on a single cluster. Often, coupling multiple indepen-
dent clusters (i.e., metahosts) to form a more powerful meta-
computer [48] is the only viable method to increase the re-
sources available for a single application. Although appli-
cations can benefit from the increased parallelism offered
by a metacomputer, as supported by a study by Wong and
Goscinski [51], achieving satisfactory application perfor-
mance is difficult. In particular, algorithm design must ac-
count for the hierarchies of latencies and bandwidths in ad-
dition to the heterogeneous hardware architectures found in
such environments. Hence, performance optimization is a
crucial but non-trivial task that needs adequate tool support.
For example, wait states introduced as a result of using a
metacomputer can be identified via automatic pattern search
in event traces, an analysis mode offered by Scalasca. In
fact, Scalasca has already been used to optimize the perfor-
mance of the multi-physics code MetaTrace on the heteroge-
neous and geographically dispersed metacomputing testbed
Viola by more than a factor of two [5].

4.1 Infrastructural extensions

Because its distributed memory and processing scheme can
establish the global view of trace data in the absence of a
global file system, the parallelized CLC algorithm is well
suited for increasing the accuracy of trace-analysis tools
in computational grids. However, the algorithm necessi-
tates timestamps with limited errors, which can be achieved
through linear offset interpolation between program start
and end.

Scalasca’s simple linear offset interpolation mechanism,
as discussed in Sect. 3, is inaccurate because of the network
links between different metahosts, whose latencies may be
an order of magnitude larger than those of the internal net-
works. As a consequence, offset measurements across these
links are less accurate in absolute terms than those across
the internal networks. When processes living on different
nodes of the same metahost measure their offset relative to
a master process living on another metahost, they might be
well-synchronized relative to the master because the accu-
racy of the offset is sufficient in relation to the message la-
tency of the external network. However, the errors of offsets
relative to each other, which are calculated by subtracting
their offsets relative to the master, might be unacceptably
high in relation to the latency of the internal network be-
tween them [4]. More precisely, the error of the offset mea-
surement between two processes at a given moment (calcu-
lated or measured) should be smaller than half of the mes-
sage latency between them to ensure the clock condition.
As explained above, this requirement may be violated if the
offset between processes connected by a low-latency link is
derived from offsets between processes connected by a high-
latency link because it is assumed that the absolute error of
offset measurements grows with the latency.

As a consequence, we use a hierarchical offset mea-
surement scheme to account for the hierarchy of laten-
cies which is typical for metacomputing environments with
different geographically dispersed clusters (i.e., metahosts)
connected via wide-area networks. Given that higher laten-
cies make offset measurements across these wide-area net-
works less accurate than measurements across local-area
networks, offset values within and across metahosts are de-
termined separately and finally combined to individual off-
sets between arbitrary processes. More precisely, each meta-
host first determines a local master process. After that, one
metamaster is chosen among all the local masters. Now all
local masters measure their offset relative to the metamas-
ter. After this has been done, all worker processes exchange
ping-pongs with their local master to determine the offset
relative to the local master. If a metahost already provides
a metahost-global clock, this second step is omitted. Fi-
nally, the offset to the metamaster is calculated by adding
the two measured offset values. Compared to measuring

178 Cluster Comput (2013) 16:171–189

all offsets relative to just one single master clock, the hi-
erarchical scheme has the advantage that all clocks within
the same metahost use the same inter-metahost offset mea-
surement and thus their relative offset remains unaffected
from distorted wide-area measurements. More details can
be found in [4]. Although this hierarchical offset measure-
ment scheme already significantly increases the accuracy of
the overall analysis, traces may still exhibit clock condition
violations.

To remove residual inconsistencies in event traces taken
in metacomputing environments, the implementation of the
CLC algorithm itself has been extended such that it uses an
inter-machine latency to account for wide-area communi-
cations. This introduces a third latency level—in addition
to the inter-node and intra-node latency. The next section
presents results showing that the CLC algorithm removes
remaining inconsistencies in event traces taken in metacom-
puting environments and so demonstrates that the algorithm
also proves beneficial in such environments. Specifically, it
shows evaluation results of the CLC algorithm taken on the
NGS grid using the SMG2000 benchmark.

4.2 National Grid Service

To evaluate the controlled logical clock algorithm on a meta-
computer, measurements were taken on the UK National
Grid Service (NGS) grid [41]. The NGS is the core UK aca-
demic research grid and is intended for the production use of
computational and data grid resources. It provides coherent
electronic access for UK researchers to all computational-
and data-based resources and facilities required to carry out
their research, independent of resource or researcher loca-
tion. This section describes the network topology, hardware
architecture, and middleware of the NGS grid.

Network topology and hardware architecture The network
behind the NGS grid uses the Janet backbone, which links
various academic research sites in the UK—including the
sites at NGS—through a high-bandwidth and low latency
wide-area network. The network topology of the Janet back-
bone is illustrated in Fig. 5. NGS resources are linked to
this backbone and comprise the four founding members,
which are the Science and Technology Facilities Council’s
e-Science Centre, the University of Oxford, the White Rose
Grid (University of Leeds), and the University of Manch-
ester, plus various partner and affiliate sites.

The metahosts at the University of Leeds and the Uni-
versity of Manchester are located roughly 65 km apart from
each other with a measured MPI inter-machine latency of
1.3 ms:

– Located at the University of Leeds is a PC Linux cluster
with 48 nodes, each with 2 dual-core AMD Opteron pro-
cessors running at 2.6 GHz. The compute nodes commu-
nicate primarily through a Myrinet network with Myrinet

adapters integrated on each node. The measured MPI
inter-node latency was 4.4 µs, the measured MPI intra-
node latency was 1.5 µs.

– Located at the University of Manchester is a PC Linux
cluster with 48 nodes, each with 2 dual-core AMD
Opteron processors running at 2.6 GHz. The compute
nodes communicate primarily through a Myrinet network
with Myrinet adapters integrated on each node. The mea-
sured MPI inter-node latency was 4.4 µs, the measured
MPI intra-node latency was 1.5 µs.

