o,

JULICH

FORSCHUNGSZENTRUM

Julich Supercomputing Centre

Interner Bericht

Beitrage zum Wissenschaftlichen Rechnen
Ergebnisse des
Gaststudentenprogramms 2008
des John von Neumann-Instituts

fir Computing

Matthias Bolten (Hrsg.)

FZJ-JSC-1B-2008-07

FORSCHUNGSZENTRUM JULICH GmbH
Jilich Supercomputing Centre
D-52425 Jiilich, Tel. (02461) 61-6402

Interner Bericht

Beitrage zum Wissenschaftlichen Rechnen
Ergebnisse des
Gaststudentenprogramms 2008
des John von Neumann-Instituts

fir Computing

Matthias Bolten (Hrsg.)

FZJ-JSC-1B-2008-07

Dezember 2008
(letzte Anderung: 1. 12. 2008)

Vorwort

Die Ausbildung im Wissenschaftlichen Rechnen ist nebeBéegitstellung von Supercomputer-Leistung
und der Durchfuihrung eigener Forschung eine der Haupthefgdes John von Neumann-Instituts flr
Computing (NIC) und hiermit des JSC als wesentlicher SaakeNIC. Um den akademischen Nach-
wuchs mit verschiedenen Aspekten des Wissenschatftlickehriens vertraut zu machen, fihrte das JSC
in diesem Jahr zum neunten Mal wahrend der Sommersemeistiedn Gaststudentenprogramm durch.
Entsprechend dem facheribergreifenden Charakter deengidsaftlichen Rechnens waren Studenten
der Natur- und Ingenieurwissenschaften, der Mathematikloformatik angesprochen. Die Bewerber
mussten das Vordiplom abgelegt haben oder sich nach exfctgrm Bachelor-Abschluss im Master-
studium befinden. Zusatzlich war eine Empfehlung eines bidulilehrers erforderlich. Die zehn vom
NIC ausgewahlten Teilnehmer kamen fur zehn Wochen, vom gusiubis 10. Oktober 2008, ins For-
schungszentrum. Alle Gaststudenten beteiligten sichamieten Forschungs- und Entwicklungsarbeiten
des JSC und der NIC Forschergruppe Computergestitztegidolmd Biophysik. Sie wurden jeweils
einem oder zwei Wissenschaftlern zugeordnet, die mit itrusammen eine Aufgabe festlegten und sie
bei der Durchfihrung anleiteten.

Die Gaststudenten und ihre Betreuer waren:

Niklas Fricke Walter Nadler

Martin Galgon Tom Schréder, Helmut Schumacher
Martin Hoffmann Paul Gibbon, Robert Speck

Christoph Honisch Jan Meinke

Dorian Domenic Krause Bernhard Steffen

Stefan Miller Godehard Sutmann

Markus Peschina Guido Arnold, Markus Richter, Binh Trieu
Ventsislav Valeriev Petkov Wolfgang Frings

Lutz Roese-Koerner Bernhard Steffen

Matthias Voigt Inge Gutheill

Zu Beginn ihres Aufenthalts erhielten die Gaststudentea eiertédgige Einflhrung in die Programmie-

rung und Nutzung der Parallelrechner im JSC. Um den Erfafsaustausch untereinander zu férdern,
prasentierten die Gaststudenten am Ende ihres Aufenthedtawufgabenstellung und die erreichten Er-
gebnisse. Sie verfassten zudem Beitrage mit den Ergehriigsdiesen Internen Bericht des JSC. Wir

danken den Teilnehmern fir ihre engagierte Mitarbeit -is8tich haben sie geholfen, einige aktuelle
Forschungsarbeiten weiterzubringen - und den Betreugertatkraftige Unterstiitzung dabei geleistet
haben. Ein besonderer Dank gilt Wolfgang Frings und Mardr&rHermanns, die den Einfuhrungs-

kurs gehalten haben, Anke Visser, die an der Erstellungedi&erichtes mafligeblich mitgewirkt hat,

und Robert Speck, der mich bei der Organisation in diesemnlkath Kraften unterstitzt hat. Ebenso

danken wir allen, die im JSC und der Verwaltung des Forsctrerggrums bei Organisation und Durch-

fihrung des diesjéhrigen Gaststudentenprogramms mitkielaaben. Besonders hervorzuheben ist die
finanzielle Unterstitzung durch den Verein der Freunde wrddfer des FZJ und die Firma IBM. Es

ist beabsichtigt, das erfolgreiche Programm kuinftig fas&tzen, schliel3lich ist die Férderung des wis-
senschaftlichen Nachwuchses dem Forschungszentrum simderes Anliegen. Weitere Informatio-

nen Uber das Gaststudentenprogramm, auch die Ankindigumz$ kommende Jahr, findet man unter
http://www.fz-juelich.de/jsc/gaststudenten.

Julich, November 2008 Matthias Bolten

Inhalt

Niklas Fricke:

NMR Signal Formation in Capillary Networks 1
Martin Galgon:
Visualizing Soil-Plant-Interactions Using VTKandJava. 13

Martin Hoffmann:
Structure Analysis of Communication and Memory Behaviahim Parallel Tree Code PEPC . . . 27

Christoph Honisch:
Protein Simulations Under Constraints e e e e e e e e 41

Dorian Krause:
Parallel Scaletransfer in Multiscale Simulations 57

Stefan Mller:

Fast Computation of the Ewald Sum 69

Markus Peschina:

Correcting Erroneous Quantum Algorithmso 81

Ventsislav Petkov:

SIONIib - Scalable 1/0O library for Native Parallel AccessBmary Files 93
Lutz Roese-Koerner:

Preconditioners for the Conjugate Gradient Algorithm 107
Matthias Voigt:

Analysis of the Influence of the Dual Floating Point Unit “Dade@ Hummer” on the Performance
of Specific Library RoutinesonBlue Gene/P o0 117

NMR Signal Formation in Capillary Networks

Niklas Fricke

Institut fir Theoretische Physik,
Universitat Leipzig
Vor dem Hospitaltore 1,04103 Leipzig, Germany

E-mail: niklas.fricke@itp.uni-leipzig.de

Abstract: Nuclear magnetic resonance (NMR) signals are stronglyanfted by local field
inhomogeneities. This can be exploited to investigateogiichl tissue on length scales below
the resolution of ordinary magnetic resonance imaging otsthand may yield information
about size and distribution of capillaries in the myocandiallowing to diagnose stenosis of
coronary arteries. However, the actual dependence of gmalson physical parameters (such
as capillary width), especially under the influence of diftun, is only poorly understood, and
even for very simplified mathematical models, analyticdlsons for the relevant quantities
are usually not available. Here, a Monte-Carlo approachalvasen to simulate various models
for capillary systems. The frequency autocorrelation fioms and the NMR-signals obtained
are compared to numerical results for the simplest modetderato test its applicability and
the validity of the approximations employed in the numdrgzdculations.

Motivation

In the muscular tissue of the heart, timyocardium capillaries are the dominating blood vessels, ac-
counting for over 90 per cent of all vessel volume. Since geldraction of the hemoglobin within the
capillaries is desoxygenated and since this desoxyherioghas a strong magnetic moment, capillaries
invoke local magnetic field inhomogeneities when an extdialal is applied, thereby affecting NMR-
signals.

If the coronary artery supplying the capillaries is stemdtie., if its transport capacities are lowered
due to atherosclerosis) the capillaries are wider thanlusaoanteracting the decreased blood supply.
The effect on the NMR-signals of this larger width can beizgil to identify and localize stenosis. It
is therefore of paramount importance to understand how NfigiRal decay depends on the capillary
width. Unfortunately though, the mathematics involved @scribing such systems are rather difficult.
In fact only for the simplest capillary model, known lieogh’s Model(KM), the frequency correlation
function has been calculated numerically [1], while evesrghthe actual signals can be calculated only
approximately [2], with an error of uncertain magnitude.igCarlo (MC) Simulations may not yield
as much understanding as analytic solutions, but they aitostudy more sophisticated and realistic
models with comparably small effort and without the introtion of unpredictable errors.

Brief Introduction of the Phenomenon and the Measured Quanities

Nuclear Magnetic Resonance

Nuclei with an odd numbers of nucleons (protons being thet impygortant example in this context)
possess a magnetic moment

fi=y%S (1)

whereS§ is the spin (magnitudé/2) and~ is the gyromagnetic ratio, which is characteristic for et

of nucleus, but also slightly depends on the electronicl.sRel the sake of convenience, nuclei, the
molecules in which they are bound (in our cdge0) as well as their magnetic moments shall in the
following be referred to simply as “spins”.

When subjected to an external magnetic fiBldthe spins align parallel or anti parallel to it, the majority
preAf%rring the parallel state (the exact quantity dependim the temperature via the Boltzmann factor

e *T). If a second field§my(t) is applied orthogonal t&, which oscillates with the frequency (known
as theLarmor frequency

wi, = +|B.| 7

corresponding to the transition energy from parallel ta-patallel state, the overpopulation of the par-
allel state gets lost and the spins can be described eff§ctig having a zero z-component and rotating
in the xy-plane with frequency . In fact, the correct quantum-mechanical description wdid more
complicated [3], but this effective, semi-classical pietis sufficient for our purposes. Since the spins
precess with identical frequency and phase, one can measneeroscopic oscillation of the magneti-
zation. From the strength of this resonance as a functioheofpplied frequency one may learn about
guantities of elements and even of chemical compounds mir@s¢he observed system. Still more in-
formation can be gained by studying the system’s relaxdb@ack to equilibrium afterB;y has been
switched off again. There are two relaxation processesSgie-Lattice Relaxatigrndescribing the re-
alignment of the spins in direction @, and theTransverse Relaxatigmlescribing the dephasing of the
precession of the spins. This latter process is relevamt s@rce it is invoked by local inhomogeneities
in the magnetic field. Indeed, local deviatiah8 from the mean magnetic field result in slightly different
precession frequencieéss = ~ x § B for spins at different locations and hence cause them toaseph
onceB,, is turned off.

NMR Signals and the Frequency Correlation Function

For the Transverse Relaxation, there are two basic typeigioéls that can be studied (although there
are many more sophisticated techniques). One iStiaglient-Echo signalGE), which is received when
the system is allowed to relax undisturbed. The decay ofsilgisal is characterized by its half-lif&;

(or equivalently by its decay ratg3), although this has to be handled with care, because the deca
usually not simply exponential. The other frequently stddijuantity is thé&pin-Echo signalSE). Here
the relaxing system is subjected to a short magnetic pulseatertain time\¢, which causes the spins
to change the direction of their precession. This reversesdecay; for spins at positions with larger
ow, which until the reversing pulse had gained a head startloeretwill now catch up on them. If the
system were stationary, the total of the initial signal dobé recovered. However, if the spins are in
motion, each has undergone its individual history of fremyeand part of the signal is lost irreversibly.
The half-life for the SE signal is denoted @Y, but here as well, the decay is not just exponential.

2

Another quantity of interest is the frequency autocorrefafunction K (t), defined as the expectation
value of the product of a spin’s frequencies at differenesmneparated by t:

K(t) = 3 [driw(uloo, e (7(0) @

In contrast to the signaldy (¢) is usually not directly accessible by experiment (althougtler certain
circumstances it can be measured [4]), but is all the mor®itapt for the theoretical description, and
among other things it is used to (approximately) calculagesignals.

The Analytical Approach
Krogh's Capillary Model

As already mentioned, only a rather crude model for myoearchpillaries has so far been studied
theoretically to a larger extent. This model assumes thdladps to be identical, parallel cylinders

(which is fairly justified, see [5]). The frequency shift due to one capillary is then only a function of
two parameters and thus allows to consider the model as imvergional:

dw(r, ¢) = dwyp * R?% 4)
where R, is the capillary radius, r the distance to the center of th@lleay and ¢ denotes the angle
between the projection d8, on the plane orthogonal to the capillaries and the positemtor measured
from the capillary centetw is a constant which collects the factors for the strengthefbagnetic field,
the magnetic susceptibility of the capillary and the tijtiangle betweeis, and the capillary direction:
dwo = %BosinQ(H).

(a) (b)

Figure 1: (a) Scheme of the geometry modeled by the KM. Theriaglinder is the capillary, the space
between the cylinders is the surrounding tissue where tims san diffuse. (Figure taken from [1]) (b)
Scheme of a diffusing spin according to the KM; reflectivermary conditions at the edges.

Now the critical simplification comes into play: instead @insidering some kind of capillary lattice,
only one capillary (represented as a circle) with a surrougdircular tissue is modeled. The spins may
diffuse freely within the surrounding tissue, while the ilapy wall, as well as the outer edge represent
reflective boundaries. Although the outer reflective bompd@nditions are essentially periodic ones,
thanks to the symmetdw(r, ¢) = dw(r, ¢ +), it is not quite clear how well this model can mimic an
actual lattice structure.

Describing the Diffusion

For obtaining the correlation function, the (still chaligmg) problem consist then essentially in solving
the diffusion equation:

Ip(Z, t)
ot

— DAp(F, 1) (5)

with the described boundary conditions. This has been aethigia expansion into eigenfunctions [1],
which yields numerically exact results (see Fig. 3).

To obtain the signals and decay half-lives, one would havaotee the diffusion equation for the local
magnetization, known as the Bloch-Torrey Equation:

OMUTD _ (DA + i m(r 1) (6)
m(7,t) is a complex function, its time dependent phase reflectsrieepsion in the xy-plane, which is
the case for the signals as well. The GE signal is then singasia integral overn (7, t):

M@:%Afmm@ 7)

and starting from this the SE signal could be calculatecttiras well. Unfortunately, owing to its literal
complexity, Eq. 6 has so far only been solved approximat2]y Using a so called “strong collision”
approach. This consists in substituting the diffusion ap@rDA by the “strong collision operatorD

= %(H — 1), wherell is the projector on the equilibrium distribution amgt = [dtK(t) is the
mean correlation time of the frequency autocorrelatiorcfiom. This approximation is justified, if the
time scales on which diffusion and dephasing occur are vistindt, i.e. iféw < 1/7 or ow > 1/7 and

is becomes even exact in the limiting cases where 0 or D — oo. If, on the contrary, the time scales
are close, the method is rather dubious, and in any case ttieematical effort needed in carrying out
the calculations is intimidating. Results for signals aietd in that way by Ziener et al. [2] can be seen

later (Fig. 6a).

The Monte-Carlo Approach

In order to evaluate the strong collision approximation Emnogh's Model itself (also to go beyond it)
MC methods are used here to simulate such systems.

The basic idea of MC is to use random numbers for sampling lasgspace of a thermal system.
Usually Markov-Chains are used, with transition probébii obeying probabilistic laws that lead to the
correct statistical distribution. During this samplinige tquantities of interest can be measured; the mean
values of those measurements will converge against theedeskpectation values.

One great advantage of MC simulations with respect to othputational methods is, that parallelizing
them is trivial, because they rely on a large numbendépendentalculations.

Simulating Krogh's Model

In our case, the Markov-Chains are discretized paths ofigliffy spins; the transition probabilities are
locally given by the Green’s Function that solves the umietsd diffusion equation (Eg.5) in two di-

4

mensions, which is a 2d-Gaussian:

(fn-‘rl - fn)z]

P(fn — fn+1, At) == G(fn+1 - fn, At) == ADAL

pl- (8)

4T DAY x

At the boundaries, one just has to arrange for the transgiobabilities to be “mirrored” correctly, in
order to account for the reflective bc’s.

In principle, the algorithm used to determine the frequetmyelation function for Krogh’s Model was
the following:

1. Do M times (M = number of trajectories to be measured; for increasing Mstatistical error
will reduce with ﬁ)

{

(a) Randomly chose a starting position(xzg, yo) inside the area between the two circles
(This reflects the the fact that the equilibrium densityribsttion is uniform)and measure
the frequency shiftéw (Eq.4)

(b) Do N times (N = Number of MC steps in one Trajectory)
{

i. Draw Ax, Ay, from a_’Gaussian Distribution (according to Eq.8)nove to hew posi-
tion in-i—l = I, + Az
e If new position is out of the boundaries, reflect it at the bourdary.
ii. Measuredw

(c) Calculate K(t):

(N+n)/k
Kn(nAt) = Y wlil(k « iAt)w[F((k* i+ n)At)] (9)
=0

(wherek is a natural number between one ardwhich affects only the performance speed)

2. Calculate the mean value of the measured correlation funotins:

1 M
(K (nAt)) = — > Km(nAt) (10)

The variance chosen for the Gaussian distribution detexgnihe ratio of time resolution for the dis-
cretization of the pathAt¢) and diffusion rate D). It also directly influences the performance speed of
the algorithm. This discretization is in fact the only poimére a systematic error is introduced, but it
can easily be made small enough so not to have any practieghree, without losing too much perfor-
mance.

One has some freedom in choosing how many steps are to betexeécwne trajectory (provided of
course, that the number of steps timksis not smaller than the time interval over which one wants to
know K') and how many measured valu&s|Z(t)] * dw[Z(t + At)] are evaluated from one trajectory,
which is determined by the choice bf(evaluating simplyall is not efficient, because they are highly
correlated). It is not obvious which choices are best, sahigrwork, they have been optimized empiri-
cally.

The NMR-signals can be obtained in a similar way. Here it maense not to chose the time for one
trajectory longer than the time interval over which one wantknow the signals. Apart from this, the
diffusing spins are simulated in exactly the same mannerefmdn Again, the frequency shiftv is
measured after each step, but is now integrated over timegler ¢o obtain the accumulated phasg):

N
Q(nAt) = w(Z(iAt)) At (11)
=0

The estimator for the GE signal can then be calculated byagirg:

Meae = (exp(i§2(t))) (12)

In case of the Spin-Echo, the relevant phase is different:
Qsp(nAt) = 2Q(nAt/2) — Q(nAt) (13)
but the signal is obtained analogously:
Msg = (exp(i*x Qsg(t))) (14)

It has to be remarked that in contrast to the case of the atioel function for the signals another
parameter becomes relevant, namely the ratio of the diffusonstant and the frequency shift constant
dwo. For K (t), D only changes the time scaling, whitey, is just a constant prefactor, which cancels
out, if one considers the normalized quantityt) /K (0).

Other Models

The capillary model that comes to mind first is an ordereddatéec lattice of parallel cylinders. Here
again, it is sufficient to consider a two-dimensional sligatthermore, the movement within the lattice
will be represented correctly via just one quadratic unitwéh periodic boundary conditions. But in
contrast to the previous situation, the tilting anglbetween the projection @&, onthe plane orthogonal
to the capillaries and the capillary layers now plays a aaevole, as will be discussed later. Simulations
for this model have been carried out for different valuea.of he situation including the contribution of
next nearest capillaries to the field has been studied as well

Next, a triangular lattice structure of capillaries wasdamted via a hexagonal unit cell. Different angles
and additional fields from neighboring capillaries haverbeensidered.

Finally, the influence of randomness (which in nature is gbyaresent to some degree) has been studied,
first via the rather extreme case of a completely randomittide of parallel capillaries. Here we do not
have a unit cell, so a larger number of randomly located lzajgs (with the only restriction that they
could not overlap) within a square with periodic bc's wasdimted. It turned out that 200 capillaries
were sufficient for the results to be self-averaging. Aslierardered models, usually only the fields of a
smaller number of near capillaries were taken into accdhistwas effectuated by the introduction of a
finite cut-off radius.

Simulations of this model with different cut-off radii hateen realized.

For all those models, the measurements of the correlatioctibn and signals could be done in much
the same way as for the KM, the only basic changes being tfexalift geometries on which the random
walks took place.

@) (b)

(©

Figure 2: lllustrations of the different models: (a) diggahe quadratic unit cell of the square lattice
model; (b) the hexagonal unit cell of the triangular latticedel; (c) illustrates the trajectory of one spin
in the random-lattice model. The straight vertical lines tire jumps when a boundary is crossed (the
diagonal line is a plotting mistake). The pink circles arésale the area in which the spins can move.
They do not represent individual capillaries, but are “oriimages”, accounting for the fields of others

acting across the boundaries.

Results - Presentation, Comparison, and Discussion
The Frequency Autocorrelation Function
First, K (t) obtained from the simulation of the KM shall be compared sults from numeric calcu-

lations done by Ziener et al. [1]. Since those are exact,ishisainly a check for the correctness of the
simulations.

1
A 01
-
N‘-—.—"
v
-~ 001 ——n=
o
e}
¥ 1E3
- = = = n_
1E4H 7
1E-3 0.01

1
t/x

Figure 3: Comparison of the numerical (black) and simutetidcolored) normalized frequency correla-
tion function for Krogh’s Model with different capillary Womesn. The data points from the simulation
are larger than the statistical error bars, so to be visibles R2/D is the correlation time for the
unrestricted diffusion. The numerical curves were takemff1].

In fact, by graphical means (the data from the numericaltaiions not having been at hand), it was not
possible to detect any deviations beyond the (small) statiserrors.
This result strongly suggests the correctness of the methwgaloyed.

For the periodic lattice structure; (¢) turned out to behave qualitatively similar, but to drop off d
cidedly faster. In Fig. 4, the tilting anglke was zero and no neighboring capillaries were considered.
The effect of neighboring capillaries was in fact found toskey small for the periodic lattices and can
therefore be neglected at this point.

The qualitative explanation for the faster drop-off in tleese of the square (compared to the KM) might
be the following: The effectivg is smaller in the case of the square, because angular regliok are

“cut off” (compared to a circle) are weighed stronger by thgudar factor ¢os(2¢)) of dw, while in the
corner regions this factor is small. Indeedyils chosen larger for the square (i.e., so that the side length
of the square matches the outer radius of the KM) the cuneemach closer (not shown here).

This, however, can not explain whiy (¢) drops off even faster in the triangular model (see Fig. 3). In
fact, one would expect the contrary, the hexagonal beirgeclw the circle than the square.

Here, a different explanation seems likely: This even feditep-off might be due to the fact, théw (z)

has stronger gradients near the boundaries in the hexagwdsl. More precisely, if a spin crosses a
boundary of the square, or is reflected at the outer edge oftkdtw-field of the closest capillary re-

8

01 r

K(ttau)/K(0)

0.01

0.001 |-

01 r

K(ttau)/K(0)

o
o
=

0.001 |-

0.01

ttau

(b)

Figure 4: (a):K(t/7)/K(0) for the KM (red curve); the square-lattice model (greertidd} and the
triangular lattice model (blue/dotted), with= 0.1,0.01,0.001 (from right to left). (b): K (¢/7)/K(0)

for the KM (red), the square model witB, not tilted (= 0) (green/dashed), the triangular model with
a = 0 (blue/dotted), the square model with= 7/4 (turquoise/dashed-dotted) and with averaged

(pink/small dots)z is 0.1 for all.

mains the same, while for the hexagon it changes, sometinesits sign (see Fig. 5). Although the
jump indw when a boundary is crossed is an artifact that vanishes wioee meighboring capillaries are
considered, the gradients persist, and it is rather obwlmaisthis tends to reduce the correlations.

To test this hypothesis, one may consider the case of a dicidttice with aB, being tilted by = /4.
Here those gradients are even stronger (the algayschanges when a boundary is crossed!), and thus
K (t) should drop very fast, which indeed it does (Fig. 4b, turgeaurve).

Surely, this dependence enis something artificial that would not occur in patterns s not strictly
periodic (which one cannot expect of a biological tissudjerfore simulations of the periodic lattices
have been carried out, in whichwas chosen at random for each trajectory, averaging oufétstéand
also the effect of the “effectively smallerj'for the square). For the triangular lattice, the result riewd
practically unchanged, while for the square the curve les/ben the to extremea (0 anda = 7/4),

as one would have expected (Fig. 4b, pink curve). Besidexpijpéns to be very close to the curve for the
triangular lattice.

The results for the totally unordered lattice are very défg. Most noticeably, one can observe a strong

9

@ (b)

Figure 5: Schematic illustration of the changejin at the boundaries (a) square lattice with= 0: no
change (b) triangular lattice: moderate change, sometitmasge of sign (c) square lattice with= 7 /4:
drastic change, always change of sign.

dependence on the cut-off radius, where for the ordered Is\atie corresponding factor (the number of
considered neighboring capillaries) had almost no inflae@n the other hand, there seems to be little
direct influence of the volume fractiop(not shown here).

The NMR-Signals

As already mentioned, not even the KM allows for the signalbe calculated exactly, except for the
limiting cases. FoiD = 0, the curve obtained by Ziener et al. [2] and the curve fromsihmulation are
in convincing accordance, which is another endorsemerthéocorrectness of our algorithm. However,
for D > 0 the simulation and numerical results deviate consideyrabdtching more or less only for the
first 5ms, see Fig. 6.

a8 4
8,6

8,4 -

Hi{t)
Hi{t)

L] 5 18 15 28 25 38 35 48 L] 5 18 15 28 25 38 35 48
tlnsl tlnsl

(a) (b)

Figure 6: Comparison of the GE signals of KM for varying défilon constants. Red curve: D=0, green:
D=1, blue: D=2, violet: D=5 turquoise: D=1Qu(n’>ms~!); w0 = 1lms~! (a) Approximate numeric
results obtained by Ziener et al. (b) The results from theukition.

The oscillations one observes for the stationary cdse= 0), are predicted to become flattened for
D > 0 according to the numerical results, while the simulatioedists for them to reduce their period
(while the amplitude of the first valley/peak increases)beil,2 and to vanish only for larger D’s.

For the SE signal (Fig. 7), we also observe a severe discrgpmiween the numerical and the simula-
tional results.

10

0

0 ‘5 1‘0 1‘5 l[:;c;] 2‘5 3‘0 3‘5 40
Figure 7: SE signals for the KM. Red lines are numeric resgltsen (dashed) lines are simulation
results.D = 1,2, 5[um?ms~1] (from top to bottom).

The signals of the other models have been studied as welk sbre results are displayed in Fig. 8.

As was the case for the correlation functions, the signathefegular lattices drop of faster than those
of the KM, but at least in a qualitatively similar way, whileet signals for the randomized lattice seem
to be much more persistent. But in contrast to the correldtiaction, the signals of the random-model

turned out to remain almost unchanged when the cut-off sadas enlarged.

In addition to the two dimensional models mentioned hereersd three dimensional models have been
studied. Here, the motivation was mainly to analyze the émfae of contrast agents within vessels or
tissue. The results are interesting, but do not yet allovarctmnclusions and shall therefore not be
presented in this context.

Conclusions and Outlook

It has become clear, that the ability of the Krough’s modeirionic a more realistic distribution of
capillaries is limited, its main shortcomings being theuasgtion that periodic boundary conditions can
be replaced by reflective ones (which only holds in specisggpg and its disregarding of any randomness
in the capillary distribution. Furthermore we must conéutiat the strong collision approach leads to
very inaccurate results for realistic valuesiofanddwyg.

One thing that still remains to be explained is the strongeddpnce of the correlation function on the
cut-off radius for the random lattice.

The Monte-Carlo method was proved to be an adequate tooluddyiag myocardial capillary systems.
It can easily be adjusted to different geometries, doesawtire to much computational effort in order
to produce precise results, and is well suited to be carnigcbn parallel architectures. The next step
would be to investigate models as close to reality [5] asiptessin order to obtain predictive results
which could then be compared to experimental data.

Acknowledgments

| would like to express my gratitude toward the JSC for emapthis work. Special thanks go to Robert
Speck and Matthias Bolten for the great organization of thesgstudent program, to Walter Nadler for
his patience and support and to my fellow students for alleful advice and the nice atmosphere.

References

1. C.H. Ziener, T. Kampf, V. Herold, P.M. Jakob, W.R. Bauer,Nédler,
J. Chem. Phys. 129 (2008) 014507

11

08 i 1 08 |

M@
M()

02 L L I L L L L 02 L L L L L L
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

tms] ims]

Figure 8: GE signal for different models. (a) square modetdg/dashed) and hexagon (blue/dotted)
with D = 0 (oscillating) andD = 5, respectively (b) randomized lattide = 0, 1,5 (from bottom to

top).

2. C.H. Ziener, T. Kampf, G. Melkus, V. Herold, T. Weber, G.erts, P.M. Jakob, W.R. Bauer,
Phys. Rev. E 76 (2007) 031915

3. A. Abragan,
Principles of Nuclear Magnetispist ed. (Oxford University Press, New York, 1961)

4. J.H. Jensen, R. Chandra, R.A. Ramani, H. Lu, G. JohnsBnl&e, K. Kaczynski, J.A. Helpern,
Magn. Res. Med. 55 (2006) 1350

5. K. Rakusan, N. Cicutti, S. Kazda, T. Turek,
Hypertension 24 (1994) 205-211

12

Visualizing Soil-Plant-Interactions
Using VTK and Java

Martin Galgon

Bergische Universitat Wuppertal, Fachbereich E - Elektrtbhik & Informationstechnik
Campus Freudenberg, Rainer-Gruenter-StralRe 21, 4211paMap

E-mail: galgon@uni-wuppertal.de

Abstract: With R-SWMS being a complex 3D simulation model for water fleaiute trans-
port and root growth, the need to present the generated arobdata in a clear, easy and un-
derstandable way is high. As most simple solutions fail @aating the complex images quickly
and without a quality that satisfies scientific needs, a newemowerful concept is needed. We
present RSWMSViz, based on the extensive OpenGL accedevaik system. RSWMSVizis a
Java program for both, high performance and high qualithViRvEs data presentation, coupled
with user interaction and file export possibilities.

Introduction

Knowing the mutual influences between a plant and its sudiognsoil means knowing the basis to be
able to efficiently distribute seedlings on agriculturaldataking optimal use of the available space and
minimal rivalry among plants into account. Analyzing anddicting these interactions - water flow and
solute transport in particular - between a plant and thevsading soil will help understanding irrigation
and water scarcity problems. Water flow in the soil is detagdiby dynamic and non-linear parameters,
i.e. topography, soil properties, vegetation and boundanglitions. Latter are given by external in- and
outflow events, such as rain, irrigation, evaporation, diremage or runoff at the surface. The soil also
looses water to the plant, which takes up water during daytmmcompensate the water loss caused by
transpiration at the leaves surfaces. This transpirasaca ¢onsequence of the photosynthetic process.
Water uptake starts in upper, more humid regions and sbifsier layers as these regions get dry. At
night, water is relocated from deeper humid layers to uppetayers.

A simulation system for these complex mechanisms, a fullypted 3D soil-root-model, is R-SWMS
[3]. R-SWMS uses two separate systems for soil and root wéuiehcoupled by a sink term to predict
root water uptake (RWU) based on water potential differsrtmetween soil and root. RWU is largely
affected by the spatial discretization of the soil arounotsoR-SWMS provides several approaches to
deal with local soil-root interactions without loosing cial information by coarser spatial resolution [4].

To understand the huge amount of data produced by simuationoncept to extract and process this
data and finally present it in an eupeptic way has to be foune. tb human evolution, visual represen-
tations of the produced data are easy to understand and wibrkG@onverting the received information
to on-screen images is a complex task mainly because of @sons. On the one hand all important
information have to be drawn correctly and have to be ineliyi understandable. For this purpose the
data have to be presented in sufficient quality. On the othed lthe image creation process has to be
fast enough, not to simply show a single image but to pres@ntations and allow interactions with the
3D data representations.

More accurate measurement techniques and root model geverd lead to large soil and root systems.
Drawing complex 3D root structures and dense soil gridsgusoftware rendering only is unbearably
slow. Software packages like MATLAB as interim solution aighly inappropriate for this task. Irregu-
lar grids, obtained by grid refinement techniques [6], tandamplicate things additionally. To create a
platform to supply both, quality and speed, hardware acatdm is inevitable.

With this in mind, we need to find a concept for fast visual@atof the prior described interactions and
geometry, which can supply a framework for high performag@phics and adequate quality regarding
scientific expectations.

In this report, we will combine the R-SWMS model as data seudava for an easy to use graphical user
interface and platform independency, and VTK [1, 2] for fast high quality visualization to create a
program which satisfies all these requirements: RSWMSViz.

R-SWMS: a 3D detailed model for water flow in soil and roots

R-SWMS' combines two models, basis of which is a 3D soil water flow aadsport model [7], accom-
panied by a root water flow model [8]. The soil model alreadyuides root growth but RWU is based on
empirical relationships. The root model is used for finding water potential and RWU distribution in
the xylem network. Hereto boundary conditions in form offiration at the root collar and soil water
potential distribution at the root surface are needed. Bgsitems are coupled by the sink term. The sink
term is defined as a weighted sum of radial soil-root fluxesypme of soil. To find a solution to the
connected root-soil problem, iterative coupling betwdengystems is needed.

The geometry of the soil is given by a 3D cube grid, dividing $loil into voxels (Fig. 1). Each corner of
the cube grid represents a soil node for which the Richardsian is solved.

Figure 1: Initial soil grid structure

The Richards Equation is given by

00 oh
5 =Co =V (K(W)V (h+2)) =S (h) 1)

wheref is the water content ificm?® cm ™3], h the water potential (pressure head)[dm], C () the
volumetric water capacity ificm~!] defined byC' = 92, K the non-linear hydraulic soil conductivity
in [em d~1] andS the sink term in[d~!].

