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Abstract SCALASCA is a performance toolset that has been specifically designed
to analyze parallel application behavior on large-scale systems, but is also well-
suited for small- and medium-scale HPC platforms. SCALASCA offers an incremen-
tal performance-analysis process that integrates runtime summaries with in-depth
studies of concurrent behavior via event tracing, adopting a strategy of successively
refined measurement configurations. A distinctive feature of SCALASCA is its abil-
ity to identify wait states even for very large processor counts. The current version
supports the MPI, OpenMP and hybrid programming constructs most widely used in
highly-scalable HPC applications.

1 Introduction

Supercomputing is a key technology pillar of modern science and engineering, in-
dispensable to solve critical problems of high complexity. World-wide efforts to
build machines with performance levels in the petaflops range acknowledge that
the requirements of many key applications can only be met by the most advanced
custom-designed large-scale computer systems. However, as a prerequisite for
their productive use, the HPC community needs powerful and robust performance-
analysis tools that make the optimization of parallel applications both more effective
and more efficient. Such tools not only help improve the scalability characteristics
of scientific codes and thus expand their potential, but also allow domain experts to
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concentrate on the science underneath rather than to spend a major fraction of their
time tuning their application for a particular machine.

As the current trend in microprocessor development continues, this need will be-
come even stronger in the future. Facing increasing power dissipation and with little
instruction-level parallelism left to exploit, computer architects are realizing further
performance gains by using larger numbers of moderately fast processor cores rather
than by further increasing the speed of uni-processors. As a consequence, supercom-
puter applications are being required to harness much higher degrees of parallelism
in order to satisfy their growing demand for computing power. With an exponen-
tially rising number of cores, the often substantial gap between peak performance
and the performance actually sustained by production codes [6] is expected to widen
even further. Finally, increased concurrency levels place higher scalability demands
not only on applications but also on parallel programming tools [10]. When applied
to larger numbers of processes, familiar tools often cease to work satisfactorily (e.g.,
due to escalating memory requirements, failing displays, or limited I/O bandwidth).

Developed at the Jülich Supercomputing Centre in cooperation with the Univer-
sity of Tennessee, SCALASCA is a performance-analysis toolset that has been specif-
ically designed for use on large-scale systems including IBM Blue Gene and Cray
XT, but is also well-suited for small- and medium-scale HPC platforms. SCALASCA
supports an incremental performance-analysis process that integrates runtime sum-
maries with in-depth studies of concurrent behavior via event tracing, adopting a
strategy of successively refined measurement configurations. A distinctive feature
of SCALASCA is its ability to identify wait states that occur, for example, as a result
of unevenly distributed workloads. Especially when trying to scale communication-
intensive applications to large processor counts, such wait states can present se-
vere challenges to achieving good performance. Compared to its predecessor KO-
JAK [11], SCALASCA can detect such wait states even in very large configurations
of processes using a novel parallel trace-analysis scheme [3].

In this article, we give an overview of SCALASCA and show its capabilities for
diagnosing performance problems in large-scale parallel applications. First, we re-
view the SCALASCA analysis process and discuss basic usage. After presenting the
SCALASCA instrumentation and measurement systems in Section 3, Section 4 ex-
plains how its trace analysis can efficiently detect wait states in communication and
synchronization operations even in very large configurations of processes, before
we demonstrate how execution performance analysis reports can be interactively
explored in Section 5. Finally, in Section 6, we outline our development goals for
the coming years.

2 Overview

The current version of SCALASCA supports measurement and analysis of the MPI,
OpenMP and hybrid programming constructs most widely used in highly-scalable
HPC applications written in C/C++ and Fortran on a wide range of current HPC
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platforms. Usage is primarily via the scalasca command with appropriate action
flags, and is identical for a 64-way OpenMP application on a single UltraSPARC-T2
processor or a 64k hybrid OpenMP/MPI application on a Blue Gene/P.