The nodes of the connected compute clusters are linked
to the backbone with 1 Gbps adapters. The high bandwidth
of the backbone can only be used if the data transmission
between the clusters is done in parallel. Given that the net-
work is not only assigned to the NGS grid but also to other
UK academic research facilities, parallel applications on the
NGS grid share the available network resources with other
applications. Nonetheless, compute clusters can internally
use their own Myrinet network.

Middleware The co-scheduling of jobs on different clus-
ters in the NGS grid is managed by the Globus grid mid-
dleware and the Highly-Available Resource Co-allocator
(HARC) [20, 35]. While Globus provides software ser-
vices and libraries for resource monitoring and manage-
ment, HARC creates and manages reservations of single
resources and groups of resources. In a typical scenario,
Globus is responsible for transparent application startup at
each site, whereas HARC creates reservations for cross-site
jobs and implements the co-allocation across the wide-area
network.

In addition, NGS uses MPIg, an MPICH-based grid-
enabled MPI implementation, to establish direct connections
to the external network from each node [31]. MPIg allows
users to couple multiple machines of potentially different
architectures to run message-passing applications. In order
to take advantage of usually fast intra-machine networks,
MPIg is built on top of several devices supporting differ-
ent flavors of communication substrates. These substrates
include vendor-specific interconnects for fast intra-machine
communication as well as distinct TCP/IP interconnects for
inter-machine communication across a wide-area network.

4.3 Experimental evaluation

As a test application, the MPI version of the SMG2000
benchmark [9] was used on the NGS grid. A fixed 16 ×
16 × 8 problem size per process with five solver iterations
was configured. While linear interpolation can remove most
of the clock condition violations in traces of short runs, it is
usually insufficient for longer runs. Therefore a longer run
was emulated by inserting sleep statements immediately be-
fore and after the main computational phase so that it was

Cluster Comput (2013) 16:171–189 179

Fig. 5 Network topology of the
Janet backbone [29]

carried out ten minutes after initialization and ten minutes
before finalization. This corresponds to a scenario, in which
only distinct intervals of a longer run are traced with trac-
ing being switched off in between. Since full traces of long
running applications may consume a prohibitive amount of
storage space, the “partial” tracing emulated here mimics
the recommended practice of tracing only pivotal points that
warrant a more detailed analysis. For this purposes, the ar-
tificial chronological distance to the offset measurements
on either end of the run adjusted the interpolation interval

to roughly twenty minutes execution time. However, with
many realistic codes running for hours, this can still be re-
garded as an optimistic assumption. Compared to true par-
tial tracing of a longer SMG2000 run, this method had the
advantage that the total runtime including the actual com-
putational activity and therefore the distance between the
two offset measurements was roughly independent of the
processor configurations. Note that unless stated otherwise,
all numbers presented in this section represent the average
across at least three measurements.

180 Cluster Comput (2013) 16:171–189

Fig. 6 Percentage of (logical)
MPI messages with the order of
send and receive events being
reverse in the original trace

Fig. 7 Relative deviation of the
event distance: percentage of
SMG2000 execution time
consumed by intervals with
deviation above threshold on
NGS

To provide evidence of the frequency and the extent of
clock condition violations, Fig. 6 shows the percentage of
messages with the order of send and receive events being re-
versed in the original trace. All traces contained clock con-
dition violations which shows that further synchronization
is important for enabling accurate analyses of event traces
taken in metacomputing environments. The maximum ab-
solute displacement error in the original trace was 95.16 µs,
whereas the average error among violated events was 6.72 µs
across all configurations.

The CLC algorithm eliminates these violated event se-
mantics and thus improves the accuracy of inter-process tim-
ings, taking the hierarchy of latencies found on a metacom-
puter into account. However, the necessary corrections also
modify relative process-local event timings. To assess the
collateral error inflicted on local timings while applying the
CLC algorithm, we determined the relative deviation of lo-
cal interval lengths, considering two different types of inter-
vals:

– intervals between an event and the first event on the same
processor, which is referred to as the event position, and

– intervals between adjacent processor-local events (i.e., in-
tervals between an event and its immediate successor),
which is referred to as the event distance.

To account for the relatively long “correct” stretches artifi-
cially introduced by the sleep statements before and after the
main computation, only the middle section of the trace be-
tween the sleep statements was considered. The maximum
relative deviation of the event position across all measure-
ments was 0.37% and the maximum absolute deviation of
the event position was 99.57 µs, roughly corresponding to
the maximum displacement error observed. Moreover, Fig. 7
shows the relative deviation of the event distance across dif-
ferent numbers of processors. Each bar indicates the per-
centage of execution time consumed by intervals in a cer-
tain error class. It can be seen that larger deviations are still
possible in spite of very small averages. The results given
in Fig. 7 indicate that larger deviations are rare and that

Cluster Comput (2013) 16:171–189 181

Fig. 8 Scalability of the
parallel timestamp
synchronization and SMG2000
benchmark on the NGS grid

their influence on performance analysis results will usually
be negligible.

The runtime behavior of the parallel CLC algorithm was
also evaluated on the NGS grid. Figure 8 presents scal-
ing results of the parallel timestamp synchronization, the
Scalasca wait-state analysis, and the SMG2000 benchmark
itself. The results demonstrate that the wait-state analysis,
the parallel timestamp synchronization, and the execution
of the SMG2000 benchmark itself exhibit roughly equiva-
lent scaling behavior—a result of the replay-based nature of
the two analysis mechanisms and the communication-bound
performance characteristics of SMG2000. We can therefore
conclude that the CLC algorithm is suitable to run efficiently
in a metacomputing environment.

5 OpenMP

As a common trend that can be observed in response to the
proliferation of multicore processors with their rising num-
bers of cores per chip, the shared-memory nodes most clus-
ters are composed of are becoming much wider. At the same
time, the memory-per-core ratio is expected to shrink in the
long run. To utilize the available memory more efficiently,
many code developers now resort to using OpenMP for
node-internal work sharing, while employing MPI for par-
allelism among different nodes. This has the advantage that
(i) the extra memory needed to maintain separate private ad-
dress spaces (e.g., for ghost cells or communication buffers)
is no longer needed, (ii) the effort to copy data between these
address spaces can be reduced, and (iii) the number of exter-
nal MPI links per node can be kept at a minimum to improve
scalability.

