Scalable Performance Analysis M ethods for the Next
Generation of Supercomputers

Felix Wolf!:2, Daniel Becker 2, Markus Geimer!, and Brian J. N. Wylie!

L Forschungszentrum Jillich,
Julich Supercomputing Centre, 52425 Jilich, Germany
E-mail: {f.wolf, d.becker, m.geimer, b.wy}i@fz-juelich.de

2 RWTH Aachen University,
Department of Computer Science, 52056 Aachen, Germany

Facing increasing power dissipation and little instruttievel parallelism left to exploit, com-
puter architects are realizing further performance gajnsding larger numbers of moderately
fast processor cores rather than by further increasingpbedsof uni-processors. As a conse-
guence, supercomputing applications are required to Bamech higher degrees of parallelism
in order to satisfy their growing demand for computing paviréowever, writing code that runs
efficiently on large numbers of processors remains a sigmifichallenge.

To address this challenge, the Helmholtz-University Yolmgstigators GrougPerformance
Analysis of Parallel Programst the Julich Supercomputing Centre develops performance
analysis tools to diagnose inefficiencies in supercompaygtications and works with appli-
cation developers to analyze and improve the performantieeafcodes. In this contribution,
we highlight the research activities of our group during past two years and give an outlook
on future work. At the center of our report lies the developtraf SCALASCA, a performance-
analysis tool that has been specifically designed for laggde systems and that allows the
automatic identification of harmful wait states in applicas running on thousands of proces-
sors.

1 Introduction

Supercomputing is a key technology pillar of modern scieara engineering, indispens-
able to solve critical problems of high complexity. The egi®n of theesFRIroad map to
include a European supercomputer infrastructure in coatioin with the creation of the
PRACE consortium acknowledges that the requirements of maniga&riapplications can
only be met by the most advanced custom-built large-scatgoter systems. However,
as a prerequisite for their productive use, #rec community needs powerful and robust
development tools. These would not only help improve théabdity characteristics of
scientific codes and thus expand their potential, but alsvalomain scientists to concen-
trate on the underlying models rather than to spend a magotién of their time tuning
their application on a particular machine.

As the current trend in microprocessor development coasinthis need will become
even stronger in the future. Facing increasing power digisip and little instruction-level
parallelism left to exploit, computer architects are raalj further performance gains by
using larger numbers of moderately fast processor corber#ban by further increas-
ing the speed of uni-processors. As a consequence, supautamapplications are being
required to harness much higher degrees of parallelismderdo satisfy their growing
demand for computing power. With an exponentially risingniner of cores, the often
substantial gap between peak performance and the perfoenevel actually sustained

by production codes is expected to widen even further. Kinadcreased concurrency
levels place higher scalability demands not only on apptiaa but also on parallel pro-
gramming tools. When applied to larger numbers of coresijli@ntools often cease to
work in a satisfactory manner (e.g., due to escalating mgmeguirements or limited/o
bandwidth).

To overcome this challenge, the Helmholtz-University Ygumvestigators Grouper-
formance Analysis of Parallel Progranmat the Julich Supercomputing Centre develops
performance-analysis tools to diagnose inefficienciesipescomputer applications run-
ning on thousands of processors and works directly withiegibn developers to improve
the performance of their codes. The main product of the gisdpe software package
SCALASCA!, a comprehensive performance-analysis tool that has hescifisally de-
signed for use on large-scale systems, such as the Blue lGewnsl in Julich and its
successor Blue Gene/RGENE When scaling message-passing applications to thousands
of processors, their performance is often affected by waies that occur when processes
fail to cooperate efficiently. Building upon earlier expmrte obtained during thedJAK
projec, scALAsCA is able to efficiently identify such wait states at the presiy inac-
cessible scale of 16,384 processes and shows potential@anger configurations.

In this article, we highlight the research accomplishmehtsur group during the past
two years. We explaiBCALASCA in detail and demonstrate how it can be used to diagnose
performance problems in large-scale parallel applicatioe also make a side trip to
computational grids and demonstrate thahLASCA's novel architecture proves beneficial
there as well. At the end, we outline our research goals ctming years.