Figure 1 shows the basic analysis workflow supported by SCALASCA. Before
any performance data can be collected, the target application must be instrumented,
that is, it must be modified to record performance-relevant events whenever they
occur. On most systems, this can be done completely automatically using compiler
support; on other systems a mix of manual and automatic instrumentation mecha-
nisms is offered. When running the instrumented code on the parallel machine, the
user can choose between generating a summary report (aka profile) with aggregate
performance metrics for individual function call paths, or generating event traces
recording individual runtime events from which a profile or time-line visualization
can later be produced. The first option is useful to obtain an overview of the perfor-
mance behavior and also to optimize the instrumentation for later trace generation.
Since traces tend to become very large, this step is usually recommended before
choosing the second option. When tracing is enabled, each process generates a trace
file containing records for all its process-local events. After program termination,
SCALASCA loads the trace files into main memory and analyzes them in parallel
using as many CPUs as have been used for the target application itself. During the
analysis, SCALASCA searches for characteristic patterns indicating wait states and
related performance properties, classifies detected instances by category and quan-
tifies their significance. The result is a pattern-analysis report similar in structure to
the summary report but enriched with higher-level communication and synchroniza-
tion inefficiency metrics. Both summary and pattern reports contain performance
metrics for every function call-path and system resource which can be interactively
explored in a graphical report explorer (Fig. 3). As an alternative to the automatic
search, the event traces can be converted and investigated using third-party trace
browsers such as Paraver [4, 7] or VAMPIR [5, 9], taking advantage of their power-
ful time-line visualizations and rich statistical functionality.

3 Instrumentation and Measurement

SCALASCA offers analyses based on two different types of performance data: (i)
aggregated statistical summaries and (ii) event traces. By showing which process
consumes how much time in which call-path, the summary report provides a useful
overview of an application’s performance behavior. Because it aggregates the col-
lected metrics across the entire execution, the amount of data is largely independent
of the program duration. This is why runtime summarization is the first choice for
very long-running programs working on realistic input data sets and models. The
summary metrics measured with SCALASCA include wall-clock time, the number
of times a call-path has been visited, message counts, bytes transferred, and a rich
choice of hardware counters available via the PAPI library [2].
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Fig. 1 SCALASCA’s performance analysis workflow

In contrast, event traces allow the in-depth study of parallel program behavior.
Tracing is especially effective for observing the interactions between different pro-
cesses or threads that occur during communication or synchronization operations
and to analyze the way concurrent activities influence each other’s performance.
When an application is traced, SCALASCA records individual performance-relevant
events with timestamps and writes them to a trace file (one per process) to be ana-
lyzed in a subsequent step.

To effectively monitor program execution, SCALASCA intercepts runtime events
critical to communication and computation activities. These events include enter-
ing and leaving functions or other code regions as well as sending and receiving
point-to-point messages or participation in collective communication. Whereas the
communication-related event types are crucial to study the interactions among dif-
ferent processes and to identify wait states, function entries and exits are needed
to understand the computational requirements and the context in which the most
demanding communication operations occur.

The application must be instrumented to provide notification of these events
during measurement, using function calls inserted at specific important points
(“events”) which call into the SCALASCA measurement library. Just linking the ap-
plication with the measurement library already ensures that all events related to
MPI operations are properly captured. For OpenMP, a source preprocessor is used
which automatically instruments directives and pragmas for parallel regions, etc.,
and many compilers are capable of adding instrumentation to every function or rou-
tine entry and exit. Finally, programmers can manually add their own custom in-
strumentation annotations in the source code for important regions (such as phases
or loops, or functions when this is not done automatically by the compiler): these
annotations are in the form of pragmas or macros which are ignored when instru-
mentation is not configured.
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Instrumentation configuration and processing of source files are achieved by pre-
fixing the SCALASCA instrumenter to selected compilation commands and the final
link command, without requiring other changes to optimization levels or the build
process.