The use of inherently different programming models in a
complimentary manner is usually referred to as hybridiza-
tion. While potentially improving efficiency and scalabil-
ity, hybridization usually comes at the price of increased
programming complexity. To ameliorate unfavorable effects
of hybrid parallelization on programmer productivity, de-
velopers therefore depend even more on powerful and ro-
bust software tools that help them find errors in and tune

the performance of their codes. Hence, this section presents
an extended version of the CLC algorithm that in addi-
tion to message-passing event semantics also preserves and
restores shared-memory event semantics (e.g., OpenMP-
related event semantics). Along with necessary algorithmic
extensions and the applied hybrid parallelization strategy,
this section also presents an experimental evaluation of the
algorithms accuracy and scalability.

5.1 Algorithmic extensions

So far, the CLC algorithm accounts for happened-before re-
lations in MPI event semantics. It does not yet account for
violations of OpenMP event semantics in the original trace,
making it unsuitable for OpenMP applications and hybrid
applications that use MPI and OpenMP parallelism in com-
bination. The potential implications of isolated corrections
based on MPI event semantics for the semantics of OpenMP
events are exemplified in Fig. 9 using the time lines of three
threads. Shown is a violated message exchange between
a send and receive pair followed by the execution of an
OpenMP parallel region. Here, the execution of the OpenMP
parallel region by two threads is enclosed by a fork (F) and
a join (J) event of the master thread. Whereas in Fig. 9(a)
the point-to-point event order is violated, the parallel regions
appear clearly after the worker has been forked. However,
while in Fig. 9(b) the logical point-to-point event order is
restored, now one thread enters the parallel region before it
has been forked, which is impossible. In other words, the al-
gorithm detects and corrects the clock condition violation
in the point-to-point message exchange, while the subse-
quent forward amortization introduces a new violation as a
result of the algorithm not accounting for event semantics in
shared-memory operations.

To enforce the correction also of happened-before rela-
tions in OpenMP regions (i.e., executed constructs) along-
side those implied by the MPI standard, we treat the events
involved as logical point-to-point communication events.
Thus, a happened-before relation between two events in an
OpenMP region is modeled as the exchange of a logical

182 Cluster Comput (2013) 16:171–189

Fig. 9 Violations of OpenMP event semantics in the wake of restoring
MPI event semantics

message between the two events. Depending on the temporal
dependencies among the events characterizing an OpenMP
region, an event can be mapped either onto a logical send
or onto a logical receive event. Once those mappings are
defined, our earlier algorithmic framework [7] can essen-
tially be reused. This is why we do not repeat the formu-
las here again and, instead, concentrate on the identification
of happened-before relations in OpenMP. Table 2 lists all
OpenMP regions currently supported by our event model
where we can identify happened-before relations and di-
vides them into groups with very similar logical commu-
nication patterns, which are depicted in Fig. 10. Although
not yet provided by our implementation, we also consider
tasking, whose integration into our event model is already
in progress. Note that the algorithmic extensions do neither
cover thread migration between cores nor shared-memory
event semantics imposed by cluster-wide OpenMP imple-
mentations (e.g., Intel Cluster OpenMP [24]) because in
those cases additional communication may be used, intro-
ducing further constraints which are currently ignored by
the algorithm.

Team creation and termination: Figure 10(a) shows the
time-line visualization of three threads executing a paral-
lel region. The master thread creates a team of threads (at
fork event F) whose members subsequently enter the paral-
lel region (at enter events Ei). In such a situation, the master
thread sends a logical message to all worker threads. The

Table 2 Classification of OpenMP regions

Category OpenMP region

Team creation begin of parallel region

Team termination end of parallel region

Barrier explicit barrier region

implicit barrier (if executed) at the end of

parallel region

loop region (i.e., for, do)

single region

workshare region

sections region

Locking omp_set_lock

omp_unset_lock

critical region

Tasking task region

taskwait region

fork event of the master thread is considered a logical send
event, whereas all the enter events of the corresponding par-
allel region, one from each worker in the team, are consid-
ered logical receive events. After each thread has left the
parallel region (at OpenMP collective exit events OXi), this
team of threads is terminated, as indicated by the join event
(J) of the master thread. Here, the master thread receives
logical messages from all worker threads. The join event (J)
of the master thread is considered a logical receive event. All
OpenMP collective exit events (OXi) of the corresponding
parallel region, one from each worker in the team, are con-
sidered logical send events.

Barrier: OpenMP barrier constructs are similar to MPI
barriers and therefore adhere to the same execution seman-
tics, which require that no thread is allowed to exit a barrier
region before the last thread has entered it. Such a situation
is illustrated in Fig. 10(b). All threads in the team are at the
same time sender and receiver. All enter events (Ei) are con-
sidered logical send events and all OpenMP collective exit
events (OXi) are considered logical receive events. This sit-
uation shows up in explicit and implicit barrier regions.

Locking: Figure 10(c) visualizes two threads competing
for a lock variable. First, one thread acquires (LA1) and re-
leases (LR) the lock variable. Then, the other thread locks
(LA2) the same variable after the lock has been released by
the first thread. In such a situation, two different happened-
before relations exist. First, the thread represented by the
upper time line is allowed to release the lock only after it
has been acquired (LA1 → LR). Since these two events
occur on the same time line, this relation is trivially en-
forced. Second, the thread represented by the lower time
line can only acquire the lock once it has been released by

Cluster Comput (2013) 16:171–189 183

Fig. 10 Happened-before relations in OpenMP regions visualized as
arrows representing logical messages

the other thread (LR → LA2). Given that a lock variable
can be owned only by one thread at a time, the releasing
thread sends a logical message to the next thread acquiring
the lock. The lock-acquisition event is considered a logical
receive event, whereas the lock-release event of the thread
releasing the lock is considered a logical send event. Since
at program start none of the locks is occupied, the first thread
acquiring a given lock does not need to wait for a preceding
lock-release event.