2 SCALASCA

In message-passing (i.evp1) applications, which still constitute the major portion of
large-scale applications running on systems suaBrasBlue Gene or CraxT, processes
often require access to data provided by remote processdsngnthe progress of a re-
ceiving process dependent upon the progress of a sendingg®0As a consequence, a
significant fraction of the time spent in communication agdchronization routines can
often be attributed to wait states that occur when procdages reach implicit or explicit
synchronization points in a timely manner, for example, essalt of unevenly distributed
workloads. Especially when trying to scale communicaiitensive applications to large
processor counts, such wait states can present severerg&slto achieving good per-
formance. As a first step in reducing the impact of wait statgplication developers
need a diagnostic method that allows their localizatioassification, and quantification
especially at larger scales. Because wait states causetahdsplacements between pro-
gram events occurring on different processes, their ifleation can be accomplished by
logging those events with timestamps into so-caflednt tracesnd then searching these
traces for patterns indicating situations where a procestsyior input from one or more
other processes.

2.1 Scalability

Compared tesCALASCA'S predecessokOJAK, the novel approach taken BCALASCA
is that the event traces are searched in a much more scalaplbynexploiting both dis-
tributed memory and parallel processing capabilitieslalaé on the target system. Instead

of sequentially analyzing a single global trace file k@sAKk does,SCALASCA analyzes
separate process-local trace files in paralleldplayingthe original communication on
as manycPus as have been used to execute the target application i&alfe trace pro-
cessing capabilities (i.e., processors and memory) growgtionally with the number of
application processes, we can achieve good scalabilityestqusly intractable scales. In
brief, to meet the scalability requirements of next-getienssupercomputersCALASCA

is a parallel program in its own right.

Optimized measurement configuration

Instrumented [Runtime
target J summary

Graphical
browser

|
|
|
| application
|

N Il M. L.
Meaﬁglremeﬂt Local ! Parallel Global
lbrary event traces analysis analysis result
T T
T T T

| ——

Figure 1. Parallel trace analysis in SCALASCA.

Figure 1 shows the basic analysis workflow carried ouskhpLASCA. Before any
performance data can be collected, the target applicatiost treinstrumentedthat is,
extra code must be inserted to record the events wheneweptoer. On some systems
including Blue Gene, this can be done completely automigtioging compiler support;
on other systems a mix of manual and automatic instrumemntatiechanisms is offered.
When running the instrumented code on the parallel macttieajser can choose between
two options: (i) generating a runtime summary with aggregerformance metrics for
individual function-call paths or (ii) generating everades to record individual runtime
events. The first option is useful to get an overview of thdgrerance behavior and also
to optimize the instrumentation for later trace generatfince traces tend to become very
large, this step is usually recommended before choosinggbend option. When tracing
is enabled, each process generates a trace file contaimiogisefor all its process-local
events. After program terminatioBCALASCA loads the trace files into main memory and
analyzes them in parallel using as marsus as have been used for the target application
itself. During the analysisSCALASCA classifies detected pattern instances by category
and quantifies their significance for every function-cathgand system resource involved.
Both results of the trace analysis as well as runtime sunawai@n be interactively ex-
plored in a graphical browser (Figure 5).

To demonstrate the scalability of the parallel analysiseagh taken isCALASCA, we
compared it to the sequential approach takekdnak. TheAscl sMG2000 benchmark,

a parallel semi-coarsening multigrid solver that uses apexcommunication pattern,
served as a test caseMG2000 performs a large number of non-nearest-neighborpoint
to-point communication operations and can be considereed tostress-test for the network
subsystems of a machine. Applying a weak scaling stratefiyed 64 x 64 x 32 problem
size per process with five solver iterations was configuresijlting in a nearly constant
application runtime as furtherprus were added.