# scalasca -instrument <compile-or-link-command>
% scalasca -instrument mpicc -c foo.c
% scalasca -instrument f90 -o bar -OpenMP bar.F
% scalasca -instrument mpif90 -o foobar -OpenMP foo.o bar.F

A simple means to be able to conveniently instrument an entire application, is to
add a ‘preparer’ prefix to compile and link commands in its Makefile(s), which is
undefined by default and results in a regular uninstrumented build, or when the pre-
parer is set to the SCALASCA instrumenter then an instrumented build is produced.

PREP =
MPICC = $(PREP) mpicc
MPIFC = $(PREP) mpif90
foobar: bar.F foo.o

$(MPIFC) -o $@ -OpenMP foo.o bar.F

% make PREP="scalasca -instrument"

The SCALASCA measurement system that gets linked with instrumented applica-
tion executables can be configured to allow runtime summaries and/or event traces
to be collected, along with optional hardware counter metrics. A unique experiment
archive is created to contain all of the measurement and analysis artifacts, including
configuration information, log files and analysis reports. When event traces are col-
lected, they are also stored in the experiment archive to avoid accidental corruption
by simultaneous or subsequent measurements.

Measurements are collected and analyzed under the control of a nexus which
automatically configures the parallel trace analyzer with the same number of pro-
cesses as used for measurement. This allows SCALASCA analysis to be specified as
a command prefixed to the application execution command-line, whether part of a
batch script or run interactively.

# scalasca -analyze <application-launch-command>
% scalasca -analyze mpiexec -np 65536 foo arglist
Scalasca runtime summarization experiment ./epik foo 65536 sum
% OMP NUM THREADS=64 scalasca -analyze bar arglist
Scalasca runtime summarization experiment ./epik bar Ox64 sum %
OMP NUM THREADS=4 scalasca -analyze mpiexec -np 512 foobar Scalasca
runtime summarization experiment ./epik foobar 512x4 sum

Although collection of runtime summarization experiments is the default, addi-
tion of the -t flag configures trace collection and automatic analysis (without the
need for instrumentation re-configuration).

% OMP NUM THREADS=4 scalasca -analyze -t mpiexec -np 512 foobar
Scalasca trace analysis experiment ./epik foobar 512x4 trace



6 F. Wolf et al.

Instrumented functions which are executed frequently, while only performing a
small amount of work each time they are called, have an undesirable impact on
measurement. The overhead of measurement for such functions is large compared
to the execution time of the (uninstrumented) function, resulting in measurement
dilation, while recording such events requires significant space and analysis takes
longer with relatively little improvement in quality. This is especially important for
event traces whose size is proportional to the total number of events recorded. For
this reason, SCALASCA offers various mechanisms to exclude certain functions from
measurement. Before writing a trace file, the instrumentation should therefore be
optimized based on a visit-count summary obtained during an earlier run.
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Fig. 2 Examples for patterns of inefficient behavior. Note that the combination of MPI functions
used in each of these examples represents just one possible case

4 Trace Analysis

In message-passing applications, processes often require access to data provided by
remote processes, making the progress of a receiving process dependent upon the
progress of a sending process. If a rendezvous protocol is used, this relationship
also applies in the opposite direction. Collective synchronization is similar in that
its completion requires each participating process to have reached a certain point.
As a consequence, a significant fraction of the time spent in communication and
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synchronization routines can often be attributed to wait states that occur when pro-
cesses fail to reach implicit or explicit synchronization points in a timely manner,
for example, as a result of an unevenly distributed workload. Especially when try-
ing to scale communication-intensive applications to large process counts, such wait
states can present severe challenges to achieving good performance. As a first step
in reducing the impact of wait states, SCALASCA provides a diagnostic method that
allows their localization, classification, and quantification. Because wait states cause
temporal displacements between program events occurring on different processes,
their identification can be accomplished by searching event traces for characteristic
patterns. A subset of the patterns supported by SCALASCA is depicted in Fig. 2.