As Scalasca models the execution of critical constructs
with lock events, the above-mentioned happened-before re-
lations also exist in critical regions. Given that a critical con-
struct restricts the execution of a structured block to a single
thread at a time, a lock-acquisition event is recorded before a
thread enters the critical region, whereas a lock-release event
is recorded after the thread leaves the critical region. Be-
cause the same unspecified name or a user-defined name is
used to identify a critical region, the event model provides
lock identifiers representing the name of a critical region. In
addition, similar happened-before relations are also found
in atomic and flush constructs, but the source-code instru-
mentation applied by Scalasca does not allow events inside
these regions to be recorded [39], although this would be
necessary to determine when a thread enters or leaves such a
region. For instance, an atomic construct ensures that a spe-
cific storage location is updated atomically. Similar to criti-
cal constructs, it would be required to record when a thread
executes inside the atomic construct. However, the execu-
tion of an atomic construct is restricted to statements that
can be calculated atomically, which prevents the insertion of
tracing calls. The flush directive, which does not have any
code attached to it, is even more restrictive in this regard.
Since we cannot record events inside such regions, these
constructs are currently ignored by the algorithm.

Given that our current event model does not provide event
attributes such as a sequence count indicating the logical or-
der of lock events, this order can only be derived from the
timestamps as they are recorded in the trace. Assuming that
on most systems the thread-local clocks within a team are
synchronized, these timestamps provide a reasonably reli-
able sequence indicator. However, as on some systems this
assumption cannot be maintained, the timestamp alone may
be insufficient to determine the correct precedence order of
lock events and their violation in the course of MPI-related
CLC corrections. Nevertheless, on all systems the algorithm
can preserve the event order as found in the original trace.
Hence, the original order of lock events is determined prior
to the synchronization and subsequently used when the roles
of logical senders and receivers are determined.

Tasking: Figure 10(d) shows the time-line visualization
of two threads executing an untied task. One thread creates
a task at the task-begin event (TB) and subsequently sus-
pends this task at the task-suspend event (TS). Afterward, a
thread different from the one that executed the task before
it was suspended resumes the task at the task-resume event
(TR) and finally terminates the task at the task-termination
event (T T). Note that a task may be suspended at any point,
not only at implied scheduling points, although some com-
pilers respect scheduling points even for untied tasks. The
task-suspend event (TS) is considered a logical send event,
whereas the task-resume event (TR) is considered a logical

184 Cluster Comput (2013) 16:171–189

receive event. Note that this happened-before relation is nat-
urally fulfilled for tied tasks and does not demand any cor-
rection. Finally, taskwait regions impose further happened-
before relations (not shown) between the exit events of the
child tasks created by the surrounding task region and the
exit event of an associated taskwait region, which can be
handled accordingly.

5.2 Hybrid parallelization

Just like Scalasca’s wait-state analysis, the CLC algorithm
requires comparing events involved in the same communi-
cation operation, which is why it follows a similar paral-
lelization strategy, adopting the general idea of performing
a parallel trace replay. Since trace processing capabilities
(i.e., processors and memory) grow proportionally with the
number of application processes, we can achieve good scal-
ability on large processor configurations. During the replay,
sending and receiving processes exchange the information
needed to synchronize the event timestamps. However, dif-
ferent from the wait-state search, which requires only a for-
ward replay, the CLC algorithm performs the replay in both
directions—forward and backward. The backward replay,
during which the roles of sender and receiver are reversed, is
needed because the backward amortization requires knowl-
edge of receiver timestamps on the sender side. To make the
parallel CLC implementation applicable to realistic traces
from hybrid codes, we

– enabled the replay engine to deal with hybrid traces,
– added logic for a proper identification of logical senders

and receivers among OpenMP-related events, and
– facilitated an exchange of timestamps between threads re-

sponsible for these events as a prerequisite for the syn-
chronization.

The parallel CLC algorithm is, again like the wait-state
analysis, implemented on top of PEARL [21], a parallel li-
brary that offers higher-level abstractions to read and ana-
lyze large volumes of trace data including random access
to individual events, links between related events, function-
ality to transfer and access remote events, and replay sup-
port. In the pure MPI case, the usage model of the library
assumes a one-to-one mapping between analysis (i.e., cor-
rection) and target-application processes. That is, for every
process of the target application, one correction process re-
sponsible for the trace data of this application process is
created. Data exchange during the replay is accomplished
via MPI. The basic idea behind our new hybrid scheme was
again to mirror the process and thread structure of the target
application and to make the CLC implementation a hybrid
program in its own right. To this end, our trace-access library
was extended such that the events of every application thread
including new OpenMP-specific event types can be accessed

and processed by a dedicated analysis thread. Now, the one-
to-one correspondence between the executions of the target
application and the CLC algorithm exist on two levels: pro-
cesses and threads. The resulting parallel processing scheme
becomes a hybrid parallel replay of the target application.
Note that the current usage model is restricted in that it sup-
ports only MPI calls on the master thread (i.e., MPI funneled
mode) and only a fixed number of threads per process.

To synchronize the timestamps, each thread scans the
event trace for clock-condition violations and applies for-
ward and backward amortization, as introduced earlier. Dur-
ing the forward amortization, events belonging to OpenMP
regions may be classified as logical senders or receivers ac-
cording to their role in these regions. Events indicating the
creation or termination of a team of threads and events indi-
cating the acquisition and release of lock variables are easily
classified based on their event type as specified in the trace.
For events related to entering or leaving parallel or barrier
regions, the logical event type is derived from the region
name (e.g., parallel, barrier) and the role (e.g., mas-
ter thread) a particular thread plays therein.

Furthermore, we defined functions to exchange and com-
pare timestamps between threads during the different replay
phases—mostly representing different flavors of reduction
operations. The required communication pattern depends on
the type of OpenMP regions whose event timestamps are
to be synchronized. As mentioned earlier, in the absence
of more precise order attributes the logical event order of
lock events is currently derived from their relative timings
as recorded in the trace, which may be inaccurate only in
those rare cases where the thread-local clocks within a team
exhibit significant errors. For this purpose, the chronologi-
cal event order of lock events is determined in advance and
stored in a global data structure before the actual replay is
applied. During the replay of lock operations, timestamps
are exchanged between the threads competing for the same
lock—similar to the replay of point-to-point messages.

