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Vorwort

Die Ausbildung im Wissenschaftlichen Rechnen ist neben derBereitstellung von Supercomputer-Leistung
und der Durchführung eigener Forschung eine der Hauptaufgaben des John von Neumann-Instituts für
Computing (NIC) und hiermit des JSC als wesentlicher Säule des NIC. Um den akademischen Nach-
wuchs mit verschiedenen Aspekten des Wissenschaftlichen Rechnens vertraut zu machen, führte das JSC
in diesem Jahr zum neunten Mal während der Sommersemesterferien ein Gaststudentenprogramm durch.
Entsprechend dem fächerübergreifenden Charakter des Wissenschaftlichen Rechnens waren Studenten
der Natur- und Ingenieurwissenschaften, der Mathematik und Informatik angesprochen. Die Bewerber
mussten das Vordiplom abgelegt haben oder sich nach erfolgreichem Bachelor-Abschluss im Master-
studium befinden. Zusätzlich war eine Empfehlung eines Hochschullehrers erforderlich. Die zehn vom
NIC ausgewählten Teilnehmer kamen für zehn Wochen, vom 4. August bis 10. Oktober 2008, ins For-
schungszentrum. Alle Gaststudenten beteiligten sich hieran den Forschungs- und Entwicklungsarbeiten
des JSC und der NIC Forschergruppe Computergestützte Biologie und Biophysik. Sie wurden jeweils
einem oder zwei Wissenschaftlern zugeordnet, die mit ihnenzusammen eine Aufgabe festlegten und sie
bei der Durchführung anleiteten.

Die Gaststudenten und ihre Betreuer waren:

Niklas Fricke Walter Nadler
Martin Galgon Tom Schröder, Helmut Schumacher
Martin Hoffmann Paul Gibbon, Robert Speck
Christoph Honisch Jan Meinke
Dorian Domenic Krause Bernhard Steffen
Stefan Müller Godehard Sutmann
Markus Peschina Guido Arnold, Markus Richter, Binh Trieu
Ventsislav Valeriev Petkov Wolfgang Frings
Lutz Roese-Koerner Bernhard Steffen
Matthias Voigt Inge Gutheil

Zu Beginn ihres Aufenthalts erhielten die Gaststudenten eine viertägige Einführung in die Programmie-
rung und Nutzung der Parallelrechner im JSC. Um den Erfahrungsaustausch untereinander zu fördern,
präsentierten die Gaststudenten am Ende ihres Aufenthaltsihre Aufgabenstellung und die erreichten Er-
gebnisse. Sie verfassten zudem Beiträge mit den Ergebnissen für diesen Internen Bericht des JSC. Wir
danken den Teilnehmern für ihre engagierte Mitarbeit - schließlich haben sie geholfen, einige aktuelle
Forschungsarbeiten weiterzubringen - und den Betreuern, die tatkräftige Unterstützung dabei geleistet
haben. Ein besonderer Dank gilt Wolfgang Frings und Marc-André Hermanns, die den Einführungs-
kurs gehalten haben, Anke Visser, die an der Erstellung dieses Berichtes maßgeblich mitgewirkt hat,
und Robert Speck, der mich bei der Organisation in diesem Jahr nach Kräften unterstützt hat. Ebenso
danken wir allen, die im JSC und der Verwaltung des Forschungszentrums bei Organisation und Durch-
führung des diesjährigen Gaststudentenprogramms mitgewirkt haben. Besonders hervorzuheben ist die
finanzielle Unterstützung durch den Verein der Freunde und Förderer des FZJ und die Firma IBM. Es
ist beabsichtigt, das erfolgreiche Programm künftig fortzusetzen, schließlich ist die Förderung des wis-
senschaftlichen Nachwuchses dem Forschungszentrum ein besonderes Anliegen. Weitere Informatio-
nen über das Gaststudentenprogramm, auch die Ankündigung für das kommende Jahr, findet man unter
http://www.fz-juelich.de/jsc/gaststudenten.