The geometry of the root is represented by a tree-like stractonsisting of connected segments of
which each juncture defines a root node (Fig. 2, left). Toudate the xylem water potentiahf) for a
node, a linear system of equations is solved:

IRoot - Simulating Water Flow and Solute Transport in Thréex@nsional Variably-Saturated Media

14

(@)

where/J is a flux density in[cm d—l] , hs the water potential at the root surfa¢é¢he root segment length
in [cm], K, the xylem conductance ifem? d~!] and L, the radial conductivity ind—].

i

Figure 2: Left: root architecture, right: independent raotl soil structures

Root and soil use independent systems (Fig. 2, right), mgathieir coordinates not necessarily use the
same grid. This leads to a problem regarding the water patesaticulation at the root surface, which is
a boundary condition for the root system. Overall, four mdthcan be used to calculate water potential
[4, 5] (Fig. 3).

=

o / \ % NN s N
‘ ‘ \\ ///‘)_“ . I . I ' /7 \\
L \, \, VAN VAN /| / \
VAN AN / .
[] ® { [RV R
° i\ y ejeoe [)
N N s \ AN AN /|
4 A S=<{ S==<{ S=<l \ /
® [J ® | [] RV R Y\)/
\ / [] I [] I [J N e
[S~ e ANAN SO _-
Average Microscopic Microscopic reorder Microscopic sum

Figure 3: Incorporating local conductivity drop

A first simple method (A) obtains the water potential at thet surface by calculating a weighted aver-
age from all soil nodes surrounding a root node. A more ateuracroscopic model (B, C, D; analytic
approach) uses a variation of the Richards equation. MogekBerves the original root node distribu-
tion. Model C redistributes the nodes for more heteroggragiti model D sums up all root nodes in the
soil voxel.

By averaging the water potentials (method A) at the soil eonmodes, crucial information is neglected
(if the spatial distribution is not fine enough) as the nawdir hydraulic conductivity causes a large drop
near the root, especially in dry soil regions. If this locabul is considered, significant changes in the
prediction of the xylem water potential are noticed, butsb# water potential gradient is more or less
unaffected. The local drop should be considered. To getauraie gradient throughout the soil and near
the root, grid refinement is needed.

Irregular grids reduce computational costs and still preshigh spatial resolution. Refinement is done
by bisecting all edges of a specific soil voxel and slicing ¥bime along the corresponding planes
(Fig. 4). It is based on root information, the grid is densarmmeots and coarser farther away in the soil
[6]. Refinement over time may be considered, based on a psteror estimate.

15

Figure 4: Refined grid

VTK

VTK is an open source library for scientific visualizationdamage processing. It is based on the ren-
dering library OpenGL and provides a higher abstractiorlltar easy application development. Written

in C++, it consists of over 700 classes supplying a huge fvasriecontaining lots of precast data struc-

tures, algorithms, modeling techniques and renderingoeagmt, empowering the developer to visualize
his data in high quality and with high performance. VTK par$ wrappers for Tcl, Python and Java.

Graphics and visualization model

VTK uses so called data sets to represent different typelsreétdimensional data. All available VTK
data sets consist of a set of points, representing the ramegey and a list of cells, each to which a list
of points is assigned. The cells represent the topologyefitiia and allows e.g. interpolation between
points. These data sets are created, manipulated and firatilered by the VTK pipeline where data
sets are passed from object to object and constantly aifaramed, extracted or enhanced. The Pipeline
can be divided into two sections, the data creation and matipn phase and the image creation phase
(Fig. 5). For the creation phase VTK provides multiple oiesto create primitive geometry, read in VTK
file formats or import different image files and 3D formatseThsulting data sets then can be modified
in many ways by using so-called filters or directly be sentritegper for rendering. Many filters produce
multiple output and/or accept multiple input to performitiask. After modification, the data set has
to be passed to a mapper, which creates OpenGL compatitgtlar 3D objects from the data sets.
The mapper again is assigned to an actor, which representsbjhct in the scene and handles color,
position or size. A renderer then is responsible for praaly@n image which is drawn into a render
window viewport. Finally an interactor can be used to malaifgLobjects in the scene or the camera of
the viewport.

Pipeline execution

Executing the pipeline follows a distinct concept in VTK. ¥htalking about “Lazy Execution” we
describe a demand driven model where only the out-of-dats phthe pipeline execute if data has been
requested. To determine which parts of the pipeline wikkxeeute to keep the output data up to date,
VTK employs a timestamp system. A method call, which doesregtiire re-execution of the specific
pipeline element, may return wrong results if the object waslified right before the requesting call,
but no update request was made. In almost every case a mardestkeuwequest is not necessary as a
render initiates the request for data, sends an updatestegpehe pipeline and provokes re-execution
of out-of-date elements. The updated data then travels diogvpipeline to be rendered (Fig. 6). This
execution concept may produce unexpected results if wertmpanipulate output data sets somewhere
in the pipeline manually. All changes will be overwritten tye next update request made to the pipeline
element we requested the output from. To bypass this effiecsimply can create a real copy of the
dataset and manipulate the copy, but this solution is gnéfféctive regarding memory usage. Another

16

Data creation / manipulation

Source Reader Manually

Impl. Function
/ Source, Filter, ...
Data rendering * ‘A/ DataSet
4_4

Mapper Filter D
heton GetOutput()
single / multiple input
T tkptel v single / multiple output DataSet
Renderer
i i Setlnput()
v
Interactor - —— Window > Writer Filter, Mapper, ...

Figure 5: Basic pipeline concept

way is to temporarily establish a pipeline to the point thenoa modification should be done. Then
pipeline execution is forced and the pipeline is destroyeatty/ after. Of course this only works out if
the pipeline is not needed anymore after first execution.

4————— Data flow via Update()

Source — Filter

| |

Data Object <¢— Data Object

Source — Filter Filter Mapper 4———
Data Object <¢— Data Object Data Object j

Data flow via Execute() ——0/—3§>

Figure 6: Pipeline data flow

Handling large data sets

VTK by default is configured to handle small amounts of datarélduce execution time for large data
sets, as obtained with R-SWMS, and prevent not modified ipgelements from re-executing, all filters
in the pipeline preserve intermediate results. Thesetsesah be freed after execution, but then the
whole pipline will have to re-execute on a parameter chalkging this method only will affect huge
amounts of data and accelerate computation by reducindneadr

RSWMSViz

RSWMSViz is the program developed to visualize R-SWMS oufpes using VTK. RSWMSViz is
written in Java and is supposed to run in runtime environmehversion 1.6 or higher. It uses a slightly
modified VTK 5.0.4 API. For thread safety during file writingogesses, vtkPanel 1.18 is used. In the
mentioned component, which is part of the Java wrappingesysthe VTK internal execution control
can be locked explicitly. By doing this, an error that ocomigen multiple threads try to access a Linux
system’s X-Server simultaneously, can be prevented. That&in occurs when using Java to implement

17

a VTK pipeline and trying to write files using a vtkWriter. R®¥%Viz can produce output in BMP,
JPEG, PNG and Postscript. Additionally, complete timedirtan be rendered into an MPEG2 movie.
To gain access to the generated root 3D mesh, the whole saarige@xported as Alid#/avefront and
VRML? compatible formats. RSWMSViz is capable of displaying rsttictures, vertical soil planes
and the velocity field. Root and soil planes can be mappedvierakdifferent ways, scalar zooming
is available for both. The root radius can be adjusted to Imtite applied mapping (Fig. 17). A wide
variety of helper objects can be displayed and manipuldtbd.velocity field can be clipped in upper
and lower vertical direction for better visibility of fieldethils (Fig. 16). Streamlines show the way and
speed of an imaginary particle on its way through the vectdd fiFig. 15). A loaded time-line can be
shifted simply by moving a slider, intersections of the regth the vertical planes can be computed
and displayed (Fig. 14). Vertical planes, velocity field amgrsections can be viewed in a 2D topview
(Fig. 13). These and many other options are directly avalabthe user interface (Fig. 10). Advanced
options, mainly to acquire custom output pictures, can laagad directly inside the source code.

In the next paragraphs we will focus on only a couple of agpeERSWMSViz. For a full functional
overview refer to the user manual.

Input data from R-SWMS

vtkPolyData - root vtkUnstructuredGrid - soil vtkDataSet - velocity

l l vikArrowSource
vtkCleanPolyData vtkDelaunay2D vtkTransform l /
l l \ l \ vtkGlyph3D vtkPlanes
vtkPlane vtkTubeFilter vtkPolyDataMapper vtkTransformpFilter vtkTransformpFilter l /
l / l l l vtkPolyDataMapper

vikCutter vikPolyDataMapper vikPolyDataMapper2D. VtkGlyph3D

l l

vtkPolyDataMapper vikPolyDataMapper2D

Figure 7: Reduced overview of the most important VTK pipelgegments in RSWMSViz

R-SWMS output files

R-SWMS produces three types of output files which have to &g by RSWMSViz. Additionally, a file
containing the initial soil grid is read.

e Root data files (outRoot.#) - contain root data per node
Geometric data (coordinates, previous node, branch ngmber
Axial flow from node to node
Radial flow from root surface to xylem
Water potential at xylem and root surface

Axial and radial root conductivity

¢ Soil data files (outfem.#) - contain regular or irregulai glaita

2Virtual Reality Modeling Language, a file format for repraieg and exchanging 3D interactive vector graphics

18

Grid coordinates

Volumetric water content

Water potential

Concentration (solute transport)
Sink term (representing RWU)

¢ Velocity data files (veloci.#) - contain the vector field in x- and z-direction
Coordinates
Velocity

RSWMSViz can load a whole set of data files to display changestome. For this an interval referring
to the R-SWMS output file suffix is requested from the user.gamh simulation output time a set of the
above three files types is loaded. The initial grid file, nodess loaded only once. It contains the initial
unrefined grid used by R-SWMS before any refinement has betrmped (if applicable). The internal
data structure of RSWMSViz basically follows the structaf¢he input data.

Delaunay triangulation

A desired feature is the possibility to display the soil gridmeans of planes for a specific depth, i.e.
z-coordinate. With only an unsorted set of points given,gbimts have to be ordered by their vertical
coordinate. The resulting subsets can then be connectedncef plane. An efficient way to produce tri-
angular meshes from point sets with good results is the Dalatriangulatiod. The Delaunay criterion
requires no other point of the given point set to be localizeside a surrounding circle of any of the
triangular delaunay facets, so a circumcircle of a triamgletains only the three defining points of this
very triangle. With this, a Delaunay triangulation maxieszhe minimum angle over all triangles inside
the grid. The definition can be generalized for higher dinmra simplexes, but for the two dimensional
case, the created triangulation is optimal. There are masgiple algorithnfsto implement a delaunay
triangulation, the best one runs@t(n log n). The Delaunay graph is the dual graph of the Voronoi tes-
sellatior?. A VTK internal implementation is available for 2D and 3D pbsets, where the 2D variation
simply ignores all z-coordinates the points may have.

Interpolation

Due to grid refinement, at some layers the planes will be iqdeta (Fig. 8, left). To generate a smooth
transition while viewing the planes throughout the soileoh, the incomplete planes have to be padded
by interpolation from the nearest complete planes atop amedth the incomplete plane. To achieve
this the missing points have to be retrieved from an additigmid, which in this case is best chosen
as the initial unrefined grid used by R-SWMS as this guarantiee existence of the points needed for
interpolation in the adjacent layers. This grid can not bsilgaeconstructed from the given refined
grid and it is much more efficient to take the initial coarsi gnodes.in). For RSWMSViz it suffices
to construct a file which contains each emerging x-, y- andardinate only once because the initial
grid is always considered regular and the needed grid cantsracted with this minimal information.
Knowing all points of this regular grid, the missing points & certain plane can be marked during point
ordering and are added before the delaunay triangulatinsteets the final plane (Fig. 8, right).

3Boris Delaunay, 1934

“Possible algorithms are: flip, incremental, divide & congseeep, voronoi and convex hull

Georgy Voronoy; a poinp in the 2D plane belongs to the interior of a Voronoi-cell defirby a specific poinP out of a
given point setS, if p is closer toP as to any other point of.

19

Figure 8: Not interpolated (left) and interpolated (finamd)(right) grid structures after delaunay trian-
gulation

Scalar zooming

When color mapping a 3D object with vertex colors from given-point scalar values, the overall scalar
range determines the difference in color assigned to twacadt scalar values onto the object. Very
small changes in scalar values might not show a visible ah@mgolor, not even by using a multicolor
gradient. To be able to visualize the scalar behavior inipeegions on the 3D object the color mapping
has to be altered. The scalar range, the mapper refers ¢nllised and adjusted to the desired values. To
achieve this, the scalar range is shifted using an expaidatitof, which allows more delicate control
at higher zoom levels. Here the shift has to increase moveysko the user might not miss the desired
point or the point is not skipped due to the value steppincghefdontrol component. To empower the
user to zoom into any region, the zoom target can be shiftedtbe whole scalar range. The color will
be interpolated along the new zoomed scalar range (Fig.IB3cAlars not in this interval will obtain the
corresponding color assigned to the minimum or maximumealu

min zoomed min zoomed max max

‘ zoom target
Py

[I hd | |

'Y

| 4

linear interpolation

Figure 9: The scalar zooming feature

An example

A large example root structure (Fig. 18) is read, constaieted rendered on a subsecond timescale.
Drawing the same root using MATLAB (Fig. 11) took a couple oluis and still was basically just a
colored line drawing. RSWMSViz generates a fully three-glirsional mapped root model the user can
interact with. Not only a 3D representation is created, RSSVi# also extracts and computes additional
information from the given data. All important parameteas te changed on the fly, additionally com-
puted information like intersection contours can be gdardrand drawn without delay. Some features are
a little slower due to complex calculations (i.e. streamdinanti-aliasing). Depending on performance of
the deployed graphics card, even very large root structdessse soil grids and complex velocity fields
can be rendered and interacted with, simultaneously anekitime (Fig. 12). Graphical output quality
is VTK specific on a high, scientific oriented level.

®An empirical derived function with good resultsﬁl_?, wherez is a linear natural factor, given e.g. by an GUI control

element andn an multiplier whose optimal value for a certain scalar raisggiven bym = l;(—g) whereD is the overall
scalar ranged the minimum occurring difference of two adjacent scalaugalandX ... the maximum value for the linear
scaling factor given by the GUI component. Computihgan only be done quite inefficiently, so a base valueno&= 0.05

is predefined but can be modified inside the RSWMSViz sourde.cAs an alternative an approximately good value can be

found lettingd be the minimum difference over all scalar values.

20

Conclusion and outlook

Alltogether the attempt to develop a platform for visualgzithe complex R-SWMS root and soil struc-
tures sufficiently fast and in appropriate quality was sasfid. The user is provided with an extensive
amount of visualization options.

Still further improvements can be integrated:

e As R-SWMS will be able to simulate more than one root together soil volume, RSWMSViz
will have to support multiple roots in the future. It alreadgn handle more roots, if given in a
single file with disjunct node numbering. The main disadagathere would be the joint scalar
ranges of the roots, which can approximately be overcomesimgiscalar zoom.

e A layered view of the soil grid already exists in verticaladition. Expanding in horizontal direc-
tions is desired.

e Data management is still not optimal and can be improved ioyirghting unnecessary pipeline
segments and redundant data copies.

e The rudimentary graphical user interface was implemerdetebting purposes only and will have
to be improved to be more intuitive and ordered.

Acknowledgment

At this point I'd like to thank my adviser Tom Schroder for ays sacrificing his time and supporting
me. | also want to thank Dr. Helmut Schumacher for supplyirgwith VTK knowledge and litera-
ture. Furthermore I'd like to express my gratitude towardatthlias Bolten and Robert Speck for once
more organizing a successful guest student program. THanksese interesting two months. And | am
indebted to Prof. Dr. Andreas Frommer at Wuppertal Univeifgir his recommendation, which made
my attendance possible in the first place. Finally, thanksogoy guest student colleagues who where
unexceptional outstanding pleasant companions in thewssti

References

1. Avila, L. S., S. Barré, B. Geveci, A. Handerson, W. A. Hoffm B. King, C. C. Law, K. M. Martin, W. J. Schroeder, 2003,
The VTK User’s Guide, Kitware, Inc.

2. Schroeder, W., K. Martin, B. Lorensen, 2002, The Visudlon Toolkit - An Object-Oriented Approach to 3D Graphics,
Kitware, Inc., 3rd Edition

3. Javaux, M., T. Schroder, J. Vanderborght, H. Vereeck8@82Potential use of a Detailed Modeling Approach for Pre-
dicting Root Water Uptake, Vadose Zone Journal, 7: 10788108

4. Schréder, T., M. Javaux, J. Vanderborght, B. Kérfgen, éteécken, 2008, Effect of local soil hydraulic conducyiwitop
using a 3D root water uptake model, Vadose Zone Journal,82-1098

5. Schréder, T., M. Javaux, J. Vanderborght, B. Kdrfgen, éte¥écken, 2008, Effect of local soil hydraulic conducgidtop
on root water uptake at the plant scale, Vadose Zone Jowutahitted

6. Schréder, T., L. Tang, M. Javaux, B. Kdrfgen, H. Vereecld808, A grid refinement approach for 3D soil-root models,
Plant and soil, submitted

7. Somma, F., J. W. Hopmans, V. Clausnitzer, 1998, Trantfiee¢-dimensional modeling of soil water and solute trarsp
with simultaneous root growth, root water and nutrient kptdlant and Soil, vol. 202, no 2, 281-293

8. Doussan, C., L. Pagés, G. Vercambre, 1998, Modellingehtraulic architecture of root systems: An integrated ap-
proach to water absorption-model description, Ann. Bot.28B-223

21

|| Render Window

=T=1NE)

root opacity ——————(1 || cunentz-plane at0.0

scalar Zoom = ———————

zoom Target e

ferm opacity W ——————

farm leval - |

root radius - |

veloci opacity e

& “natural” radius [plant [plane [|axes

) [¥] root title [v] fem title

8] us by mapping [12D view [Iveloci 2D

) don't vary radius ["]root axes

<-- auto scalar bar fem [¥] fem axes

¥ <-- quality mode (slow) [¥] 2D axes

rool mapping fem mapping

O Seg O Br) Node

O Prev Qr

O Khr) PHi

) PHX 2 [¥] show z

@ arf i ai [[] <-- show intersections

[] <=~ default root mapping [] <-- default fem mapping

apen | reset zoom

timeline —
fveloci upper bound O:-
veloci lower bound [
streamline opacity I:D

) fem global scalar range | compute str ines slow)

) fem plane global range (@ root global scalar range

fem local scalar range) root local scalar range
8 fem plane local range save timeline to MPEG2
save window to PG save window to BMP
save window to PS save window to PNG J=0d g 1405 Lozds] L7us0]

[v] <—- scalar bar root (| ar f

y - ’ —
resize veloci arrows 3D L= || Console window (=la] [x]]
resize velodi arrows 2D - om fle fead - B33 sets. T j:
labelsize root axes =l —————— || |[velocifile read - 832 sets

render window initialized

labelsize fem axes \:Q ¥ icontrol window initialized =
labelsize 2D axes —_—{) | [[ualitymode on =

-1600 -1400

Figure 10: RSWMSViz graphical user interface (non-finalsiean)

Ly 0
il

-800

-600

-400

ot
fii

i
|

I
i '
i
i
|

il

Water content [

0.12 0.13 0.14 0.15 0.16

Figure 11: Former visualization result

22

0

sink term [d™1]

E

0.02

0.04

current z-plane at -40

fzm-planz

Ui

QIR

0.32/7

(2R

.U

03977

el 7 0]

T

I [rr0]

0374

274395972305 04505 170401

Figure 12: RSWMSViz graphical output showing root struetwertical soil plane and velocity field

current z-plane at -2.0
330

fzrm-planz

03973
uis |75
03974
03974
04974

7ol

e
-L75

03771

I R bie)
-3.50 *

03973 .50 L1735 .o 1.75 EXs

Figure 13: RSWMSViz graphical 2D output showing a vertial plane with intersections and velocity
field

23

current z-plane af -3.0

fzrn-pleinz

Vg

/el

032

03279

039745

i)

[i)

03749

03749

03779

, roof
AP -5 0,34 12457 0, 543207 102441 1. 3224) 170801

Figure 14: RSWMSViz graphical output showing a transpareaot with soil plane intersections

current z-plane af -3.0

A8 9-05 0341205 U.5d5207 1,024 | 134241 1. 70401

Figure 15: RSWMSViz graphical output showing a root withogity streamlines

24

current z-plane af -3.0

fzrn-pleinz

0391t

[/l

[

03279

03945

i)

i)

03749

03749

i)

roof
AP -5 0,34 12457 0283207 J2ZET) 132241 170801

Figure 16: RSWMSViz graphical output showing a root with gtéane and clipped velocity field

current z-plane at 0.0

roof
- 14,4354 = | 24449 -10.05]7 -7, 5590 -5.255510) -2, 58759%

Figure 17: RSWMSViz graphical output showing a root withisaddepending on mapping

25

1
A 1
\ uf
i |
ki I
i A
Y |
'; ':-.. i
£ -!. T
e 7Y 1y
LA In’E
b H
| |
' |
1 3 i,
§ | I
I
| i
5 | .
|]
¥
iy I
| | 1 |
| ’ 1
| -| L

Figure 18: A complex maize root structure of 24510 nodes inilacelumn of 12 by 12 by 150 cm,
drawn by RSWMSViz with a proposed natural looking branchusd

26

Structure Analysis of Communication and Memory Behavior in
the Parallel Tree Code PEPC

Martin Hoffmann

Martin-Luther-Universitat Halle-Wittenberg
Institut fur Physik
Von-Seckendorff-Platz 1
06120 Halle

E-mail: mart.hoffmann@gmx.de

Abstract: PEPC — (Pretty Efficient Parallel Coulomb-solver)+ — is ditigit, portable imple-
mentation of a parallel tree code based on the ideas of Bamk$iut [1]. This code for rapid
computation of long-rangel (r) Coulomb forces is presented for use as a 'black-box’ liprar
for molecular dynamics applications. Previous experienite the code shows that for some
particle configurations some processes have a lot more-fmjmdint communication than oth-
ers, ultimately leading to storage imbalance. The caus#ssproblem are analysed with the
help of additional statistical diagnostics and real-tinmualisation of the tree structure.

Introduction

Two different algorithms for rapid summation bfr potential developed in the mid-1980s — the hierar-
chical Tree Code and the Fast Multipole Method (FMM) [2],iwiéspective scalings 6?(V log V) and
O(N) — have become the standard 'mesh-free’ tools for long-réfipedy simulation across a broad
range of fields [3]. These methods reduce the number of dpaxicle-particle interactions through
the systematic use of multipole expansions, making it ptesso perform simulations with millions of
particles.

PEPC was initially designed for mesh-free modelling of imwdr, complex plasma systems [4], but
recently extended to other application areas in molecytaarhics in the form of a transparent library.
For the PEPC kernel, the Warren-Salmon ’hashed oct-trdedrae based on a space-filling 'Morton’
curve derived from 64-bit particle-coordinate keys hastemopted. The discontinuities inherent in this
curve, potentially leading to disjointed domains and addél communication overhead [5], is found to
be a relatively minor issue compared to load-balancing audrgtrical factors.

The Hashed Oct Tree algorithm developed by Salmon and Wasrarell documented [6]: features
particular to the code PEPC are also described elsewhes§ [7,

The structure of this report is as follows: First some fundatals of oct-trees are introduced,describing
the construction of particle keys and domain decomposdimhgive some definitions. We introduce the
Plummer model and some statistics and analysis routingbdorlater usage. In the following sections
we address two particular issues:

1. comparison between fetched particle keysliree st at s and used patrticle keys in the interac-
tion lists

2. analysis of the problematic processes with a large nuoflgarticles per process for a non uniform
particle configuration

Fundamentals

Morton-Z-order and particles keys

We used binary coordinate keys to map the 3-dimensionabsgaucture onto a one-dimensional space-
filling curve. The keys are constructed from the binary iet@re operation:

nbits—1
key = placebit+ > 8/(4 bit(iz, j) + 2 bit(iy, j) + bit(ix, j)) (1)
j=0

The functionbi t () selects thgth bit of the integer coordinate componefis, i,, i), which are com-
puted from:

i =x/5, 0y = Y/s,i,=2/s
5 = L/in evel s
(simulation box length: L, maximum refinement level:evel s)

For a 64-bit machine we can provide 21 bits per coordinakeeyel s=20) plus a place-holder bit:
pl acebit = 2%

This procedure yields a space-filling curve following thecafied Morton- or Z-ordering.
. ‘
Ny l - ‘n
** finish

<\ 3
= |3 process 4
A)
\) "!-—‘ |
- ‘
o | Y
process 1 \ process 2

SEart. ssewesd)

process 3

Figure 1: space-filling curve in two dimensions for four pFeses

In Fig. 1 we give an example of a space-filling curve for somecesses. At the transitions from one
process to another large discontinuities are observable.

28

Plummer model

Plummer’s model is a standard model for a comparison of sititul methods. Particles are distributed
randomly in a sphere with changing density. In the centeh®fphere the density is nearly one and falls
off with radius. In [9] the way to get initial coordinates iestribed in detail. In PEPC there is a lower
limit for the separation of two particles so the Plummer mid@es be truncated in the center by removing
some particles.

Definitions

In the following context we will use some parameters fromabde and some phrases which are often
repeated. Here we explain the used abbreviations:

work(1 : npp) - length of the interaction lists of all local particles,eafsum f or ce it equalsiocal_work
total_work - summation ofwork over all previous time steps

fetches - number of all fetches keys in the actual time step
ships - number of all shiped keys in the actual time step
npp - local number of particles on process x

In the given example we analyse 'problematic processesg edlled 'maxima’. In the context of this
report it means processes with a largep than others.

Routines

pbal sort:

PEPC-B is equipped with a load-balancing function for denti@composition. This function is adapted
from [10]. After every time stepuork is actualized. The value abork is a kind of scaling factor.
Processes with long interaction lists get fewer particlethe next time step and vice—versa. So it is
possible to increase the valuewbrk with a additional factor greater than one or decrease wititef
less than one. At the beginning of the simulation or aftetaréshework array is initialized with one.

tree_stats:

This routine is a simple serial output routine. Rank zerdectd all required information from the last
time step and writes it to a single file. In addition to this gietask it looks for local maxima. In the
actual code the searching takes place on the basigbut it is very easy to modify the code to use
another values. In do- | oop it compares the value from every process with five neighbocgsses
on both sides. If the actual one has the highest t r ee_st at s will select this process as a local
maximum. The user supplies the number of accepted maximaanspecify:

e barrier: empirical value to accelerate the searching
(mostly 5000 particles per process; if there are no processes foundier will decreased until
zero)

e start and end number for processes for selective visumligathe span in which maxima are
searched

e neighbors. number of processes next to a local maximum, which are taker{left & right)

29

Uniform example

PEPC-E is used for the analysis of a pure uniform arrangemdinparticles are randomly distributed
in a cube so that the density of the simulation area is neagtant. Fig. 2(a) shows the same values
like the first example (Fig. 4). But it is much more homogerseduring all time steps. Also the span
between highest and lowespp is not so high. The same result can be seen indh@_work map.

1000 3650 1000 3.4e+06
900 900 3.20+06
3600
800 800 3e+06
700 3550 700 2.80406
g 600 g 600
8 0 2.66+06
§ s00 3500 § s00
s s 2.4e+06
S 400 2 400
3450 2.2e+06
300 300
200 200 20408
3400
100 100 1.8e+06
o 3350 o

1.6e+06
° 100 200 300 400 500 600 700 800 o 100 200 300 400 500 600 700 800
timesteps/iterations timesteps/iterations

(a) particles (b) total work

Figure 2: per process

This map shows that PEPC works well for a uniform arrangenteveéry process has nearly the same
amount of particles and a relatively balanced total workt tBa question is: In which way is the com-
munication balanced?

Communication efficiency

This refers to for the quality of the point-to-point commeation. If there are just a few unused keys
nearly all performed point-to point communications areessary and we can not spare any time at
t ree_aswal k. To analyse the usage of keys we store all particles keys érary timestep in files. All
fetched keys can be found irr ee_aswal k while all used keys are located in the interaction listss It i
enough when a key is used once in the interaction list so we tawompare both key lists. If a fetched
key appears the first time on the interaction list a counteabke is increased. For different passes in
t ree_aswal k we use various counters to reveal distinctions in every.pass

Results

The first setup for this routine w&3 = 0.0 (Table 1). This means that every particle interacts withheac
other so we should find every particle in the interaction listPtEPC there are two routines where non
local keys are fetched from other procesdesee aswal k andt r ee_br anches. The keys from
the branch nodes are well known and there is no redundant-fpepoint communication. The routine

t r ee_aswal k may request much keys which are not usedum f or ce. It seems that many parent
nodes have to be requested to get few children nodes. We tnhighly contrasting distributions of
particles. The first one is the same random arrangement vidlicked above and the second one is the
aforementioned Plummer model.

The routine can be controlled by summation of the found kifeslocal particles and the keys which are
fetched int r ee_br anches for © = 0. This value equals the number of all particles. That meaais th
the routine works correctly. Tab. 1 shows thatee_st at s has to fetch appr. 30 per cent more particle
keys than it use for the force summation if all particlesriatéed with each other.

30

cube; random | Plummer model
average found keys in the interaction lists for pass 1:
7709.31 7661.84

average | max value| min value | average | max value| min value
difference between all found keys and all fetches
3341.22 \ 3358 \ 3327 \ 3259.84 \ 3275 \ 3243
sum of all fetches
11050.53\ 11071 \ 11036 \ 10921.69\ 10938 \ 10903
difference in per cent

30.24 \ 30.33 \ 30.15 \ 29.85 \ 29.94 \ 29.74

Table 1: for 32 cpus , 8192 particle®,= 0.0

The values above are interesting but they are mostly unconiora real simulation wittO(N log N).
A more typical example is the use 6 = 0.6 (Tab. 2). It seems that PEPC uses more fetched keys for

cube; random | Plummer model
average found keys in the interaction lists for pass 1:
946.69 1057.53

average| max value| min value | average| max value| min value
difference between all found keys and all fetches

013 | 1 | o0 J o2 | 3 | 0
sum of all fetches

946.81| 1370 | 525 [1057.78] 1755 | 429
difference in per cent

0.012 \ 0.124 \ 0.00 \ 0.029 \ 0.281 \ 0.00

Table 2: for 32 cpus , 8192 particle’,= 0.6

sum_f or ce than expected. For this example PEPC used nearly all kegs. faf the Plummer model

(Tab. 2) which is a very non uniform distribution the difface is not much higher. One reason could
be the small number of particles which we used. To verify Hyipothesis we also examined a larger
example (see Tab. 3). In this table we see a bigger differtdrane before but a average variation of 13
per cent is not so bad. Also we can see small variations betddferent passes. It is remarkable that
the variation from time step two to three is tiny. But from gdsto pass 2 there a large variation of the

time step 2 | time step 3
average found keys in the interaction lists for pass 1:
15977.38 | 15976.99
for pass 2:
3208.67 3209.20

average | max value| min value | average | max value| min value
difference between all found keys and all fetches
3359.17 \ 9183 \ 23 \ 3358.92 \ 9182 \ 23
sum of all fetches
22545.23\ 36614 \ 7391 \ 22545.12\ 36615 \ 7391
difference in per cent

1348 | 2712 | 031 [1348 [2712 | 031

Table 3: for 512 cpus, 524288 particlés = 0.6

31

used keys. In pass 2 only 20 per cent of keys are found in casgmato pass 1. In the first step the most
particle keys are fetched and they are not needed in the tegxtisindicates that all essential keys could
be fetched in single pass.

Non-uniform example

This example use the front end PEPC-B with the load-balgntimction. It is designed to simulate
laser-plasma interactions.

1000 6.5¢+06
900 | 6e+06
800 5.5¢+06
700 1§ 5e+06
600 |
4.5¢+06
500
4e+08
400 |
3.5¢+06
300 |
200 B 3e+06
100 2.5¢+06
° 26406

] 100 200 300 400 500 600 700 800 900 1000
time steps/iterations

process ID

Figure 3:total_work per process

Problem

This example starts with a thin layer of paarticles whichlasated by a laser. After the first time step
particles spread out from the layer and move in differergaions. This results in different densities in
the simulation area.

From the work of Zoltan Szebenyi [11] it is known that somegasses cause high point-to-point com-
munications. The values of point-to-point-communicateme measured with SCALASCA. It is also
known from this work that this fact is related to a high numbigparticles on certain processes. With the
routinet r ee_st at s it is possible to illustrate the same attributes after eviemg step. One can see
the same pattern in a map of ships per process for all 1000dtfieps and 1024 processes. In contrast a
map withtotal_work per process is very homogeneous (see Fig. 3). As a conclimstbis context the
load-balancing function seems to work very well.

Imbalanced number of particles
This fact leads to some questions:

1. Where are these processes located?
2. Why are there such high numbers of particles?

3. Why do they have some related patterns?
for example: two maxima move apparently together, some madppear or have a bend in the
same time step

32

1000 12000

900 11000

800 10000

700 9000

660 8000

500 7000

process ID

400 8000

300 5000
200 4000

100 3000

2000

0 100 200 300 400 500 600 700 800 900 1000

time steps/iterations

Figure 4: particle per process

In this concrete example there are 5 maxima. Fig. 4 showghbanaxima are not defined by only one
process. There is always a group of processes with too matigles. Also the first and the last process
provide a maximum.