5.3 Experimental evaluation

In this section, we evaluate the accuracy and scalability
of the parallel controlled logical clock algorithm when ap-
plied to traces of hybrid codes and also give evidence of
the frequency and the extent of clock condition violations
in such traces. We ran our experiments on the Nicole clus-
ter at the Jülich Supercomputing Centre. This cluster con-
sists of 32 compute nodes, each with two quad-core AMD
Opteron processors running at 2.4 GHz. The individual com-
pute nodes of the Nicole cluster are linked with an Infini-
band network. The measured MPI inter-node latency was
4.5 µs, the measured MPI intra-node latency was 1.5 µs. Un-
less stated otherwise, all numbers presented in this section
again represent the average across at least three measure-
ments.

Cluster Comput (2013) 16:171–189 185

Fig. 11 Percentage of (logical)
MPI messages with the order of
send and receive events being
reversed in the original trace

As a first test case served the application PEPC, a paral-
lel tree-code for rapid computation of long-range Coulomb
forces in n-body particle systems [42]. In the course of this
evaluation study, the original parallel processing scheme, an
MPI implementation of the Barnes-Hut tree algorithm [3]
according to the Warren-Salmon hashed oct-tree structure
[50], was enriched with shared-memory parallelism within
the solver and integrator parts. Applying a strong scaling
strategy, a fixed overall number of particles (i.e., 524288)
with 100 solver iterations was configured, resulting in an ap-
proximately ideal speedup behavior [1]. In our test configu-
rations, the runtime was approximately 30, 15, or 7.5 min-
utes with 64, 128, or 256 threads. Given that tracing the full
run would consume a prohibitively large amount of storage
space, selective tracing was applied so that the solver and
integrator parts were traced only during iteration 50, which
mimics the common practice of tracing only critical inter-
vals worth a more detailed analysis.

A hybrid version of the Jacobi solver, which originally
comes along with the OpenMP Source Code Repository of
the Parallel Computing Group at the La Laguna University,
was used as a second test case [13]. This benchmark solves
the Poisson equation on a rectangular grid assuming uni-
form discretization in each direction and Dirichlet boundary

conditions. The original benchmark, a pure OpenMP imple-
mentation, had been combined with MPI-based parallelism.
Following a strong scaling strategy, a fixed matrix size of
2000 × 2000 was configured. To emulate a run long enough
so that drift deviations may have a noticeable effect, we
inserted sleep statements immediately before and after the
main computational phase so that it was carried out ten min-
utes after initialization and ten minutes before finalization,
resulting in a total execution time of roughly twenty min-
utes.

Table 3 lists the investigated execution configurations
along with the distribution of reversed logical messages with
respect to the programming model semantics they violate
(i.e., MPI or OpenMP). Apparently, in the original trace
only violations of MPI event semantics occurred. However,
to preserve the logical event order in the corrected trace,
OpenMP event semantics were temporarily violated and
subsequently restored by the hybrid version of the CLC al-
gorithm. While the pure MPI version that does not account
for OpenMP event semantics would leave these violations
unnoticed, the hybrid CLC algorithm recognizes such situa-
tions and restores the correct order of OpenMP events in the
synchronized event trace. After applying the algorithm, the
traces were free of any clock-condition violations.

186 Cluster Comput (2013) 16:171–189

Fig. 12 Relative deviation of the event distance: percentage of execu-
tion time consumed by intervals with deviation above threshold

Table 3 Execution configurations and the distribution of reversed
messages in the original trace and violated messages detected during
the timestamp synchronization with respect to the programming-model
semantics they violate

PEPC Jacobi

CPUs 64 128 256 32 64 128 256

processes 16 32 64 16 32 64 128

threads 4 4 4 2 2 2 2

Distribution of reversed messages in the original trace (%)

MPI 100 100 100 100 100 100 100

OpenMP 0 0 0 0 0 0 0

Violated messages detected during synchronization (%)

MPI 44 46 42 81 84 81 40

OpenMP 55 53 57 18 15 18 59

Moreover, Fig. 11 shows the frequency of reversed mes-
sages as percentage of the total number of messages. Given
that none of the OpenMP event semantics was violated in the
original trace, the numbers only refer to point-to-point mes-
sages and logical messages that can be derived by mapping
collective MPI communication onto point-to-point commu-
nication. Although the graphs suggest that the number of vi-

olations decreases as the number of processors is increased,
such a relationship was not generally confirmed in other
studies [7]. In the case of PEPC, the drop in the overall
runtime might offer an explanation though. The extent of
these clock condition violations can be assessed by the av-
erage and maximum displacement errors (i.e., the time the
receive event appears earlier than the send event) of logical
message events in backward order, as seen in the original
trace. Among violated events, the PEPC traces exhibit an
average error of 21.7 µs and a maximum error of 531.0 µs,
whereas the Jacobi exhibit an average error of 3.5 µs and a
maximum error of 98.0 µs. The numbers demonstrate that
clock-condition violations may appear frequently and that
individual violations can be large in absolute terms.

The CLC algorithm eliminates these violated event se-
mantics and thus improves the accuracy of inter-thread tim-
ings. However, the necessary corrections also modify rela-
tive thread-local event timings and thus the relative deviation
of event position and event distance is again determined. For
the Jacobi experiments only the middle section of the trace
between the sleep statements was considered. The maximum
relative deviation of the event position across all PEPC and
Jacobi measurements was negligible. The maximum abso-
lute deviation of the event position was 535.78 µs for PEPC
and 102.67 µs for Jacobi, roughly corresponding to the re-
spective maximum displacement error observed. Moreover,
Fig. 12 shows the relative deviation of the event distance
across different numbers of processors for both test applica-
tions. Each bar indicates the percentage of execution time
consumed by intervals in a certain error class. It can be
seen that in spite of very small averages, deviations of oc-
casionally more than 100% are still possible, but the aggre-
gate time consumed by those deviations is very small and
their influence on performance analysis results will usually
be negligible, as in the cases previously discussed.