Jülich, November 2008 Matthias Bolten
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NMR Signal Formation in Capillary Networks

Niklas Fricke

Institut für Theoretische Physik,
Universität Leipzig

Vor dem Hospitaltore 1,04103 Leipzig, Germany

E-mail: niklas.fricke@itp.uni-leipzig.de

Abstract: Nuclear magnetic resonance (NMR) signals are strongly influenced by local field
inhomogeneities. This can be exploited to investigate biological tissue on length scales below
the resolution of ordinary magnetic resonance imaging methods and may yield information
about size and distribution of capillaries in the myocardium allowing to diagnose stenosis of
coronary arteries. However, the actual dependence of the signal on physical parameters (such
as capillary width), especially under the influence of diffusion, is only poorly understood, and
even for very simplified mathematical models, analytical solutions for the relevant quantities
are usually not available. Here, a Monte-Carlo approach waschosen to simulate various models
for capillary systems. The frequency autocorrelation functions and the NMR-signals obtained
are compared to numerical results for the simplest model in order to test its applicability and
the validity of the approximations employed in the numerical calculations.

Motivation

In the muscular tissue of the heart, themyocardium, capillaries are the dominating blood vessels, ac-
counting for over 90 per cent of all vessel volume. Since a large fraction of the hemoglobin within the
capillaries is desoxygenated and since this desoxyhemoglobin has a strong magnetic moment, capillaries
invoke local magnetic field inhomogeneities when an external field is applied, thereby affecting NMR-
signals.
If the coronary artery supplying the capillaries is stenotic (i.e., if its transport capacities are lowered
due to atherosclerosis) the capillaries are wider than usual, counteracting the decreased blood supply.
The effect on the NMR-signals of this larger width can be utilized to identify and localize stenosis. It
is therefore of paramount importance to understand how NMR-signal decay depends on the capillary
width. Unfortunately though, the mathematics involved in describing such systems are rather difficult.
In fact only for the simplest capillary model, known asKrogh’s Model(KM), the frequency correlation
function has been calculated numerically [1], while even there the actual signals can be calculated only
approximately [2], with an error of uncertain magnitude. Monte-Carlo (MC) Simulations may not yield
as much understanding as analytic solutions, but they allowto study more sophisticated and realistic
models with comparably small effort and without the introduction of unpredictable errors.



Brief Introduction of the Phenomenon and the Measured Quantities

Nuclear Magnetic Resonance

Nuclei with an odd numbers of nucleons (protons being the most important example in this context)
possess a magnetic moment

~µ = γ ∗ ~S (1)

where~S is the spin (magnitude~/2) andγ is the gyromagnetic ratio, which is characteristic for the type
of nucleus, but also slightly depends on the electronic shell. For the sake of convenience, nuclei, the
molecules in which they are bound (in our caseH2O) as well as their magnetic moments shall in the
following be referred to simply as “spins”.
When subjected to an external magnetic field~Bz the spins align parallel or anti parallel to it, the majority
preferring the parallel state (the exact quantity depending on the temperature via the Boltzmann factor

e
− ∆E

kbT ). If a second field~Bxy(t) is applied orthogonal to~Bz which oscillates with the frequency (known
as theLarmor frequency)

ωL = γ ∗ |Bz| (2)

corresponding to the transition energy from parallel to anti-parallel state, the overpopulation of the par-
allel state gets lost and the spins can be described effectively as having a zero z-component and rotating
in the xy-plane with frequencyωL. In fact, the correct quantum-mechanical description would be more
complicated [3], but this effective, semi-classical picture is sufficient for our purposes. Since the spins
precess with identical frequency and phase, one can measurea macroscopic oscillation of the magneti-
zation. From the strength of this resonance as a function of the applied frequency one may learn about
quantities of elements and even of chemical compounds present in the observed system. Still more in-
formation can be gained by studying the system’s relaxationback to equilibrium after ~Bxy has been
switched off again. There are two relaxation processes: theSpin-Lattice Relaxation, describing the re-
alignment of the spins in direction of~Bz and theTransverse Relaxation, describing the dephasing of the
precession of the spins. This latter process is relevant here, since it is invoked by local inhomogeneities
in the magnetic field. Indeed, local deviationsδB from the mean magnetic field result in slightly different
precession frequenciesδω = γ ∗ δB for spins at different locations and hence cause them to dephase
once~Bxy is turned off.