Figure 2 charts wall-clock execution times for the uninstemted benchmark and the
analyses of trace files generated by an instrumented versibra range of process num-

10

et

10

1 *—* Sequential analysis
Parallel analysis

o——o Parallel replay

94— Uninstrumented execution

64 128 256 512 1024 2048 4096 8192 16384
Processes

Wall time (s)

Figure 2. Comparison of application execution, sequemtile analysis (KOJAK) and parallel trace analysis
(SCALASCA) times for the ASCI SMG2000 benchmark on up to 88,drocessors of Blue Gene/L. Linear
scaling is represented by the bold dotted line.

bers onjusL. The 8-fold doubling of process numbers necessitates ddggseale to
show the corresponding range of times, particularly fordliesequential analysis (which
furthermore becomes impractical for the largest tracesle filgure shows the total time
needed for the parallel analysis and the time taken by thalphareplay itself without file
I/0. It can be seen that the total analysis time including logthie traces into the analyzer
never exceeded 30 minutes.

The actual procedure of replaying and analyzing the evanes without file/o ex-
hibits smooth scaling behavior up to very large configuretidecause of its replay-based
nature, the time needed for this part of the analysis depem¢ise communication behav-
ior of the target application. Since communication is a kagtdr in the scaling behavior
of the target application as well, similarities can be seetihé way both curves evolve as
the number of processes increases. Notably, the total timéhé new analysis approach
is orders of magnitude faster than the sequential analgsiedorkoJAK even at modest
process counts, making it possible to examine traces atqudy intractable scales in a
reasonable time.

2.2 Clock Synchronization

Identifying wait states in event traces of message-pasgiptications requires measuring
temporal displacements between concurrent events, glthmany parallel systems, such
asPc clusters, do not provide synchronized hardware clockshése cases, linear inter-
polation techniques can already account for differencesfset and drift, assuming that
the drift of an individual processor is not time dependermwiver, inaccuracies and drifts
varying in time can still cause violations of the logical eterdering that are harmful to
the accuracy of our analysis. Thentrolled logical clockalgorithm by Rabenseifngcom-
pensates for such violations in point-to-point commurnaby shifting message events
in time as much as needed while trying to preserve the lenfjthtervals between lo-

cal events. Our group extended this method to collectivensonication to enable a more
complete correction of realistic message-passing traaesidition, we designed a parallel
version of the algorithm that scales to thousands of apjdicgrocesses.

2.3 Computational Grids

If a single machine does not provide enougffus to solve a given problem, multiple in-
dependent parallel machines can be combined into a saecaéacomputethat appears
to the application as a single coherent system. Howeverewoly satisfactory applica-
tion performance on such a metacomputer is hard becausdatégity of inter-machine
communication as well as differences in hardware of carestit machines may introduce
various types of wait states. Since the analyses offeresiday AScaA could prove espe-
cially beneficial in such a grid-like environment, we extedtour tool in such a way that
it can cope with typical metacomputer limitations, such amissing global file system
and varying network latencies. In addition, we added metgeding-specific patterns to
SCALASCA's pattern base. Using this grid-enabled versiorsOALASCA, we were able
to remove harmful wait states from an environmental-s@epplication running on the
VIOLA® grid testbed.

500 I I
I Il Original 1
400 """" REVISEd ""
5 - -
o
E 300 ,,
(%]
(o8
8 L 4
g 200 ,,,
=
[- -
2100 b I ,,,,, I
e l l
128 256 512 1024 2048 4096

Processes

Figure 3. Performance improvement of XNS after removingineihnt message traffic.

3 Application Engagement

In addition to engineering performance tools, our group alstively works with applica-
tion developers to analyze and improve the performancesif todes. A recent example
is the xNs fluid dynamics application being developed at the Chair fom@utational
Analysis of Technical Systems atvTH Aachen UniversityxNs can be used for effective
simulations of unsteady fluid flows, including microstruetliquids, in situations involv-
ing significant deformations of the computational domamttey occur in blood pumps

deployed to support human heart function. The algorithnaiseld on finite-element tech-
niques on irregular three-dimensional me$hes

Initially, XNS was successfully running arusL, however, its scalability was unsatis-
factory and resisted scaling beyond approximately 900gm®es until the first Julich Blue
Gene Scaling Workshop in December 2006 provided an oppitytior the application
developers and our group to start working together. Aftersa ifivestigation of the solver
using basic profiling tools already hinted toward redundaegsage traffic (i.e., zero-sized
messages), a statistical trace analysis usingtira ASCA infrastructure showed that the
number of zero-sized messages were rapidly growing witmthmeber of processes em-
ployed. Subsequent remediatfalowed the application to continue scaling with a four-
fold simulation performance improvement at 4,096 proce¢seure 3), demonstrating
the benefits of interdisciplinary collaboration betweemain scientists and performance
analysts.