To answer these questions one have to track the moving ofrdi#epatic processes. This problem
is solved intree_st at s (see section). For the report mostly we set this value to 8 (in. h —
num_bad_process) because we cannot expect to find always exact the 5 maximig.of F

The result is shown in Fig. 5. The only problem is that themniy one process for a group of processes
with high npp’s. But this will corrected by the value efeighbors.

o

process ID

f"""vhlllfn

COUICUICUIOUIOIOUOUIO IO UIO
[STsttotetotototatottatotatotatatotat

CUIE N W WIS U110V 0) 1 -1 00 000 WO

T T T LT

e e ! ! T
0 100 200 300 400 500 600 700 800 900 1000

time steps/iterations

Figure 5: show all tracked processes

33

Visualization — 1. question On Jugene one can use netcdf to show the location of the pnakile
processes. After a complete pass of PEPC-B (here mostly ti@@0steps) the netcdf file is sent to
XNbody viancr eader . Here visualization mode 3 is used: All branches for a givsnadf processes
are sent to XNbody as colored boxes. This shows the locafi@inateresting process. The user can
switch the color code over to three different charactesstf the selected process. Fig. 6 shows the
branch boxes of some processes, in particular is the locafiprocess 600. As Fig. 4 indicates process
600 gets between time step 900 and 1000 a part of the maxima.

/ —Tu
-
ot - 143.1
i
‘ ss: 600
™
process: 60(?
A Y f
i, Y 188 18.79 y
B -
NN R
1782 T -179.3 Z"G::-n
134 i
X- ' 179.6 X s e
182
2048
20.52 1524 F4
1514 7 o z =hee

@ (b)

Figure 6: tracking process 600 (the darkest color)ymovebd@eripheral area and get a lot of particles
from (a) to (b), see Fig. 4 time step 900-1000

Process 600 moves from the area of high density to the pedpheea. Other shown processes are a
maxima, too, but the selected color code was not chosen Wedke is no possibility for a comparison
of the two pictures for these processes. Although one cathséall problematic processes are located
in the outer border region with low particle density.

¥

z 2111

165.2- -1245
X

(b)

Figure 7: tracking one maximum with 4 neighbors to show theentent in every step, example at bend
from time step 900 to 1000 and from process 200 to 400, theatdoks are high cpu-id’'s

In Fig. 7 it becomes apparent that some processes comptdtahge their locations between different

34

time steps. This can be explained with the characteristitteeZ-order while domain decomposition and
the sorting routine. These two parts are the only one whitdtithe dispersal of particles per process.

Large number of particles equals peripheral area — 2. questin The question of the location of the
problematic processes leads us directly to an answer ofetbend question. All processes with high
number of particles seem to be located at the border of thelaiion area. As mentioned above this area
has a low density of particles. This should result in shderiaction lists of these processes. The-k
arrays of these processes have a lower value than of thegsex @ the main area with high density.
Processes at the border of the simulation area will thezafet more particles.

This fact is not important at the beginning of the simulatidhe particle distribution density is nearly
the same in every part of the simulation area. After some timeeparticles start to move away and
the density is not uniform any more. Processes with high have to ship around much more particle
informations than others (cf. paragraph problem on pageT3® same pattern can also be found in the
value of fetches per process but these processes are mhenea t

Possible explanation — 3. question The first and last process are always a problematic becauke of
fixed start and end position of the Z-order (always at the &rdt seems that the other patterns depends
on the spreading of the particles during every time step.

First solutions

The length of the interaction list is a vital parameter fa fitaling ability of PEPC. It affects the memory
at each process for local and non local nodes. But a signifidggh amount of point-to-point communi-

cation is not acceptable for the whole algorithm and it wolssdown the calculating.

Maybe it is possible to smooth these maxima with few chandebeocode. In the next section we
describe and test some ideas .

Naive approach — resetork

The simple reset of this array has no effect. After 200 tinepstvork gets the value of one for all
processes. But in the next time step the same pattern appgairs and the same distribution in the
values ofnpp andtotal_work as without reset.

Additional scaling

For a good smoothingork is reduced for some processes so that these get fewer gsurticl

L 2

workp(1 : nppy) = worky(1 : nppp) - avg_npp

(proces, average particle/proceasg_npp)

This scaling was used with different amounts of processhs. ifiea of taking one process per peak
coming fromt r ee_st at s was ineffective. The surface of the heat mapipp is smoother but the
high values remain. For Fig. 8 more than one process is scBlemaxima are displaced to the upper
and lower processes.

The whole map seems much more uniform than before but it isgiomous that the scale of the right
side has a bigger span.

35

process ID

— 14000
299 12000
800

10000
700
600 8000
500
6000
400
300 4000
200
2000
100
o

(] 100 200 300 400 500 600 700 800 900 1000
time stepsfiterations

Figure 8: taket2 processes of the problematic one

1000
900
800
700
600
500
400
300
200
100

¢

(] 100 200 300 400 500 600 700 800 900 1000
time stepsfiterations

14000

12000

10000

8000

process ID

6000

4000

2000

Figure 9: taket5 processes of the problematic one and scale with s

36

This effect is not sufficient for the neighbors so one can heéitghestipp for all neighbors:

nppp
worky(1 : nppy) = worky(1 : nppp) - m @)
Vp>p—50p <p+5 @

(process front r ee_st at s p, actual procesg, average particle/proceasg_npp)

10006 12000

900 11000

800 = 10000

700 9000

600 | 8000

500 7000

process ID

400 6000

300 2000
200 4000

100 3000

2000

0 100 200 300 400 500 600 700 800 900 1000

time steps/iterations

Figure 10: taket5 processes of the problematic one and scale i

Fig. 11 shows that the above methods are not efficient enaugimooth the high Peaks well. If we take
a average value forpp then large numbers of particles will influence their neigistioo:

Q
Ty = g5 oV > p— (Q/2=1) Na < p+(Q/2-1) (5)
q
here we us€) = 11 (6)
PPy

worky(1 : nppy) = worky,(1 : nppp) - avg D (7)
The result in Fig. 10 looks like the maps before but a signifiadifference is another scale span on
the right. There are no larger maxima as before (see Fig.n8.s€en displacement of the maxima has
also nearly vanished although the area of smoothing was tiggjer than before. Per Peak we get 11
processes frorhr ee_st at s and the average was taken from 11 processes, too. Thissr@saltspan

of 21 processes per peak. The map shows that there is a figssibaffect the behavior opbal sort
positively from 'outside’ the routine.

Comparison

To get a overview of all previous ideas Fig. 11 shows the tagioveen the maximum of the actual time
step and the average number of particles per process.

37

difference from avg in per cent

300

250

200

150

100

Fscaling highest+/-5, same npp

T T T T T T T T T T T T T T T T T T T
no scaling ‘ 1 1 1 1 1 1 1 1
reset after 200 steps -
scaling highest -
scaling highest +/-2

average smoothing

]
1
1
1
\
\
T
1
\
\
1
!
|
|
!
!
|
|
b
!
|
|
|
!
|
|
|
1
1

difference from avg in per cent

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 9501000

time steps

Figure 11: every time step; particles per proceé%%(—1) %100

T T T
no scaling
average smoothing *******
250
NEAYYP
W TN IV AT
::/‘L l’\/\vw‘ /\/‘/\‘ o
200
100 I I I
800 850 900 950 1000

time steps

Figure 12: time step from 800 to 1000; particles per proc(e%%‘. — 1) % 100, more details

38

In this case we would like to have a small factor between tleezge and the maximal values. The only
idea which provide a smaller ratio than the no-scaling ciswbe last one. However, it seems that the
number of particles increases after the smoothing evemgrsetimestep (Fig. 12). This problem could

easily be fixed by an array which contains all scaled prosesen few previous time steps or maybe

only the previous one.

Conclusions

With the remarks from above we see that PEPC still have pmobigith different densities in the simula-
tion area. The uniform cubic distribution shows only smalligtions in the vital parameters of particles,
total work, fetches and ships per process. Most of the fet&egs are needed for force summation even
for the Plummer model. This is an unexpected result becdube targe density difference for this par-
ticle distribution. Such differences determine in the secexample large problems. However, the usage
of fetched particle keys seems to do well. But for all thatatild be correlated to the small number of
used processes and particles.

The second part of this report concerned a laser-plasmaatiien scenario, results in a very inhomoge-
neous particle distribution. We showed the behaviour ofespnocesses which moved at the border of
the simulation area, receiving much more particles thamtleeagenpp. It seems that all processes with
a large number of point-to-point communications are |lat@te the periphery. To smooth these maxima
it is not enough to choose the simple way of an additionairsgatith the localnpp. A better correction

is the usage of an averagep over some neighbor processes. We were able to reduce higgsval the
particle per process map without a displacement of the peaks

The location of the maxima and their behaviour over somedieps seems to be determined by the
progress of the Z-curve and the propagation of the partilesy from the center. A solution of this
problem could be another space-filling curve and seperatdlém of variable density. The resolution of
local trees at processes at the border could be reduceddoegses in the center. But it is not known
in which way this action would interference with particlesan intermediate area. Another possibility
could be a group of predefined processes which manage the whelinformation and perform the main
point-to-point communication for other processes.

Acknowledgements
I would like to thank my supervisors Dr. Paul Gibbon and Rolsreck for their contributions to this

project. | would also like to thank the organisers Matthiadt®& and Robert Speck for enabling me to
participate in the program and all staff of JSC for excellgatking conditions.

39

References

=

AWN

~N O

10.

11.

P. Hut, J. Barnes. A hierarchical o(nlogn) force-caltataalgorithm.Nature 1986.

. V. Rokhlin, L. Greengard. A fast algorithm for particlersilations.J. Comp.Phys1987.

. S. Pfalzer, P. Gibboriviany-Body Tree Methods in physick996.

R. G. Evans, E. L. Clark, M. Zepf, P. Gibbon, F. N. Beg. Tredesimulations of proton acceleration from laser-irreetia

wire targets.Phys. Plasmas2004.

. A. Sameh, A. Grama, V. Kumar. Scalable parallel formoleiof the barneshut method for n-body simulatidPexallel
Comp, 1998.

. J. K. Salmon, M. S. Warren. A portable parallel particleggam.Comp. Phys.Commun.

. P. Gibbon. Pretty efficient parallel coulomb-solver. firgcal report, Forschungszentrum Jilich GmbH, 2003.

. S. Dominiczak, B. Mohr, P. Gibbon, W. Frings. Performaanalysis and visualization of the n-body tree code pepc on
massively parallel computers. @®. Joubert, et al. (eds.), Proc. Parallel Computing , Malaga

. R. Wielen, S. J. Aarseth, M. Hénon. A comparison of nunaéreethods for the study of star cluster dynamiéstron.

& Astrophys, 1974.

X. Li, P. Lu, J. Schaeffer, J. Shillington, P. S. Wong, Hi.SOn the versatility of parallel sorting by regular sampli

Parallel Computing1993.

F. Wolf, Z. Szebenyi, B. J. N. Wylie. Scalasca parallefgenance analyses of pep&uroPa 2008, workshop proper

2008

40

Protein Simulations Under Constraints

Christoph Honisch

Westfalische Wilhelms-Universitat Minster
Institut fir Theoretische Physik
Wilhelm-Klemm-Str. 9
48149 Minster

E-mail: c.honisch@uni-muenster.de

Abstract: Structure prediction of proteins is an important task irdag. There are two princi-
pal ways — among others — in which computational methods caftribute to tackle this prob-
lem. The first approach consists of computer simulationguaiolecular dynamics or Monte
Carlo based on physical force fields. The second approachstatstical predictions derived
from protein databases of known conformations. In thiskrt method is proposed to combine
the physical and the knowledge based ways of structure gti@aliby using statistical predic-
tions as constraints in Monte Carlo simulations.

Introduction

Proteins are macromolecules that consist of a chain of aatits. Each chain folds itself into a unique
macroscopic 3d structure, the so callediary structure which is completely determined by its sequence
of amino acidsrimary structur@. The tertiary structure determines the functionalitytef protein. So,
understanding of the functionality of a protein requireswledge about its tertiary structure. Determin-
ing those structures experimentally is a very time-consgnaind expensive process, so there is a strong
demand for computer-based structure prediction.

This problem can be tackled from two directions, physicahpater simulations and knowledge-based
statistics. Common methods for physical computer simuiatare molecular dynamics and Monte Carlo,
which both have advantages and disadvantages. The latteodneas used in the work of the present
article. The knowledge-based approach uses databasest@hpronformations collected by experimen-
talists. Given a specific target protein one can search ttatsbases for proteins with local or global
sequence similarities and use statistical methods toalarprediction of the configuration of the target.

Both ways of structure prediction can be combined by usimegkitowledge-based predictions as con-
straints in Monte Carlo simulations. The implementatiod &sting of such constraints in the MC sim-
ulation program SMMP ([1], [2] and [3]) was my task during thgest student program of the NIC.

The next section of this article will give a short introdactiinto proteins and the MC algorithms that
were used. Afterwards the implementation of the differemtstraint types is explained followed by two
sections about examples in which the impact of the constraias tested on sequences whose structure
is known.

Proteins

Proteins belong to the wider class of peptides, i.e. theyra@omolecules consisting of a chain of amino
acids. Typical sizes of proteins range from 20 to 3000 amaidsa in this context also calle@sidues

There are 20 different types of residues most proteins altedbuThe characteristic attribute that distin-
guishes proteins from other peptides is that each protainnass a unique macroscopic folding shape,
only determined by its sequence of residues. This was deinated in the famougnfinsen experiment
[4], named after the chemist and winner of the Nobel prizegiibn B. Anfinsen.

LEGEND

¥
/ﬂ\ Angles of internal rotation
------- Added bonds

H 3 H

BT
7{&7%‘"7{&/\35/\/\/\

21||

\ 0 0
! H 11
3H 22 2“ 27 31 H 36 " 0

Figure 1: The small peptide Met-enkephalin. The image is taken frgm [1
The buildup of a protein is of the form

..NH—-C,R-—CO—-NH—-C,R—-CO...

Residue: Residuei+1

The repeating atom¥, C,, andC build the backbone of the protein. One residue specific diden@ is
attached to eacti,-atom. As an example Fig. 1 shows the buildup of the smallipepfiet-enkephalin,
consisting of five residues.

Describing the structure of proteins one distinguishes/beh the primary, secondary and tertiary struc-
ture. Primary structure just means the sequence of restiegsrotein is built of. The secondary struc-
ture is defined by hydrogen bonds between nearby residudgdokto specific local conformations. The
most common ones are-helices and3-sheets as shown in Fig. 2. By tertiary structure one means th
macroscopic folding scheme of the chain.

The way proteins achieve their stable folded conformatamot yet sufficiently understood. At this point
the Levinthal paradoX5] should be mentioned. This is a small sample calculati@t takes clear that
the folded conformation cannot be found just by random flatbtims. In that case the folding process of
an average sized protein would take something in the redidn® years. In reality it happens at time
scales between milliseconds and minutes. It is therefosanasd that there are mechanisms that help
proteins to find their tertiary structure.

Proteins fulfill a variety of essential tasks in animate eys. There are, e.g., catalytic proteins, transport
proteins, or signaling proteins, just to name a few. The tionelity is closely related to the tertiary
structure. It can happen that proteins do not fold into thaiive conformations. Some diseases can be
traced back to so calleahisfoldedproteins. BSE is a famous example. Until now it is not undergt
why and under which circumstances proteins misfold.

42

(a) a-Helix (b) B-Sheet

Figure 2: The two most common secondary structure elements. Theddotess denote hydrogen bonds.

Protein Simulations

There are two main problems one tries to tackle with proteitukations. At first one wants to obtain
a better understanding of the folding process itself. Tloese task is structure prediction. This article
only deals with the latter.

For Monte Carlo simulation the protein is viewed as a therynadhic system with fixed number of
particles exposed to a heat bath (the solvent), which kéep®etperature fixed. Such a system is called
a canonical ensemble and satisfies the Boltzmann diswibuti

1 1
- —BE; _
= —g = 1
pi= . B T 1)
that defines the probability to find a statevith energyE; in a system at temperatuifé Z is a normal-
ization constant being called the partition function.

As we know from statistical mechanics such systems alwaysile@te to a configuration with a min-
imum in the free energy. So the aim of structure predictioto ind that minimum. Two problems are
connected to that aim.

The first problem is that the configuration space is huge. wictthe degrees of freedom to a minimum
all bond lengths and bond angles are set to fixed values agdafiolvs the molecule to change some
torsion angles that are displayed in Fig. 1. This is the steshdeometry model that is also used by the
force fields implemented in SMMP. In this geometry model thatgin has an average of about five to
six degrees of freedom per residue. This is still a large gardition space to sample.

The second problem is that the correct potential energytikmmwvn and until now there is no sufficient
approximation in which the energy minima always coincid¢hvtihe native conformations. So even if
you had sampled a big part of the configuration space and agetgslhave found the global energy
minimum, you still cannot be sure that you also have founchtiee structure.

The Metropolis Monte Carlo Algorithm
The key idea of MMC is to construct a Markov chain that undsrkeq. (1). This is done by @tceptance

rejectionmethod which leads to the correct transition probabilitye Blgorithm consists of the following
steps:

1. Start from an initial configuration with the energyq

43

2. Change one or more degrees of freedom in a random way (move)
3. Calculate the new enerdyhew.
4. Accept the move with the probability= min{1, e #(Enew—Foia)}

¢ If the move was accepted sBtiq = Enew-
¢ If the move was rejected reverse it.

5. Continue with step 2.

Performing an infinite number of steps it is assured to findglodal energy minimum. To find that

minimum in finite time is connected to the problem that thergndandscape is very rough. There
are many local minima separated by large barriers. If onest® a low temperature that implies low
probabilities to accept moves leading to higher energyestane gets easily stuck in local potential
wells for long times. For high temperatures the probabilithigh to jump out of potential wells before

reaching their minima. An ansatz to overcome that problepaiallel tempering

Parallel Tempering

In this method one creaté¥ replicas of the target protein and starts an independent liGar each
replica at a different temperatuié. After a certain number of iterations replica with “adjateemper-
aturesl; andT; exchange their conformations with the probability

p=min{l,exp (-G E; — B E; + B E; + B Ej)}. (2)

This has the effect that low energy conformations are hangedto low temperatures.

Constraints

As already mentioned in the introduction another way ofgrenfng structure prediction besides physical
computer simulations is to make statistical predictionseblaon the knowledge of conformations one
has about other proteins. Both methods can be combined by tise knowledge-based predictions
as constraints in MC simulations. The idea behind this isottu$ the search around more probable
configurations. The two types of constraints that were imgleted are distance and dihedral constraints.

Distance Constraints

Distance constraints were implemented as an additionalygrnierm that depends on the distance
between th&”,, atoms of two different residues and has a minimum at the ¢egatistance:..

A variety of analytic forms of such a potential is possiblérde different forms were tested:

Eq(r)=Cy(r— rc)2 (3)

Ea(r) = Cy (T ;CTC>2 exp [(%;:)1 (4)
2

Es(r) = Csexp [(%;:)] —1 (5)

Another parameter besides the analytic form of the poteistigs strength, i.e., the factois;. Cy and
C3 were set to one for an initial test. For Eq. (3) an algorithns waplemented that fits the parameter

44

C1 during the simulation. It works in a way that large deviatidromr, lead to an increase @f; while
small deviations lead to a decrease. The idea behind tltosnigke the constraint energy only as high as
necessary so that the loss of impact of the physical energy liew as possible. The aspired setpoint is
that the relative deviationsg — r.|/r. are in 80% of the time less than 0.2.

Dihedral Constraints

The dihedral constraints were implemented in form of antamdil move in the metropolis algorithm

that prefers the expected dihedral angles. This move sedenew value of the current dihedral angle

from the von Mises distribution

exp [k cos(¢ — ¢c)]
27TI()(/€) ’

P(¢) = (6)
This distribution function can be viewed as a periodic agaioto the Gaussian distribution wherk:i,.
is analog to mean value ard! is analog to the standard deviatidg(z) is the modified Bessel function
of order 0.

In this case there is no change in the evaluation of confoomst- as in the case of the distance con-
straints — but in the sampling of conformations.

Technical Aspects

The constraints were implemented in the software packag®BN 1] - [3]). This package written in
standard Fortran is freely available on the internet. Itams several modern Monte Carlo algorithms,
minimization routines and other useful tools for the siniolaof proteins. Three different energy func-
tions are implemented. In the examples presented in thideadnly the Lund force field was used. See
[3] for a description of this force field.

Example 2: The Hairpin

In this section an example is presented where the diffe@mtcaint types are tested and compared. The
target is a small sequence that was cut out from protein Galige structure is shown in Fig. 3a.

(a) Cartoon. In this illustration the secondary struc- (b) Technical. Each line represents a chemical
ture is pointed out. bond. The black dotted lines connect the pairs of
atoms under the influence of distance constraints.

Figure 3: The hairpin in two different representations created byRWIOL Viewer(http://pymol.org/).

Six different runs were started:

45

Native dihedral constraints

Native distance constraints with three different potdsitia

Statistically predicted dihedral constraints

No constraints

To test the effect of correct constraints four runs withvetonstraints, i.e. dihedral angles and distances
taken from the native structure, were started. One usingddith constraints and one for each distance
constraint potential. Those constraints only influencedttinn of the molecule.

The dihedral constraints acted on thandy angles, i.e. the backbone dihedral angles, (see Fig.)dor t
residues within the turn of the hairpin. The atom pairs stthije distance constraints are highlighted in
Fig. 3b by the black dotted lines. Another run was startedgudihedral constraints that were statistically
predicted. In this case the andv angles of all residues were used. Additionally one run withemy
constraints was performed for comparison.

In each of the six cases a parallel tempering run using 16demyres ranging from 274 K to 374 K was
made. Starting from a random conformation one million Mod#lo sweeps were performed, while a
Monte Carlo sweep consists ofMetropolis steps, as described above, wheigthe number of degrees

of freedom of the molecule. Each run was done twice with twiedint seeds of the random number
generator.

To evaluate the results a couple of measurements are cotnRaiag this we always examine the values
of the current replica at the lowest temperature. At first aketa look at the minimal physical energies
that are plotted in Fig. 4. By comparing the two plots it beesnobvious that the minimal energy is
not a really significant evaluation criterion, becauseedhae serious discrepancies between the results
of the two test series, especially for the run without caists. So a significant statement based on this
evaluation criterion would require a larger ensemble df¢eses.

Much more fruitful is an analysis of the average physicalrgies as well as the average RMSbs
plotted in Fig. 5 respectively 6. Looking at the curves ofitive using the statistically predicted dihedral
constraints one first realizes that the fluctuations are nsathller compared to the other curves. The
reason is of course that in this case constraints were useallfeesidues contrary to the other runs.
Compared to the run without constraints there is a slightrawgment concerning the average energies
and a more significant improvement concerning the averag8BMBut the average level of the RMSD
is quiet high and outliers to low values are rare. This is afrse the negative influence of some wrong
predictions that were used as constraints.

IRMSD = Root Mean Square Deviation. This quantity measuresithilarity of the current conformation compared to the
native one.

46

40 ¢ T

T T
No constraints
Distance constraints 1
Distance constraints 2 -+«
Distance constraints 3 - - - -
Native Dihedral constraints ==~
35 Statistically derived dihedral constraints

Emm

0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06
MC-sweeps

(a) Test series 1.

40

T T

No constraints

Distance constraints 1

Distance constraints 2 -------

Distance constraints 3 - - - -

Native Dihedral constraints ==~
35 Statistically derived dihedral constraints

Emm

15

1 1 1 1 1 1 1 1 1
0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06
MC-sweeps

(b) Test series 2.

Figure 4: Minimal physical energies. The energy terms connecteddalistance constraints are subtracted from
the total energy. Nevertheless the energies are minimal rgpect to the total energy including the distance
constraint potentials. This is the reason why some cuness@rmonotonically decreasing.

A more convincing improvement was reached in the distanostcaints runs. In most cases there are
lower average values concerning both the RMSD and the enehgydiagrams do not allow for a clear
comparison between the different types of potentials. raplat test series 2 one would clearly favor
potential type three before two and one, but the picturesifderies 1 does not look that clear. A larger
number of test series is necessary for a significant congraged evaluation.

The most promising improvement was made in the runs undevatie dihedral constraints. In both test
series the RMSD reaches mean values below 3 A in less than 56rKeMCarlo sweeps and stays at this
level for the whole run. Here the aim of a restriction of tharsh space was reached very well.

As the last evaluation criterion we examine configuratiohthe minimal energy for each run that are
plotted in Fig. 10 and 11 in the appendix. The best resulteweached in the runs with the native
dihedral constraints and those with the third distance tcaimés potential. This is compatible with the
evaluation of the mean RMSDs.

Technical Aspects

The simulation runs were performed to one half on the JUMBtehof the JSC and to the other half on
the Nicole cluster of the NIC. Each run lasted between semdreéeven hours using 16 CPUs.

a7

55 T

T T
. No constraints
Distance constraints 1

Distance constraints 2 -+«

Distance constraints 3 - - - -

Native Dihedral constraints ==~
Statistically derived dihedral constraints

Physical Energy

1 1 1 1 1 1 1 1 1
0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06
MC-sweeps

(a) Test series 1.

T T

No constraints

Distance constraints 1

Distance constraints 2 -------

Distance constraints 3 - - - -

Native Dihedral constraints ==~
Statistically derived dihedral constraints

1 1 1 1 1 1 1 1 1
0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06
MC-sweeps

(b) Test series 2.

Physical Energy

30

Figure 5: Physical energies averaged ou&‘ Monte Carlo sweeps. Again the energy terms connected to the
distance constraints are subtracted from the total energy.

Example 2: 1G90

Often one is in the lucky situation that a known structurenveitvery similar sequence to the one under
consideration, a so calleédmplate exists. In this case one does not start the simulation froamdom
or stretched configuration but from one that is as close asiljesto the template.

The second example discussed in this article deals withsthiation. The target protein is tHdRST
PDZ DOMAIN OF THE HUMAN NA+/H+ EXCHANGER REGULATORY FACT@Rich can be found

in the RCSB protein data bank under the abbreviation 1G9€nrisists of 91 residues. Its native con-
formation is depicted in Fig. 7a. A good template that wasébis The crystal structure of the first
PDZ domain of human NHERF-2 (SLC9A3R220CS in RCSB protein data bank — with a sequence
similarity of more than 70 %. Its native structure is showikig. 7b.

The first thing one has to do is to exchange the residues innwthie two sequences differ and guess
their conformations. The molecule that emerges after thésaf course not fit into the geometry with

fixed bond angles and lengths used by the program. The sionlatogram includes a routine called

regularizationthat creates a conformation that fits into this geometry arabiclose as possible to the
initial one while avoiding very high energies. A descriptiof the routine can be found in [2]. The

resulting structure is shown in Fig. 8. This was used as atafiguration for several runs.

At first a usual canonical Monte Carlo run was performed atrg k®v temperature to simply minimize
the energy. 5000 sweeps were made at a temperature of 10 KinBhstructure is depicted in Fig. 9.

48

T T
No constraints

Distance constraints 1 -------

Distance constraints 2 -+«

Distance constraints 3 == = = -

Native Dihedral constraints =~

Statistically derived dihedral constraints

RMSD

N ot S NN A
“u,"*’\‘ \’*\,// M T N TV '\‘/__

2 ! L L L L L L A L
0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1le+06

MC-sweeps

(a) Test series 1.

T T
No constraints
Distance constraints 1
Distance constraints 2
Distance constraints 3
Native Dihedral constraints -~
Statistically derived dihedral constraints

RMSD

¥

-

2 1 1 1 1 1 1 1 1 1
0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1le+06
MC-sweeps

(b) Test series 2.

Figure 6: Root mean square deviation in A, averaged awérMonte Carlo sweeps.

Obviously the Monte Carlo run has slightly worsened theltesten though the energy was decreased.
There are two possible reasons for this. At first it might be thuthe approximated force field. At second
reason could lie in the way the structure is determined é@xatally. In this procedure one has to
produce a crystal consisting of many proteins at close grgthat influence of each other. Contrary to
that the Monte Carlo run simulates a single protein in a sal\€or that reason the RMSDs are calculated

(a) The target 1G90. (b) The template 20CS. The target 1G90 is depicted in grey
for comparison.

Figure 7: The target and its template

49

excluding the long red tail.

Additionally three parallel tempering runs were startede@ithout constraints, one with a set of dis-
tance constraints and one with a set of dihedral constraliks constraints were derived partially from
the template and partially from statistics. For each of tired runs 50 K sweeps were performed at 32
temperatures ranging from 274 K to 374 K. The minimal eneyfigurations can be viewed in Fig. 12
in the appendix. Obviously none of the runs improved the gondition that emerged after the regular-
ization, but at least the runs under constraints yieldettbegsults than the one without constraints.

Technical aspects

The parallel tempering runs were done on Mieole cluster of the NIC. Each run took about twelve
hours using 32 CPUs.

Conclusion

It could be shown that the use of constraints has great patémimprove protein simulations. But there
are many things to do to exploit this potential.

Concerning the distance constraints one has to spend nfortiefevaluating how strong the potentials
should be and which analytic form of the potential is suitedtbThose analytic forms tested in this
work all diverge for great deviations with respect to theigeksdistance. This bears the danger that they
reach too high values so that the physical potential lodsdafluence. Especially when using wrongly
predicted constraints the impact could be disastrous. Sthananalytic form | would propose is

B({ri)) = - gexp [_ (J;)] | -

whereN is the number of atom pairs under constraints. This has thentage of a well defined maxi-
mum the potential converges to for large deviations. Thetedf the constraint potential compared to
the physical potential can than easily be controlled by ghanthe parametef’. The second parameter
o provides the opportunity to alter the range of movementeftibnstrained atom pairs. | would propose
a parameter study faf' ando measuring the deviations of the constraints with respethe desired
values in addition to the other evaluation criteria analyizethe present article.

The dihedral constraints ansatz introduced here seems o quite well in the case of correct con-
straints. So in my opinion the most important step to do nekb idevelop techniques to identify wrong

Figure 8: Conformation after the regularization. RMSD = 2.49 A

50

Figure 9: Conformation after canonical Monte Carlo run at 10 K. RMSD.622A

constraints. A first ansatz would be to test if there is a §icgmt correlation between the acceptance
rate of a constraint move for a specific angle and the devidt@ween its predicted value and its native
value.

Other questions to be answered are:

e How many constraints are helpful?
e When should they be used? During the whole run or only durartspof it?

o How does a combination of distance and dihedral constraiot&?

51

Appendix

I

(a) No constraints, series 1. RMSD =(b) No constraints, series 2. RMSD =
3.42A 571A

(c) Distance constraints 1, series 1(d) Distance constraints 1, series 2.
RMSD = 2.53A RMSD =3.89 A

(e) Distance constraints 2, series 1(f) Distance constraints 2, series 2.
RMSD =3.86 A RMSD =3.08 A

Figure 10: Lowest energy conformations 1. The native conformatiodatted in grey.

52

(a) Distance constraints 3, series 1(b) Distance constraints 3, series 2.
RMSD =2.93A RMSD =1.59A

Z

(c) Predicted dihedral constraints, se{d) Predicted dihedral constraints, se-
ries 1. RMSD = 4.42 A ries 2. RMSD = 4.52 A

7

(e) Native dihedral constraints, series(f) Native dihedral constraints, series
1.RMSD = 1.98A 2.RMSD=2.61A

Figure 11: Lowest energy conformations 2. The native conformatioragigd in grey.

53

() No constraints. RMSD = 25.45 A

(c) Dihedral constraints. RMSD = 3.13 A

Figure 12: Lowest energy conformations resulting from the parallgigering runs.

54

Acknowledgment

| would like to thank Lisa Drégekamp for encouraging me tatipgrate in the Guest Students Program
and for supporting me writing the application. Furthermbtieank Robert Speck and Matthias Bolten
for an impeccable organization of the program and my sugiayitutors Dr. Jan Meinke, Dr. Olav

Zimmermann and Dr. Sandipan Mohanty for a lot of time and aidin and for entrusting me with an

interesting and important task of their field of work. My sjgé¢hanks go to all other guest students. |
really enjoyed the ten weeks together with you!

References

1. Eisenmenger, F., Hansmann, U. H. E., Hayryan, S. and Hi, {SMMP] A modern package for simulation of proteins
Computer Physics Communications 138, (2001) 192-212

2. Eisenmenger, F., Hansmann, U. H. E., Hayryan, S. and HK,,@&\n enhanced version of SMMP — open-source software
package for simulation of proteifGomputer Physics Communications 174, (2006) 422-429

3. Meinke, J. H., Mohanty, S., Eisenmenger, F. and Hansmanhi,. E., SMMP v. 3.0 — Simulating proteins and protein

interactions in Python and Fortra@omputer Physics Communications 178 (2008) 459-470

. Anfinsen, C. E.Principles that govern the folding of protein chajr&cience 181 (1973), pp. 223-230

5. Levinthal, C.Proceedings of a Meeting held at Allerton House, Monticellossbauer Spectroscopy in Biological Sys-
tems (1969)

N

55

56

Parallel Scaletransfer in Multiscale Simulations

Dorian Krause

Institute for Numerical Simulation,
Wegelerstrasse 6, 53115 Bonn

E-mail: dokrause@ins.uni-bonn.de

Abstract: We discuss a recently developed method for coupling maedyinamics and con-
tinuum methods, which is based on a function space apprd&ehmethod modifies the bridg-
ing domain method by introducing new constraints. We paldicfocus on the parallel imple-
mentation of the method.