As the first example of a typical wait state, consider the so-called Late Sender
pattern (Fig. 2(a)). Here, a receive operation is entered by one process before the
corresponding send operation has been started by the other. The time lost waiting
due to this situation is at least the time difference between the two function invo-
cations. In contrast, the Late Receiver pattern (Fig. 2(b)) describes the inverse situ-
ation, where a sender is blocked while waiting for the receiver when a rendezvous
protocol is used (e.g., to transfer a large message). The Late Sender / Wrong Order
pattern (Fig. 2(c)) is more complex than the previous two. Here, a receiver waits
for a message, although an earlier message is ready to be received by the same des-
tination process (i.e., message receipt in wrong order). Finally, the Wait at N×N
pattern (Fig. 2(d)) quantifies the waiting time due to the inherent synchronization in
collective n-to-n operations, such as MPI Allreduce.

To accomplish the search is a scalable way, SCALASCA exploits both distributed
memory and parallel processing capabilities available on the target system. Instead
of sequentially analyzing a single global trace file, as done by its predecessor tool
KOJAK, SCALASCA analyzes separate process-local trace files in parallel by replay-
ing the original communication on as many CPUs as have been used to execute the
target application itself. During the search process, SCALASCA classifies detected
pattern instances by category and quantifies their significance for every program
phase and system resource involved. Since trace processing capabilities (i.e., pro-
cessors and memory) grow proportionally with the number of application processes,
SCALASCA has completed pattern searches even at the previously intractable scale
of over 22,000 processes. Additionally, to allow accurate trace analyses on systems
without globally synchronized clocks such as most PC clusters the trace analyzer
provides the ability to synchronize inaccurate timestamps postmortem using the
same scalable replay mechanism [1].

OpenMP Support and Pattern Traces

In addition to the scalable MPI trace analysis, sequential trace analysis (Fig. 1) is also
provided for OpenMP and MPI one-sided RMA operations. This sequential analysis
is currently the default for pure OpenMP measurements, and can be specified for an
augmented analysis of MPI and hybrid measurements when desired. For large mea-
surements, however, the additional storage space and serial analysis time required
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can be prohibitive, unless very targeted instrumentation is configured or the problem
size is reduced (e.g., to only a few timesteps or iterations). Other options include vi-
sual analysis using third-party trace browsers, such as Paraver and VAMPIR and the
generation of pattern traces.

The first step to access these features consists of merging the local trace files
generated by SCALASCA into a single global trace file. The resulting global trace
file can then be searched for MPI and/or OpenMP patterns or converted and loaded
into Paraver or VAMPIR. A third option was motivated by the fact that the pattern
search method accumulates the severities of all of the pattern instances found to
inform about the overall performance penalty. However, the temporal and spatial
relationships between individual pattern instances are lost, although these relation-
ships can be essential to understand the detailed circumstances of a performance
problem. These relationships can now be retained by writing a second event trace
with events delimiting individual pattern occurrences. Guided by the summary pat-
tern report, this synthetic pattern trace can be interactively analyzed leveraging the
powerful functionality of the aforementioned trace browsers.

5 Understanding Performance Behavior

After SCALASCA analysis is completed, the experiment archive may contain a
summary report generated immediately at measurement completion and/or trace-
analysis report(s) generated after searching event traces. These profiles have the
same structure and can be viewed and manipulated using the same set of commands.

# scalasca -examine <experiment-archive>
% scalasca -examine epik foobar 512x4 trace

Whereas a summary report includes metrics, such as time, visit counts, message
statistics or hardware counters, a trace-analysis report also accounts for the times
lost in different wait states. Both types of reports are stored as a three-dimensional
array with the dimensions metric, call path, and system resource (e.g., process or
thread). Because of the cubic structure, the corresponding file format is called CUBE.
For every metric included, a CUBE report stores the aggregated value for each com-
bination of call-path and process or thread. Motivated by the need to represent per-
formance behavior on different levels of granularity as well as to express natural
hierarchical relationships among metrics, program, or system resources, each di-
mension is organized in a hierarchy.

