
Scalable Performance Analysis Methods for the Next
Generation of Supercomputers

Felix Wolf1,2, Daniel Becker1,2, Markus Geimer1, and Brian J. N. Wylie1

1 Forschungszentrum Jülich,
Jülich Supercomputing Centre, 52425 Jülich, Germany

E-mail: {f.wolf, d.becker, m.geimer, b.wylie}@fz-juelich.de

2 RWTH Aachen University,
Department of Computer Science, 52056 Aachen, Germany

Facing increasing power dissipation and little instruction-level parallelism left to exploit, com-
puter architects are realizing further performance gains by using larger numbers of moderately
fast processor cores rather than by further increasing the speed of uni-processors. As a conse-
quence, supercomputing applications are required to harness much higher degrees of parallelism
in order to satisfy their growing demand for computing power. However, writing code that runs
efficiently on large numbers of processors remains a significant challenge.

To address this challenge, the Helmholtz-University YoungInvestigators GroupPerformance
Analysis of Parallel Programsat the Jülich Supercomputing Centre develops performance-
analysis tools to diagnose inefficiencies in supercomputerapplications and works with appli-
cation developers to analyze and improve the performance oftheir codes. In this contribution,
we highlight the research activities of our group during thepast two years and give an outlook
on future work. At the center of our report lies the development of SCALASCA, a performance-
analysis tool that has been specifically designed for large-scale systems and that allows the
automatic identification of harmful wait states in applications running on thousands of proces-
sors.

1 Introduction

Supercomputing is a key technology pillar of modern scienceand engineering, indispens-
able to solve critical problems of high complexity. The extension of theESFRIroad map to
include a European supercomputer infrastructure in combination with the creation of the
PRACE consortium acknowledges that the requirements of many critical applications can
only be met by the most advanced custom-built large-scale computer systems. However,
as a prerequisite for their productive use, theHPC community needs powerful and robust
development tools. These would not only help improve the scalability characteristics of
scientific codes and thus expand their potential, but also allow domain scientists to concen-
trate on the underlying models rather than to spend a major fraction of their time tuning
their application on a particular machine.

As the current trend in microprocessor development continues, this need will become
even stronger in the future. Facing increasing power dissipation and little instruction-level
parallelism left to exploit, computer architects are realizing further performance gains by
using larger numbers of moderately fast processor cores rather than by further increas-
ing the speed of uni-processors. As a consequence, supercomputer applications are being
required to harness much higher degrees of parallelism in order to satisfy their growing
demand for computing power. With an exponentially rising number of cores, the often
substantial gap between peak performance and the performance level actually sustained

1



by production codes is expected to widen even further. Finally, increased concurrency
levels place higher scalability demands not only on applications but also on parallel pro-
gramming tools. When applied to larger numbers of cores, familiar tools often cease to
work in a satisfactory manner (e.g., due to escalating memory requirements or limitedI /O
bandwidth).

To overcome this challenge, the Helmholtz-University Young Investigators GroupPer-
formance Analysis of Parallel Programsat the Jülich Supercomputing Centre develops
performance-analysis tools to diagnose inefficiencies in supercomputer applications run-
ning on thousands of processors and works directly with application developers to improve
the performance of their codes. The main product of the groupis the software package
SCALASCA1, a comprehensive performance-analysis tool that has been specifically de-
signed for use on large-scale systems, such as the Blue Gene/L JUBL in Jülich and its
successor Blue Gene/PJUGENE. When scaling message-passing applications to thousands
of processors, their performance is often affected by wait states that occur when processes
fail to cooperate efficiently. Building upon earlier experience obtained during theKOJAK

project2, SCALASCA is able to efficiently identify such wait states at the previously inac-
cessible scale of 16,384 processes and shows potential evenfor larger configurations.

In this article, we highlight the research accomplishmentsof our group during the past
two years. We explainSCALASCA in detail and demonstrate how it can be used to diagnose
performance problems in large-scale parallel applications. We also make a side trip to
computational grids and demonstrate thatSCALASCA’s novel architecture proves beneficial
there as well. At the end, we outline our research goals for the coming years.