Introduction

Molecular dynamic simulations can be used for accurate lsion of critical material behavior, e.g.
fractures (see Fig. 1). However the current (massivelylieraomputer systems limit the number of
atoms in a MD simulation. Unfortunately, the reduction of $ystem size might lead to spurious “fi-
nite size* artifacts (e.g. due to reflection of sound wavearaartificial surface). Multiscale methods
tackle this “finite size problem"” by combining atomistic sitation models like molecular dynamics with
macroscopic theories like elasticity. Since e.g. a finiraint discretization of a smooth displacement
field is possible with a relatively large mesh size, such wdttprovide ideal “boundary conditions” for
a MD simulation. Still, a large portion of the simulation daim must be simulated by pure molecular
dynamics (e.g. around the crack tip). Additionally quantmechanical computations (e.g. first principle
molecular dynamics or density functional theories) mightised near the crack tip (see [1]). Here we
present new ideas regarding the parallelization of the viraakfer method ([9, 11]). For this purpose, the
underlying theory as well as the parallelization of molaculynamics and finite elements is reviewed.

Figure 1: Brittle to ductile transition in a thihndimensional Lennard Jones solid.

Multiscale modeling

Molecular dynamics with short range forces

Let us consider an ideal solid, filling up the volurBec R¢, which undergoes some deformation, due
to internal and external forces. On the microscopic levetare model the solid assuming an underlying
simple lattice

L= (gzaj) nB.

In the reference configuration at each lattice site an atdotaed. We will denote the set of atomsAy
and use the notatioK,, for the location of the atory € A in the reference configuration. The interaction
between atoms is modeled by a potential functiore C!((R%)*;R) which we assume to be bounded
from below. Such a potential admits a series expansion dbtine

V((Xa)aeA) = Z Vl(Xa) + Z VQ(XaaXﬂ) + Z ViS(XaaXﬂaX’y) +... (l)

acA a,BeA a,B,7€A

Thel-body termd/ is mostly ignored in the literature since exteridlody forces are treated separately.
Following this principle we will assum®&,; = 0, i.e. there is no interndl-body potential contribution. In
the simplest case only ttiebody termsl; are taken into account. E.g., the Lennard-Jones potential

VLi(Xa,xg) =4 - (’Xa - Xﬁru = [xa — Xﬁ’76)

has been proposed for modeling an Argon liquid. There esigjeeat number of (semi-)empirical po-
tential like Finnis-Sinclair, EAM or MGPT potentials, wiican be used for modeling “real” solids (see
[12]). All of these potentials require the evaluation of titbbdy terms in the expansion (1), increasing
the complexity of simulations significantly.

The mass matrix of the atomic system is definedy = diag(mq)aca, maq being the mass of atom.
Arranging the positions and momentums of the individuairegan a column vector, we can write down
the Hamiltonian for the particle system

1
H(X, p) = §p . MA’1p + V(x) + Vext(x)

The resulting Hamiltonian equations

z=JV,H(z), z=(x0p),J= [01 (IJ
yield Newton’s low of motionMa% = F + F®'with F = —V,V (x).
Molecular dynamics is naturally formulated in Lagrangiaominates. When coupling molecular dy-
namics and elasticity theories (which are naturally fomed in Eulerian coordinates) it is necessary to
choose a common description. For this purpose we introche®D displacement, = x, — X,,. The
space of all possible displacements¥is= {A — R¢}.

Example simulation

We describe the simulation of a mode | crack in a brittle twaoelsional solid using the Lennard Jones
potential. This is an interesting example since the aropgtof the underlying hexagonal lattice yields
an anisotropic stress-strain relation for large straifsTBe path of the crack always turns in the strong
direction, that is the direction yielding the highest soefa&nergy. Fig. 2 shows the time evolution of a

58

crack initially directed in the weak and the strong diregticesp. As can be seen, the crack does not
propagate in the weak direction but rather branches. Thérmeated crack tips propagate in the strong
direction, the angle between the old and the new directiamgbepproximately30 degree.

The experiments have been conducted using the parallébrmessTr enpl o [12].

Figure 2: A mode | crack in & dimensional Lennard Jones solid.

The simulation domain contain@90000 atoms. Nevertheless, as can be seen in Fig. 3, the introducti
of artificial boundaries results in the reflection of sound/@gat the boundary. Moreover, the emission,
reflection and returning of these waves takes place on a tiale which is relevant for the crack initiation
and propagation. This is a typical example of a finite sizélgm (see also [17] for another example)
and must be taken into account when evaluating the resuliftidgale methods are designed to tackle
this problem.

Figure 3: Sound waves propagating throughdimensional Lennard Jones solid.

Elasticity theory

Assuming the mean distance of neighboring atonis io be a few angstrom, we see that the simulation
of a cubic-shaped body with diametemm x 1 mm x 1 mm requires the simulation of approximately
N = 10?! particles. The minimal storage requirement for a simutatith N atoms is~ 1 ZB (1 billion
gigabyte). Such simulations are currently out of scopem~eomacroscopic point of view however,
1 mm? still remains small.

59

Fortunately, many important mechanical properties ofdsotian be modeled utilizing continuum theo-
ries, i.e. neglecting the underlying lattice structurehef $olid. From this point of views is a continuum
with Lebesgue measure(B) > 0. The underlying lattice implicitly determines the dendityction
0:B— (0,00).

The deformation of the body is described by a volume presgnvijectiony (t) € C*(B; R?) mapping

at each time to its deformed configuratiog(B). The differencen = ¢ — id is called the displacement
field.

The deformation of the body introduces internal stressés ihhe law of motion can be obtained from
momentum equilibrity in the deformed configuration. Here,will describe a different approach which
works for the large class of homogeneous hyperelastic makter

Similar to the microscopic model, we introduce a potentigctionV : C'(B; R?) — R measuring the
stored energy in the deformed configuratiorBofn applications the potential is mostly constructed from
a density functionv : My — R by

V(u) = /3 w(F) dx

Here,F = I; + Vu € M, denotes the deformation gradient. The Hamiltonian of thisaum theory
is
1
H(u,p) =T(p) +V(u) = / L opdx + / w(F)dx + / b - udx
B B B

The vector fieldo models volume forces. The Hamiltonian is a functional on(thinite dimensional)
phase space and the Hamiltonian equations needs to beétézhin a weak sense, i.e. by differentiating
the functional in the direction of a test functienin an appropriate subspace Bt (B)?. The resulting

law of motion reads
/Qﬁ-vdX:/Qb-vdx—l—/P:Vvdx 2
B B B

, . 0 o .
or pii = pb — div P with the nominal stresP = Y The tensoiP (which is not be confused with the

pressure) can be seen to be the (unsymmetric) Piola tramafion of “true” Cauchy-stress from the
deformed configuration t5.

The question remains, how the densityshould be chosen. A careful analysis (see [7]) shows that
for small deformations all materials behave similar to ax&sernant material with material dependent
Lameé constants. For large deformations however compless{bly non-convex) stored energy functions
w Yyield significantly different properties.

Since we want to couple molecular dynamics with elasticitg aince the behavior of the atomistic
system is dictated by the choice of the interaction potknitias natural to ask for way to construct
a stored energy function from an atomistic potential. Suchdgenization procedures are a current
research interest.

With some restricts, the Cauchy-Born rule allows for thestarction of a stored energy functiancg
from an atomistic potential’. It is assumed that the underlying lattice of the solid lyc&llows the
deformation gradient, i.e. locally the distanggs = x, — xg = FRy 3, Rog = Xo — X3. In this
case the value abicg at A € M, is obtained from the energy of the underlying lattice aftegtshing it
according to the transformatiof, see [8]. For 2-body potential the stored energy function is

1
2 -9

wcp(A) = > "V3(0,As), 1y = volume of principal unit cell ofL

sell

In order to approximate the continuous displacement fielde employ aP1 or Q1 finite element dis-
cretization. Let7 be a shape regular mesh such ﬂbBIGTT = B (assume a polygonal shap&dfor
simplicity). We denote the node set®fby A/. The finite element spacg ¢ H'(B)? is

S = {u € C(B,RY) s.tulr € (P)? orujr € (@) f.a.T e :r}

60

The so called Lagrangian basis functiofts, },c of S are uniquely characterized by the Kronecker-
delta propertyd,(¢) = ¢, 4 for ¢ € N. Obviously this implies compactnesssafpp 6, in B.

Concurrent multiscale coupling

Every concurrent multiscale coupling scheme faces twodorehtal problems:

e Molecular dynamics is formulated as an nonlinear ordinaffer@ntial equation (ODE) on the
finite dimensional phase space while continuum theoriefoameulated on an infinite dimensional
function space, yielding a partial differential equati®DE) as law of motion.

e For efficient usage of the finite elements as an envelopingdeny for a MD domain it is nec-
essary to work with a FE mesh size which is typically an ordemagnitude above the lattice
constant. Therefor the MD displacement field contains (liigquency) components which are
not representable on the (coarse) FE scale. These comparest to be removed from the molec-
ular domain without being reflected at the MD boundary.

The methods present in the literature can roughly beenetivid two classes. Methods in the first class
(such as the concurrent coupling of length scales methgdif an adaptively refined mesh in the cou-
pling zone which allows for pointwise identification of aterand mesh nodes. Methods in the second
class (such as the bridging scale method [18] and the bgddimain method [19]) use ideas originat-
ing from domain decomposition methods for the scale transfé of these methods work in a finite
dimensional space.

The weak coupling concept [9] is inspired by research in tbkel fof nonconforming domain decom-
position methods, especially Mortar methods. These methsdL? averaging at a coupling interface
between to FE meshes instead of pointwise identificatioedtore optimal convergence of the method.
The same ideas are applicable in our multiscale context wecare able to interpret the molecular dis-
placementu, = x, — X4)aca as anL? function. To accomplish the transfer from the discrete spac
X = {A — R4} to the infinite dimensional spadé (B, odx)? the authors use techniques from scattered
data approximation to be explained shortly:

The Partition of Unity method (PUM) is a meshless approxiamatethod allowing for efficient ap-
proximation of the (discrete) MD displacement. The PUM ¢oris a basisp, € L? of the space
Xpy = P, e R4 such thatug ~ 3 a uapa(X,). This means that the coefficients of the approxi-
mationu of the MD displacement with respect to the generating systen}.ca is simply the column
vector of the displacement field. The inclusion of the digefeeld in the function space therefor comes
essentially for free.

The construction of the basis functions proceeds in twosstep

1. To each atom an open pateh C B is attached so that the union of all patches covers the whole
body. The patches should be overlapping to guarantee a gmodxamation property of the space
Xpu.

2. Following Shepard’s approach [16] we choose a weighttfond,, such thatsuppb, = wa.
Using ¢, = b, surely is a bad choice since (in general) not even constawtifuns are exactly
interpolated. The latter property is equivalent to theipiart of unity propertyd © . ¢o = 1. TO
construct a partition of unityy, } we normalize the weighting functiors,, i.e.

%) — ba(x)
A S

61

The evaluation of the denominator only requires the evilnaif neighboring weight functions
due to the local support @f,.

Exploiting the crystalline structure of the atom startirgspions, tree based construction methods can
easily been applied for the constructionXéy (see [10]).

In [9] the weak coupling concept is applied to the bridginglsomethod. For this purpose the least
squares projectio, used in the BSM to obtain a representation of the MD dispiese on the FE
mesh, is replaced by al? projectionP : Xpy — S. As shown in [9] this method can be interpreted as
an higher order bridging scale method.

The weak bridging domain method [11] combines the bridgiomain method together and the weak
coupling idea. The method assumes an overlapping domagmygessition of3 ina MD domain2p C B
and a (coarse) FE domaitx C B. The intersectioffilp = Qp N Q¢ is called the bridging domain. The
geometric setup is also shown in Fig. 4.

e o o o o o o
e o o o o o o
e o o o o o o
e o o o o o o
[] [] L[] [] L[] L[] []
L[] [] [] [] L[] L[] []
e o o o o o o
Sy

e o o D
>}

Figure 4: Geometry of a bridging domain simulation

The law of motion of the coupled system is derived from a coratliHamiltonian

H(up,pp,uc,pPc;A) =@ - Hup(up,pp) + (1 — @) - Hre(ue, pe) + g(up,uc,A) (3)

Here,(up, pp) and(uc, po) are points of the MD and FE phase space, respectively. Theaksed
function g is used to constrain both scales to a common behavior in tigibg domain (see below).

The functionw : B — [0, 1] is a weighting function which prevents from double countthg en-
ergy in the coupling zone. To obtain a consistent energy widumore requires|o,\o, = 1 and

W‘QC\QB =0.

Regarding equation (3) two important remarks are necessary

1. The momentumpp andpc arenot the canonically conjugated momentums but rather the kine-
matic momentums of the MD and FE system respectively. Thenlyidg structure really is a
weighted Lagrangian (see [11]).

2. The notation used in (3) is actually an abuse of notatinnesthe multiplication of e.g. the MD
Hamiltonian by a real-valued function is not senseful. Fowva-body potential” and an homo-
geneous, hyperelastic material the precise Hamiltonian is

2
PD), 1
M= (X)o7 ox) S e (Xt (up), X+ (up))

aeA ¥ acA BeA\{a}

+ /Q) (1~ =(x) pe - olx)pedx + /Q (=) wll + V) dx

62

The classical bridging domain method [19] utilizes poirggviconstraints in the bridging domain. Let
N : S — X be the evaluation (or interpolation) map, ii&/uc), = uc(X,). Belytschko and Xiao use
the constraints

g= Z Ao ((up)a —ue(Xay)) =)\T(uD — Nuc)

acA

The Lagrange multiplieA is chosen such that the induced Lagrange folggs g and Vg yield a
corrected trajectory on the manifo{thp = Nuc}.
Fine fluctuations of the MD displacement field which cannotrdygresented on the FE mesh (due to
the reduced number of dofs) are implicitly removed by thesti@ints. However, since these fluctuations
cannot propagate into the bridging domain, high frequerayes are reflected at the interfdeg N9 .
The authors propose the use of a lumped multiplier matrietluce this effect (see also [4]).

In the weak bridging domain method the pointwise constsaémé replaced by equality in an averaging
sense. More precisely, using the approximaigde Xpy C L? the constraints are

g=Auc—up)r2 = (Auc — Pup)r2, Ae€S

whereP : Xpy — S denotes thd.? projection from the MD spac&py to S. The constrain manifold
therefor is{uc = Pup}.

Inserting the basi$f,} of S and{¢, } of Xpy we obtain the basis representationyof A - (Mcuc —
RuD) with

(MC)p,q:/BHP‘quX and qua:/Banpa dx

The weak BDM decouples the information transfer betweestates and the damping of the fine fluctu-
ations, which are exactiy’, = Qup = up — N Pup. Furthermore the number of Lagrange multipliers
now is§ (N N Qp) instead off (J,ca{Xa} N 025).

Since the fine fluctuations in the MD displacement are nottdteby the constraints they are allowed to
propagate into the bridging domain without disturbanceer&for it is necessary to apply an additional
damping technique to remove these fluctuations.

An example of such a technique, which is particular suitedilie weak bridging domain method, is
the discrete perfectly matched boundary layer (PML) meifip8]). The PML method introduces two
additional force terms to the MD system.

FpuL = —D?Qu — 2DQu (4)

The first term alters the stiffness of the MD systenflip while the second one is a frictional damping
term. The scaling : Xpy — Xpy controls the strength of the additional force terms. It issgn such
that D, < 1 near the interfac€c N 0Qp, so that interface reflections are minimized. In [12] is
chosen as a quadratic function of the distadse(X,,, 2c N 0N p).

Parallel implementation

Parallelizations based on the message passing paradignibbam successfully applied to both, molecu-
lar dynamics as well as finite elements. Multiscale methdldsvdor simulation of large systems with a
significantly reduce number of degrees of freedom comparethssical molecular dynamics, tackling
the so called finite size problem. However no methods are krtowtackle the “finite time problem®,
meaning the limited simulation time due to the very smalleisteps. These are necessary to resolve
the small timescales of the atomic system. This requiregalplmultiscale method with an excellent
strong scaling behavior.

63

Parallel molecular dynamic algorithms

In 1995 Plimpton classified parallel molecular algorithms for shrange forces depending on the data/-
work decomposition [14]. This classification remains valjiito now, even though clever hybrid methods
have been published (see e.g. [5, 17]). Methods utiliziregatiom-decomposition of the workload assign
disjoint atom setsAp to the individual processor elements (PEs). The partifioe= | |, Ap is only
change if the load is unbalanced. Force-decomposition adsthse a decomposition of the sparse force
matrix (Faﬁ)aﬂeA similar to parallel linear algebra algorithms.

In the following we will concentrate on the third class, the lled spatial decomposition methods
which assign a subdomafap C 2 to each PE. In most cases the decomposition is based on @i@arte
splitting, as in Fig. 5. This allows for efficient neighbornemunication with only4 or 6 send/receive
operations ir2 or 3 dimensions (“Plimpton scheme®, see [14]).

—

—

Figure 5: two dimensional decomposition o8 & 2 PE grid with periodic boundaries

For rapidly decaying potentials only interactions of pae$«, 3 with |x, — x| < rey are considered
relevant. This reduces the number of particles stored owteES, that are needed for the local force
evaluation.

In each timestep the coordinates of particles ri#$ap are communicated and stored in the halo cell of
the remote PEs. The forces on the local particles can thewdleaged in parallel. If communication
is cheaper than force evaluation (e.g. for MGPT) Newtonigdthaw can be used. This requires an
additional force reduction step. Since particles changé fosition, it is possible that atom leaves
domainQp. In this case the particle changes its owner process. Thetitig of particles is handled
in a second communication step. New methods (e.g. the nnitlpeéthod) reduce the communication
volume for the force evaluation by assigning particle pairthe PEs (see e.qg. [6]).

Let us note, that the ability to balance load between the BHimited due to the Cartesian geometry
of the decomposition. This is no problem for the simulatiée.g. biomolecules in a solvent where the
density is highly uniform. However, in solids, cracks anddgocan yield a nonuniform density. For this
reason, theldcMDcode [17] is based on an atom decomposition technique. é&watoirk, will concentrate
on such methods.

The spatial decomposition allows for easy constructiorhefRU basig .}, Since the same com-
munication schemes can be applied. First, on each procadscoal quad/octree is constructed. Then,

64

boundary bordures are exchanged using the Plimpton coneation scheme. Inserting the remote atoms
in a local copy of the remote tree, allows for a parallel cangion of the generating system with quasi-
optimal complexity (see also [15]).

Let us assume rectangular or cuboid shaped pateheise.w, = {x | [|x — X4 |0 < ha}. In this case

all particles in the bordurédist(x, 92p) < 2 - h, } must be communicated. Fay, ~ rqy, We see that
the communication volume is doubled compared to MD. Howé¢erscalability of the algorithm re-
mains (The construction dfp. } ., Needs to be done only once in the initialization phase).

There exists a second, extremely simple, parallel pamtifaunity method. Since,, only depends on the
neighboring atomg 3 | m(w, Nwg) > 0} one might try to change patches of atoms near the processor
boundaryoQp by w, — w, N Q2p. This allows for the construction @f,, without any communication.
Therefor we term the method the “embarrassingly parallgitigm of unity” (EPPU) method. Unfortu-
nately, the approximation quality near the boundary is cedwsince by constructiop, = 1 neardQ2p
(compare Fig. 6). The same effect occurs near non-periaiodaries.

error

.0.00056

0.00717

10.00478

0.00239

1.04e-07

Figure 6: Approximation of Franke’s function witl)000 “atoms* using EPPU and PPU @nPEs. The
resulting graph has been triangulated.

Parallel finite element algorithms

Parallel finite element codes usually employ a domain deositipn of 2 = | |, 2p of the simulation
domain(2. Each subdomaiflp is assigned to an PE. Additionally, each PE stores halo. ddtls width
of the additional bordure depends on various factors, kegstipport of the basis functiog8, }.

Letloadp denote the load of a PE. An easy performance model assuneslp o« §7p where7Zp is
the submesh of stored on the PE. If the mesh is held fix during the simulatioa,load (as well as the
communication volume) remains fix. In the simple model, themmunication volume can be assumed
to be proportional to the number of edges between remotetgdielements.

65

Figure 7: Partition of a structured FE mesh.

The decomposition of a (unstructured) mé&simto pieces7p such that

load p —ﬁP—E >~ loadp (<TOL

is not an easy task at all. Finding a balanced partition whdditionally minimizes the communication
volume is a NP complete problem. Fortunately efficient heias for such graph-partition problems exist
(e.g. recursive coordinate bisection, recursive spebisaiction).

Parallel multiscale method

We will describe a parallel algorithm based on a disjointipan of the available PEs in MD and FE
processors, i.e. every PE either stores atom coordinatassabmesh. This allows for parallel force
evaluation and for a flexible choice of the rati®D PEs)/4(FE PEs) (in most cases we will use a lot
more MD processors elements than finite element PESs). Hoynssade transfer always requires message
passing. Overlapping schemes will be explored once exparievith the disjoint approach has been
gained.

The weak bridging domain method allows for the use of stmectumeserving integrator for the constraint
coupled system. We will describe the use of the SHAKE/RAT Titiégrator. The following algorithm
describes one timestep with stepsize

1. Advance the momentungg), andp?;, to trial valuesp;”" /% = p7 + IF7, ? € {D, C}.

2. Compute new trial positiona;”“r =uy +7 M, ! ”+1/2 . Here M, denotes the mass matrices
of the resp. scales. For the finite element system we use &limpss matrix.

3. Compute the residual = Mcuc — Rup € S. Lagrange multipliers are obtained inverting the
. 1 .
linear systen(572A)>\ =rwith A = M ' — RM,'RT.

*,n+1/2

4. Correct the trial valuep, andu§’”, i.e.

1 1
p?+1/2 p;,n+1/2 B 57_ (Varg) A u7?1+1 — u;,n+1/2 _ 57—2 (Vu,9) A

5. Compute force®; .

6. The molecular dynamics PEs compute the prodijct= Qup and add the PML force terms (4)
to F5.
7. Computep’™*! = pit1/2 4 Lrpptl

- 1
8. Solve the multiplier systerfETA)u pu" T — RM,

66

9. Correct the momentur’rlifle = p;"”“ — %7’ (Vu,9)

The parallelization of stepk 2, 5 and7 have been described above. Stegnd9 are easily executed in
parallel once the computed Lagrange forces have been coitaesh Regarding the parallel execution
of step3, 6 and8 we face two problems:

e Due to the Lagrangian point of view in molecular dynamicsoéthms, the intercommunicator
graph, i.e. the graph describing the communication betw&erand MD processor elements,
is not time independent. This means that e.g. a finite elef@En& priori doesn’t know the set
{P' | existsa € As.t.x, € (Qp)pr @andR, ,, # 0} for p € Np.

e The dimension of) and A is # (J,ca{Xa} N Q5) andt (M N Qp) respectively. In most cases
these matrices are too small to be distributed over all alvkl PEs. Unfortunately this leads to
scalability problem since the serial nature of the mults&HAKE/RATTLE algorithm doesn't
allow those PEs not involved in the computationtdf(—) or A~ to compensate the waiting time.
These PEs remain idle.

We will not address the second issue here since it most likegyires a complete redesign of the MD
and FE algorithms.

A possible solution to issue is the adaption of the intercommunicator graph in each @ardommu-
nication step (see [3]). This allows each finite element PEntw its MD neighbors and vice versa.
However additional communication is necessary in case icpamigration.

Assuming a static distribution of the matrio@s R and A we propose the use of 1-sided communication
to build the intercommunicator graph implicitly. Using afta-all communication in the initialization
phase every particle knows the set of all PEs that requiherethe displacement or velocity vector of
the particle to accomplish their task. Moreover informatabout the buffer layout(s) of those PEs are
attached to each particle. Using PUT and GET operations geaticle is able to either send a message
to a remote PE which is waiting for input or receive e.g. thees(Qup)., (Qup), so that the PML
force term can be computed locally.

The matrix@ andA are distributed over all processaPswhich either fulfill m (UTGTP TN (QB)P) >

0 (in case of a finite element PE) ﬁ?‘(UaeA{Xa} N (QB)P) > 0 (in case of MD PESs). Assuming a
good balanced number of atoms/nodes a row wise block decgitigois appropriate.

Due to the disjoint partition of the PEs, in either FE or MD g@esor elements, data needed for the
assembling of the matriceR, 2 and A are not in the memory of a single process. It is necessary to
collect data on either one of the both sides (or swap copi¢iseofocal memory). Differently from [3],

we choose the molecular dynamics PEs for the assemblingeahtiee matrices. Using this approach
we can gain profit from the tree-structure used for the canstm of {¢,}aca C Xpu. It is then
possible to assemblR, @@ and A with quasi optimal complexity)(£(BD element$ - log #(BD atoms).
Furthermore, the number of molecular dynamics PEs is latgrefor yielding a better distribution of
the computational expensive cut-detection and quadrature

Concluding remarks and acknowledgment

The implementation of a multiscale method, as the one prederequires a large software stack. During
my stay at Juelich | was able to implement a large portion efrtecessary software. Most of this work
found its way only implicitly (through experience gain)arthis report.

Additionally, using the excellent infrastructure in Jgéli | was able to conduct many molecular dynam-
ics fracture simulations which greatly improved my knovged

67

| would like to thank my advisor Dr. B. Steffen for the manyargsting discussions concerning fracture
mechanics with molecular dynamics. | thank my supervisaf.FR. Krause and my colleagues at the
University Bonn, esp. K. Fackeldey, for the permanent stpharing the work for my diploma thesis on
multiscale simulation.

Further, | thank the organizer of the guest student proghatthias Bolten and Robert Speck, for the
courageously work. | also thank my fellow guest studentgHermpleasant working atmosphere.

References

1. F. F. Abraham, J. Q. Broughton, N. Bernstein, E. Kaxirgarfing the continuum to quantum length scales in a dynamic
simulation of brittle fracture, Europhys. Lett., 44(6) 989
2. F. F. Abraham. Dynamics of Brittle Fracture with VariaBlesticity, Phys. Rev. Lett., vol. 77(5), 1996.
3. G. Anciaux, O. Coulaud, J. Roman. High Performance Meatis Simulation or Crack Propagation, ICPPW, Proceedings
of the 2006 International Conference Workshops on Paffietessing, 2006, pp 473.
4. G. Anciaux, O. Coulaud, J. Roman, G. Zerah. Ghost forcaatézh and spectral analysis of the 1D bridging method,
Rapport de recherche 6582, INRIA, 2008.
5. K. J. Bowers, R. O. Dror, D. E. Shaw. Zonal methods for thelpel execution of range-limitedv-body simulations,
Journal of Computational Physics 221, 2007.
6. K.J.Bowers, R. O. Dror, D. E. Shaw. The Midpoint MethodRarallelization of Particle Simulations, Journal of Chem-
ical Physics, vol. 128, 2006.
7. P. G. Ciarlet. Mathematical elasticity, vol. 1, Elsev@ience Publishers, 1988.
8. W. E, P. B. Ming. Cauchy-Born rule and the stability of ¢ajne solids: Static problems, Arch. Rat. Mech. Anal.| vo
183, 2007.
9. K. Fackeldey, R. Krause. Multiscale Coupling in Funct®pace - Weak Coupling Between Molecular Dynamics and
Continuum Mechanics, 2008, submitted to Int. J. Num. MathGRG.
10. K. Fackeldey, D. Krause, R. Krause. Quadrature and imgaeation of the Weak Coupling Method, INS Preprint No.
0807.
11. K. Fackeldey, D. Krause, R. Krause, C. Lenzen. INS Pngpo appear.
12. M. Griebel, S. Knapek, G. Zumbusch. Numerical SimufaiioMolecular Dynamics, Springer, Berlin, Heidelberg, 200
13. S.Li, X. Liu, A. Agrawal, A. C. To, Perfectly Matched Midtale Simulations for Discrete Systems: Extension to it
Dimensions, Physical Review B, vol. 74, 2007.
14. S. Plimpton, Fast parallel algorithms for short-rangdetular dynamics, Journal of Computational Physics, 1@V,
1995.
15. M. A. Schweitzer, A Parallel Multilevel Partition of UgiMethod for Partial Differential Equations, Springer LSE
vol. 29, 2003.
16. D. Shepard. A two-dimensional function for irregulaaspd data. ACM National Conference, 1868.
17. F.-H. Streitz, J. N. Glosli, M. V. Patel, B. Chan, R. K. &atB. R. de Supinksi. 100+ TFlop Solidification Simulations
BlueGene/L, Proceedings of the 2008 ACM/IEEE conferenc8gmercomputing, 2008
18. G. J. Wagner and W. K. Liu. Coupling of atomistic and camtim simulations using a bridging scale decomposition, J.
Comp. Phy. 2003.
19. S.P. Xiao, T. Belytschko. A brigding domain method fomgiing continua with molecular dynamics, Comp. Meth. Appl.
Mech. Engrg., 2004.

68

Fast Computation of the Ewald Sum

Stefan Miller

University of Technology Chemnitz

E-mail: stefan.mueller@s2005.tu-chemnitz.de

Abstract: In this report a fast method for computing the Ewald sum fonyrparticle systems
based on the recently developed Fastsum algorithm [1] isgzed. The algorithm is imple-
mented inC and details of the implementation of this algorithm are dbed. The influence of
some parameters on the accuracy of this method is evaluated.

Introduction

We want to evaluate a central potential

N
q;
Vi) = >
j =1,...,N, whereg; denotes the charge amg € R? the position vector of a particlgin a three-

dimensional periodic system &f particles. Let| - || denote the Euclidean norm. This is motivated by the
need to calculate trajectorieg(t) of particles interacting along this potential by the equatf motion

d27‘~

mj—%" a2z - —q;V;V,

wherem; denotes the mass of the partigle

Because of the particles being part of a periodic system sgstem with periodic boundary conditions,
i.e. we have\V particles inside a center box of dimension three and boxteegual to one and this box
periodically expanded in every direction in the three-disienal space, we have to evaluate

D 1) DS S T o

nez3 k=1
instead ofl/(r;), where the prime denotes that far= 0 the term withk = j is dropped. This can be
rewritten as

2\\1\\2

erfe(a\|rj—rk+n|| o2l (ri—r;) 2a
1 - , 2
=2 Z [7; —rr +] p> Zq’“ RIE VS

nez? k=1 1e73\{0} k=1

::Sl('r’j) =:SQ(Tj)

whereS; (r;) is called the real space sum afigr ;) the reciprocal space sum. Details on how this can
be done can be found in [2]. We call (2) the Ewald sum. On thHevwehg pages we want to propose an
algorithm to compute an approximation of this formula.

The Fastsum Algorithm

We want to compute the sums

Z%K — k), 3
j=1,...,N,whereK(x),x € R? is a certain kernel function. In our case we are interested in
K (x) erfe(cl|z||)
(B4

1 B
7500 1 9
1 B
[7k]loo < 17 5
1
= |lrj — Tl < B — epR.

We can computéf(r;), 5 = 1,..., N in O(N log N) using the Fastsum algorithm proposed in [1].

The first step in this algorithm is to regularize the kerf&lz) near the singularity a@, i.e. inside
Ur == {z € R3 : ||z|| < e/}, and near the boundary oF := [-1,1)3 ie.inUp := {z € R® :
% —ep < ||z||}. Heree; denotes the inner boundary and the outer boundary. Obviously we have to
state that; +ep < 0.5. We call this regularized kerné{ z(z). The degree of smoothnessif(x) is

calledp. This regularization is done to get a smooth function, witiah be continued one-periodically.

The regularized kernekr (x) can now be approximated by its Fourier sedégr(x):

KR() KRF Z b e —2mil- T (4)
leA
whereA := [—2,2 — 1]3 N Z3. The regularization of< (x) introduces an erroK yp(z) := K(z) —

Kpg(x) due to the inner regularization. Now we can approxinfgte:) by

We call K yg(x) the nearfield.

The nearfield sunfyg(r;), j =1,..., N, is calculated directly by evaluating the sum
fve(r;) Z wKne(r; —ry), %)
k-eINE()

whereINE(j) :={ke€1,...,N :|r; —rg| <er}.

The Fourier sunyrp(r;),j = 1,..., N, can be calculated by

N
by (4 —omil-(r. —
frr(r;) ZQkKRF i —Tk) yZ()quZble 2rib(ry =)

k=1 leA

_ Z b (Z qke27ril-'rk> e—27ril~'r‘]-' (6)

leA k=1

=:aq

70

So, applying the NFFT on the inner sum yields
Jrr(r;) = Z brage”2mbTi

leA

which, after multiplication of the coefficients anda;, can be calculated by the NFFT.

Applying the Fastsum Algorithm on the Ewald Sum

The above described algorithm was designed for open systpasticles. Therefore we have to adjust it
to work on systems with periodical boundary conditions als. ke first step to achieve this is to choose
the parametet: such that the sum overin S;(r;) in (2) can be neglected due to the fast decrease of the
kernel function, i.e. only the term with = 0 is considered. By the choice afwe want to assure that
the function value of the kernel functidii(z) has already fallen below, for all z with ||| > § —ep.

We call R¢ := % — ep the cut-off radius of the real space sum and

erfc(aR¢)
€ (= ——
Re
the truncation error introduced by neglecting the term&witZ 0. In figure 1 we see that the truncation

error decreases very fast for increasing values,a.g., if we want to get, = 10~?, we would choose
o~ 8.8.

(7)

srfifer (05 - o) 1 (0.5 - o)

erfc(af|z]])
[E]

Figure 1: The function value of, = K(x) = for z with ||z|| = 2 — e depending onv.