100
90

Total

80 Communication + synchronization
70|] |B=R Wait states

60
50
40
30
20
10

]
%

T
SRS
ey

-
o
ol

Percentage of total time (%)

=y

-
oo
5

%
<3
e,

o
K%
s,

-
o
s

256

Processes

Figure 4. Performance behavior of XNS (tuned version) angeaof scales from 256 to 4096 processes. The
bars show the percentage of time the application spent imagfitation & synchronization operations including
associated wait states.

Continuing our investigation, we applied our trace analysithe tuned version, which
exhibits almost perfect scaling behavior on up to 512 premes However, as the num-
ber of processors is raised further, the parallel efficiezarptinuously degrades, although
even at the largest configuration of 4096 processes a cleadsp can still be observed
(Figure 3). Beyond 512 processes, as we can see in Figure £othmunication and
synchronization overhead grows steeply. Yet the primasyltef our analysis is that the
biggest fraction of this overhead is actually waiting tinmethe 4096cPu case amounting
to roughly 40 % of the total time (at least 25 % when accounfimgntrusion overhead),
illustrating that the wait states we are targeting can d¢tutstprincipal performance prob-
lems at larger scales. ThecALASCA display in Figure 5 shows a function-call path that
appears to be a major source of the wait states diagnosethchwui analysis. Of course,
with this finding we hope that the performancexaofs can be further improved.

4 Outlook

Potential causal connections between different wait stastances or related phenomena,
such as load imbalance, are currently not covered in a sgsiemay. Understanding such
connections, however, could prove essential for more ®ffescaling strategies. One
approach of establishing links between different waitestastances would be to define
hypotheses and subsequently verify them using a tracedisaselator. Similar in spirit to
approaches such as Dimertfaghe simulator could leveragegcALASCA's parallel archi-

"~ CUBE: epik_gs_vn4096_ts.cube =

File Wiew Help

Me(rx}}

CanTnee| Flat Profile |

[] a.ampei
0.0 Communication

—b—{I 10.5 Collective
[1.3 Point-to-point

[0.0 Barrier Completion
{0 9.5 wait at Barrier
] 0.0 0verhead
——ll 1000 vists
L] 0.0 Communication Matrix

[0.1 updatex

8.7 updateien
—b—{"] 0.0gene

=] 0.0 <<iteration loap>>

LLD 0.0 newd

H—1[] 0.0 ewdtimerstamp
——1] 0.0 ewdmoreloc_
——] 0.0 blkins3dst
] 0.0bikems
=[] 0.0 ewdscatter2

[] 0.0 ewdscatter2i
0.0 ewdmalloc_
[] 0.0 MPI_Send
3
[] 0.0 ewdfree_
b—1[] 0.0 ewdstatrhs
——"] 0.0 ewdbsrgetdiag
H—] 0.0 ewdmakesg
1] 0.0 ewdmuit
——] 0.0 ewdamres
—+—1{ 5.9 ewdgather1
] 0.0 ewdbsrmatvec
1] 0.0 ewdcopy

“—{] 0.0 ewdtimerstamp

L%

| System Tree | Topology View
| Root percent iv | | Roat percent Iv | | Peer percent }v ‘
J -
=] 0.0 Time —=—{7] 0.0 <<time step loop>> (15,15, 15—
—=—[] 38.4 Execution ——] 0.0 updatedt

——[] o2lat R ||—:|E 2.3 ganbe
—O DI:l S (15.15.12)
0.0 MPI 11D 0.0 newx
0.0 InitExit +—[] 0.0 genf
0.0 Synchronization | [] 0.0 genu (15. 15,11
[o.1 Barrier |:|:| 0.0 genh

oot 7 (15, 15,2)
] upda

——{] 0.2 recaverstress

L[l 1.0checkd 15157

€] |

(15, 15, 14)