On identical configurations, the timestamp synchroniza-
tion was a factor of 2–3 slower than the equivalent unin-
strumented execution of PEPC, which we hope to opti-
mize in future versions of our implementation. To evaluate
the scaling behavior of the hybrid synchronization method,
Fig. 13 shows a comparison to the Scalasca wait-state anal-
ysis and the uninstrumented PEPC solver. The numbers for
each configuration are normalized with respect to the ex-
ecution time of PEPC in the 64 thread configuration. The
results demonstrate that the parallel timestamp synchroniza-
tion, the wait-state analysis, and the execution of PEPC itself
exhibit roughly equivalent scaling behavior, which was to be
expected due to the replay-based nature of the two trace pro-
cessing mechanisms.

Cluster Comput (2013) 16:171–189 187

Fig. 13 Normalized execution
time of the parallel timestamp
synchronization on Nicole

6 Conclusion

Event traces of parallel applications on metacomputers or
single clusters may suffer from inaccurate timestamps in the
absence of synchronized clocks. As a consequence, the anal-
ysis of such traces may yield wrong quantitative and qualita-
tive results, among other effects confusing the users of time-
line visualizations with messages flowing backward in time.
Because linear offset interpolation can account for such defi-
ciencies only for very short runs, the CLC algorithm retroac-
tively synchronizes timestamps in event traces and restores
the correct logical event order. It does so in a scalable man-
ner by replaying the traces in parallel. In this paper, we ex-
tended the scope of our algorithm and its implementation
within Scalasca in two ways. First, we demonstrated that
the algorithm can be employed also in metacomputing en-
vironments that allow geographically dispersed clusters to
be used as a single coherent system. As a prerequisite for
an accurate use of the algorithm, this contribution also en-
compasses the accurate measurement of clock offsets across
a hierarchical network with different latency levels. Second,
we extended the CLC algorithm, which was previously de-
signed for pure MPI applications, to also cover hybrid appli-
cations that use MPI and OpenMP in combination. The ma-
jor contribution was the identification of happened-before
relations in OpenMP to be taken into account by the algo-
rithm and the hybridization of the parallel replay mecha-
nism. Finally, the hybrid CLC version was integrated into
the Scalasca performance-analysis toolset. Our experimen-
tal evaluation showed that the good accuracy and scalability
characteristics of the pure MPI version were retained in the
hybrid version.

In the future, we plan to adapt our algorithm to more
advanced OpenMP features such as nested parallelism and
tasking as those features are successively integrated into the
POMP event model used by Scalasca. Moreover, we want to
increase the accuracy of the CLC algorithm further by im-
proving the preceding pre-synchronization via linear clock-
offset interpolation, which currently rests on only two off-

set measurements taken during program initialization and
finalization. With low-overhead offset measurements peri-
odically taken during globally synchronizing operations, as
introduced by Doleschal et al. [12], the linear interpolation
can better account for drift deviations, reducing the number
of violations our algorithm needs to correct in the first place
and further improving the overall quality of the event time-
stamp.

References

1. Amdahl, G.M.: Validity of the single processor approach
to achieving large scale computing capabilities. In: Proc.
of the AFIPS Joint Computer Conferences, Atlantic City,
NJ, USA, pp. 483–485. ACM Press, New York (1967).
doi:10.1145/1465482.1465560

2. Babaoǧlu, O., Drummond, R.: (Almost) no cost clock synchro-
nization. Technical Report TR86-791, Cornell University (1986)

3. Barnes, J.E., Hut, P.: A hierarchical O(N log N) force-
calculation algorithm. Nature 324(6096), 446–449 (1986).
doi:10.1038/324446a0

4. Becker, D., Wolf, F., Frings, W., Geimer, M., Wylie, B.J.N.,
Mohr, B.: Automatic trace-based performance analysis of meta-
computing applications. In: Proc. of the International Parallel and
Distributed Processing Symposium, Long Beach, CA, USA. IEEE
Press, New York (2007)

5. Becker, D., Frings, W., Wolf, F.: Performance evaluation and op-
timization of parallel grid computing applications. In: Proc. of the
16th Euromicro International Conference on Parallel, Distributed
and Network-Based Processing, Toulouse, France, pp. 193–199.
IEEE Press, New York (2008)

6. Becker, D., Rabenseifner, R., Wolf, F.: Implications of non-
constant clock drifts for the timestamps of concurrent events. In:
Proc. of the IEEE Cluster Conference, Tsukuba, Japan, pp. 59–68.
IEEE Press, New York (2008)

7. Becker, D., Rabenseifner, R., Wolf, F., Linford, J.C.: Scalable
timestamp synchronization for event traces of message-passing
applications. Parallel Comput. 35(12), 595–607 (2009)

8. Biberstein, M., Harel, Y., Heilper, A.: Clock synchronization in
Cell BE traces. In: Proc. of the 14th Euro-Par Conference, Las Pal-
mas de Gran Canaria, Spain. LNCS, vol. 5168, pp. 3–12. Springer,
Berlin (2008)

9. Brown, P.N., Falgout, R.D., Jones, J.E.: Semicoarsening multigrid
on distributed memory machines. SIAM J. Sci. Comput. 21(5),
1823–1834 (2000)

http://dx.doi.org/10.1145/1465482.1465560
http://dx.doi.org/10.1038/324446a0

188 Cluster Comput (2013) 16:171–189

10. Cell Broadband Engine resource center: (2011). www.ibm.com/
developerworks/power/cell

11. Cristian, F.: Probabilistic clock synchronization. Distrib. Comput.
3(3), 146–158 (1989)

12. Doleschal, J., Knüpfer, A., Müller, M.S., Nagel, W.: Internal timer
synchronization for parallel event tracing. In: Proc. of the 15th Eu-
ropean PVM/MPI Users’ Group Meeting, Dublin, Ireland. LNCS,
vol. 5205, pp. 202–209. Springer, Berlin (2008)

13. Dorta, A.J., Rodriguez, C., de Sande, F., Gonzalez-Escribano,
A.: The OpenMP source code repository. In: Proc. of the 13th
Euromicro International Conference on Parallel, Distributed and
Network-Based Processing, Lugano, Switzerland, pp. 244–250.
IEEE Press, New York (2005)

14. Drummond, R., Babaoǧlu, O.: Low-cost clock synchronization.
Distrib. Comput. 6(4), 193–203 (1993)

15. Duda, A., Harrus, G., Haddad, Y., Bernard, G.: Estimating global
time in distributed systems. In: Proc. of the 7th International Con-
ference on Distributed Computing Systems, Berlin, Germany, pp.
299–306. IEEE Press, New York (1987)