NMR Signals and the Frequency Correlation Function

For the Transverse Relaxation, there are two basic types of signals that can be studied (although there
are many more sophisticated techniques). One is theGradient-Echo signal(GE), which is received when
the system is allowed to relax undisturbed. The decay of thissignal is characterized by its half-lifeT ∗

2

(or equivalently by its decay rateR∗
2), although this has to be handled with care, because the decay is

usually not simply exponential. The other frequently studied quantity is theSpin-Echo signal(SE). Here
the relaxing system is subjected to a short magnetic pulse after a certain time∆t, which causes the spins
to change the direction of their precession. This reverses the decay; for spins at positions with larger
δω, which until the reversing pulse had gained a head start on others, will now catch up on them. If the
system were stationary, the total of the initial signal could be recovered. However, if the spins are in
motion, each has undergone its individual history of frequency and part of the signal is lost irreversibly.
The half-life for the SE signal is denoted byT2, but here as well, the decay is not just exponential.
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Another quantity of interest is the frequency autocorrelation functionK(t), defined as the expectation
value of the product of a spin’s frequencies at different times separated by t:

K(t) =
1

V

∫

V
d3 ~r0ω(~r0)ρ(~r0, t)ω(~r(t)) (3)

In contrast to the signals,K(t) is usually not directly accessible by experiment (althoughunder certain
circumstances it can be measured [4]), but is all the more important for the theoretical description, and
among other things it is used to (approximately) calculate the signals.

The Analytical Approach

Krogh’s Capillary Model

As already mentioned, only a rather crude model for myocardial capillaries has so far been studied
theoretically to a larger extent. This model assumes the capillaries to be identical, parallel cylinders
(which is fairly justified, see [5]). The frequency shiftδω due to one capillary is then only a function of
two parameters and thus allows to consider the model as two-dimensional:

δω(r, φ) = δω0 ∗R2
c
cos(2φ)

r2
(4)

whereRc is the capillary radius, r the distance to the center of the capillary andφ denotes the angle
between the projection of~Bz on the plane orthogonal to the capillaries and the position vector measured
from the capillary center.δω is a constant which collects the factors for the strength of the magnetic field,
the magnetic susceptibility of the capillary and the tilting angle between~Bz and the capillary direction:
δω0 = ∆χ

2 B0sin
2(θ).

(a) (b)

Figure 1: (a) Scheme of the geometry modeled by the KM. The inner cylinder is the capillary, the space
between the cylinders is the surrounding tissue where the spins can diffuse. (Figure taken from [1]) (b)
Scheme of a diffusing spin according to the KM; reflective boundary conditions at the edges.

Now the critical simplification comes into play: instead of considering some kind of capillary lattice,
only one capillary (represented as a circle) with a surrounding circular tissue is modeled. The spins may
diffuse freely within the surrounding tissue, while the capillary wall, as well as the outer edge represent
reflective boundaries. Although the outer reflective boundary conditions are essentially periodic ones,
thanks to the symmetryδω(r, φ) = δω(r, φ + π), it is not quite clear how well this model can mimic an
actual lattice structure.
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Describing the Diffusion

For obtaining the correlation function, the (still challenging) problem consist then essentially in solving
the diffusion equation:

∂ρ(~x, t)

∂t
= D∆ρ(~x, t) (5)

with the described boundary conditions. This has been achieved via expansion into eigenfunctions [1],
which yields numerically exact results (see Fig. 3).