2 SCALASCA

In message-passing (i.e.,MPI) applications, which still constitute the major portion of
large-scale applications running on systems such asIBM Blue Gene or CrayXT, processes
often require access to data provided by remote processes, making the progress of a re-
ceiving process dependent upon the progress of a sending process. As a consequence, a
significant fraction of the time spent in communication and synchronization routines can
often be attributed to wait states that occur when processesfail to reach implicit or explicit
synchronization points in a timely manner, for example, as aresult of unevenly distributed
workloads. Especially when trying to scale communication-intensive applications to large
processor counts, such wait states can present severe challenges to achieving good per-
formance. As a first step in reducing the impact of wait states, application developers
need a diagnostic method that allows their localization, classification, and quantification
especially at larger scales. Because wait states cause temporal displacements between pro-
gram events occurring on different processes, their identification can be accomplished by
logging those events with timestamps into so-calledevent tracesand then searching these
traces for patterns indicating situations where a process waits for input from one or more
other processes.

2.1 Scalability

Compared toSCALASCA’s predecessorKOJAK, the novel approach taken inSCALASCA

is that the event traces are searched in a much more scalable way by exploiting both dis-
tributed memory and parallel processing capabilities available on the target system. Instead

2



of sequentially analyzing a single global trace file, asKOJAK does,SCALASCA analyzes
separate process-local trace files in parallel byreplaying the original communication on
as manyCPUs as have been used to execute the target application itself.Since trace pro-
cessing capabilities (i.e., processors and memory) grow proportionally with the number of
application processes, we can achieve good scalability at previously intractable scales. In
brief, to meet the scalability requirements of next-generation supercomputers,SCALASCA

is a parallel program in its own right.

Instrumented
target

application

Measurement 
library

Parallel
analysis

Local
event traces

Global 
analysis result

Runtime 
summary

Optimized measurement configuration

Graphical
browser

Figure 1. Parallel trace analysis in SCALASCA.

Figure 1 shows the basic analysis workflow carried out bySCALASCA. Before any
performance data can be collected, the target application must beinstrumented, that is,
extra code must be inserted to record the events whenever they occur. On some systems
including Blue Gene, this can be done completely automatically using compiler support;
on other systems a mix of manual and automatic instrumentation mechanisms is offered.
When running the instrumented code on the parallel machine,the user can choose between
two options: (i) generating a runtime summary with aggregate performance metrics for
individual function-call paths or (ii) generating event traces to record individual runtime
events. The first option is useful to get an overview of the performance behavior and also
to optimize the instrumentation for later trace generation. Since traces tend to become very
large, this step is usually recommended before choosing thesecond option. When tracing
is enabled, each process generates a trace file containing records for all its process-local
events. After program termination,SCALASCA loads the trace files into main memory and
analyzes them in parallel using as manyCPUs as have been used for the target application
itself. During the analysis,SCALASCA classifies detected pattern instances by category
and quantifies their significance for every function-call path and system resource involved.
Both results of the trace analysis as well as runtime summaries can be interactively ex-
plored in a graphical browser (Figure 5).

To demonstrate the scalability of the parallel analysis approach taken inSCALASCA, we
compared it to the sequential approach taken inKOJAK. TheASCI SMG2000 benchmark,
a parallel semi-coarsening multigrid solver that uses a complex communication pattern,
served as a test case.SMG2000 performs a large number of non-nearest-neighbor point-
to-point communication operations and can be considered tobe a stress-test for the network
subsystems of a machine. Applying a weak scaling strategy, afixed64×64×32 problem
size per process with five solver iterations was configured, resulting in a nearly constant
application runtime as furtherCPUs were added.

Figure 2 charts wall-clock execution times for the uninstrumented benchmark and the
analyses of trace files generated by an instrumented versionwith a range of process num-

3



64 128 256 512 1024 2048 4096 8192 16384
Processes

10
0

10
1

10
2

10
3

10
4

10
5

W
al

l t
im

e 
(s

)

Sequential analysis
Parallel analysis
Parallel replay
Uninstrumented execution

Figure 2. Comparison of application execution, sequentialtrace analysis (KOJAK) and parallel trace analysis
(SCALASCA) times for the ASCI SMG2000 benchmark on up to 16,384 processors of Blue Gene/L. Linear
scaling is represented by the bold dotted line.

bers onJUBL. The 8-fold doubling of process numbers necessitates a log–log scale to
show the corresponding range of times, particularly for theold sequential analysis (which
furthermore becomes impractical for the largest traces). The figure shows the total time
needed for the parallel analysis and the time taken by the parallel replay itself without file
I /O. It can be seen that the total analysis time including loading the traces into the analyzer
never exceeded 30 minutes.