By restricting the calculation of the formula given in (2)#0 = 0, we assure that for each particle

i, 3 =1,...,N, we only have to consideV — 1 particles from the setup of our periodic system as
described at the beginning as interacting partners. Wnfatly, we cannot just choose one fixed box
with length one and alN particles inside and ignore all periodic image particlésid would do so, the

potential calculated for particles near the boundary of fixad box would be very erroneous, because
close neighbors of these particles with high influence onrékalt would be neglected.

Instead, for each particlg at positionr;, j = 1,..., N, we have to consider an individual box with
length one and this particle at its center. So, for calaudptinteractions between particjeand the other
N — 1 particles some particles in the center box have to beeredHiff a vector irZz?\ {0}. These shifted
particles are called image particles. Because the Founarfgx(r;) in (6) is already one-periodic, we
do not have to adjust anything in the computation of this term

71

We only have to change the computation of the nearfield gnm(r;) in (5). Here we are going to
compute

Ine(r) =Y aKne(r), (8)
keIgE()
whereINE(j) := {k € 1,...,N : |rjsl| < es} andr;x = r; — 74 + n with n such, that

H?“j —rp+n| =min |r; —r,+y.
yezZd

This means thafr ;|| is the minimum distance from particleto particlek or any of its images. In our
algorithm we achieve this behaviour by calculating— r; and componentwise shifting of this vector
by £1 in such a way that we get a vecty;, for which

7sklloe < 3
holds. Then it also holds true thaf;, = r;y.

This enables us to calculate

erfca ri—TrL+mn

DR = R [

N
S ket + Y (z ot | 2ot

FNE(; leA k=1
keINE(5) €

%

j=1,...,N,whereA = [-2, 2 — 1] N Z3, in (2) using the Fastsum algorithm.

We can writeSy(r;),j =1,...,N, as

> Z% Hl!!22 Pt = % T dy (Z qke%i""‘k> e~2milTi (g)
——

1€73\{0} k=1 1ez8\{0} \k=1

and reconsidering (2) leaves us with

N
Z wKNe(rjr) + Z by (Z ake%rilm) o 2rilr;

keINE(j) leA k=1
ol ; ; 2«
+ > d (Z%e%""”“>e2’”"”+ﬁqj- (10)
173\ {0} k=1

We introduce a cut-off parametér.. < § — 1 such that we only have to pay attentiondpwith

Il]|co < lmax @and can assumé = 0 for |||l > lmax, Se€ figure 2. E.g. if we want to neglect only
with d; < 1072 for a = 8.8 we would choosé,,., = 11.

We define

(11)

T by + dy if HlHoo < lmax, 1 7£ 0,
Ty otherwise

Now we rewrite (10) as

Z QkKNE' r]k + Z bl <Z Ozk62ml ”‘k) —27il-r; + \/_q] (12)

kEINE(j) leA
Thus we obtain the following fast algorithm, which we call&A

72

Figure 2: Upper bound for the values of the neglected coeffisti; depending ot for a = 8.8.

Precomputation:

i. Computation of the Fourier coefficientg for I € A of the regularized kernek'r(x) as
described in [1].

ii. Computation of the coefficientd; forl € A = [~liax, lmax]® N Z3 by (9).
iii. Computation of the coefficients for I € A by (11).

iv. Computation ofK yg(rj;) for j = 1,..., N andk € INE(j).

1. Forl € A compute by NFFT

N
— —2milax
ap = E qre k.
k=1

2. Forl € A compute
c = algl.

3. Forj =1,..., N compute by NFFT

frE(r) =" ae®™Hs.

leA

4. Forj =1,..., N compute the nearfield corrections

fup(rs) =Y aKne(r).

kEfé\I]E(’l‘j)

5. Forj =1,..., N compute

f(ry) = fne(r;) + fre(r;).

73

Direct Algorithms for Computing the Ewald Sum

For testing purposes two direct algorithms computing (2jewiemplemented. Both computsh (r;),
j=1,...,N, by

N
SQ(T‘J') = Z dl <Z qke%ril-rk,) e—gﬂ—il.:pj
k=1

lez?\{0}
12l oo <lmax

using a user-specified value Q..

The first algorithm, called PER, computes

N
erfe(allr; —re +n
Si(rj) = Z /qu (allr; k)

e T e

by evaluating the double sum for a user-specified range. dthe purpose of this algorithm was mainly
to validate the correctness of the second algorithm, c@l&l For DIR it is presumed that the cut-off
radiusR¢ is 0.5. l.e., each particlg j = 1,..., N, of our central box interacts withh — 1 particles and
for each interactiom j;, instead ofr; — r;, is used, as described in (8), i.e. DIR computes

N erfe(allril)
51(7'1‘)%2%7] .

2B]

For sufficently great values ef the latter algorithm can be considered exact and is therefeed for
error calculations in relation to our fast algorithm.

Parameter Studies

The following parameters can be changed by the user to bidyahaviour of the fast algorithm outlined
above.

N Number of particles in the grid per dimension, so there wall¥* particles
total in the central box;

n Expansion degree, number of Fourier coefficients for theleeged kernel
function Kr(x) per dimension;

lmax Range of the coefficentg;

m Parameter for the truncation interval of the window funetidn the NFFT
algorithm, see [1];

P Degree of smoothness of the regularized kernel function;

Er Boundary of the inner regularization of the kernel function

€B Boundary of the outer regularization of the kernel function

! Parameter of the kernel functidki(x).

Regular Grid

We set up our particles in a three-dimensional regular giill alternating charges, i.e.

J N 2’

.. N\T 1
(J1, 2, J3) +3 1 qj:(—l)j1+j2+j3,

wherej = 1,..., N3 andji, j2, j3 € {0,..., N — 1} are chosen such that= 1 + j; + joN + jz3N2.
We chooseV = 12 and getN? = 1728 particles in total.

74

Furthermore, we set the truncation parametet 6, the degree of smoothnegs= 6, the inner boundary
er = 0.1 and the outer boundapp = 0.1. Thus we getR¢ = % — ep = 0.4 for the cut-off radius of
the real space sum in (2). We choese- 7.11, and get

erfc(a- Re) erfe(7.11-0.4) _4
— = ~ 1.4425 -1
Ca Re 0.4 o 10

for the truncation error, see (7).

As a first step we want to determine the rarige, for the coefficientsi; in the reciprocal sunds(r;)
such that its calculation introduces no relative error bigipane,,. In table 1a one can see the values
for S»(r;) calculated by the direct algorithm DIR for increasihig.. Note that because of the setup of
the particles all calculated values are the same for eaditlpan the system. We consider the computed
value forl,,,x = 50 as correct and therefore chodgg, = 6.

Imax So (Tj)/Qj Imax So (Tj)/Qj
4 | -1.2015561383818074€16 4 | 1.9180872965151214€5

5 | -1.1473093337051994€16 5| 1.9181073806426144€5

6 | 2.83619088634172186€8 6 | 3.6291998815771393d3

7 | 2.836190886352346868 7 | 3.62919988157713934.3

8 | 2.836190886352163848 8 | 3.6291998815771383d.3

9 | 2.83619088635215786€8 9 | 3.62919988157713734.3
10 | 2.836190886352157868 10 | 3.62919988157713734.3
50 | 2.836190886352157868 25 | 3.6291998815771373.3

(@)Fora = 7.11. (b) Fora = 5.74.

Table 1: Values fo5;, computed by DIR for increasing valuesigf. inside the regular grid for different
values ofa.

In figure 3a we see the maximum relative error

YRR — VST
j=1,..,N3 VER(r)) ’

(13)

whereVPR(r,) denotes the result of the direct algorithm with,x = 25 andVEAST(r;) the result of
the fast algorithm, depending on the number of Fourier anefits for the regularized kernel.

In addition to this we consider = 5.74 as the kernel parameter. Here we get

erfc(5.74 - 0.4)

~2.9154-1073
0.4

as the truncation error. Similar to what we did above, we getet1b and, after choosirig.x = 6, fig-
ure 3b, again containing the maximum relative etbdepending on the number of Fourier coefficients
of the regularized kernel.

Distorted Grid

We change the setup of our system by moving the 1728 parttilgistly away from their positions in
the regular grid, i.e. we have
r; = (jl’jz’jg)T+%+u_l qA:(_l)j1+j2+j3
J N 27 J)

75

10°

-2

10 r

10 ¢

max. rel. error E

-6

10 '+

-8

10

26 46 66 86 100
n
(&) Fora = 7.11.

max. rel. error E
=
o

20 40 60 80 100
n
(b) Fora = 5.74.

Figure 3: The maximum relative errér depending om inside the regular grid for different values of

wherej = 1,..., N3 andj, j2,j3 € {0,..., N — 1} are chosen such that= 1+ j; + jo N + j3N? as
above. The offset is a pseudo random number that is uniformly distribute-#, 2]. We seto = 7.11

and therefore get a truncation errorlof425 - 10~%. For the other parameters we use the same values as
before.

In table 2a one can see the average values{or;), j =1,. .. , N3, depending on increasing values of
Imax- Hereavg,_; ys |S2(7;)| denotes

1
FZ|S2(TJ)|'
j=1

We consider the results of DIR for one run with,, = 25 as exact. Relative to this, the third column
contains the maximum relative error of DIR, which we define as

DIR,25
EDIR ._ Sy (rj) — S2DIR(7‘J‘)
Sy, = Iax DIR,25
sl | ST ()

)

wheress'™® (r;) is the result of DIR With,,,, = 25 andSD'R(r;) the one withl,., as outlined in the
table. Our choice i$,.x = 8.

76

lmax anj:l ..., Nd ’52(7‘J)’ ‘ EEQIR
5| 3.6644536306526931e+00 1.4252744120429841e+00
6 | 3.6645144045521389e+001.216140063030254661
7 | 3.6645166036632268e+003.75387202042195816€3
8
9

3.6645166954637993e+001.288396150717574784
3.6645166950460055e+002.4138313578243623466
10 | 3.6645166948716570e+002.10876386335648236€8
11 | 3.6645166948693109e+005.37319077915773794.0
12 | 3.6645166948693082e+003.3732887006525980€ 2
13 | 3.6645166948693086e+005.98657821195689715
14 | 3.6645166948693086e+00 0.0000000000000000e+00
15| 3.6645166948693086e+00 0.0000000000000000e+00
25 | 3.6645166948693086e+00 0.0000000000000000e+00

(&) Fora = 7.11.

lmax avgi—1,.. . N¢ |S2(rj)| ‘ EgglR
3| 2.9721054254298727e+005.1318339982418371e+00
4| 2.9722702377648695e+001.884906603267638461
51 2.9722616806350595e+009.09198374558962446)3
6 | 2.9722623625160316e+006.26114852217204026)5
v
8
9

2.9722623705516575e+001.0739409216685170466
2.9722623705810456e+005.370382672030091849
2.9722623705812343e+002.45121422803074184.1
10 | 2.9722623705812272e+001.94657027568900634.4
11| 2.9722623705812272e+00 0.0000000000000000e+00
12 | 2.9722623705812272e+00 0.0000000000000000e+00
25 | 2.9722623705812272e+00 0.0000000000000000e+00

(b) Fora = 5.74.

Table 2: Values forS,, computed by DIR for increasing values Bf.. inside the distorted grid for
different values ofx.

The maximum relative erraE as defined in (13) depending on the number of Fourier cogffigie’ of

the regularized kernel is plotted in figure 4a. Here agairrdiselts of DIR are regarded as exact values
for the error computation. We see that the computationat efrour fast algorithm is much smaller when
dealing with particles in regular configurations, just ashad to expect.

We repeat the whole procedure for= 5.74. The results are outlined in table 2b and, with the choice of
Imax = 6, figure 4b.

In figure 5 we have changed the size of the inner regularizatithe kernel function by setting = 0.15
ande; = 0.25. The kernel parameter is setdo= 7.11. The other parameters are as above. By setting
er = 0.25 we guarantee that for each patrticle all 26 direct neighbmsrside the nearfield of the real
space sum. This increases the accuracy of the results sagilfi but will also result in much more
computational effort for larger particle systems.

Summary and Outlook

We developed and implemented a fast algorithm that com@uiespproximate solution for the Ewald
sum (2) and require® (N log N) arithmetic operations. The implemetation features theprgation of

77

max. rel. error E
=
o

26 46 66 86 100
n
(&) Fora = 7.11.

max. rel. error E
=
o

20 40 60 80 100
n
(b) Fora = 5.74.

Figure 4: The maximum relative erréf depending om inside the distorted grid for different values of
.

an highly accurate direct algorithm which can be used fararalculations. All relevant parameters can
be set in the program. There are several debug output meohsim the program which can be activated
by compiler defines.

The algorithm was tested with two different particle configions. In these tests we tried to find good
choices for the algorithm parameters. Two main requiresmEnsucceed in this are not yet met. At first,
the algorithm has to be tested with particle systems holdingh more particles. Second, we can not
evaluate our algorithm until comprehensive time measungsnigave been done. After this we well be
able to compare the proposed algorithm with already exjstlgorithms with different approaches.

Acknowledgments

I wish to thank my supervisors Dr. G. Sutmann from the Foragsaentrum Julich and Prof. Dr. D. Potts
from the University of Technology Chemnitz for their profinot and immediate support and advise. | also
thank M. Bolten and R. Speck for the great organization ofgihest student program. Finally | would
like to thank the other guest students for their continusistance whenever problems arose.

78

€=0.15
_ £|=0.25
10° b ;
w1
§ 10 E
5]
e
P
8 1072} 4
c 10
10° <
10_4 i i i i i i i i

10 20 30 40 50 60 70 80 90 100

Figure 5: The maximum relative errdi depending om inside the distorted grid fonn = 7.11 and
er = 0.15 (upper line) and; = 0.25.

References

1. D. Potts and G. Steidl. Fast summation at nonequispacets kiy NFFTsSIAM J. on Sci. Comput. 24p. 2013-2037.
2003.

2. P. Gibbon and G. Sutmann. Long-Range Interactions in Mayicle SimulationQuantum Simulations of Complex
Many-Body Systems: From Theory to Algorithms, Lecture $\pfe 467-506. 2002.

79

80

Correcting Erroneous Quantum Algorithms

Markus Peschina

Johannes Gutenberg University Mainz

E-mail: peschina@students.uni-mainz.de

Abstract: The IQCS (Improved Quantum Computer Simulations) softwerekage is used
to simulate Grover’s quantum search algorithm. The progmang language C, and the ma-
chines JUMP and JUGENE are used. The simulation deals witbhnéeence errors and gate-
imperfections and there are four different error stagedempnted: ideal, erroneous, ancilla
QEC (Quantum Error Correction) and full QEC.

Introduction

A Quantum Computer is able to solve some problems more effigithan classical computation can
do. The gquantum mechanical generalization of a bit is cajldzit. One can think of it as an orthonormal
basis of a spin} system. The notation for one general qubit is as follows:

) = a|0) + B[1), 1)
L=laf? + |6 a,BeC. @)

In this text qubits sometimes are labeled in computatioaaldstates and sometimes qubit-wise|0$0
means0..0) or |4) means/100). For more information to the general definition of qubits au@ntum
mechanics see [2], chapters 1-2.

In 1996 Lov Grover introduced his approach on quantum aogsgitamplification [1], this is known as
Grover’s algorithm or quantum search algorithm ([2], cleag)). We will recapitulate the very basic ideas
of quantum search and shortly repeat the basics of quantton @rrection (QEC) and of the Steane
Code.

Grover’s Algorithm

The algorithm needs one “working” register which encodesd#itabase in a binary form and in addition
some ancilla qubit to process calculations. The state mayriteen as|¢)|y), where|¢) denotes (n-1)
qubits andy) denotes the ancilla, so the state holds n qubits. As othertguealgorithms the quantum
search starts in the state

[#)]y) = 10..0)[0) = |0)*"*~]0). (3)

In order to prepare a database state which contains evesipfsntry up taV = 2", a Hadamard trans-
formation on every qubit of the working register is perfodr(perfect superposition of every possible
state)

N/2

wlv—/z > let)

HE)y) =

In order to get the oracle function work properly, the aacdhould be prepared jpg) = %(](D — 1)),
this can be achieved by

N/2

s 2) 50~) ©)
=0

ﬁf”f@)&“qﬁﬂy} =

N/2
In the further documenit)) denotes the perfect superposition of (n-1) qupits = —~ 20|x>.

/N2

The oracle is defined as an unitary operatgp, so that
Ouol) y) = [) |y ® f(2)), (6)

1 if x = x,
0 otherwise.

f@): 01" —10,1], with f(z) = { ()
With the previous definition of the ancillgy) the effect ofO, on the prepared state is a conditional
phase shift of the searched computational basis state

Ouolt)) ly) = (=1)7 [9)y). (8)
Definition 1. Grover Operator G = (2|¢) ()| — I) Ox.

By taking account of the geometric interpretation (in [Zhapter 6.1.3) the ideal number of Grover
iterations R can be determined. Let CI(x) be the closesg@rtéo the given real number X, then

Quantum Error Correction

This section is a very short repetition of QEC, it is based[@h ¢hapter 10) and [3], which | advise to
read for further information. The basic idea of QEC is to agdundant information before erroneous
calculations take place and afterwards to find which errgrdezurred. The simplest way to do this is
the 3-qubit-code, where

0) = 10)[0)]0),

= L.

It is crucial to get the fact straight that there is no clonifigtates at this point. Bbneerror occurs inside
the block to the next correction step, the position of thisrecan easily be determined; two errors destroy
our state. In addition to classical bitflip errors, phassfiipn also appear; together with the product of
both, a bitflipand a phaseflip, they form an orthogonal error basis. Steanéls able to correct one
bitflip and one phaseflip error in one block, whereas only 7itgulier secured qubit are needed. It's
another convenience of Steane’s 7-qubit-code that CNOdahktard and the Pauli gates can be applied
transversally (for example, the X-gate cannot appliedstrarsally on the 3-qubit-code encoded state).
As a penalty the transversal T-gate is not possible on steathes. Because this fact has some impacts
on the implementation of Grover’s algorithm, | will refertttis point. The logical zero is encoded in the
equally weighted superposition of all even weight codewartithe Hamming code (even numbers of
1's, see [3]):

1
|0)steane = ﬁ<|0000000>+|0001111>+|0110011>+|0111100>

+/1010101) + [1011010) + [1100110) + |1101001>), (10)

82

1
1) steane = —<|1111111>+|1110000>+|1001100>+|1000011>

V8
+]0101010) + [0100101) + |0011001) + |0010110>). (11)

In this basis we are able to find and correct bitflip errors.rifeoto find phaseflips we have to rotate the
basis by applying one Hadamard rotation to each of the saveitsqtransversal H operator):

~ 1 1 1

H_ﬁ<1 _1>. (12)
In the rotated basis bitflips are phaseflips and vice vershasave can correct phaseflips (which are now
bitflips). The correction step needs 5 additional ancillaitpufor the purpose of fault tolerant processing.
The fundamental fact at this point is that in order to find exr¢he error information of the unknown

pure state)) is “copied” onto the ancillas, but the state of the ancillas heen carefully chosen (Shor
state) to ensure that only information about the error cared by measurement.

If we store one qubit in an unknown pure stat® on a storage device with imperfections and the
recovered state is denoted hy;, we are going to detect a loss of fidelity:

F = (§lpoult) = 1 . (13)

If we use Steane’s code to encode the information in an 7tdphioik then the recovered state can
maintain an improved fidelity, even if the encoding, decgdimd error-recovery processes will suffer
from the same error:

F=1-0(). (14)

IQCS

Improving Quantum Computer Simulations is a software pgeka simulate quantum computer algo-
rithms. The basic concept is to store the complex amplitofidse whole state vector of a pure stéte,
constituted by n qubits. One qubit gates (which2itex 2" matrices) have a clear inner structure so they
are applied to the state vector on the fly, instead of stohiegithole data. The same is true for two qubit
gates. Among others the IQCS package implements CNO7#/8t,gates, which form a universal set of
gates.

Implementations
There are four different implementations: In the first odeabrs are equal zero, in the second one oper-
ational and decoherence errors are enabled (error modekisssed later on), the third implementation

tries to stabilize the algorithm by encoding and correctinty the ancilla qubit and the last is the fully
corrected algorithm.

Implementation of ideal Grover algorithm

If we take advantage of the following identities

N
HH=1 and H®"|0)=)|x) (15)
=0

83

the Grover operator as defined above (Definitio/1- (2]4) ()| — I) O, can be rewritten as

G = H®"(2]0)(0] — I)H®" Oy0.

(16)

The matrix representation of an additional phase shiftatedd) equals the matrix representation(@f

(oracle searching the stat®). So we rewrite the Grover operator according to

G = H®" Oy H®" Oyy.

(17)

As H is already implemented in previous versions of IQCS, the meled is to implement the oracle
function. It is crucial to have in mind that the way to implem¢he Grover operator is not unique.
Besides it is possible to implement the additional phast slithout using the ancilla. As an impact
of the implementation which is chosen here, the ancilla besomore important to the stability of the

algorithm, because it is accessed twice per grover iteratistead of once.

By convention the oracle is of kin@™ NOT-Gate, whereas thé€™ functionality is implemented as
black box. The ideal implementation of the black-box-cgaslcalled fCNOT-function. First thing to do
is finding the rank of the processor and finding the index okdaached state. The variable NSTATES is
defined as the number of states stored per processor andversag computational basis state (int).

int rank = x / NSTATES;

int i = (x % NSTATES);

After rank and index are determinedagal NOT operation is performed. The operation is always local
on one processor, because the ancilla qubit is at position 0.

Start in|0)®™=1 |0)
1 H®n_1 b2y Xancillar

2. H®"

3. perform R (see eqn. 9) grover iterations:
- é = ﬁ®néoﬁ®néxo
— save data (amplitudes, etc.)

4. write out data

The algorithm is performed as described
in the left box, whereas one grover iter-
ation denotes one sequential use of the
grover operator of eqn. (17). The main
load of the algorithm are the repetitive ap-
plication of Hadamard-gates to the work-
ing qubits. There is no need for any statis-
tic iteration, since every run provides ex-

act the same result.

Anplitude = Anplitude

W#mj:;’
JEEL
b
ﬂm“m ’
2
[

+r
+++++++++++++++
-

PR

- g?
VAR VAN W

a
100 200

Figure 1: Ideal implementation, no statistic

84

The result for this first implementation is shown in fig. (1 edause of the graphical interpretation that
was mentioned before, a squared sinus function is estinfatddis graph. The simulation ran with 14
qubits, whereof 1 is the ancilla and the others are labelanking qubits” (encoding the database). The
x-axis is assigned to the number of sequential grover agijdics and the y-axis to the probability of
measuring the searched state. The ideal number of grovestopapplications is printed in the title and
labeled “Grover Iterations”. The amplitude of the searchk&de is found inside the program using the
same method as in th8" black box. The value is summed over both possibilities ofaheilla qubit
since the measurement is performed only on the working sjubit

Implementation of erroneous Grover algorithm

The error model of the IQCS software package consists ofatipeal and decoherence errors which
are labeled “sigma” and “deco” at this point. Decoherenamasleled using the deco error to represent
the environment-qubit interaction. Every timestep eachitgsuffers from decoherence, whereas one
timestep is simply the duration of one quantum operatioe fanst have in mind that it is possible to do
operations in parallel at this point). With probability — ¢) nothing happens to the qubit, whereas with
probability ¢/3 each either bitflip, phaseflip or bitphaseflip is applied te tjubit. Gate-imperfections
are modeled using the sigma error. For this purpose everyanmktwo-qubit gate is fragmented into
planar rotationsk, or phase shiftd.:

_ (cos(0+¢€) —sin(0+¢) (1 0
Rel6) = (sin(H +¢€) cos(@+¢))’ P9) =\ cito+a) (18)
The parameter sigma denotes the standard deviatioina Gaussian distributiorfi(e¢) = Wlﬂefé(i)g
for the angle erroe. For example the Hadamard operation:
i, = Re(g) P.(n). (19)

The way to implement the f{CNOT-function is straight forwaft?” part is the same as before (because the
memory layout is the same), but the NOT-operation is congbose of (18). In order to perform lacal
operation, only those ranks storing information of the cleed state: join in the fCNOT-function, the
others are idle. For convention the preparation of the dsland the ancilla qubit is free of any error,
only the grover operator is erroneous. There are done sevmsawith different single and combined
errors. In general the maximum amplitude of the searchée istamaller for higher error rates. The more
interesting fact is that its position is reached with lesgliaations of the grover operator (as described
in [4]). The data is taken and processed in the same way asljigTle area around the maximum
amplitude is fitted using a parabolic function; its paramet@e used to get the abstract position of
maximum amplitude and the probability of. Using different values of n, sigma and deco leads to the
plot shown in fig. (2a). But in order to compare the probatidiguantum algorithm with the classic, non
probabilistic search of an unstructured database, a Varigfy is introduced:

P =1-(1-p), (20)
75eff =k- Narover (21)

Whereas p is the probability to measure the searched stedad P is set toP = 0.99. The idea is to
repeat quantum search until the probability to fetghs at leastP. The “time” needed for this repetition

is teff.

Errors provide less computational effort to reach the maxmpossible amplitude. But fig. (2b) shows
that it is not possible to save computational power due torertf it was possible, curves with different
error rates would cross each other. Furthermore the mininmaooe erroneous curves would occur at

85

Plot Grover It.: 201, Qubits: 17, statistic iterations: 1000
T T T 5000 T T T T
deco 0.00001 —— * deco 0.00001 +
L0001 —<— oot deco 0.0001 %
{0005 —+— | % deco ©,0005 *
*
4000 ﬁﬁ
r x% jf

16000

14000

igma 0,01 —&—
12000 dece 0,0001,. sigma 0,01

sigma 0,02 —=—
classic(x)
ideal (x)

10000

3000 -

8000

log t eff
t eff

8000 2000 -

4000
1000 -

2000

e e i
ok = °

[} 50000 100000 150000 200000 250000 300000 [} 50 100 150 200 250
log N # iteration

(a) Comparison plot - The classic(x) and ideal(x) curves(b) Is it possible to gain something by errors? The granu-
are functions, so they do not suffer from integer divisions.larity of this plot is because of the definition af;s: The
This is the reason why the other curves seem to have digype of the parameter k is integer, hence there are disconti-
continuities. nuities.

Figure 2: Plots

lower iteration numbers as the minima of less erroneousesuiwithin the scope af = [9;20] more
plots like fig. (2b) are gathered to foreclose special cases.

There are two different approaches to analyze the curremtmodel. As previously discovered in [4] the
amplitude ofr decreases by fulfilling an exponential lady,, (niteration) = €“™teraton, Due to conservation
of probability in long running times the amplitudes of alitats should (in the average case) eq%all’o

be able to confirm this result (even though in [4] is used antliygdifferent error model) there are made
some different runs with much more applications of Grovepsrator and different values of sigma/deco
(fig. 3a). The results are shown in fig. (3c), (3d). The deproglef the exponent of decreaseon the
deco parameter shows a nearly linear behavior, in contvabietmore or less quadratic dependence on
the sigma parameter. This behavior is because the sigmenegarefers to a deviation and the deco
parameter is a probability. As second approach to analyzettor model, a couple of runs are taken
with different sigma and deco. The result is an array of csir@ne error is left variable while the other
one is used as parameter for the set of curves and vice vdrsalats (see fig. 3b) should look like the
inverse of the so called “error-norm”-plots in [5], and iedethey are.

The data is gathered by building the arithmetic average eaeh amplitude value of many independent
runs each starting from the same errorfree initial staterélare some statistical artifacts which are not
related to the quantum search algorithm. Taking the gedraétnterpretation of amplitude amplifying
into account, the grover operator can be described as 2 dioral rotation which rotates only by a fixed
angleg. A first approach to transfer the sigma/deco error modeltimsimplified interpretation is that
0 is no more a fixed angle, but varies with deviatiqrfor each rotatiork. In a sequence of rotations it is
clear thaty;, < Jx1 Since errors propagate quadratically. In this model treomly a flux of probability
from one state to another by courtesy of rotations (whichsgrlification), so every amplitude-vector
Cl"?|1,z)> lies on a circle around the origin for eveky Whereas

G € S0(2) and |) € R% (22)

By taking the average over all statistical iterations mlaying on a segment of a circle of length corre-
sponding ta) are summed up. Due to this summation the mean norm of theiresuéctor|v),. afterk
rotations becomes smaller (see fig. 4a). To relate this tavtiae algorithm: Even if there are no prob-
ability transferring errors, the over-all probability Wilecrease because of taking the mean value. This
effect has another impact onto the minima, by taking the nwadure for every probability, sometimes

86

Qubits: 7. statistic iterations: 10000, processors: 1 Error Plot {n=10}

sigma 0.02 + deco 10e—7 ——
exp{axx) deco 1x10e—6 —+<—
1/N — 0.9 deco 1#10e-5 —%—
deco 1x10e—4 —5—
E = — 4 deco 5*10e—4 4
0.8 a = —0.00539712 0.8 deco 1%106-3
@ @ deco 5=10e-3
E] T 0.7 deco 1210e—2 —=— -
s =
- -
T 9.6 T 0.6
£ £
I I
* ¥ 0.5
[} @
E 2
2 0.4 3 0.4
o b
s g o3
I I
0.2 0,2
0.1
K
o Q
o 500 1000 1500 2000 o 0.01 0,02 0,03 0.04 0.05 0.06 0.07 0.08
iteration sigma

(a) An exponential law is used to describe the decay of(b) The behavior of quantum search while considering dif-
the amplitude of the searched database entry. The constaferent errors.
part is because of conservation of probability during the

algorithm.
sigma error vs exponential decrease deco error vs exponential decrease
0t <
' Ry “sigmavsExp” —F— T “docoVSexp” | +
\ F{x) = a=x*x + bxx e
—0.005 +
) 0,08 | +

— +
ﬁ 0.01 %
: : .
o o —0.1
$ -0.015 3 *
o &
3 3 n
© o

—0.02
g § —0.15
< c
S]
£ %
g —0.025 @

0.2
—0.03
-0,035 -0.2%

0 0,0050,010,0150.,020,0250,030,0350,040,0450,050,055 0 0,0010,0020,0030,0040,0050,006 0,007 0,0080,009 0,01
sigma decoherence probability

(c) Dependence of the exponent of decrease on the sigm@) Dependence of the exponent of decrease on sigma er-
parameter. The quadratic part of an polynomial interpolat+or. The behavior is nearly linear.
ing function is highly exaggerated.

Figure 3: Plots analyzing the current error model.

points laying on the flank of the minimum are summed up intorttieimum (compare fig. 4e). As a
result the minimum at positioh has a higher probabilitymn ;. as in a single run and also:

0k <0ky1 = Pmink < Pmink+1- (23)

But both the whole curve and the minima obey a law of expoakdicrease, so there is a maximum

Pmin,j
dj, Vk : Pmin,j > Pmin,k- (24)

To verify that this effect is due to statistical averagingeator-matrix multiplication with independent
erroneous rotation angles has been implemented bdaigematicathe results are shown in fig. (4).

Stabilized ancilla qubit
The main load of the algorithm is to calculate Hadamard dpmers. If they work faultily only a full QEC

scheme helps to correct them. The only other operation igrtee operator, or f{CNOT-function. It only
works properly if the ancilla qubit is well prepared in thatst|y) = %(](D — |1)). So the first basic

87

(a) The average norm of a 2 dimen-(b) Simplified 2 dimensional model to (C) The same as picture the left one,
sional vector over 10.000 statistical it-reproduce the output of grover simula-but magnified to identify the behavior
erations. The vector is rotated 100 timesion. Only using imperfect rotations andof the minim-as.

each iteration, using imperfect rotatioradjacent building of the mean value, the

angles. The initial state is similar to theresulting envelope seems to decrease

Grover algorithm initial staté:), the exponentially.

rotation angle is? and the system refers

to n = 7 qubits. Because of the sum-

mation to get the mean value, the norm

decreases.
Grover It,: 71, Qubits: 14, statistic iterations: 1000 Position of first and second Minima
Q.05 0.07
++ T *Ii sigma 0,01 + + first minimum, 12 qubits
4t second minimum, 12 qubits <
L
+ o 0.06
o.04 % ; +
+
A L + et]
3 Wi 0.05
*
b w4 ¥ § >§§
Q3 0.03
g w1 £ o.04]
a 3 W
* + g k] #
2 + g o.03 Ha
3 o2t , & T o
o} +
o * X
] 0.02 ji?r]
Q.01 %
0.01 g >§ 1
° n 3 o i
o 500 1000 1500 2000 2500 3000 3500 70 80 90 100 116 120 130 140 150

iteration # Grover iteration

(d) Simulation of Grover’s algorithm with IQCS. Magni- (€) The position of the first and second minimum differ in
fied y-axis to see the behavior of the minim-as. each statistical iteration, but to get the average theyrall a
summed up into one value respectively.