To obtain the signals and decay half-lives, one would have tosolve the diffusion equation for the local
magnetization, known as the Bloch-Torrey Equation:

∂m(~r, t)

∂t
= [D∆ + iω(~r)]m(~r, t) (6)

m(~r, t) is a complex function, its time dependent phase reflects the precession in the xy-plane, which is
the case for the signals as well. The GE signal is then simply spatial integral overm(~r, t):

M(t) =
1

V

∫

V
d3~rm(~r, t) (7)

and starting from this the SE signal could be calculated directly as well. Unfortunately, owing to its literal
complexity, Eq. 6 has so far only been solved approximately [2], using a so called “strong collision”
approach. This consists in substituting the diffusion operatorD∆ by the “strong collision operator”D
= 1

τK
(Π − 1), whereΠ is the projector on the equilibrium distribution andτK =

∫∞
0 dtK(t) is the

mean correlation time of the frequency autocorrelation function. This approximation is justified, if the
time scales on which diffusion and dephasing occur are very distinct, i.e. ifδω ≪ 1/τ or δω ≫ 1/τ and
is becomes even exact in the limiting cases whereD = 0 orD → ∞. If, on the contrary, the time scales
are close, the method is rather dubious, and in any case the mathematical effort needed in carrying out
the calculations is intimidating. Results for signals obtained in that way by Ziener et al. [2] can be seen
later (Fig. 6a).

The Monte-Carlo Approach

In order to evaluate the strong collision approximation andKrogh’s Model itself (also to go beyond it)
MC methods are used here to simulate such systems.
The basic idea of MC is to use random numbers for sampling the phase-space of a thermal system.
Usually Markov-Chains are used, with transition probabilities obeying probabilistic laws that lead to the
correct statistical distribution. During this sampling, the quantities of interest can be measured; the mean
values of those measurements will converge against the desired expectation values.
One great advantage of MC simulations with respect to other computational methods is, that parallelizing
them is trivial, because they rely on a large number ofindependentcalculations.

Simulating Krogh’s Model

In our case, the Markov-Chains are discretized paths of diffusing spins; the transition probabilities are
locally given by the Green’s Function that solves the unrestricted diffusion equation (Eq.5) in two di-
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mensions, which is a 2d-Gaussian:

P (~xn → ~xn+1,∆t) = G(~xn+1 − ~xn,∆t) =
1

4πD∆t
exp [−(~xn+1 − ~xn)2

4D∆t
] (8)

At the boundaries, one just has to arrange for the transitionprobabilities to be “mirrored” correctly, in
order to account for the reflective bc’s.
In principle, the algorithm used to determine the frequencycorrelation function for Krogh’s Model was
the following:

1. Do M times (M = number of trajectories to be measured; for increasing M, thestatistical error
will reduce with 1√

M
)

{

(a) Randomly chose a starting position(x0, y0) inside the area between the two circles
(This reflects the the fact that the equilibrium density distribution is uniform)and measure
the frequency shift δω (Eq.4)

(b) Do N times (N = Number of MC steps in one Trajectory)
{

i. Draw ∆x, ∆y, from a Gaussian Distribution (according to Eq.8),move to new posi-
tion ~xn+1 = ~xn + ~∆x

• If new position is out of the boundaries, reflect it at the boundary.
ii. Measureδω

(c) Calculate K(t):

Km(n∆t) =

(N+n)/k∑

i=0

ω[~r(k ∗ i∆t)]ω[~r((k ∗ i+ n)∆t)] (9)

(wherek is a natural number between one andN , which affects only the performance speed)

2. Calculate the mean value of the measured correlation functions:

〈K(n∆t)〉 =
1

M

M∑

m=1

Km(n∆t) (10)