The actual procedure of replaying and analyzing the event traces without fileI /O ex-
hibits smooth scaling behavior up to very large configurations. Because of its replay-based
nature, the time needed for this part of the analysis dependson the communication behav-
ior of the target application. Since communication is a key factor in the scaling behavior
of the target application as well, similarities can be seen in the way both curves evolve as
the number of processes increases. Notably, the total time for the new analysis approach
is orders of magnitude faster than the sequential analysis based onKOJAK even at modest
process counts, making it possible to examine traces at previously intractable scales in a
reasonable time.

2.2 Clock Synchronization

Identifying wait states in event traces of message-passingapplications requires measuring
temporal displacements between concurrent events, although many parallel systems, such
asPC clusters, do not provide synchronized hardware clocks. In these cases, linear inter-
polation techniques can already account for differences inoffset and drift, assuming that
the drift of an individual processor is not time dependent. However, inaccuracies and drifts
varying in time can still cause violations of the logical event ordering that are harmful to
the accuracy of our analysis. Thecontrolled logical clockalgorithm by Rabenseifner3 com-
pensates for such violations in point-to-point communication by shifting message events
in time as much as needed while trying to preserve the length of intervals between lo-

4



cal events. Our group extended this method to collective communication to enable a more
complete correction of realistic message-passing traces.In addition, we designed a parallel
version of the algorithm that scales to thousands of application processes.4

2.3 Computational Grids

If a single machine does not provide enoughCPUs to solve a given problem, multiple in-
dependent parallel machines can be combined into a so-called metacomputerthat appears
to the application as a single coherent system. However, achieving satisfactory applica-
tion performance on such a metacomputer is hard because highlatency of inter-machine
communication as well as differences in hardware of constituent machines may introduce
various types of wait states. Since the analyses offered bySCALASCA could prove espe-
cially beneficial in such a grid-like environment, we extended5 our tool in such a way that
it can cope with typical metacomputer limitations, such as amissing global file system
and varying network latencies. In addition, we added metacomputing-specific patterns to
SCALASCA’s pattern base. Using this grid-enabled version ofSCALASCA, we were able
to remove harmful wait states from an environmental-science application running on the
VIOLA 6 grid testbed.7

128 256 512 1024 2048 4096
Processes

0

100

200

300

400

500

T
im

es
te

ps
/h

ou
r

Original
Revised

Figure 3. Performance improvement of XNS after removing redundant message traffic.

3 Application Engagement

In addition to engineering performance tools, our group also actively works with applica-
tion developers to analyze and improve the performance of their codes. A recent example
is the XNS fluid dynamics application being developed at the Chair for Computational
Analysis of Technical Systems atRWTH Aachen University.XNS can be used for effective
simulations of unsteady fluid flows, including microstructured liquids, in situations involv-
ing significant deformations of the computational domain, as they occur in blood pumps

5



deployed to support human heart function. The algorithm is based on finite-element tech-
niques on irregular three-dimensional meshes8.

Initially, XNS was successfully running onJUBL, however, its scalability was unsatis-
factory and resisted scaling beyond approximately 900 processes until the first Jülich Blue
Gene Scaling Workshop in December 2006 provided an opportunity for the application
developers and our group to start working together. After a first investigation of the solver
using basic profiling tools already hinted toward redundantmessage traffic (i.e., zero-sized
messages), a statistical trace analysis using theSCALASCA infrastructure showed that the
number of zero-sized messages were rapidly growing with thenumber of processes em-
ployed. Subsequent remediation9 allowed the application to continue scaling with a four-
fold simulation performance improvement at 4,096 processes (Figure 3), demonstrating
the benefits of interdisciplinary collaboration between domain scientists and performance
analysts.

512 1024 2048 4096256
Processes

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e 

of
 to

ta
l t

im
e 

(%
)

Total
Communication + synchronization
Wait states

Figure 4. Performance behavior of XNS (tuned version) at a range of scales from 256 to 4096 processes. The
bars show the percentage of time the application spent in communication & synchronization operations including
associated wait states.

Continuing our investigation, we applied our trace analysis to the tuned version, which
exhibits almost perfect scaling behavior on up to 512 processors. However, as the num-
ber of processors is raised further, the parallel efficiencycontinuously degrades, although
even at the largest configuration of 4096 processes a clear speedup can still be observed
(Figure 3). Beyond 512 processes, as we can see in Figure 4, the communication and
synchronization overhead grows steeply. Yet the primary result of our analysis is that the
biggest fraction of this overhead is actually waiting time,in the 4096CPU case amounting
to roughly 40 % of the total time (at least 25 % when accountingfor intrusion overhead),
illustrating that the wait states we are targeting can constitute principal performance prob-
lems at larger scales. TheSCALASCA display in Figure 5 shows a function-call path that
appears to be a major source of the wait states diagnosed during our analysis. Of course,
with this finding we hope that the performance ofXNS can be further improved.