Figure 4: Plots analyzing statistical artifacts.

approach to stabilize the algorithm is to stabilize the lEnqubit. For this purpose a 7-qubit Steane code
is used. The encoding and decoding functions in IQCS arecim@hted in a fault-tolerant way, so the
Steane code needs 5 additional qubits, so called “measotémqubits. The whole memory layout has
to be adjusted:

n + 7 +) . 25
NG N < (25)
working qubits ~ ancilla qubit measurement qubits

The algorithm is implemented as shown in fig. (5a). The mask t&athe implementation of the f{CNOT-
function: The NOT-part is realized transversally (a hugeaathge of Steane codes), but thé-part
differs a little bit from previous implementations. At thedi measurement the state of the 7 ancilla qubits
and the 5 measurement qubits does not matter and is theredoraeasured. Therefore all amplitudes
of the 271> different lower order bit states can be summed giving theliémde of the working qubits
basis state respectively. As the only interesting amitisdthe one corresponding i@, only the sum

of these2”*> possible states contributing 1 are calculated and written out each grover iteration. In
the same manner th@"-part of the f{CNOT-function has to find the right*> block and then perform
the transversal NOT operation. In general the differenksamave to communicate to do this, so the
variables rankStart, rankStop, indexStart, indexStogal@ulated in order to find the right ranks, which

88

are contiguous, and the right index where the data is stéfdrwards a new split-communicator is
created in MPI and the NOT operation is performed within theal index range of indexStart and
indexStop.

og d..dHH|de..dFC d.dH[d}{d.d

j
O{Hl——2[d] d..dHH|de..dFo d.d{H|d|d..d
j
E

O{H—1{*|dHd..d{H]d]}{d..d-|° [d}-|d..d {H[d]]d..d
encode x 3 d =] correct %:% correct Eﬁi@ correct :% correct

Grover Operator

Tideal
(a) circuit diagram - only the preparation is ideal. The “y” deg®the well prepared
ancilla-statdly) = —5(|0) — [1)).

Grover It.: 142, Qubits: 27 / 16 Grover it.: 142, Qubits: 27 / 16. statistic it.: 60¢
0,996 T T T T 1 T T T T T T T
statistic: 100 with QEC —— sigma 0.0001 with QEC —+—
statistic: 200 with QEC —+— sigma 0.0001 without QEC ——

without QEC —#—

0.995 //4——»\\ 0.99998

0.094 0.99996

©,99994
0.993

0,992 k’///,,//»e/~.,,.—/4F———4~44—*g;_g—g~—%\\i\il‘\?

0,991

©,99988
©,99 d
©.99986

©0.989

©,99992

0.9999

Amplitude = Amplitude
Amplitude * Amplitude

139 140 141 142 143 144 140 140.5 141 141.5 142 142.5 143 143.5 144
iteration # iteration

(b) Simulated using sigma=0.001. Only the first maximum (C) The same plot as to the left, but with sigma=0.0001.
in probability of zo is illustrated. The statistical iterations The statistical iterations are insufficient too, which iast
are very insufficient, but the probability seem to becometrated by the standard deviation of the measurement.
higher.

Figure 5: Analyzing stabilization of ancilla qubit.

The results of the implementation to stabilize the ancilldijare unfortunately still unfinished. Prob-
lems are the insufficient statistical iterations and themeetoo little computational power. The achieved
outcomes of the simulation are not precise enough to dedmdgher the approach of stabilizing the an-
cilla is stabilizing the whole algorithm. There are done suaments with 2, 16, 22, 27 and 28 qubits;
in case of 2 qubits the results are discussed later on, tegetith full QEC schemes. Because much
more statistical iterations are needed to provide propgrt®in the presence of decoherence, this error
is switched off and only the sigma error is simulated. Th& tago find a maximum error threshold the
current correction scheme provides an improvement in thidrmam probability ofzg. In general the
former discussed error threshold is only true in case ofQHC. So the searched threshold could depend
on the size of the system. The simulation is very expensigealse to find a threshold, the standard
deviation of the mean amplitudes must be disjoint. Theesfoe investigation is focused on the n=2 and
n=27 qubits case to get more precise results. For the cage ar€ run denotes 100 statistical iterations
and take time of 10hs.. In fig. (5¢) one run is drawn and the result of merging two rdree problem

is, that one run includes only one event that cannot be dexdiy the current QEC scheme (2 bitflip or
2 phaseflip errors in one block). In order to take the rightmesdue it is crucial that at least 100 or more
“events” take place, so there is a need of at least a facto@@idore statistics to get acceptable results
using this method. The approach to find the threshold in cesmaller operational errors is displayed in

89

fig. (5¢). The smaller error rates worsen the problem as s\w@nincorrectable errors appear even more
rarely. Our preliminary result is that it is not possible torect the whole algorithm by only stabilizing
the ancilla qubit.

Stabilized algorithm

The last implementation that is done concerns the fully dimgpof all “working” qubits and the ancilla
qubit. The new memory layout is
7Tong + 7T, + 5 . (26)

~—
working qubits ~ ancilla qubit measurement qubits

Because the complexity of this scheme is much higher tharewiqus implementations, our simulation
is limited ton,, = 2, which uses a total number af = 26 qubits. The total state vector neetl§gb

of memory (which is doubled for every additional qubit), thext possibilityn,, = 3 needs206gb.
Furthermore by using eq. (9) with = 2 the value R denoting the grover iterations becorles 1 and

the possibility to measure, after 1 grover iteration i = 1, so every value except 1 must occur due
to errors. The implementation of th&-part of the fCNOT-function is now more artificial as in preus
implementations. The states of the working qubits are natvitduted over the whole state vector. There
are three possibilities of how th&” can be implemented. The first o(&) is to use unitary operator
decompositions, but for this casegagate is necessary and this can not be implemented traatlyers
on Steane codes. The second @bgis to perform ideal decoding before each fCNOT, then read out
the amplitude as before and afterwards to perform idealdingo The disadvantage is that there is a
passive error correction included, since the whole pd#sisi of 27 states are projected into one state.
This passive correction has no physical reason and is treatartifact of the method. The third of®
discussed here is to calculate the exact position and hicks all 8"+ Steane code parts which form
one computational basis state and perform a local NOT dparan this states. This third method is also
very artificial, because the other states, beside the Staaleestates, could have nonzero amplitudes in
case of errors, but these amplitudes are completely ign@ieslimplementation here follows the second
(b) possibility.

The first approach is to encode all qubits, but introduceexbion steps only onto the ancilla qubit, as it
is displayed in fig. (6a). The results of several runs witfedént sigma errors (the decoherence is again
turned off to reduce computation time) are shown in fig. (&iabilizing only the ancilla qubit in the
case ofn = 2 again turns out to be unsuitable to stabilize the whole #@lyor Although the statistics

is insufficient, the trend of the curve points to worse vallfjs to ¢ = 0.0005 full QEC improves the
probability to findxzy, compared to uncorrected Grover. As expected, the full QE@ree gets worse
for higher sigma values (threshold lays betw@@f01; 0.0005]), this is because of the enhanced length
of the algorithm due to error correction. This approach otildy fcorrected Grover algorithm works
because of the passive correction that takes place dunfCIROT-function. The next improvement is
to introduce correction steps to each of the encoded workitht, at the same place where the correction
steps of the ancilla qubit are performed. The differencdisf‘really” full QEC scheme to the previous
one is marginal (see fig. 6¢) (this fortifies the predictioattthhe passive correction has a huge influence
to the algorithm).

Scaling

The scaling measurements are done for every different mmgahéation. The time to perform the quantum
search is measured using the MPI command “Wtime()” and tkeeidalisplayed as speed-up plots. The
ideal case would be a straight line, as running the task vaitibbbd number of processors should be done
in half the time. The best performance until system size af 19 qubits can be achieved in running

90

0 encode |dE d.d =H dE d.d H d
fCNOT fCNOT
X0 0
0 encode = d.d %Hﬁd% d.d Eencode = d.d EHEd% d..d %
decode decode

correct

correct %

Grover Operator
(a) circuit diagram - only the preparation is ideal. The “y” desgthe well prepared ancilla-statg =

7(10) = [1)
710} = 1)
Grover It: 1, Qubits: 3 / 14 / 26 Grover It: 1, Oubits: 3 / 14 / 26
1 * T 1
sigma —— sigma ——
sigma with full QEC —+— sigma with full QEC —=—
0.,999985 - sigma with ancilla QEC —— 1 1r sigma with ancilla OEC —*—
sigma with full active QEC —&—
©.9999 1r +
ey
@ L] %
g 0.99985 r 'g 0.999999
= =]
- -
T 0.9998 ¢ 2 0,999999 |
& £
% 0.99975 * 0,990998
2 o.9997 | 3 ©0.999998 |
- -
g 0.99965 | 2 0.999997 |
< <
©,9996 0,990997
0,99955 - 0,990996
©.9995 ©.999998
1le—04 0.001 0,01 0.1 le—04 0,001

sigma sigma
(b) Plot comparing three QEC schemes in case of(C) The same plot as the left one, but with magnified y-
n=2. Statistics: without QEC 100,000,000, ancilla QECaxis. There is one interesting point: At sigma=0.0005 full
3,200,000 and full QEC 30,000 iterations. The worstQEC is better than no QEC. This point is simulated using
method is to apply correction steps to the ancilla. Forfull QEC and full, active QEC (with correction steps on all
higher errors the full encoding scheme becomes worst. qubits).

Figure 6: Analyzing stabilization of all qubits.

serial jobs (see fig. 7a). The interesting thing is that ireaafsn=[20;23] the simulation behaves in a
super-scalar manner. There are two opposed effects: Tieentieded to calculate the operations on the
local processor and the time needed to send the data thrbagtetwork. If the local data is too small,
the communication will delay the calculation, on the othandhif the data is too big, the local performed
calculation will delay the whole program. The optimum systEze seems to be n=22, as the super-scalar
manner reaches its maximum. This can be understood as cHiebg as the cache-size on the JUMP
system is 4mb and the local memory needed to store the siEtta i®in the same scale. But, this effect
is not analyzed deeply during this work, as the simulatiometin the region where the effect occurs is
too long to get results in an equitable timescale.

Conclusion and Outlook

Grover’s algorithm was implemented using the IQCS softwmrekage and the programming language
C. There were four different implementations: ideal, eemurs, ancilla QEC, full QEC and the algo-

rithm could suffer from decoherence errors and imperfestio gate applications. The error model was
analyzed and the results are suitable to further invesiggt We could quantify the dependence of the
probability to find the searched database entry on decoberamd operational errors. We analyzed the

91

Scaling: statistic iterations = 10, plotRange = 1.2 Scaling: statistic iterations = 1., plotRange = 1.2

60

50

40

30

speed up
speed up

20

10

oL o
O 4 8§ 12 16 20 24 28 32 36 40 44 48 52 56 60 64 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

processors processors

(a) Machine: JUMP (b) Machine: Jugene.

Figure 7: Scaling plots

deviation of the searchtime ideally scaling-as/N in the presence of these errors. There are different
statistical artifacts: Displacement of minima, decredsth® amplitude in dependence of the number of
grover applications (additional to the “real” decreaseichitan be seen in single runs). As a preliminary
result (due to low statistics) stabilizing only the ancilabit does not result in a higher amplitude of the
searched element. Within the black box implemented fCN@iEfion the correctness of QEC could be
verified. For our investigated system we could quantify theto oyres = 5-10~% full QEC does improve
the grover algorithm compared to non QEC. As forecast thélngical step is the implementation of a
transversak-gate as shown in [6], to make the fCNOT-function a unitargragor.

Acknowledgment

| would like to thank Dr. Mathias Bolten and Robert Speck fa great organization of the guest student
program. Special thanks goes to my supervisors Guido Ariddcus Richter and Binh Trieu who have
always answered my questions and have made this work to e &anther | want to thank Prof. Dr.
Schomer who advised me to this program. And finally | have &miththe other guest students for the
productive and humorous atmosphere.

References

1. L. K. Grover, A fast quantum mechanical algorithm for datse searching, Proc. 28th Annual ACM Symposium on
Theory of Computing (STOC), 1996, 212-219.

2. M. A. Nielsen, Isaac L. Chuang, Quantum Computation andn@um Information, Cambridge University Press (2000),
ISBN 0-521-63235-8

. J. Preskill, “Reliable quantum computers”, Proc. Roy Bond. A 454, 385-410 (1998), quant-ph/9705031v3

4. P.J. Salas, Noise Effect On Grover Algorithm, Europeaysihal Journal D, vol 46, number 2, year 2008

G. Arnold, M. Richter, B. Trieu, and Th. Lippert, ImprogrQuantum Computer Simulations, PARS Conf. Proc. 2007,

PARS-Mitteilungen Nr.24, ISSN 0177-0454, 166-175, (2008)

6. A. G. Fowler, Constructing arbitrary single-qubit fatdterant gates, quant-ph/0411206v1, 30. Nov. 2004

w

o,

92

SIONIib
Scalable 1/O library for Native Parallel Access to BinarieBi

Ventsislav Petkov

Computational Science and Engineering
Technische Universitat Minchen
Boltzmannstral3e 3, D-85748 Garching

E-mail: v_petkov@mytum.de

Abstract: High Performance Computing is playing a major role in theaesh and the devel-
opment process nowadays. The increasing performance obthputers and the development
of the data storage devices open the door for new researdk fietl discoveries. However, the
increasing number of processors used in the supercompatig poses a new problem to the
developers: the scalability of the applications.

One of the major factors for this is the data access and stokmv should the data be written
in parallel? Is there an optimized way for doing this? Howtheefiles maintained?

SIONIlibis an attempt to answer these questions by providing an eakgfficient interface for
working with binary files in parallel.

Introduction

SIONIib, the Scalablel/O library for Native parallel access to binary files, started as an outprari
for Scalascfl], a performance analysis toolset, but laterQI®NIlib was separated from measurement
toolkit. It is a small library for writing and reading data jrarallel from thousands of processors and it
is especially designed to work with binary files. This file egg pattern is the most commonly used in
many different applications, e.g.,

e Trace files for performance analysis tools
e Scratch/Temporary files

¢ Application dependent checkpointing

The library provides a simplified file handling for parallebgrams that formerly had to read or write
binary data in parallel from/to separate files. Handlinghoiusands of files is no more needed as there is
only one or a few big files containing all the data.

Reading/writing can be done using the standard C-1/O iatero minor changes are needed to convert
an existing code to work witSIONIib. Just the standaridpen()andfclose()should be replaced with a
customized version fror8IONIlib. Later on, the normdatead() andfwrite() can be used for reading or
writing binary data using that pointer.

Moreover, when creating a fil§IONlibaligns the data blocks of that file with the file system blocks.

Idea and Motivation

The increasing computational power of the computers andegheeasing price of the data storage devices
provide new research opportunities. Simulation programasbacoming more and more complex and
they are dealing with huge amount of data. Storing or ratigethis data might take a major part of the
program’s runtime and has a great influence on the scalabilithe applications. There are different
problems and solutions when it comes to parallel I/O and soihtlkem are presented in the following
sections.

File locking

Distributed filesystems are mainly used for the high perforoe computing to provide storage space
and parallel access to files. They exchange informationtdheulocks that compose a file but not about
the files themselves. This approach has the advantage oégatacement of the data and increased
performance.

However, the integrity of the filesystem should always bera@ned. This is done by protecting the file
system meta-data from concurrent access using a mechaaikad Block Locking This is done using
low level locks and has the effect of serializing paralletegses to the internal data structures of the
filesystem.

The same procedure is also used to maintain data consistéitoy files. No two processes are allowed
to write to the same block at the same time. The internal streof the filesystem is mainly based on
inodes Each one of them contains all the information about a filepkthe data stored in it (filename,

size, access rights, number of links to this file, etc). Itiialto protect this information from concurrent

modification in order to maintain the integrity of the filetss.

Parallel file access strategies

There are different approaches when working with files irmalbelt They solve some of the problems one
faces when using files in parallel but also introduce difieroblems.

The two most common ones are:

e Parallel I/0 using separate files

e Parallel I/0 using native direct access

The first strategy is the easiest to implement and it is thet m@m®mon one. It uses a separate file for
each process so the number of files depends directly on thbarushprocessors. Due to the increasing
number of CPUs nowadays, this approach has problems withbdlitg and maintenability. The main
problems are:

e Serialization on the output folder:
Directories are a special case of a file in Unix. As such theg hhvanodes This inode contains
information about the files inside the folder and it is updatéhen a file is either added to or
removed from the directory. This information should be kapisistent during parallel accesses so
the same mechanism of locking is used on the folder’s inode.

94

Having to create thousands of files at once will inevitabldi¢o folder locking and the process
will be serialized. This has a impact on the performance &&s$ major scalability problems.

¢ Difficult to handle and backup the files:
Execution on more than 10k cores will create a huge amountesf Migrating and archiving so
many files and organizing the data are a complicated and tim&uening tasks. This situation may
also lead to fragmentation of the filesystem.

The second common approach is using native direct accessditking with the files. It solves the
problem of maintenability by storing all the data in one big.fUnfortunatelly, it brings other problems:

e The filesystem locks the access to the data block-wise i todeaintain data consistency.
Tasks writing to the same data block need to wait and the psoiseagain serialized. This leads
again to low performance and poor scalability.

e No information about the file structure such as start of thia tta each task, size, structure, etc, is
available.
The data structure inside the file should be hardcoded inpg&eific program and it will not be
portable. Creation of generic tools for working with thedilgill not be possible.

e Chunksize should be specified in advance.
The precise size of the data that will be written to the filedtidoe known in advance. This size
cannot change after the file is created.

MPI I/O is also part of this parallel file access strategy. Its perforce and features strongly depend on
the specific implementation. However, it is designed to weitk derived datatypes and not directly with
binary data. This approach provides flexibility but makes Ifl© interface more complex - special care
should be taken when working files. What is more, it does netaustandard C-I/O interface making it
difficult to integrate in existing software code. [4]

Features of SIONIib

In an attempt to solve these problems and provide an easyffciére way of working with files in
parallel, SIONlibwas designed. It solves many of the problems that the otheapproaches are facing
and at the same time staying as simple to use as posSil@dlib can use one or a few files to store the
data from all processes. The main advantages are:

e Data aligned in chunks each with the size of the filesysterokisi(Fig. 1):
There is no need of locking because each process acceseesitdock. As a result there is no
more serialization on the access to the file providing a bsttalability and performance.

¢ Meta information about the data structure in the file:
Generic tools exist that can operate on any file created S¥fiNIlib. These include splitting a big
file in small pieces containing only the data from each tasirranging and defragmenting the
data in the file, information about the data stored, etc.

e Chunksizes should also be specified in advanced.
However,SIONIibwill automatically flush the file and assign more space if itéeded. This way
the size of the data written by each task can increase dyadynic

95

Figure 1: SIONIib File Format

Fortran API

High performance computing deals mainly with scientificimtions and a lot of the software is written
in Fortran. Being written completely in C, there was no supfar these applications. As a result, the
library was extended and the Fortran APl was included.

Due to the differences in the way Fortran and C handle filéshall/O is done in pure C. This way, the
created files are portable and they can be used from prograittsnan both languages. Wrapper func-
tions are also provided for writing/reading binary datdrton the filesfsion_fwrite()andfsion_fread()

Integration of SIONIib in PEPC

As a direct application of the this new featuB#ONlibwas integrated in a development version of PEPC.
The name is an abbreviation for Pretty Efficient Parallel IGmi-solver and it is a parallel tree-code for
rapid computation of long-range Coulomb forces in N-bodytipie systems. The public version of
PEPC is divided into kernel routines and 'front-end’ apgiions. A front-end called PEPC-B, code for
simulating laser- or beam-plasma interactions, was ssleadSIONIibwas integrated in it. [2]

Initially, it was using one file per task and time step. All files were seperated in folders according to
the processes they belong to - each task having its own diyedthis was done as a workaround for the
common problem of folder’s inode locking. However, this eggch does not scale good because of the
need to create thousands of folders and later on hundredsitfieach one of them. All the folders are
created in the preprocessing phase and as a result it loag tilethe simulation is up and running.

What is more, one can easily hit the maximum number of file&.lihis will lead to an I/O error and
the program behaviour will be unexpected.

In an attempt to overcome this problems and improve the lsitigfeof PEPC,SIONlibwas integrated in
a development version. This extension provided the folhgynadvantages:

e Only one file per time step needed
= No more thousands of folders
= Faster startup & Easy handling of the simulation data

e Homogeneous execution after restart

96

Multiple Files Support

Another recently added feature 8fONlibis the support for working with multiple physical files using
only one logical file. The main reasons for this extension are

e Maximum filesize limit
Different systems have different restrictions on the fiesiThis may lead to problems, for exam-
ple, with performance analysis tools that generate traes ¥ilith the size of more that 2TB. One
way to overcome this limit is by using a few smaller files imstef a big one.
Another example is the limit of the 32-Bit systems. The fitesis restricted to about 2GB when
using a standard 32-Bit file pointer to index the number oébyHowever, this problem no longer
exists on newer systems due to the extended support forfilegéLFS).

¢ Different optimal strategies on different filesystems
On one hand, the best performance some filesystems can eeegthising just a few big files. On
the other hand, many small files can be the optimal strategytfers.

e Metacomputing

— Local files for each computing resource

— Less communication and data trasfer
= Better performance and scalability

e Local files on not consistent global filesystems
There might be a delay after creating a file on a global filesgsuntil it becomes visible to
the rest of the compute nodes. This might lead to unexpeabdviour of the application and
different I/O errors. One possible workaround for this peobis to use only files that are local to
each compute node. This way, the file will be accessible tiradter creation and the workflow
will be consistent.

¢ |0 Nodes oriented approach on BG/P
Having one file per I/O node leads to faster performance oBlive Gene/P platform.

Current State

The following chapter gives a short look at the current stat®lONIliband my work connected with this
library during the 10 weeks guest gtudent program at theld@upercomputing Centre.

e C and Fortran Interfaces:
Initialy, only support for applications written in C existebut the support was extended also for
Fortran code.

e Multiple files can be read/written at a time: In the beginniBONIlibwas designed to use only one
big file for all tasks. However, this proved to be inefficiemtsiome situations and now the library
can work with multiple files at once. There are two differeraty® of specifying the number files
used:

— Directly specifing the number of files:
Exactly that many physical files will be created and they Wwilequally distributed among
the processes.

97

— Specifing a global and a local communicator:
The number of physical files will be equal to the number of lamemmunicators inside the
global one. Thus, the processes in each local communicadtbget a separate file. This
approach can be used when the number of local communicatoct known in advance.

This files are opened using only one function call. This veturn a file pointer that will be specific
to each process and will point to different physical files.ad®sult, there will be only one logical
file and multiple physical ong&ig. 2).

Logical File Logical File
4 A 4
Physical File Physical | [Physical | [Physical
File File File
(a) single file (b) Multiple files

Figure 2: Multiple files support

¢ Doxygen documentation:
The whole API and the internal structures are now documewitd Doxygen. This provides a
cleaner and more detailed information about the libraryple@cumentation can be generated in
many different formats just with a simple command.

e Tested on GPFS, Lustre:
Extensive tests of the library were completed on the Gertaedllel File System (GPFS). Basic
functionality was also tested on a Lustre file system.

e Integration in a development versions of Scalasca and PERG-a direct application of the new
Fortran API,SIONlibwas integrated in PEPC-B. There exists a development vedafi§calasca
working with the this library. However, it is using an old gsem of SIONIliband an update is to be
completed soon.

SIONIib Internals

SIONIib File Format - Overview

The file format used b$IONIlib can be seen oFig. 3. It contains the following three main parts:

e Metablock 1:
This block contains static file informatiqirig. 4) and it is written exactly after the file is opened.

e M blocks of chunks:
One chunk is allocated for each process. It contains thevddttzn by that task and has the size
requested in the beginning. If a process tries to write mata than specified, a new block of
chunks is created and the current file pointer is set to theecbposition in the new block. This
way, the size of the data can be dynamically increased art iestricted by the requested value.

98

e Metablock 2
This block stores dynamic information depending on the remalb tasks and write~ig. 5). It is
written just before the file is closed.

Figure 3: SIONIib File Format

SIONIib File Format - Metadata

As already mentioned, the internal information about tleedild the data structure is saved in two blocks.
Their structure can be seen Big. 4 andFig. 5.

SION ID String
Endianness used

Filesystem block size
Number of blocks for each task

Number of tasks using the file .
Total chunk sizes for each task

for block 1

Total chunk sizes for each task
for block 2

Total chunk sizes for each task
for block N

globalranks[1 Global ranks of the tasks
Requested chunksizes

Maximum number of blocks

Beginning of Metablock 2

Figure 4: SION Metablock 1 Figure 5: SION Metablock 2

SIONIib File Format - chunksize dependence

When the file is created, the chunks of the file belonging tt @mocess are aligned with the filesystem
blocks. The resulting data structure depends on the ratiedes the chunk size and the filesystem block
size. The most common case are:

e When the requested chunk size if less than half of the filegyflock size, the whole block is still
allocated and more than two chunks of data can be written s is done in order to eliminate
possible block locking by assigning the whole block to orsktds a result, there might be empty
space left after the data.

99

FS Block 1 LFS Block 2] FS Block 3 ||FS Block 4 || FS Block 5 | FS Block 6 || FS Block 7. FS Block N

B XAO0O=TOomM0D3
N Xno=Tom03

: . Chunksize 0.5
Figure 6: pgpigize < 1

e Another situation is when two chunks of data perfectly fibiohe filesystem block. There is no
empty space after the data.

FS Block 1 LFS Block 2] FS Block 3 |[FS Block 4 || FS Block 5 ||FS Block 6 |[FS Block 7. FS Block N

B XAO0O=TOomM0D2

N Xno=Tom03

H . Chunksize __ 0.5
Figure 7 Fopitsize =

¢ Most often, the chunk fits exactly the filesystem block. Tleisults in a nicely structured data in
the file with no empty spaces.

FS Block 1 LFS Block 2 |[FS Block 3 | [FS Block 4| FS Block 5[FS Block 6 | [FS Block 7 FS Block N

Block 0O i Block 1 i

KB Xn0o=Tom03

N Xno=Tom03

; . Chunksize __ 1
Figure 8. Fopirsize = 1

SIONIib Fortran API

Writing a Fortran API for a C library is not always a straightward procedure. There are some key
points that need to taken into account:

e Arguments:
Fortran passes argumentsteferenceso all C function arguments should be defined as pointers

e Strings:
For each string argument Fortran passes an additional amjureing the length of the string. This
is represented in C by lang int variable which is passed by value. Thus, additional pararaet
should be included after the normal arguments in the C fansti

100

e Procedure name:
In Fortran the name of a function after compilation depermishe compiler. There are different
conventions:
— All letters uppercase
— All letters lowercase
— Trailing underscore()
— Trailing double underscore (__)

This name should be the same in both C and Fortran object ditebé successful linkage of the
final executable. To overcome this problem, different matafinitions are used for each case.

e Sharing I/0 between C and Fortran:
Generally, writing a file in C and later on reading it in Fortia not recommended. Even though
Fortran uses internally file pointers just like C, acces$iémt is not provided to the programmer.
What is more, Fortran writes the data based on records aadsrspecial information in the file.
A better and more portable strategy is to do all the I/O eittighr C or Fortran. AsSIONIibis com-
pletely written in C, all the 1/0O in the Fortran APl is also dowith the C-1/O interface. Wrapper
functions are also provided for working with binary filesrfrd-ortran.

As a final result SIONIlibworks internally with C file pointers and the files are accdgsem For-
tran using a special SION identifian(TEGER)! This approach provides portability of the datafiles,
data consistency and resembles the Fortran handles files.

Local and global communicators
As an alternative to the common way of opening a SION file whileeenumber of files should be ex-
plicitly specified, there is a version working directly witbmmunicators. Both a global and a local

communicators should be specified @I®Nlibwill create one file for each local communicator. No ad-
ditional information about the splitting of the processerséeded, thus providing easier code integration.

However, there is no MPI function that returns the numbetubtesmmunicators of a communicator. So
after the processes are divided in groups, there is no wadber information about the splitting. The
following algorithm is used irBIONlibfor this purpose:

1. Getthe global and local ranks of the current process.

2. UseMPI_Gatherto collect the local ranks to the global task 0.

3. gRank 0: Check the collected local ranks and for each § extrement a counter.
4. gRank 0: Send the current counter value to the task havingparank 0.

5. IRank 0O: After receiving the value, that task broadcasdtsthe local communicator.
6. A file suffix is formed using the received value.

7. The final value of the counter is the number of local commatbois.

101

SIONlib Workflow - Create a new file for writing

When a file is opened in write mode, the workflow is as follows:

e sion_paropen_multi_mpi(...)

Generate a suffix for the output file(s)
Create a SIONB ID

Allocate space for the internal stuctures
Open the file(s)

Write Metablock 1

Set the task specific file position

2 T A

e sion_ensure_free_space(...)

Get the current position in the file

Add to it the required data sizegyte$

Compare it with the size of the allocated chunk in the block
If bigger=- create a new block and flush the file

a > wn e

Set the new file position accordingly
o fwrite(...)

e sion_parclose_mpi(...)

SIONIlib Workflow - Open a file for reading

The following steps are performed when a file is opened falinep

e sion_paropen_multi_mpi(...)

Generate a suffix for the input file(s)

Create a SIONB ID

Allocate space for the internal data stuctures
Open the file(s)

Read Metablock 1

Read Metablock 2

Set the task specific file position

N o o bk~ wDdPE

e sion_bytes avail_in_block(...)

1. Check if there the end of the current block is reached
2. If yes=- set the pointer to the next available block

e fread(...)

e sion_parclose_mpi(...)

102

Benchmarks
Benchmark Environment

The following benchmarks were performed on the Jugene mystehe Jilich Supercomputing Centre.
It is based on the Blue Gene / P platform with 16 racks in t@&pkcific for this system is the presence
of pure compute nodes and others doing in I/O [5]. Every 128pmae nodes access one I/O node. As a
result, there are 8 1/0 nodes and 1024 compute nodes in 1 falok dugene system.

All the compute nodes connect to the I/O nodes using intaratlork. The latter are connected with
a 10 Gb optical network to the file-server. Thus, the thecaéthandwidth of the 1/O operations is up
to 10 GB per rack. In practice, however, it was measured to @86 using a special 1/0 benchmark
directly on the file server. This is mainly due to the curresfiguration of the fileserver in the Jilich
Supercomputing Centre.

GPFS Benchmarks
SIONIib PARTEST on Jugene
As a small benchmark, a test program was run on 1024 compulesrio VN mode (4 cpu cores per

compute node) with 1 TB of data being first written to and thesadrfrom the filesystem. In the VN mode
there is one MPI task running on each core. Table 1 shows sudtsef this test usin§IONIib.

Files Size Open/s Close /s BW / MB/s
w R w R w R

1 1024 3.24 0.17 13.65 | 0.43 1510 4093

2 1024 1.55 0.58 10.00 | 1.35 2022 3794

4 1024 0.30 0.33 3.19 0.16 2471 3693

8 1024 0.31 2.15 3.45 1.76 2543 4104

16 1024 1.65 1.79 1.60 6.16 2554 4076

Table 1: 1 Rack PARTEST Benchmark (4096 MPI Tasks)

Table 2 shows the results from a test with the same configurdiit on 8 racks having in total 32768
cores.

F Size Open/s Close /s BW / MB/s
w R w R w R

1 1024 7.25 0.16 0.15 0.06 3468 5792
2 1024 8.14 1.72 1.41 1.72 2825 5778
4 1024 6.90 2.40 0.57 0.79 2978 5632
8 1024 10.46 | 2.60 12.06 | 5.86 4796 5793
16 1024 8.70 0.32 6.85 8.15 5112 5685
64 1024 12.70 15.00 8.94 10.42 5598 5753

Table 2: 8 Racks PARTEST Benchmark (32768 MPI Tasks)

103

MPI-10 Test on Jugene

Table 3 shows the results of the same test using a MPI I/O wiitgpecifying implementation specific
options.

Files Size Open/s Close /s BW / MB/s
w R w R w R

1 1024 - - - - - -

2 1024 - - - - - -

4 1024 0.30 0.24 0.10 0.33 2095 2709

8 1024 46.10 | 0.30 0.29 0.09 2087 2790

16 1024 156.35 | 0.31 1.61 0.52 2551 2907

Table 3: 1 Rack MPI-IO Benchmark

PEPC-B 10 Benchmarks

Two versions of PEPC-B were compared: the original one doglie particles as ASCIl and the new
version usingSIONIib. The benchmark was done on 128 processors using 30000Q0Fanthe sake

of the measurement, only two time steps were performed agwl the simulation was restarted for 8
additional steps. As it can be seen frdfig. 9, the distribution of the user mode time after starting is
homogeneous in both versions. However, there is an additppeprocessing phase in the normal PEPC-
B where the whole output folder structure is created. Asaalyediscussed this approach brings many
disadvantages and can take a long time to complete.

Moreover, after the simulation is restarted, the user made ts not uniformly distributed with the
normal ASCII version. This is not the case with the versiat thcludesSIONIib

PEPC Benchmark using SION and ASCII (tart) PEPC Benchmark using SION and ASCII (Restart)

T
SION version ION version
ASCII version ASCII version

25 g S~ T s/\/\ AN AN AN
V

L L L I L I 4 L L I I L L
0 2) 60 80 100 120 0 20 40 60 80 100 120
Ranks Ranks

(a) PEPC-B after Start (b) PEPC-B after Restart

Figure 9: PEPC-B Benchmark on 128 CPUs

104

Outlook

Being in development phase, there are still different fegtuo be included iI51ONIib. The following
list presents the most important ones:

Different Endianess Support

OpenMP Support

Calculation of the number of files depending on the total glaiize and the maximal size per file

Redundancy information for file reconstruction

Summary

SIONIib provides a simple interface for working in parallel with §ildt can be easily integrated in
existing software codes with just some minor changes. Amgia of this is the addition o8IONIlib
support in PEPC-B where only two files were changed and it wasg dising the new Fortran API.
Another feature of the library is the portability of the file®ated. All the files contain information about
the structure of the stored data and they can be used byatifferograms written both in C and Fortran.
Using this meta-information, one can create generic tomiswiorking with the files. The following
programs are already available:

e sionsplit - splits a big file in smaller pieces containingyottile data for one process;
e siondefrag - orders the data in the file;

e siondump - prints the meta-information from a file;

Moreover,SIONIibis also independent from the underlying communicatioralil@s. This way, the sup-
port for different parallel interfaces can be easily exthdo that it can work with OpenMP, PThreads,
etc.