16. Dunigan, T.H.: Hypercube clock synchronization. ORNL TM-
11744 (1994). www.csm.ornl.gov/dunigan/clock.ps

17. Edwards, D., Kearns, P.: DTVS: A distributed trace visualization
system. In: Proc. of the 6th IEEE Symposium on Parallel and Dis-
tributed Processing, Dallas, TX, USA, pp. 281–288. IEEE Press,
New York (1994)

18. Fidge, C.J.: Timestamps in message-passing systems that pre-
serve partial ordering. Aust. Comput. Sci. Commun. 10(1), 56–66
(1988)

19. Fidge, C.J.: Partial orders for parallel debugging. ACM SIGPLAN
Not. 24(1), 183–194 (1989)

20. Foster, I.T.: Globus toolkit version 4: Software for service-
oriented systems. In: Proc. of the International Conference on Net-
work and Parallel Computing, Tokyo, Japan. LNCS, vol. 3779, pp.
2–13. Springer, Berlin (2006)

21. Geimer, M., Wolf, F., Knüpfer, A., Mohr, B., Wylie, B.J.N.: A
parallel trace-data interface for scalable performance analysis. In:
Proc. of the Workshop on State-of-the-Art in Scientific and Par-
allel Computing, Umeå, Sweden. LNCS, vol. 4699, pp. 398–408.
Springer, Berlin (2006)

22. Geimer, M., Wolf, F., Wylie, B.J.N., Mohr, B.: A scalable tool
architecture for diagnosing wait states in massively parallel appli-
cations. Parallel Comput. 35(7), 375–388 (2009)

23. Haban, D., Weigel, W.: Global events and global breakpoints in
distributed systems. In: Proc. of the 21st Hawaii International Con-
ference on System Sciences, Kailua-Kona, HI, USA, pp. 166–175.
IEEE Press, New York (1988)

24. Hoeflinger, J.P.: Extending OpenMP to clusters (2005). cache-
www.intel.com/cd/00/00/28/58/285865_285865.pdf

25. Hofmann, R.: Gemeinsame Zeitskala für lokale Ereignisspuren.
In: Messung, Modellierung und Bewertung von Rechen- und
Kommunikationssystemen, Aachen, Germany, pp. 333–345.
Springer, Berlin (1993)

26. Hofmann, R., Hilgers, U.: Theory and tool for estimating global
time in parallel and distributed systems. In: Proc. of the 6th
Euromicro Workshop on Parallel and Distributed Processing,
Madrid, Spain, pp. 173–179. IEEE Press, New York (1998)

27. Huband, S., McDonald, C.: A preliminary topological debugger
for MPI programs. In: Proc. of the 1st IEEE/ACM International
Symposium on Cluster Computing and the Grid, Brisbane, Aus-
tralia, pp. 422–429. IEEE Press, New York (2001)

28. Jafri, H.: Measuring causal propagation of overhead of inefficien-
cies in parallel applications. In: Proc. of the 19th IASTED Inter-
national Conference on Parallel and Distributed Computing and
Systems, Cambridge, MA, pp. 237–243 (2007)

29. Janet: UK’s Education and Research Network: (2011). www.ja.
net

30. Jézéquel, J.M.: Building a global time on parallel machines. In:
Proc. of the 3rd International Workshop on Distributed Algo-
rithms, Nice, France. LNCS, vol. 392, pp. 136–147. Springer,
Berlin (1989)

31. Karonis, N., Toonen, B., Foster, I.: MPICH-G2: a grid-enabled im-
plementation of the message passing interface. J. Parallel Distrib.
Comput. 63(5), 551–563 (2003)

32. Labarta, J., Girona, S., Pillet, V., Cortes, T., Gregoris, L.: DiP:
a parallel program development environment. In: Proc. of the Eu-
ropean Conference on Parallel Computing, Lyon, France. LNCS,
vol. 1124, pp. 665–674. Springer, Berlin (1996)

33. Lamport, L.: Time, clocks, and the ordering of events in a dis-
tributed system. Commun. ACM 21(7), 558–565 (1978)

34. Lorenz, D., Mohr, B., Rössel, C., Schmidl, D., Wolf, F.: How
to reconcile event-based performance analysis with tasking in
OpenMP. In: Proc. of the 6th International Workshop on OpenMP,
Tsukuba, Japan. LNCS, vol. 6132, pp. 109–121. Springer, Berlin
(2010)

35. MacLaren, J.: HARC: the highly-available resource co-allocator.
In: Proc. of On the Move to Meaningful Internet Systems 2007:
CoopIS, DOA, ODBASE, GADA, and IS, Vilamoura, Portugal.
LNCS, vol. 4804, pp. 1385–1402. Springer, Berlin (2007)

36. Maillet, E., Tron, C.: On efficiently implementing global time for
performance evaluation on multiprocessor systems. J. Parallel Dis-
trib. Comput. 28, 84–93 (1995)

37. Mattern, F.: Virtual time and global states of distributed systems.
In: Proc. of the International Workshop on Parallel and Distributed
Algorithms, Chateau de Bonas, France, pp. 215–226. Elsevier Sci-
ence, Amsterdam (1989)

38. Mills, D.L.: Network Time Protocol (Version 3). The Internet
Engineering Task Force—Network Working Group (1992). RFC
1305

39. Mohr, B., Malony, A., Shende, S., Wolf, F.: Design and proto-
type of a performance tool interface for OpenMP. J. Supercomput.
23(1), 105–128 (2002)

40. Nagel, W., Arnold, A., Weber, M., Hoppe, H.C., Solchenbach, K.:
Vampir: visualization and analysis of MPI resources. Supercom-
puter 12(1), 69–80 (1996)

41. NGS: National Grid Service: (2011). www.grid-support.ac.uk
42. Pfalzner, S., Gibbon, P.: Many-Body Tree Methods in Physics.