6



4 Outlook

Potential causal connections between different wait stateinstances or related phenomena,
such as load imbalance, are currently not covered in a systematic way. Understanding such
connections, however, could prove essential for more effective scaling strategies. One
approach of establishing links between different wait-state instances would be to define
hypotheses and subsequently verify them using a trace-based simulator. Similar in spirit to
approaches such as Dimemas10, the simulator could leverageSCALASCA’s parallel archi-

Figure 5. XNS (tuned version) wait states with 4096 processes in ewdscatter2(). The middle pane shows
the distribution of waiting times across the call tree as thepercentage of the time spent in the time step loop. The
right pane visualizes how the time incurred by the selected call path is spread across the physical Blue Gene/L
torus topology.

7



tecture to achieve the required scalability.
To institutionalize our major national and international collaborations onHPCprogram-

ming tools, we recently founded the Helmholtz Virtual Institute - High Productivity Super-
computing together with the Technical University of Dresden, RWTH Aachen University,
and the University of Tennessee. The mission ofVI -HPS is devoted to the development and
deployment of advanced and integrated performance-analysis and error-detection tools for
high-performance computing applications. A significant portion of our resources is also
assigned to support and training activities. We expect thatthis initiative will further pro-
mote the quality and accelerate the development process of complex simulation codes in
science and engineering.

References

1. Markus Geimer, Felix Wolf, Brian J. N. Wylie, and Bernd Mohr, Scalable Parallel
Trace-Based Performance Analysis, in: Proc. 13th European PVM/MPI Users’ Group
Meeting, vol. 4192 ofLNCS, pp. 303–312, Springer, Bonn, Germany, September
2006.

2. F. Wolf and B. Mohr,Automatic performance analysis of hybrid MPI/OpenMP appli-
cations, Journal of Systems Architecture,49, no. 10-11, 421–439, 2003.

3. R. Rabenseifner,Die geregelte logische Uhr, eine globale Uhr für die tracebasierte
Überwachung paralleler Anwendungen, PhD thesis, Universität Stuttgart, March
2000.

4. D. Becker, R. Rabenseifner, and F. Wolf,Timestamp Synchronization for Event Traces
of Large-Scale Message-Passing Applications, in: Proc. of the 14th European Parallel
Virtual Machine and Message Passing Interface Conference (EuroPVM/MPI), vol.
4757 ofLNCS, pp. 315–325, Springer, Paris, France, September 2007.

5. D. Becker, F. Wolf, W. Frings, M. Geimer, B. Wylie, and B. Mohr, Automatic Trace-
Based Performance Analysis of Metacomputing Applications, in: Proc. of the In-
ternational Parallel & Distributed Processing Symposium (IPDPS), IEEE Computer
Society, Long Beach, CA, March 2007.

6. BMBF (Ministry for Education and Research),Vertically Integrated Optical Testbed
for Large Applications in DFN (VIOLA), http://www.viola-testbed.de/.

7. D. Becker, W. Frings, and F. Wolf,Performance Evaluation and Optimization of Par-
allel GRID Computing Applications, in: Proc. of the 16th Euromicro Workshop on
Parallel and Distributed Processing (PDP), Toulouse, France, February 2008, (to ap-
pear).

8. M. Behr, D. Arora, O. Coronado, and M. Pasquali,Models and Finite Element Tech-
niques for Blood Flow Simulation, International Journal of Computational Fluid Dy-
namics,20, 175–181, 2006.

9. B. J. N. Wylie, M. Geimer, M. Nicolai, and M. Probst,Performance analysis and
tuning of the XNS CFD solver on BlueGene/L, in: Proc. of the 14th European Parallel
Virtual Machine and Message Passing Interface Conference (EuroPVM/MPI), vol.
4757 ofLNCS, pp. 107–116, Springer, Paris, France, September 2007.

10. J. Labarta, S. Girona, V. Pillet, T. Cortes, and L. Gregoris, DiP : A Parallel Program
Development Environment, in: Proc. of the 2nd International Euro-Par Conference,
vol. 1124 ofLNCS, pp. 665–674, Springer, Lyon, France, August 1996.

8