SIONlibcan work with multiple files allowing different optimizaticstrategies and it can overcome lim-
its such as maximum file size, number of files quota, etc.

Last but not least, the library provides fast file access vald.6 GB/s out of maximum 6 GB/s in the
completed GPFS tests, and can improve the scalability cdpipécations.

References

1. SCALASCA - Scalable Performance Analysis of Large-Séalplications
http://www.scalasca.org

2. PEPC - Pretty Efficient Parallel Coulomb-solver
http://www.fz-juelich.de/jsc/pepc/

3. SIONIib Presentation, Wolfgang Frings, JSC, 28.07.2008

MPI: A Message-Passing Interface Standard, Version 2.1

5. IBM System Blue Gene Solution: Blue Gene/P Applicatiov@&epment, ISBN 0738431648

»

105

106

Preconditioners for the Conjugate Gradient Algorithm

Lutz Roese-Koerner

Universitat Bonn
Institut fur Geodéasie und Geoinformation
Nussallee 17, 53115 Bonn

E-mail: lutz.roese-koerner@geod.uni-bonn.de

Abstract: In this report the Conjugate Gradient Algorithm is explairend the results of
the SPARSKIT implementation of this method are shown. Soropasties of Incomplete LU
Factorization with Threshold are examined and its cagghii be used as preconditioner for
CG is analyzed. Finally, some attempts are made to deteabldepn occurring when using
ILUT and CG for certain matrices.

Introduction

Preconditioners are used in many areas of numerical matlemnag. whenever large sparse linear sys-
tems are to be solved for different right-hand-sides or thevergence rate of an iterative solver should
be improved. Due to the fact that most preconditioning tepkes only work for special tasks or need
information about the input data, it is not easy to find a pneltmner that is applicable to most sparse
problems. The Incomplete-LU-Factorization-with-Threshapproach (ILUT) described in this report
is an example for this kind of preconditioner. Therefore ngnenathematical libraries contain an imple-
mentation of ILUT or a similar preconditioner.

ILUT is used at the Jilich Supercomputing Centre (JSC) incakieDavidson eigenvalue solver, too.
This software requires repeated solutions of a linear sygteith different parameters and right-hand-
sides) up to 1,000 times by a user supplied method. A combmaf ILUT and the Generalized Minimal
Residual method (GMRES) is used for this task. Since therdaown problems with certain matrices
using this eigenvalue software, the aim of this project isxtamine the behavior of the ILUT precon-
ditioner implemented in the library “SPARSKIT”. Furthermeg the performance boost provided for the
Conjugate Gradient Algorithm from the same library is to balgzed.

Data

The following section describes the input data and pointsome special characteristics. Table 1 shows
dimensionn and number of nonzero elementsz of the input matrices. The left half of this table
contains three matrices, which are known to cause problantsei eigenvalue software. Two of them
(kurbel and w1249 appear twice, as different numbering schemes are testedfigure 1). All five
matrices originate from the finite elements context and pg@50 to 650 MB disk space each. The
five matrices on the right half of table 1 are normal equati@trives from a geodetic context. They are
generated using spherical harmonic expansion up to degkerder 30 respectively 100 (implied by
the first number in matrix name). All matrices of degree artkof 00 are produced with the same set of
observations. If the matrix name contains “oM” (one misioge arbitrary observation is deleted before
computing the normal equations. This destroys the bloclatiial structure (see figure 1f). In order to
create sparse matrices, every element below some threishdidpped. As there were many elements

(a) Matrix: K0001

(b) Matrix: kurbel, numb. scheme: 1(C) Matrix: w124g, numb. scheme: 1

(d) Matrix: w124g, numb. scheme: 2

(e) Matrix: N_100_5e6

(f) Matrix: N_100_oM_5e6

Figure 1: Structure plots of some of the used input matrices.

with large values the threshold is setligh respectivelyse6. Although these five matrices have a smaller
dimension, they are denser than the other matrices.
All matrices are block diagonal dominant, symmetric andtp@sdefinite.

Matrix n nnz Matrix n nnz
K0001 | 235.962| 12.860.848 N_30 5e6 957 6,032
kurbel 1| 192,858| 24,259,521 N_100 5e6 | 10,197| 171,049
kurbel 2| 192,858| 24,259,521 N_100 l1le6 | 10,197| 192,331
wl24g 1| 401,595| 20,825,882|| N_100_oM_5e6| 10,197 | 296,897
wl24g 2| 401,595| 20,825,882|| N_100 oM _1e6| 10,197 8,177,599

Table 1: Input matrices with dimension d and number of naw-2éements nnz.

Conjugate Gradient Algorithm (CG)

Description of the algorithm

The Conjugate Gradient Algorithm (CG) is a commonly usedttee solver for linear systems of equa-

tions of type

Ax =Db.

(1)

A is a symmetric and positive definite input matrixjs a vector containing the elements of the right-
hand-side of the linear system agrds the solution, which is to be computed. It is a Krylov Suluspa

108

Method (like Arnoldi's Method or the Generalized Minimal @ual Method described e.g. in [3]). If
A does not have the mentioned characteristics, CG can stik,wat this is not guaranteed. Finding the
solution is seen as a minimization problem of the quadratinf
1
fx) = §XTAX —bTx +ec. 2
The name Conjugate Gradient is due to fherthogonality (conjugacy) of each search direction to all
the others. Two vectors andb are A-orthogonal if

aTAb = 0. (3)

Therefore, one only needs to go once in each direction. WII#ds not often used as a direct solver (due
to roundoff errors), it is more frequently applied to prohkeas an iterative one, since it approximates
the solution well after very few steps.

Using CG for solving a linear system consists of iterativadynputing the following terms (see [4]):
First, a starting poinkg is to be determined (e.xo = 0). The residuak is chosen to be the initial
search directionlg

d0:I‘0:b—AXO. (4)

The step-lengthu is the distance covered at each step (computed by line 9earch

T
rrj

- . 5
dT Ad; ®)

Q;
The residuat;, ; and the solutiorx;, ; of the next iteration step can be computed utilizing thisinfa-
tion

Xit1 = Xj + adj, (6)
riy1 =1 — aAdi. (7)

Afterwards, the Gram-Schmidt-Conjugation is used, coingua factor for updating the next search
directiond

I‘;r Tit1
Bip1 = t——, (8)
r;rj
diy1 =rig1 + fGidi 9)

The steps mentioned above are repeated until a maximum mwhherations or a given convergence
criterion is reached. As the residual computed in each iteration, the decrease of its norménafsed
as convergence criterion.

Methods

Since CG is a well-known iterative solver, it is implemenitedhany packages of mathematical software.
In this project a CG routine from the Fortran77 library “SPARIT” by Yousef Saad is used, which is
described in detail below (see also [2]). Some additionatr&o90- and C-subprograms were written,
whenever needed functions were not provided in the libdanyas tried to modify the “SPARSKIT”-
library itself as few as possible (most modifications done amnly for debugging or the output of
some interim values). As the intention was to analyze theieffcy of preconditioners for CG, the
first step was to use this iterative solver without a precimnir in order to have a comparison. Most

109

routines of “SPARSKIT” (including the preconditioners) skovith matrices in CSR-format (see sec-
tion “SPARSKIT” for details on the different formats). Se¢he CG module of “SPARSKIT” is de-
signed to be used with a preconditioner, it needsAhmatrix as input in the CSR-format as well as a
preconditioner-matrixM in MSR-format.

Hence, a C-function was written, which designs an identigtrir of sizen in MSR-format. This sub-
routine can be called instead of a function provided by “SBKR™ in order to create the needed input
data for the CG module. Using an identity matrix for prectinding will lead to the same results as
doing no preconditioning (but with additional computatitime due to some matrix vector products).
Having only the input matrix given, a right-hand-side-wedb is to be created, for which the system is
to be solved. This is done by computibg= Ax, with x containing only ones (different values were
tried without influencing the behavior). Except for some mgas, for which the use of a special initial
value is mentioned, the initial guess was chosen to be a zetonvof lengthn.

Results

The following results were computed solving the linearsystvith the CG-algorithm from “SPARSKIT
on the cluster “JULI” (Julich Linux Cluster) with the paratess mentioned above. As the library only
provides sequential programming, all calculations wereedon a single processor. First, the system
was solved for the three input matrick®001, kurbel andw124g which originate from FEM context
(see introduction). Whil&urbelandwl124ghave a similar structure and siz€0001does not (see fig-
ure 1), which may explain its different behavior shown in fig@. In this figure, the (slow) decrease of
the residual is plotted versus the number of iterationsafiitigmic scale). Having computed more than

~—K0oo1
—kurbel ||
—w124g

“
T
I

=]

MW“"‘""\‘W'*LMUnh1\:“;\\‘\‘&‘,\ .«.ftmfﬂ.hh\WMw;L\J“A.U.h’,ﬂ.m,_

10’ -

Residual, logarithmic

S

i i i i I i
05 25 3

1 15 2
lterations, every 100th plotted x10°

Figure 2: Convergence of CG for three different input masi¢residual norm vs. iterations).

30,000 iterations, the criterion of convergence
[Iell = trer [[bI] 4 tabs (10)

was satisfied fok0001with the relative tolerance..; = 10~'° and the absolute toleran¢g,, = 1075.
Solving the system for the other two matrices was abortest &2 hours without satisfying the above
criterion. In order to maintain comparability, same toteras were used for all input data. No “weaker”
tolerances were chosen, as this would have led to an easliemyence for matrik0001, whose final
residual norm is already high for this choice of the toleeaparameters.

The effect of resorting elements in input matrices is shawfigures 3 and 4. While the overall behav-

110

Residual

1 1 1 | 1 —
k) 1 15

2 25 3 35 4 45] 55
lterations, every 100th plotted « 10

10’ T T

—Kkurbel, reso_rted

Residual, logarithmic

b it d 1
1 | 1 [__ 1
05 1 15 45 5 55

2 25 3 35 4
lterations, every 100th plotted x 1o

Figure 3: Convergence of CG for input matkiurbelwith different numbering schemes.

ior of the residual norm of the twkurbel matrices is similar (except one part in the centre), theee is
significant “jump* in the resorted version @f124g Both phenomena are probably effects of roundoff
errors that appear at different parts of the computatioiis Tamp” can be interpreted as the change of
the CG algorithm into another search-subspace.

The same issue is plotted for some matrices from geodetiexoim figure 5. To guarantee compara-
bility the right-hand-sides of these systems of normal @gnanatrices are computed the same way as
above. All the matrices generated using spherical harmeqiansion up to degree and order 100 behave
similarly, unaffected by potential deletions of observas. Solely the matrix containing coefficients up
to degree and order 30 shows unexpected behavior: Aftertaléicsease of the residual norm, there is
a peak at the 116th iteration, followed by another phase afedase until convergence is reached. This
might be due to the fact that the residual nagini| is plotted and not|A%r|| which has a monotone
convergence behavior.

One problem yet unsolved is, that for four of the matriceg{ee/order: 100) CG only converges if
the initial guess is close to the actual solution. Otherwitsaborts with an error message while trying
to computedT Ad, because the values exceed the range providetbloy! e. Usingl ong doubl e
instead ofdoubl e enlarges the range in which the initial guess has to be. Bsitafbproach also fails
for larger differences to the actual solution. This may hesea by an inappropriate distribution of the
huge values imA. As preconditioning will probably change this, no furthéteenpts (e.g. normalizing
the system) were made to avoid this.

Preconditioner

Since the convergence rate of iterative solvers is stroimfliyenced by the condition of the input matrix
A, many attempts were made to improve the condition numbdrowitdistorting the solution. In par-
ticular, if one system is to be solved for different rightablasides, preconditioning could save a lot of
computation time. The common approach is to solve the lisgstem

M 'Ax=M"'b (11)

instead of the original probletAx = b. M is the so-called preconditioner matrix. As the identity rixat
has the best condition number possiitNé,= A would be a perfect preconditioner. However, as comput-
ing the inverse ofA would be as expensive as solving the original problem, s¢attempts were made

111

T T T
: : : —w124g
5" Z | : 3
3 : :
o
[,)
(0]
o :
1 B il
| | | e comian
1 2 3 4]
lterations, every 100th plotted « 10
Q T T T T
E —w124g, resorted\
-*%'m"
[o)]
o
=
2 | |
é ‘ ! L | i i

zlterations, evaery 100th ploifted x 1o
Figure 4: Convergence of CG for input matvisd 24gwith different numbering schemes.

to choose a different preconditioner math&. Beside approaches such as the Jacobi preconditioner, the
Gauss Seidel preconditioner or successive overrelaxéibdescribed in [3]), there are some “classic”
factorization techniques, which can be modified and usedeopditioners: Incomplete Cholesky and
incomplete LU factorization. This report focuses on incéetg LU factorization.

Incomplete LU Factorization (ILU)

The basic principle of the Incomplete LU Factorization ()L the same used for ordinary LU Factor-
ization: The matrixA is decomposed in a lower triangular matFixvith ones on the main diagonal and
an upper triangular matrikJ

A =LU. (12)
Then these two matrices are stored together, neglectirigntven diagonal entries df.
M =LU (13)

is used as preconditioner. One big drawback is that the LitbFaation of a sparse matrix does not have
to be sparse itself. Therefore, instead of computing ameshti FactorizationA is decomposed into

A=LU-R. (14)

The residual matriR is used to drop specified elementsffand is often realized in practice by a non-
zero patternP, which contains the indices of allowed non-zero elementin@an ILU consists of two
major steps (same as in the Gaussian Elimination), whickarstantly repeatellut only for elements

of the non-zero pattern P. The first step is to divide each element of the linby the diagonal entry
axr, and to use this as a factor for the elimination process inatewing rows

i = aik/akk, if (i, k) c P, (15)
Qij = Q5 — QiQkj, if (Z,j) e P. (16)
It can be shown, that ILU retains most matrix charactesstaepending on the chosen version of ILU,
see below). IfA is a Minkowski-matrix (M-matrix), all properties will be pserved. M-matrices arise

e.g. from discretisations of elliptic Partial Differertiaquations (PDES) - e.g. the Laplace-matrix - and
have following characteristics [1]:

112

SO (R ‘ R (. R ". TR I R r R I S J. o —‘N_10‘0_166‘
& ; ~, 5 ~ : ~|-—N_100_oM_1e6|
w i : ‘ ; L ‘ N_100_oM_5e5 |
RS T I P S I H
g b M“M S| N30 BeB
= : T —
S
gt w%&m{w%“ : i
E \ o _-*_‘f“ﬂ“%s‘wwnwaww%www * &
B T S P | O
3 MM ---------)\ S “‘W*W%Mw wmwww
10 ; \&NWU :
1 1 \\/VHA\M’\/\ S | 1 1 | 1

1 1
a0 100 150 200 250 300 350 400 450 500 550

lterations

Figure 5. Convergence of CG for input matrices from saeelijeodesy, the first number determines
degree and order of the spherical harmonics, the secontirgghbld used for dropping elements.“oM”
signals that an arbitrary observation was deleted, befomgating normal equations.

1. Qi > 0fori= 1,...n
2. Qi j < Ofori 75 7, ij=1,...n,
3. A is nonsingular,

4. A—1 > 0.

An M-matrix is defined by the properties 2 and 4. If these atisfiad, properties 1 and 3 are as well.
The last property is equal to the request for weak diagonaiigiance.

Different versions of ILU could be distinguished by theiryaf choosing the non-zero patteft (and
sometimes additional computations):

The “basic” version is called “Zero Fill-in ILU{ILU(0)) . Here, P is chosen to be exactly the non-zero
pattern of A. As a result, there are only slightly more elementgirif the productLLU is computed
explicitly, than there were in the “originalA.

The next possible step is called “ILU with level of fi{TLU(p)) and allows additional entries ih and
U, depending on the level of fifl.

The “Modified ILU” (MILU) uses another approach: The sum of all elements dropped afoanes
added to the diagonal entry.

Not the location but the magnitude of the elementsAiris important for the decision of dropping an
element or not, when “ILU with thresholdILUT) is used. Sometimes this approach is referred to as
“ILUT with Pivoting” (ILUTP) when the reordering of matrix elements is also implemented

Several other versions of ILUs were developed and used, asiltiUS or ILUC . For more details on
the above mentioned methods, see [3]. One big advantadea# tLU-versions have in common is, that
no information about the structure of the input matrix isuiegd (preconditioners with that property are
rare). In the following, this report will focus on ILUT andgsitise as preconditioner for the CG algorithm.

ILU with Threshold (ILUT)

One big drawback of ILU(O)/ILU(p) is their blindness to nureal values. This can lead to keeping
“uninteresting” close to zero elementsliror U while dropping far bigger elements. ILUT tries to avoid

113

this by dynamically choosing its patted with a double threshold strategy: Every element which is
below some threshold is dropped. Next, only the largest elements in each row hfandU are kept.
While 7 is used to reduce computation cgsthelps to control memory usagge.is also called level of
fill, which is somewhat misleading, because it has a differe@aning from the level of fill of ILU(p).
ILUT can be computed, using equations 15 and 16 and repldotpattern? by the two dropping rules
depending orr andp.

It is important that only off-diagonal entries are droppaslptherwiséVI~! A does not necessarily have
the same characteristics &s As the non-zero patter® is chosen dynamicallyLUT will destroy
symmetry, which will cause problems if combining it with CG.

SPARSKIT

“SPARSKIT” is an open-source Fortran77-library by Yousaf8 [2], which provides four different ILU
preconditioners (including ILUT) and nine iterative salw€CG, GMRES, etc.). Besides solving linear
systems, one aim of this - since 2005 in version 2 availablaftware package is to enable easy data
exchange or conversion between different working groupsstitutes. Designed for sparse matrix com-
putation, it internally uses the Compressed Sparse Rowdof@SR) for storing matrices.

All computations done for this project are computed usinBABSKIT -routines whenever possible.
That is not only true for the pure solving-step of the equatigstem, but also for the reading in of data
in different formats, converting these formats, genegatest matrices, plotting the results and using
“SPARSKIT"-provided “BLAS"-routines.

The test-programme

As there are existing problems with the ILUT from “SPARSKIfBt the shown input matrices, a test-
programme was written in order to detect the root of the mobdnd to determine the performance boost
provided by the preconditioner.

The main programme is written in C, calling the “SPARSKITtffan77- and some additional Fortran90-
and C-functions. First, the header of the input matrix isdraad memory is dynamically allocated.
“SPARSKIT” uses three working arrays for computation andtoa: One integer array, which para-
meters have to be set (like the kind of convergence critegtm), a double array, which contains some
parameters (like tolerances) and the double awayn which (interim) data can be stored. The para-
meters are set as mentioned above and the right-hand-sidenisuted in the described way. Now the
matrix entries are read by a “SPARSKIT” provided functiotgred in the memory allocated and the
Fortran90 routine “testcg” is called, which was developgdabjusting and extending a “SPARSKIT”
intern test-programme. Depending on whether a preconéitishould be used or not, either the routine
for generating an identity matrix or for the ILUT preconditer is called. In both cases, the time spent
in the subroutine is measured. The last step is to call thed@re, measure the time it takes for each
iteration and output the results (first elements of the awiuand norm of solution).

These steps work well for most test matrices (generated avitlvithout use of “SPARSKIT” and in
different sizes), but fail for the matrices described in ititeoduction. Depending on the level of fjl
different errors occur: If the level of fill is greater thanegithe CG-routine aborts with the error message:
“while trying to detect a break-down, an abnormal numbeetecdted”. Ifp equals one, no error message
occurs, but CG diverges and if the level of fill equals zero, d&rges forK0001and seems neither to
diverge nor to converge for the other matrices. In each dfeluases, the error only appears, if ILUT is
used for preconditioning, but the ILUT error-flag signalsays: “successful return”.

114

Debugging

Some additional challenges arise when debugging a progeatinat uses input data of several hundred
megabytes. For example, it might no longer be possible te AagndM in the memory of the worksta-
tion (1 GB) at the same time. Allocation should be done dyattyi as static allocation would lead to
problems with the stack limit of JUMP (Julich Multi Procegsavhich is used for debugging, as there
are no debugging tools available on JULL. It might also causblems to check some matrix properties
during runtime (like computing a determinant) as this wake a lot more computation time and use
additional memory.

Detecting the origin of the problem, two major directions 8y be examined. The first is to determine
whether the ILUT generated preconditioner matrix does astie thalMi "1 A has the same properties
asA. The second possibility is a general malfunction of ILUT endertain conditions.

As “SPARSKIT” does not provide a symmetric version of ILUTTS assumed that preconditioning will
destroy symmetry. This could lead to problems with the C@rtigm, but since they also occur for a
level of fill of zero, which means th& is not only symmetric but also a diagonal-matrix in this ¢ésis
can not be the reason for the malfunction. Another possibdj that if A is only barely positive definite
some numerical problems might appear while preconditgpnin order to avoid this, small values were
added to the diagonal entries of the input malrfore preconditioning. This distorts the result, but may
lead to better diagonal dominance. Unfortunately, it did prevent CG from “detecting an abnormal
number”. The next approach was to add small values to theod@gfM after preconditioning. This
would not get the problem by its root, but may help to fix it ard g better understanding of what goes
wrong. Unfortunately, the abnormal numbers remain and Q€cte"Not a Number”s (NaNs) on the
main diagonal of the preconditioner matrix. Since addingudnitrary value taVaN will be NaN again

(at least in Fortran), this ansatz also failed. The next@ggr made to avoid loss of necessary properties,
was the conversion of the main-diagodél:Ns into (small) positive values. As above, this should also
be seen as an effort to fix the problem in order to detect itgrgrnot to compute accurate results. But as
before, that does not lead to any changes in behavior. Duentorianal numbers in off-diagonal entries
CG aborts again. No efforts were made to convert all théaéVs, as this would have only led to more
distortion of the results and did not seem to be very promisirorder to find the root of the problem.
Since the approaches to obtain the necessary propertiesdifying A or M failed, the position in the
source-code where abnormal numbers appear first is to biezkt:al he errors seem to occur only while
dropping elements of the upper Matiix. The dropping procedure is realized by computing

aij = aij =, (17)

with r = 0if a;; is afill-in element and = a;; else. The element which should be subtracted, contains
sometimesNaN. This variable is not only used for dropping purposes but atsinterim variable for
swapping elements in the working array which is used for storing elements Af, x andb. In order to
detect the problem more precisely, this variable was gplitvio (s ands_). Due to the fact thalVa/Ns
still occur in both variables, it is assumed that there amabal numbers inv already (because the
swapping variable as well as the dropping variable obtain their values from this working array).
The first appearance of the error depends on the chosen Fefiltl Bhe higherp is set, the earlier the
error occurs (not strict for small changespin

Conclusions and outlook

The routines ILUT and CG from “SPARSKIT” were tested with el input data and different param-
eters. While CG works well, problems appear for certain ioedrif ILUT is used for preconditioning.
As the approaches to modify the input matAxand the preconditioner matriM in order to prevent CG
from aborting failed, it was attempted to detect the rootefproblem. Due to the restricted time of the

115

guest-student’s programme misbehavior of ILUT was padbalized, but its root is still indistinct.
Further possible steps in order to detect the root were msupd due to the lack of time. For example,
one could try to catch the error one step earlier by detec¢tiagv a N-producing computation, with

9, f’ —x or 0-oo.

0 %)
as possible candidates. Using the test matrices as inputthier programmes providing ILU / ILUT
might also help to gain a better insight into the structurehef problem (libraries like “ILUPACK”,
“MUMPS” or “hsa” could be used for this purpose). Succesphaiconditioning with the ILUT-routines
of these packages would be another indication for a “SPARSKLern problem.
While “SPARSKIT” is a well-working tool in general, one haslie aware that there could be difficulties
occasionally with particular routines that only appearamgertain conditions. Especially the examined
ILUT-routine seems to be vulnerable to instabilities. $other ILUT implementations would also fail
for the test matrices used, it might be better to use mordestdternatives such as ILU(p). This would
also take in account that “SPARSKIT” does not provide a sytimgersion of ILUT, which could lead
to further problems with the combination of ILUT and CG.

Acknowledgment

I would like to thank my advisor Dr. Bernhard Steffen for thgpervision of my project and Matthias

Bolten and Robert Speck for the perfect organization of thesgstudents’ programme. | also want to
thank Prof. Wolf-Dieter Schuh from the University of Bonm fecommending me for this programme
and the other guest students for a very pleasant workingsgtheoe.

References

1. K. Fan. Note on M-matricefQuaterly Journal of Mathematics, Oxford serié4:43-49, 1960.

2. Y. Saad. SPARSKIT: A basic tool kit for sparse matrix cotagions. Technical Report RIACS-90-20, Research Institut
for Advanced Computer Science, NASA Ames Research CentffelIField, CA, 1990.

3. Y. Saad.terative Methods for Sparse Linear Syster88AM, Philadelpha, PA, 2. edition, 2003.

4. J.R. Shewchuk. Anintroduction to the conjugate gradiggthod without the agonizing pain. Technical report, Bittgh,
PA, USA, 1994.

116

Analysis of the Influence of the Dual Floating Point Unit
“Double Hummer” on the Performance of Specific Library
Routines on Blue Gene/P

Matthias Voigt

Technische Universitat Chemnitz
Fakultat fur Mathematik
Reichenhainer Stralle 41

09126 Chemnitz
Germany

E-mail: mattv@hrz.tu-chemnitz.de

Abstract: The Blue Gene/P system of IBM is the newest supercomputbedFbrschungszen-
trum Jalich GmbH” in Germany. It is used for applications a@tural sciences that are expensive
in terms of computational effort. One of Blue Gene’s spdigialis the dual floating point unit
“Double Hummer” which is able to perform two floating pointesptions in parallel. It enables
the user to decrease the runtime of applications significadtiring the usage of the dual FPU
various problems appeared. The goal of this work is to shoatwie user should do and what
he should avoid to get an optimal performance while usingut® Hummer”. We also show
how the performance behaves if we modify the code of callmgines or if we use special
compiler options. In this way this paper should be a littlipHer users to get full benefits of
the IBM Blue Gene/P architecture.

Introduction
The IBM Blue Gene/P Architecture

The Blue Gene/P system at the “Forschungszentrum JulichHErG(WGENE) has 16384 nodes or
chip cards, each consisting of 4 IBM Power PC 450 processiths850 Mhz clock speed. One core is
relatively slow but this allows a high power efficiency, a loaoling effort and a very high density of
processors in the machine [1]. 32 nodes form one node cardZndde cards are combined to one rack.
The complete JUGENE system consists of 16 racks (x B2 x 32 x 4 =65536 cores). Every node has
a theoretical peak performance of 13.6 GFlops/s and so tieéewhachine reaches a peak performance
of 222,8 GFlops/s. The LINPACK benchmark provides a perforoe of approximately 180 GFlops/s
(80% of peak) [2]. Each core has a 32 KB private L1 cache andaah®1B private L2 cache which is
used as prefetch buffer. There is also an 8 MB shared L3 catbaah node. Additionally every chip card
has an amount of 2 GB physical memory with a bandwidth of 1B&GL50 I/O nodes manage the data
flow between the Blue Gene system and an external file systd8irjdby an external 10 GB/s Ethernet.
Several service and login nodes deal e.g. with user logidgamsubmits. Furthermore the Blue Gene/P
system offers five highly efficient application orientedwnetk topologies e.g. the 3-d torus, the global
tree or the collective network. The 3-d torus is a 3-d mesh bitlwvnodes on opposite sides are also
directly connected. This structure provides a high bantwid 5.1 GB/s per node and low worst case
latency of 3.2us [3].

The Dual Floating Point Unit “Double Hummer”

In addition to the the regular PowerPC floating point indinrs (operating on the primary registers),
new parallel floating point instructions have been addedotrate simultaneously on both the primary
and secondary registers. Some of the new dual FPU instnsgtierform identical operations on each set
of registers in parallel. Other instructions allow opersaitwl be copied from one register set to the other,
or perform complex cross operations optimized for complékmetic. A set of load/store instructions
has also been added to perform loads and stores to both $&®sreisters with a single instruction.
Since the PPC450 chip can issue at most one load/store andRis®peration per cycle, the parallel
instructions have the potential to double the floating pparformance of the chip. The IBM Mathemat-
ical Acceleration Subsystem (MASS) library (and the ve8i&tSSV library), and the IBM Engineering
and Scientific Software Library (ESSL) take advantage ofgghrallel instructions to fully utilize the
dual FPU. Hand written code using the parallel instructicaus easily access this performance increase.
New builtin functions have been added to the IBM XL C and C+impders to generate the parallel
instructions. Intrinsic functions have been added to tHd M. Fortran compiler.

The IBM XL compilers will automatically generate paralldPB instructions, but doubling the floating
point performance benefit is not usually achieved for abjtfloating point code [4].

Introducing Examples
Influence of the Compiler Options on the Data Alignment

Choosing well aligned data is a crucial issue when using Bleee/P. Bad aligned data can cause an
extensive loss of performance. Double precision data shoell16B-aligned which means that the data
should be saved within the 16B borders of the RAM. If a floatpognt number is not well aligned an
alignment exception will be thrown during the runtime. Tmeieonment variabldBG_MAXALI GNEXP
can be set to control the number of allowed alignment exorptbefore the execution of the program
aborts. The default value on JUGENEBG& MAXALI GNEXP = -1. In this case alignment exceptions will
not force the program to terminate. One mayB@&t MAXALI GNEXP = 0 to let the program terminate
after the first alignment exception. Thus this can be usedh¢glcif the program accesses bad aligned
data. To change the value of this environment variable osehjas to add an additional option while
callingnpi runorl | run.

export BG_MAXALI GNEXP=[val ue]
[mpirun/llrun] [options] -exp_env BG MAXALI GNEXP [exec_fil e]

Compiler options have a strong influence on the efficency@ttde. High optimization levels are able
to detect bad aligned data structures as one will see in tloevfog code example.
Consider a Fortran program that uses two common blocks.

INTEGER MAXLEN

PARAMETER (MAXLEN = 500000)

INTEGER A, B

DOUBLE PRECISION X1(MAXLEN), X2(MAXLEN), Y1(MAXLEN),
$ Y2(MAXLEN)

COMVON JCOMBLK1/ X1, X2, A, /COMBLK2/ Y1, B, Y2

The first common block consists of two arra$ and X2 that each contain 500000 double precision
floating point numbersxX2 directly follows X1 and so both are contiguously located in the memory at
runtime as well. The second common block is in principle #raes but the sequence of 8B floating point

118

numbers is interrupted by one integer. He@VBLK2 is a bad aligned data structure because the 16B
pattern required by Blue Gene is destroyed by one integésttifis all entries ofy2 by 4B in memory.
Consider now additionally two subroutin€JML and SUM2 that perform each a vector addition X1

with X2 andY1 with Y2 respectively using the appropriate common blocks definélaeimain program.

SUBROUTINE SUM1(X)

IMPLICIT NONE
INTEGER MAXLEN
PARAMETER (MAXLEN = 500000)
INTEGER A, |
DOUBLE PRECISION X(MAXLEN), X1(MAXLEN), X2(MAXLEN)
COMMON JCOMBLK1/ X1, X2, A
DO 10 | = 1, MAXLEN
X(1) =X1(1) +X2(1)
10 CONTINUE
RETURN

END SUBROUTINE SUM1

The code forSUM is similar but it includes the common blo€BOVBLK?2 instead ofCOVBLK1. For
compiling the source code the IBM XLF Fortran compiler isdises well as different compiler op-
tions to see how these affect the effiency of the code. In thewimg time measurement we always
include the options gar ch=450 - gt une=450 for compiling without optimization for the dual FPU
or - gar ch=450d - gt une=450 for compiling with considering the dual FPU. Table 1 showsvho
alignment exceptions slow down and how further optimizatifrom- Q0 (no optimization) up te G5
(maximum optimization) speeds up the execution of the @uogr

Options SUML SUMP
-garch=450 | - gar ch=450d | - gar ch=450 | - gar ch=450d
-0 0.019751s 0.019751s 0.883256s 0.847652s
-0 0.019750s 0.019751s 0.883260s 0.847640s
-2 0.007943s 0.007943s 0.833583s 0.833555s
-8 0.005296s 0.004120s 0.833665s 0.834572s
- -ghot 0.005296s 0.003239s 0.864001s 0.833932s
- 0.005296s 0.003237s 0.005297s 0.833926s
-6 0.005296s 0.003237s 0.005297s 0.003250s

Table 1: Execution time of subroutin&JML andSUM?2 with different compiler options

In SUML the performance improves ferC2 or higher optimization levels. If one use®3 or higher
the impact of the dual FPU is detectable. Starting frod8 - ghot “Double Hummer” will reduce the
runtime by approximately 40%. The execution of this subrneutakes orders of magnitude more time
than that ofSUML at lower optimization levels. But it is also observable ttret dual FPU improves
the performance by a few percent-aD0 and- OL. For a very high optimization level the compiler
recognizes the misalignment, corrects it and the runtinremimparable t&SUML. With - gar ch=450
this already works for 34, with - gar ch=450d - Cb is needed.

119

Influence of the Array Declaration on the Performance
Investigation of a C program

In this subsection it is checked how the declaration of @faya program affects its performance. Con-
sider a simple handwritten C program that performs the re@liramatrix multiplicationC := ¢ AB+C
which is also provided by the LAPACK routine DGEMM.