(15,15, 13)

(15. 15, 10)

(15.15,7)

(15,15, 6)

(15. 15, 5)

(15.15.3)

2016e400

[13.776.070 (23.4%) | 46882404 | |[5.246336 (11.2%) I 4.68B+04 | | [1.281 2 37.8% I
Fllll | EERNNEERERRNEER) =-—-"'k.L!!Qlllllllll'lllllllllllllllllllllll‘
|ﬁ'5 | p

Figure 5. XNS (tuned version) wait states with 4096 processewdscat t er 2() . The middle pane shows
the distribution of waiting times across the call tree aspbieentage of the time spent in the time step loop. The
right pane visualizes how the time incurred by the selectdidpath is spread across the physical Blue Gene/L
torus topology.

tecture to achieve the required scalability.

To institutionalize our major national and internationallaborations omPc program-

ming tools, we recently founded the Helmholtz Virtual Ihst - High Productivity Super-
computing together with the Technical University of DresdewTH Aachen University,
and the University of Tennessee. The missioniefiPsis devoted to the development and
deployment of advanced and integrated performance-daalyd error-detection tools for
high-performance computing applications. A significanttiom of our resources is also
assigned to support and training activities. We expecttthiatinitiative will further pro-
mote the quality and accelerate the development processngblex simulation codes in
science and engineering.

References

1.

10.

Markus Geimer, Felix Wolf, Brian J. N. Wylie, and Bernd MpBcalable Parallel
Trace-Based Performance Analysis Proc. 13th European PVM/MPI Users’ Group
Meeting, vol. 4192 olLNCS pp. 303-312, Springer, Bonn, Germany, September
2006.

. F. Wolf and B. MohrAutomatic performance analysis of hybrid MPI/OpenMP appli

cations Journal of Systems Architectu9, no. 10-11, 421-439, 2003.

. R. RabenseifneDie geregelte logische Uhr, eine globale Ulir fdie tracebasierte

Uberwachung paralleler AnwendungeRhD thesis, Universitat Stuttgart, March
2000.

. D. Becker, R. Rabenseifner, and F. Walimestamp Synchronization for Event Traces

of Large-Scale Message-Passing ApplicationsProc. of the 14th European Parallel
Virtual Machine and Message Passing Interface ConfereBaeoPVM/MPI), vol.
4757 ofLNCS pp. 315-325, Springer, Paris, France, September 2007.

. D. Becker, F. Wolf, W. Frings, M. Geimer, B. Wylie, and B. MpAutomatic Trace-

Based Performance Analysis of Metacomputing ApplicatiomsProc. of the In-
ternational Parallel & Distributed Processing SymposiliRDPS), IEEE Computer
Society, Long Beach, CA, March 2007.

. BMBF (Ministry for Education and ResearcNgrtically Integrated Optical Testbed

for Large Applications in DFN (VIOLAht t p: / / ww. vi ol a-t est bed. de/ .

. D. Becker, W. Frings, and F. WoPerformance Evaluation and Optimization of Par-

allel GRID Computing Applicationsn: Proc. of the 16th Euromicro Workshop on
Parallel and Distributed Processing (PDP), Toulouse,d&aRebruary 2008, (to ap-
pear).

. M. Behr, D. Arora, O. Coronado, and M. Pasquislgdels and Finite Element Tech-

niques for Blood Flow Simulatigrinternational Journal of Computational Fluid Dy-
namics,20, 175-181, 2006.

. B. J. N. Wylie, M. Geimer, M. Nicolai, and M. Probd®erformance analysis and

tuning of the XNS CFD solver on BlueGengf: Proc. of the 14th European Parallel
Virtual Machine and Message Passing Interface ConfereBaeoPVM/MPI), vol.
4757 ofLNCS pp. 107-116, Springer, Paris, France, September 2007.

J. Labarta, S. Girona, V. Pillet, T. Cortes, and L. Gregg@iP : A Parallel Program
Development Environmenh: Proc. of the 2nd International Euro-Par Conference,
vol. 1124 ofLNCS pp. 665—-674, Springer, Lyon, France, August 1996.