Cambridge University Press, Cambridge (1996)
43. Probert, R.L., Yu, H., Saleh, K.: Relative-clock-based specifica-

tion and test result analysis of distributed systems. In: Proc. of the
11th Annual International Phoenix Conference on Computers and
Communications, Scottsdale, AZ, USA, pp. 687–694. IEEE Press,
New York (1992)

44. Rabenseifner, R.: The controlled logical clock—a global time for
trace based software monitoring of parallel applications in work-
station clusters. In: Proc. of the 5th Euromicro Workshop on Par-
allel and Distributed Processing, London, UK, pp. 477–484. IEEE
Press, New York (1997)

45. Rabenseifner, R.: Die geregelte logische Uhr, eine globale Uhr für
die tracebasierte Überwachung paralleler Anwendungen. Ph.D.
thesis, University of Stuttgart, Stuttgart (2000)

46. Rodriguez, G., Badia, R.M., Labarta, J.: Generation of simple an-
alytical models for message passing applications. In: Proc. of the
European Conference on Parallel Computing, Pisa, Italy. LNCS,
vol. 3149, pp. 183–188. Springer, Berlin (2004)

47. Schwarz, R., Mattern, F.: Detecting causal relationships in dis-
tributed computations: in search of the holy grail. Distrib. Comput.
7(3), 149–174 (1994)

48. Smarr, L., Catlett, C.E.: Metacomputing. Commun. ACM 35(6),
44–52 (1992)

49. van Dijk, G.J.V., van der Wal, J.V.D.: Partial ordering of synchro-
nization events for distributed debugging in tightly-coupled mul-
tiprocessor systems. In: Proc. of the 2nd European Conference on

http://www.ibm.com/developerworks/power/cell
http://www.ibm.com/developerworks/power/cell
http://www.csm.ornl.gov/dunigan/clock.ps
http://cache-www.intel.com/cd/00/00/28/58/285865_285865.pdf
http://cache-www.intel.com/cd/00/00/28/58/285865_285865.pdf
http://www.ja.net
http://www.ja.net
http://www.grid-support.ac.uk

Cluster Comput (2013) 16:171–189 189

Distributed Memory Computing, Munich, Germany. LNCS, vol.
487, pp. 100–109. Springer, Berlin (1991)

50. Warren, M.S., Salmon, J.K.: A parallel hashed oct-tree n-body al-
gorithm. In: Proc. of the Conference on High Performance Net-
working and Computing, Portland, OR, USA, pp. 12–21. ACM
Press, New York (1993). doi:10.1145/169627.169640

51. Wong, A.K.L., Goscinski, A.M.: Using an enterprise grid for exe-
cution of MPI parallel applications—a case study. In: Proc. of the
13th European PVM/MPI Users’ Group Meeting, Bonn, Germany.
LNCS, vol. 4192. Springer, Berlin (2006)

52. Yang, Z., Marsland, T.A.: Annotated bibliography on global states
and times in distributed systems. Oper. Syst. Rev. 27(3), 55–74
(1993)

Daniel Becker received his Ph.D.
degree from RWTH Aachen Uni-
versity in 2009. He completed his
Ph.D. project at the Jülich Su-
percomputing Centre in the area
of scalable performance analysis
tools. His career path also includes
research stays at academic and
industrial organizations including
Porsche (Germany), Nokia (Ger-
many), the University of Tennessee,
and the IBM T.J. Watson Research
Center. Today, he is a postdoctoral
researcher at the German Research
School for Simulation Sciences,

where he works on performance tools and middleware for heteroge-
neous parallel systems.

Markus Geimer After earning his
Ph.D. degree in computer science
from the University of Koblenz-
Landau (Germany) in 2005, Markus
Geimer joined the Jülich Supercom-
puting Centre as a research scien-
tist beginning of 2006. Since then
he is working in the Helmholtz-
University Young Investigators
Group “Performance Analysis of
Parallel Programs” on research in
the context of the Scalasca perfor-
mance-analysis toolset. Moreover,
Geimer is the lead developer of
Scalasca’s parallel trace analysis

component. He has published more than a dozen refereed articles in
journals and conference or workshop proceedings.

Rolf Rabenseifner studied mathe-
matics and physics at the Univer-
sity of Stuttgart. Since 1984, he has
worked at the High-Performance
Computing-Center Stuttgart
(HLRS). In his dissertation, he de-
veloped a controlled logical clock
as global time for trace-based pro-
filing of parallel and distributed ap-
plications. Since 1996, he has been
a member of the MPI-2 Forum and
since Dec. 2007, he is in the steer-
ing committee of the MPI-3 Forum.
From January to April 1999, he was
an invited researcher at the Center

for High-Performance Computing at Dresden University of Technol-
ogy. Currently, he is head of Parallel Computing—Training and Appli-
cation Services at HLRS. He is involved in the HPC Challenge Bench-
mark Suite. In recent projects, he studied parallel programming models
for clusters of SMP nodes, and optimization of MPI collective routines.
He teaches MPI, OpenMP, PGAS languages, and hybrid programming
in courses, tutorials, and seasonal schools.

Felix Wolf After receiving his Ph.D.
degree from RWTH Aachen Uni-
versity in 2003, Felix Wolf spent
more than two years as a postdoc-
toral researcher at the University of
Tennessee. Since 2009, he is head
of the Laboratory for Parallel Pro-
gramming at the German Research
School for Simulation Sciences in
Aachen. At the same time, he holds
an appointment as a computer-
science professor at RWTH Aachen
University, where he teaches paral-
lel programming in science and en-
gineering. Wolf specializes in soft-

ware and tools for large-scale parallel computers. He is a principal
designer of the Scalasca performance-analysis tool. Moreover, Wolf
is founder and spokesman of the Virtual Institute—High Produc-
tivity Supercomputing, an international initiative of academic HPC
programming-tool builders aimed at the enhancement, integration, and
deployment of their products.

http://dx.doi.org/10.1145/169627.169640

	Extending the scope of the controlled logical clock
	Abstract
	Introduction
	Related work
	Controlled logical clock
	Metacomputer
	Infrastructural extensions
	National Grid Service
	Network topology and hardware architecture
	Middleware

	Experimental evaluation

	OpenMP
	Algorithmic extensions
	Hybrid parallelization
	Experimental evaluation

	Conclusion
	References