The static definition of the used arrays looks like the follagv

#define nmax 1000;
double matA[nmax][nmax];

The arrayshat B andmat C are defined in the same way. Now the simplest approach torpeittoe
operation is used.

for (i=0;i<nmax;i++) {
for (j=0;j<nmax;j++) {
for (k=0;k<nmax;k++) {
matC[i][j]=matC[i][j]+alphaxmatA[i][k]«matB[Kk][]];
}
}
}

The order of the three loops as well as the paritpiwhx were changed to look if there occur differences
in terms of runtime. The IBM XLC compilempi x| ¢_r was used with the following flags.

CCFLAGS =-OJlvl] —garch=[val] —qtune=450 [more_opts]

Comp. -Q0 -garch= -3 -garch= -6 -garch=
450 450d 450 450d 450 450d

ijk-loop | 111.0806s| 111.0845s| 5.4821s| 5.1861s| 5.4791s| 3.7432s
ikj-loop | 54.8142s| 54.8005s| 5.4820s| 5.1860s| 5.4791s| 3.7413s
jik-loop | 111.1539s| 111.1581s| 5.4821s| 5.1861s| 5.4791s| 3.7835s
jki-loop | 106.0454s| 106.0522s| 5.4821s| 5.1860s| 5.4791s| 3.7413s
kij-loop 51.8134s| 51.8105s| 5.4821s| 5.1860s| 5.4792s| 3.7412s
kji-loop | 105.9441s| 105.9516s| 5.4821s| 5.1861s| 5.4791s| 3.7465s
essl 0.8587s| 0.8564s| 0.8578s| 0.8576s| 0.8562s| 0.8576s

Table 2: Time measurement of matrix-matrix multiplicagoim C with nnax=999 and static arrays
under different compiler options and loop orders, comparigith optimized ESSL routine

Table 2 shows the results of the time measurement for diffesempiler options and loop orders for
nmax=999 and Table 3 fonmax=1000. A measurment of the Blue Gene/P-optimized ESSL library
routine DGEMM is also included. It is called by

dgemm ("N","N",nmax,nmax,nmax, alpha ,matB,nmax, matmax,1.000,matC, \
nmax);

For - Q0 one gets very different results for different loop orderse Teason is that for some loops the
memory structure is not well exploited. That means that waathgeous cases (ikj- and kij-loops) the
read-write head just has to move to the next entries in theseption of the matriceB and C within
the memory to perform the next cycle in the innermost loop reaie the corresponding elementAof

120

Comp -Q0 -garch= - -garch= - -garch=
' 450 450d 450 450d 450 450d

ijk-loop | 107.3586s| 107.3587s| 5.8468s| 3.2114s| 5.6723s| 3.9227s
ikj-loop | 54.9437s| 54.9437s| 5.8469s| 3.2115s| 5.6724s| 3.9255s
jik-loop | 111.4669s| 111.4679s| 5.8468s| 3.2115s| 5.6723s| 3.9255s
jki-loop | 106.3641s| 106.3641s| 5.8469s| 3.2114s| 5.6724s| 3.9254s
kij-loop | 51.8563s| 51.8553s| 5.8469s| 3.2115s| 5.6724s| 3.9255s
kji-loop | 106.3183s| 106.3194s| 5.8469s| 3.2114s| 5.6724s| 3.9255s
essl 0.7513s| 0.7513s| 0.7525s| 0.7512s| 0.7525s| 0.7512s

Table 3: Time measurement of matrix-matrix multiplicagan C withnmax=1000 and static arrays
under different compiler options and loop orders, comparigith optimized ESSL routine

stays untouched. However in the other cases jumps betweetos of some matrices are necessary.
With - 3 and higher optimzation levels the compiler applies loogrictianges to the loop nest and
unrolls outer loops twice. Additionally theO3-optimization leads to an awesome performance boost.
Moreover the dual FPU is activated and further reduces thtme by a few percent in the odd case
and by approximately 45% in the even case. FOb the results for gar ch=450 are compareable
to those of- O3 whereas for gqar ch=450d one gets an additional improvement of 30% in the odd
case but a decline of 20% in the even case. For higher optimizations the runtimabhe even case
are a bit worse than those of the odd case. But especiallyghavibur for- O3 - gar ch=450d is
conspicuous and does not fit to the rest of the results. It eavbberved that if matrices of odd size are
embedded into arrays of even size the runtime behaves sitnithat of the even case (Table 3). The
ESSL implementation of DGEMM reacts positively on an everoam of input data but otherwise its
runtime is constant under all optimizations of the callingtme.

Consider now the same code but with a dynamic contiguousitiefirof the arrays.

#define nmax 1000;
double xxmatA = (doublexx)malloc (nmaxsizeof(doublex));
double xmatAld = (doublex)malloc (nmaxnmaxxsizeof(double));
for (i=0;i<nmax;i++)

matA[i] = &matAld[ixnmax];

Again,mat B andmat C are declared similarly. For calling the ESSL version of DG#Mith dynami-
cally allocated arrays one just has to call the routine with1-d versions of the arrays defined above.

dgemm ("N","N",nmax,nmax,nmax, alpha ,matBld,nmax, natAnmax,1.000, \
matCld, nmax);

Table 4 and 5 show the results for the same time measurensatoge but with dynamic arrays.

As in the static case without optimization there are conaedifferent results for different loop orders.
Again ikj- and kij-loop provide the shortest runtime. Butmbigher optimization levels do not have any
influence on this behaviour. The runtime decreases for highgmization but the compiler does not
perform any loop interchanges or loop unrollings. Note thatrelative time saving for the ikj- and the
kij-loops are the highest among all loop orders. Furthemtbe usage of the dual FPU has no influence
on the runtime and there is unlike the static case just a liifference between arrays of odd and even
size. Note that the behaviour of the the ESSL routine DGEMMéssame for static and dynamic arrays.
As a conclusion it can be said that one should use staticaltyaced arrays if possible. Static arrays
provide the best runtime especially foO3 or higher optimization levels and the dual FPU takes a
positive influence on the runtime. The optimization podisiés of the compiler are higher due to the

121

Comp -Q0 -garch= - -garch= - -garch=

' 450 450d 450 450d 450 450d
ijk-loop | 127.6543s| 127.6542s| 79.5691s| 79.6006s| 36.8541s| 36.8471s
iki-loop | 64.8427s| 64.8427s| 24.2691s| 24.4611s| 10.6261s| 10.5008s
jik-loop | 128.0674s| 128.0673s| 79.5345s| 79.5929s| 36.8968s| 36.4679s
jki-loop | 130.8488s| 130.8487s| 96.3188s| 97.1742s| 79.0192s| 79.2330s
kij-loop | 62.6452s| 62.6453s| 25.8485s| 26.0783s| 11.0350s| 10.9230s
kji-loop | 130.7086s| 130.7083s| 96.2278s| 97.0431s| 78.8980s| 79.1170s
essl 0.8564s| 0.8563s| 0.8578s| 0.8586s| 0.8578s| 0.8575s

Table 4: Time measurement of matrix-matrix multiplicagan C withnmax=999 and dynamic arrays
under different compiler options and loop orders, comparigith optimized ESSL routine

Comp -Q0 -garch= - -garch= - -garch=

' 450 450d 450 450d 450 450d
ijk-loop | 123.6689s| 123.6693s| 77.8859s| 77.8861s| 33.8415s| 33.8517s
iki-loop | 64.9763s| 64.9766s| 23.7375s| 23.7376s| 11.0541s| 11.0542s
jik-loop | 127.7432s| 127.7426s| 78.5880s| 78.5883s| 34.6879s| 34.7536s
jki-loop | 128.0071s| 128.0075s| 95.5732s| 95.5734s| 78.5005s| 78.5004s
Kij-loop | 62.8064s| 62.8065s| 25.1701s| 25.1701s| 12.947s| 12.9471s
kji-loop | 127.8701s| 127.8704s| 95.5007s| 95.5010s| 78.4533s| 78.4534s
essl 0.7518s| 0.7516s| 0.7521s| 0.7523s| 0.7523s| 0.7522s

Table 5: Time measurement of matrix-matrix multiplicagan C withnmax=1000 and dynamic arrays
under different compiler options and loop orders, comparigith optimized ESSL routine

better knowledge of array properties at compile time.

Investigation of a Fortran program and comparison to the C results

Consider now a Fortran program that performs exactly theesaperations as the C code above. The
goal of the following is to analyse the behaviour of the IBM Kkcompilernpi xI f 90_r under the
same optimization flags and to compare the results to thobe @ version.

Comp -Q0 -garch= - -garch= - -garch=

' 450 450d 450 450d 450 450d
ijk-loop | 115.1892s| 115.1693s| 5.7313s| 4.8419s| 5.7258s| 4.4502s
ikj-loop | 111.1044s| 111.0705s| 5.7313s| 4.8419s| 5.7258s| 4.4830s
jik-loop | 115.1409s| 115.1328s| 5.7313s| 4.8419s| 5.7258s| 4.4916s
jki-loop | 59.0778s| 59.0725s| 5.7313s| 4.8420s| 5.7258s| 4.4310s
Kij-loop | 110.9408s| 110.9410s| 5.7313s| 4.8419s| 5.7258s| 4.4798s
kji-loop | 56.9662s| 56.9558s| 5.7313s| 4.8419s| 5.7258s| 4.4484s
essl 0.8576s| 0.8588s| 0.8571s| 0.8578s| 0.8571s| 0.8563s

Table 6: Time measurement of matrix-matrix multiplicagan Fortran witmnmax=999 and static arrays
under different compiler options and loop orders, comparigith optimized ESSL routine

122

Comp -Q0 -garch= - -garch= - -garch=
' 450 450d 450 450d 450 450d

ijk-loop | 115.5159s| 115.5139s| 4.9150s| 3.5254s| 4.9149s| 4.2921s
ikj-loop | 111.4825s| 111.4829s| 4.9150s| 3.5255s] 4.9149s| 4.2812s
jik-loop | 111.2701s| 111.2612s| 4.9150s| 3.5254s| 4.9149s| 4.2812s
jki-loop | 59.2390s| 59.2137s| 4.9150s| 3.5254s| 4.9149s| 4.2847s
Kij-loop | 111.3162s| 111.3167s| 4.9150s| 3.5254s| 4.9149s| 4.2812s
kji-loop | 56.9461s| 56.9453s| 4.9150s| 3.5254s| 4.9149s| 4.2815s
essl 0.7517s| 0.7513s| 0.7512s| 0.7506s| 0.7512s| 0.7525s

Table 7: Time measurement of matrix-matrix multiplicasoim Fortran withnmax=1000 and static
arrays under different compiler options and loop ordersymarison with optimized ESSL routine

Table 6 and 7 contain the measurement results for statigsarfdoey are similar to those of the C code
but here arrays of even size provide a faster program exectlian odd arrays. Note as well that the
options- 3 - qar ch=450d show the same unexpected behaviour than for the C code (litrasing
evenly allocated arrays). However the performed optinonatare a bit different. ForCb the compiler
listing just shows a 6 times inner loop unrolling only for-igind jik-loops.

Comp -Q0 -garch= - -garch= - -garch=

' 450 450d 450 450d 450 450d
ijk-loop | 145.7739s| 145.7740s| 30.5930s| 35.6756s| 5.7858s| 5.8885s
ikj-loop | 140.9074s| 140.9088s| 37.0187s| 37.0199s| 5.7858s| 5.8885s
jik-loop | 145.7471s| 145.7469s| 30.5807s| 35.6015s| 5.7858s| 5.8885s
jki-loop | 89.6512s| 89.6311s| 10.3027s| 10.3720s| 5.7858s| 5.8885s
kij-loop | 140.6853s| 140.6850s| 36.9467s| 36.9463s| 5.7858s| 5.8885s
kji-loop | 87.3443s| 87.3542s| 12.6150s| 12.5981s| 5.7858s| 5.8885s
essl 0.8577s| 0.8581s| 0.8578s| 0.8567s| 0.8577s| 0.8574s

Table 8: Time measurement of matrix-matrix multiplicasan Fortran withnmax=999 and dynamic
arrays under different compiler options and loop ordermmarison with optimized ESSL routine

Comp -Q0 -garch= -3 -garch= -6 -garch=

' 450 450d 450 450d 450 450d
ijk-loop | 146.2608s| 146.2372s| 30.5369s| 36.3783s| 4.9950s| 4.9986s
ikj-loop | 141.3701s| 141.3645s| 37.1243s| 37.1242s| 4.9951s| 4.9994s
jik-loop | 142.0382s| 142.0389s| 25.2470s| 35.7083s| 4.9950s| 4.9996s
jki-loop | 89.9853s| 89.9098s| 10.0569s| 10.0568s| 4.9951s| 4.9994s
kij-loop | 141.1833s| 141.1698s| 37.0656s| 37.0658s| 4.9950s| 4.9986s
kji-loop | 87.3795s| 87.3141s| 12.2902s| 12.2902s| 4.9950s| 4.9995s
essl 0.7513s| 0.7513s| 0.7520s| 0.7511s| 0.7527s| 0.7517s

Table 9: Time measurement of matrix-matrix multiplicagan Fortran withnmax=1000 and dynamic
arrays under different compiler options and loop ordersymarison with optimized ESSL routine

For dynamic arrays the Fortran compiler is able to performraraptimizations than the C compiler.
For- Q0 the Fortran version takes about 10 - 50% more time to run,ra#pg on loop order. But using
- OB decreases that time to 10 - 25% of that one without using dgditions, whereas using a C compiler

123

only decreases the runtime to approximately 45 - 75% of tiggnad amount. For G5 the compiler even
performs 4 times inner loop unrollings for the ijk- and jibelp. Then the runtime can be compared to
that for static arrays using the same flags. There is alsdexetiice between oddly and evenly allocated
arrays which cannot be observed for the other analysed matiions. Similarly to the C case there is
almost no influence of the dual FPU recognizable. But if oresu€3 there are exceptions for the ijk-
and jik-loops where the execution witlyjar ch=450d takes about 20 - 40% more time.

Finally it can be said that the XLF compilers can deal betiéin dynamic arrays than the XLC compilers.
But for both one can observe strange behaviour which is egalaabove. Additionally the optimization
possibilities for static arrays are much greater. Thus se should apply static arrays if possible. In the
static case there are small runtime differences betweagsaof odd and even size but there is no pattern
determinable.

Deeper analysis of the static case withG3 and - G

Due to the unexpected behaviour of the compiler on statayara more exhaustive analysis of this case
is done with matrices of order 1999 and 2000 respectivelg rEsults are shown in Table 10.

Options C Fortran
nmax=1999 nmax=2000 nmax=1999 nmax=2000
"8 - qar ch=450 36.970s 33.731s 425255 36.813s
"8 - qar ch=450d 50.084s 47.058s 51.462s 47.817s
“06 - qar ch=450 36.916s 33.731 425255 35.333s
B 30.000s (jK), | 21.691 - 21.9974 37.756s (Kji), | 24.876 - 24.9834
- -qarch=450d | o5 937 53 548 39.804 - 39.9245

Table 10: Runtime of matrix-matrix multiplications in Fah and C under different compiler flags

Compared to Tables 2, 3, 6 and 7 one gets completely diffeesnlts. First of all, if O3 is activated
the results become much worse while usirgar ch=450d. Fornmax=999 andnnmax=1000 a con-
trarious behaviour can be observed. Second for both C anichR@rrays of even size now show a better
runtime than those of odd size, as it is expected. Third fo6 the dual FPU is exploited in a stronger
manner if the arrays have even size. But for the C code thémwans increased by almost 50% except
the ijk-loop was used.

Further tests also show that if thé pha in the innermost loop of the computation is supressed the run
time may increase significantly although the computatieffait decreases, e.g. for Fortrameax=2000,

- B - gar ch=450d the runtime increases from approximately 24,9s to more 4ian

All this leads to the assumption that there are still someshaghe IBM XL compilers.

Library Routine Analysis

Considered Libraries

e BLAS: The BLAS (Basic Linear Algebra Subprograms) are routinasghovide standard building
blocks for performing basic vector and matrix operatior]s [5

e PBLAS: The PBLAS are the Parallel Basic Linear Algebra Subprogrdihe PBLAS are a small
core library of linear algebra utilities, which can be higblptimized for various parallel architec-
tures [6].

e LAPACK: LAPACK (Linear Algebra PACKage) is written in Fortran77 aptbvides routines
for solving systems of simultaneous linear equationstiegsares solutions of linear systems of

124

eqguations, eigenvalue problems, and singular value prabl&he associated matrix factorizations
are also provided, as are related computations [7].

e ESSL: The ESSL (Engineering and Scientific Subroutine LibrarygrisBM product and consists
of highly optimized mathematical routines that can be amsigto the following fields: matrix
operations (BLAS and more), equation systems, eigenvaldgms, FFT, sorting, interpolation,
numerical integration and random number generators [8].

e BLACS: The BLACS (Basic Linear Algebra Communication Subprograprsject is an ongo-
ing investigation whose purpose is to create a linear atgebiented message passing interface
that may be implemented efficiently and uniformly acrossrgdaange of distributed memory
platforms [10].

e ScaLAPACK: The ScaLAPACK (or Scalable LAPACK) library includes a subsELAPACK
routines redesigned for distributed memory MIMD paralleinputers. It is currently written in a
Single-Program-Multiple-Data style using explicit mags@assing via BLACS for interprocessor
communication [11].

e MUMPS: MUMPS (MUltifrontal Massively Parallel Solver) is a packafpr solving linear sys-
tems of equations of the forfax = b, whereA is a square sparse matrix that can be either unsym-
metric, symmetric positive definite, or general symmettIMPS uses a multifrontal technique
which is a direct method based on either & or the theLDL” factorization of the matrix.
MUMPS exploits both parallelism arising from sparsity i tmatrix A and from dense factoriza-
tion kernels [12].

Analysis of the PBLAS routine PDGEMM

Because of the intensive usage of PBLAS subroutines inlphpbgram packages it is a crucial issue
to analyse the behaviour of this library first. In this suligecthe parallel matrix-matrix multiplication
PDGEMM for the operatio”’ := aAB + SC'is investigated. A x 5 process grid is chosen to evaluate
the runtime of the operation for square matrices of si¥es 3000 .. . 4000. The blocksizeV B(= M B)

of the two-dimensional block cyclic distribution is set @0l

Figure 1: Two-dimensional block cyclic distribution

In Figure 1 one can see an example of the two-dimensionaklapclic distribution. ConsideP pro-
cesses arranged infa x P, rectangular array of processes, indexed in a two-dimeakiashion by
(pr, pe) With 0 < p, < P, and0 < p. < P,. All the processes$p,, p.) with a fixedp. are referred to as
process colump,. All the processeép,, p.) with a fixedp, are referred to as process rpw The figure

125

fitse.g. forV =16, P = 4, P. = P, = 2 and block sizes// B = N B = 2. This layout permits’,-fold
parallelism in any column and calls to the Level 2 BLAS andél€8/BLAS on local subarrays. Finally
this layout also features good scalability properties [T8le analysis of the considered routine implies
again static and dynamic arrays of odd and even size regelyctror compilation

mpixIf90_r —qgarch=[val] —gqtune=450-03

was used.

LLD=999, -qarch=450 - x-—-
LLD=999, -qarch=450d ---&---
LLD=1000, -garch=450 ---

LLD=1000, -garch=450d -

X

0 o

R

Runtime [sec]
N
]

3000 3200 3400 3600 3800 4000
Global problem size N

Figure 2: Runtime of PDGEMM with statically allocated arsayn a5 x 5 process grid an&v B = 100

In the static case the local leading dimension (LLD) of tretributed matrices on each process is fixed to
999 or 1000. From Figure 2 it can be easily seen that like is¢stion above arrays of even size provide a
much better performance than those of odd size. The reatfumnsore advantageous alignment of evenly
allocated arrays. Furthermore one notices that there anpgun each graph foN = 3000...3100
and N = 3500...3600. For N = 500M, M € N every process has the same number of blocks and
those are completely full. If one increases the problem isie one process row will have more blocks
than the others. For increasing matrix sizes the new entrikbe assigned to that blocks and thus the
corresponding processes will have more work to do than ther @nes. This will of course increase the
runtime in a particularly strong manner. Note as well thaar ch=450d has no perceptible influence
on the performance of the program. PDGEMM is based on the BaAdsince the matrix is distributed
on the processors BLAS routines will be called locally. OrGENE the BLAS routines are included
in the ESSL library and as one can read above the ESSL codésghahe optimized for using “Double
Hummer”.

Consider now the operation with dynamic instead of statiaye: Now every process gets exactly that
amount of memory it needs. For the analysis of the odd casécesbf ordetN = 2999+50M, M € N

are investigated. There are almost no differences to thie steahaviour except of periodic oscillations
for odd N. To explain that in more detail Figure 3 shows a time plot ifghér resolution. Here the time

is measured for allV. = 3150. .. 3250 and the results are combined to two graphs for odd or éven
respectively. In the odd case a remarkable reduction ofuh&me is ascertainable betwed&h= 3199
and N = 3201. In this example forN = 3199 one process row contains matrix blocks that are stored

126

in an array of local leading dimensidi99 whereas the other process rows consist of blocks that are
stored in arrays with local leading dimensions of eitb@y or 700. If the problem size is now increased

to N = 3201 all arrays of local siz&99 will be completed to siz&00 and a corresponding number
of arrays of size500 will be enlarged to siz&01. That means that the arrays of odd dimension will be
reduced during that step. Due to the dominating influencerrafya with odd size on the runtime this
jump in the curve can be explained by the reduced size of mddtsarrays during that step.

Note that for PDGEMM the block size does not have a major impadhe results as long as the work
load distribution is similar on all processors.

N odd ---x---
N even <}
2.6
N
X x %X Xg‘
X X X
2.4 ><><)< X i Yx .
><X>2(‘ v
‘ N Ve

3 i X X
8 L x X ><X
0, 22 !
)
=
IS
S
@

2

000000000 560000000 0¢ 00000

18 - 600099

' 6600666060000

1.6

3140 3160 3180 3200 3220 3240 3260

Global problem size N

Figure 3: Runtime jumps of PDGEMM with dynamically allocétarrays on & x 5 process grid and
NB =100

Analysis of the ScaLAPACK routine PDSYEVX

PDSYEVX computes selected eigenvalues and, optionajgneiectors of a real symmetric matex

by calling the recommended sequence of ScaLAPACK routiBggnvalues/vectors can be selected by
specifying a range of values or a range of indices for therdd®igenvalues [11]. First the matri is
reduced to tridiagonal form using Householder transfoinafcall PDSYNTRD), second the eigenval-
ues are computed using bisection (call PDSTEBZ) and th&atbenvectors are computed using inverse
iteration and back-transformation (call PDSTEIN and PDOFRRYI[14].

Here matrices of ordelN = 3000... 3050 are taken for the computations. They are built with random
eigenvalues that are already known before the computattiovarify the results. The goal is to compute
the largest 10% of the eigenvalues and their correspondigeactors. The measurements take place on
a4 x 4 process grid. The block size of the two-dimensional blogtic distribution is 32. The compilers
npx| f for FORTRAN 77 andwpi x| f 90_r for Fortran 90 codes were used with the flags

FFLAGS = —03 —garch=[val] —qtune=450 [more_opts]

127

9
-qarch:|450 —mX-
-gqarch=450d ---o---
4
i y
o 3 s
IR IR I
lggh | \ | ! E i
_ % Wi ! ® \I 1" l‘ i | g | |
8 rop e oo oo
2 e N
o 28 W I b L
E 8 A R A R TR A
= O T A AR UV VA B
© ! ; i - Yay 8y kS
Pl kAl v
P
oy
75 8
7
2990 3000 3010 3020 3030 3040 3050 3060

Global problem size N

Figure 4: Runtime of PDSYEVX with dynamic arrays od & 4 process grid

First the dynamic case is tested. The results can be seegureM. First one recognizes that the runtimes
are arranged in clusters. Unlike in the investigation of FDABA local arrays of odd leading dimension
do not necessarily lead to a bad performance. Seegad ch=450d has again no major influence on
the runtime of the routine though there is a very small imprognt in general. The reason is again that
ScaLAPACK makes intensive use of PBLAS routines which tiegynon ESSL calls.

The results of the static case are compareable to those diytiamic one. Again the values belong to
clusters but now the two graphs have different cluster pegtd ike in the dynamic case there is almost
no performance improvement by usingar ch=450d.

Analysis of the MUMPS library

Last the MUMPS package was analysed. MUMPS uses a self-dafim@mstructurédMJMPS_STRUC
whose definition is contained shnunps_st r uc. hin the include directory. This new type contains all
the information needed e.g. input and output data, conainables or error indicators. Here a variable
nmunps_par of type DMUMPS_STRUCIs used.

INCLUDE ’'dmumps_struc .h’
TYPE (DMUMPS _STRUC) mumps_par

First a real world problem is considered in which a matrixira finite element discretization of a crank
appears. The matrix is square and has an order of 192858spaite due to the fact that it has only
12226189 nonzero entries in the lower triangle. Furtheenibis symmetric positive definite and thus
MUMPS is able to exploit this structure (setinps_par %6YM = 1). A master-slave-setup is used
(munps_par %PAR = 0) which means that the host is not involved in factorization aolve phase.

The host will only hold the initial problem, perform symbmltomputations during the initial phase,
distribute data, and collect results from other procesd}s The MUMPS versions 4.7.3 and 4.8.1 are
compared both with and without using the dual FPU respdgtitigure 5 shows the results of measure-

128

ments of the runtime of a linear system having the crank maisisystem matrix fo2,4,8,...,512
processors. With 64 processors the dual medmm@le DUAL) and for 128 and more procssors the vir-
tual node mode-(mode VN) were used for the computations. That means that two or forgscon
each node are chosen to run the application. This has thetageaof a higher node effiency but the
disadvatage of less memory per core because the memory abdeds shared among all its cores. This
may lead to program crashes caused by a lack of memory. Thiseha for example if one tries to solve
a crank system under neglection of the positive definity witlrps_par “5YM = 2 and 64 or more
processors in dual or VN mode. From Figure 5 it can be seertlimsiversion 4.7.3 provides a slightly
better performance for a lower amount of processors whem@on 4.8.1 shows a better runtime for
a high amount of processors. Second it can be seen that MUMR& iscaling well for many cores.
The optimal runtime is reached with 64 processors. For mayegssors the amount of communication
already increases the runtime. Third it can be observedussiag - gar ch=450d does not lead to a
noticabel performance improvement. If one takes a look théocode of MUMPS one recognizes that
there are a lot of integer computations that basically detl the indices of nonzero matrix entries to
improve its structure. The factorization step itself isngsBcaLAPACK and from above one may read
that it is already highly optimized due to the intensive USE®SL calls.

% " v4.7.3-qarch=450 —x---
o8 v4.7.3 -qarch=450d ---e--
100 % v4.8.1 -qarch=450 ---x--- =
W v4.8.1 -qarch=450d &~
80 “’%(’
‘k
‘\
3 \
S 60 \
g B
€ N
S ™,
& AN
40 R i
Z
7
R, - /4%
20 S e .,Jgiim'“
1 10 100 1000

Number of processors

Figure 5. Runtime of MUMPS with the crank matrix and expluitithe structure properties using a
master-slave setup

MUMPS was also analysed for systems with unsymmetric systatnix. Here a square matrix of order
4000 with 160000 nonzero elements was chosen to test thegponqaackage. The matrix is built in such
a way that each row contains exactly 40 nonzero entries.Hesetsystems MUMPS cannot exploit any
matrix structure properties and thus the amount of memoigiwis needed and the execution times rise
to a high level. Hence it can happen that a MUMPS call alreadghes on Blue Gene/P with matrices
of just a few million entries because of memory overflow.

129

Figure 6 shows the results for the described unsymmetriesysNotice that now version 4.7.3 has a
slight runtime advance to version 4.8.1 in most cases. Tiffisrehce becomes especially visible for
256 and more processors where version 4.7.3 needs abouteB3%irhe than version 4.8.1. The rea-
son is probably the new defined datastructDkdJMPS STRUC which generates a lot of misalignment
warnings during the compile process.

v4.7.3 -qarch=450 ---x---
v4.7.3 -qarch=450d ---6--
v4.8.1 -qarch=450 ---*---
v4.8.1 -qarch=450d &~
30
25
2R
Bl
—_ T
ﬁ 20 §
o) A\
E Y
E s N
\ 4]
\ ' .
RN Pl @ﬂ}' ’
R PP
B P
5 B
1 10 100 1000

Number of processors

Figure 6: Runtime of MUMPS with an unsymmetric system usimgaster-slave setup

Last a system without using a master-slave scheme was adalystrunps_par %°AR = 1). Now

the host is involved in the factorization and solve phadehelinitial problem is large and memory is an
issue, PAR = 1 is not recommended if the matrix is centralmegrocessor 0 because this can lead to
memory imbalance, with processor 0 having a larger memag than the other processors. Note that
seeting PAR to 1 and using only one processor leads to a siajumde [12].

For an unsymmetric system with a well balanced work loadienrd.7.3 always behaves better than
version 4.8.1. The runtime benefit is small but anyway about8%. Note as well that the sequential
version provides a faster program execution than a pamikelwith 2 processors.

Conclusion

In the introducing section it could be seen how misalignmeain increase the runtime of applications
by orders of magnitude. So it is recommended to carefullynalhe data and regard on corresponding
warnings during the compile process. Additionally the wétar of the IBM XL compilers was analysed
under different optimization flags and array declarati@tatic arrays could be easily optimized by the C
compiler as well as by the Fortran compilers. The test prograhowed different preferences for arrays
of odd or even size and the dual FPU provided a reasonablerpenfice boost for a suitable optimization
level. However for dynamic arrays one could not recognizghsauhigh performance improvement like
in the static case while using the dual FPU. Also the Fortampilers behave much better for those
arrays and can perform better optimizations. Though uraggelow runtimes could be observed for
some cases that still pose some questions.

In the second section specific routines from different liredgebra libraries and packages were analysed.

130

During the investigation of the PBLAS routine PDGEMM arragfseven size showed an improved
runtime. However for the ScaLAPACK routine PDSYEVX such ddeour could not be observed
although it makes extensive use of the PBLAS routines arsldhthe ESSL library. Finally two versions
of the MUMPS package for the solution of large sparse equastems were considered. A worse
runtime of the new version 4.8.1 could be observed for a highumt of processors but generally both
show similar results.

All the analysed libraries and packages highly rely on th8E®utines which already provide code that
is optimized for using the dual FPU. Thus high performangarowements for libraries that are compiled
with - gar ch=450d are not observeable. The main program may also be compitbd yar ch=450
while the used libraries are compiled witlqjar ch=450d and vice versa.

Acknoledgement

| would like to thank my supervisor Mrs. Inge Gutheil for theeful help during my whole stay at the
research centre. Additionally it would like to apprecidgie team of the Jilich Supercomputing Centre
for the perfect organization of my stay. Especially Matshigolten and Robert Speck are mentionable in
this context. Finally | would like to thank the other guesidsints for the pleasant work atmosphere as
well as Prof. Dr. Peter Benner for the support letter that mexeessary for the application.

References

1. Brian Smith, Rajiv Bendale, Kirk Jordan, Jerrold HeymBab Walkup, BG/P Software Overview, Training, 2007
http://www.nccs.gov/wp-content/training/2008_blueg®3_bgp-comm.pdf
2. Norbert Attig, Marc-André Hermanns, Introduction to JBMind JUGENE - Programming and Usage, Presentation,
August 11, 2008
http://www.fz-juelich.de/jsc/files/docs/vortraegefimutzung2008/nic.pdf
3. Evolution of the IBM System Blue Gene Solution, Redpapehruary 2008
http://www.redbooks.ibm.com/redpapers/pdfs/redp42df7
4. Exploiting the DUAL FPU in Blue Gene, March 2006 (Updatede 2006)
http://www-03.ibm.com/systems/resources/systemgpameputing_pdf_exploitingbluegenedoublefpu.pdf
5. BLAS (Basic Linear Algebra Subprograms)
http://www.netlib.org/blas
6. PBLAS - The Parallel Basic Linear Algebra Subprograms
http://people.scs.fsu.edu/ burkardt/f_src/pblaskhbtanl
7. LAPACK — Linear Algebra PACKage
http://www.netlib.org/lapack
8. Ulrike Begiebing (Editor), Einfihrung in die Benutzungsdzentralen AIX, Benutzerhandbuch, 3. Auflage, 17. Februar
1998
http://www.fz-juelich.de/jsc/docs/bhb/bhb_html/da10
9. MPI: A Message-Passing Interface Standard Version 2ekslge Passing Interface Forum, June 23, 2008
10. BLACS
http://www.netlib.org/blacs
11. ScalLAPACK Home Page
http://www.netlib.org/scalapack/scalapack_home.html
12. MUItifrontal Massively Parallel Solver (MUMPS Versidn7.3) Users’ Guide, May 4, 2007
13. L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Degim. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A.
Petitet, K. Stanley, D. Walker, R. C. Whaley, ScaLAPACK W$s&uide, siam, Philadelphia, 1997
14. Robert Speck, Performance of the ScaLAPACK EigensdN28YEVX on IBM Blue Genel/L - First Result®Rudiger
Esser (Editor), Beitrage zum Wissenschaftlichen Rechigebnisse des Gaststudentenprogramms 2005 des John von
Neumann-Instituts fir Computing, p. 115-128
http://www.fz-juelich.de/jsc/gaststudenten/ib-200%:pdf

131

132