The SCALASCA analysis report explorer (Fig. 3) provides the ability to interac-
tively browse through this three-dimensional performance data space in a convenient
way. Its design emphasizes simplicity by combining a small number of orthogonal
features with a limited set of user actions. Each dimension of the data space (met-
ric, call-path, and system resource) can be shown using tree displays and allows
the user to interactively explore the values of all the data points. Since the data
space is large, views representing only a subspace can be selected and combined
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Fig. 3 The trace analysis report displayed in the report explorer indicates that 29.4% of the total
time in the annotated region <<timestep loop>> is spent waiting due to Late Sender situa-
tions (left pane). The call tree (middle pane) shows that more than one-third of the waiting time is
concentrated in one call-path, with its waiting time unevenly distributed across the visible section
of the machine topology (right pane)

with aggregation mechanisms that control the level of detail. Two types of actions
can be performed: selecting a node or expanding/collapsing a node. Whereas the
first action defines a “slice” or “column” of the data space, the latter exposes/hides
sub-hierarchies of the different dimensions. To help identify combinations with a
high value more quickly, all values are not only shown numerically but also color-
coded. To facilitate the analysis of runs on many processors, the explorer provides
a scalable two- or three-dimensional Cartesian grid display to visualize physical or
virtual process topologies which were recorded with measurements. The topological
display is offered as an alternative to a standard tree hierarchy of machine, compute
nodes, processes and threads.

With a set of command-line tools [8], CUBE reports can be combined or ma-
nipulated to allow comparisons or aggregations of different reports or to focus the
analysis on specific parts of a report. Specifically, multiple reports can be averaged
or merged, the difference between two reports calculated, or a new report gener-
ated after pruning specified call-trees and/or specifying a call-tree node as a new
root. The latter can be particularly useful for eliminating uninteresting phases (e.g.,
initialization) and focusing the analysis on a selected part of the execution. These
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utilities each generate new CUBE-format reports as output that can be loaded into
the explorer like the original reports that were used as input.

6 Outlook

Future enhancements will aim at both further improving the functionality and scal-
ability of the SCALASCA toolset. Whereas automatic MPI analysis has been demon-
strated at very large scales, runtime summaries currently only include measurements
for the OpenMP master thread, and OpenMP trace analysis is currently done serially:
for hybrid applications, scalable MPI trace analysis is the default and serial OpenMP
analysis is offered as an additional option. Most standard-conforming HPC applica-
tions should be measurable, however, there is no recording or analysis of MPI I/O,
experimental analysis of MPI one-sided RMA operations is currently only done by
the serial trace analyzer, and automatic trace analysis of OpenMP applications using
dynamic, nested and guarded worksharing constructs is not yet possible.

While the current parallel trace analysis mechanism is already a very power-
ful instrument in terms of the number of application processes it supports, we are
working on optimized data management operations and workflows that will allow
us to master even larger configurations. Restrictions and inefficiencies imposed by
the current CUBE-file format and data model are also being addressed to allow non-
aggregatable metrics (such as rates) to be stored and accessed without the need to
process and aggregate values from the entire report.

Although parallel simulations are often iterative in nature, individual iterations
can differ in their performance characteristics. Another major focus of our research
is therefore to study the temporal evolution of the performance behavior as a compu-
tation progresses. Our general approach is to first observe the behavior on a coarse-
grained level and then to successively refine the measurement focus as new perfor-
mance knowledge becomes available. Using a more flexible measurement control,
we are also striving to offer more targeted trace collection mechanisms, reducing
memory and disk space requirements while retaining the value of trace-based in-
depth analysis.

Finally, the symptoms of a performance bottleneck may appear much later than
the event causing it, on a different processor, or both. For this reason, we are cur-
rently looking for ways to establish causal connections among different pattern in-
stances found in traces and related phenomena such as load imbalance because we
believe that understanding such links can prove essential for more effective scaling
strategies. First experiments with a trace-based simulator that verifies correspond-
ing hypotheses by replaying modified traces in real time on the target system proved
encouraging.

For more information on SCALASCA refer to the website www.scalasca.org.
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