The variance chosen for the Gaussian distribution determines the ratio of time resolution for the dis-
cretization of the path (∆t) and diffusion rate (D). It also directly influences the performance speed of
the algorithm. This discretization is in fact the only pointwere a systematic error is introduced, but it
can easily be made small enough so not to have any practical relevance, without losing too much perfor-
mance.
One has some freedom in choosing how many steps are to be executed in one trajectory (provided of
course, that the number of steps times∆t is not smaller than the time interval over which one wants to
knowK) and how many measured valuesδω[~x(t)] ∗ δω[~x(t + ∆t)] are evaluated from one trajectory,
which is determined by the choice ofk (evaluating simplyall is not efficient, because they are highly
correlated). It is not obvious which choices are best, so forthis work, they have been optimized empiri-
cally.
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The NMR-signals can be obtained in a similar way. Here it makes sense not to chose the time for one
trajectory longer than the time interval over which one wants to know the signals. Apart from this, the
diffusing spins are simulated in exactly the same manner as before. Again, the frequency shiftδω is
measured after each step, but is now integrated over time in order to obtain the accumulated phaseΩ(t):

Ω(n∆t) =

N∑

i=0

δω(~x(i∆t))∆t (11)

The estimator for the GE signal can then be calculated by averaging:

MGE = 〈exp(iΩ(t))〉 (12)

In case of the Spin-Echo, the relevant phase is different:

ΩSE(n∆t) = 2Ω(n∆t/2) − Ω(n∆t) (13)

but the signal is obtained analogously:

MSE = 〈exp(i ∗ ΩSE(t))〉 (14)

It has to be remarked that in contrast to the case of the correlation function for the signals another
parameter becomes relevant, namely the ratio of the diffusion constant and the frequency shift constant
δω0. ForK(t), D only changes the time scaling, whileδω0 is just a constant prefactor, which cancels
out, if one considers the normalized quantityK(t)/K(0).

Other Models

The capillary model that comes to mind first is an ordered, quadratic lattice of parallel cylinders. Here
again, it is sufficient to consider a two-dimensional slice.Furthermore, the movement within the lattice
will be represented correctly via just one quadratic unit cell with periodic boundary conditions. But in
contrast to the previous situation, the tilting angleα between the projection of~Bz on the plane orthogonal
to the capillaries and the capillary layers now plays a relevant role, as will be discussed later. Simulations
for this model have been carried out for different values ofα. The situation including the contribution of
next nearest capillaries to the field has been studied as well.

Next, a triangular lattice structure of capillaries was simulated via a hexagonal unit cell. Different angles
and additional fields from neighboring capillaries have been considered.

Finally, the influence of randomness (which in nature is always present to some degree) has been studied,
first via the rather extreme case of a completely randomized lattice of parallel capillaries. Here we do not
have a unit cell, so a larger number of randomly located capillaries (with the only restriction that they
could not overlap) within a square with periodic bc’s was simulated. It turned out that 200 capillaries
were sufficient for the results to be self-averaging. As for the ordered models, usually only the fields of a
smaller number of near capillaries were taken into account,this was effectuated by the introduction of a
finite cut-off radius.
Simulations of this model with different cut-off radii havebeen realized.

For all those models, the measurements of the correlation function and signals could be done in much
the same way as for the KM, the only basic changes being the different geometries on which the random
walks took place.
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Figure 2: Illustrations of the different models: (a) displays the quadratic unit cell of the square lattice
model; (b) the hexagonal unit cell of the triangular latticemodel; (c) illustrates the trajectory of one spin
in the random-lattice model. The straight vertical lines are the jumps when a boundary is crossed (the
diagonal line is a plotting mistake). The pink circles are outside the area in which the spins can move.
They do not represent individual capillaries, but are “mirror images”, accounting for the fields of others
acting across the boundaries.
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Results - Presentation, Comparison, and Discussion

The Frequency Autocorrelation Function

First,K(t) obtained from the simulation of the KM shall be compared to results from numeric calcu-
lations done by Ziener et al. [1]. Since those are exact, thisis mainly a check for the correctness of the
simulations.

Figure 3: Comparison of the numerical (black) and simulational (colored) normalized frequency correla-
tion function for Krogh’s Model with different capillary volumesη. The data points from the simulation
are larger than the statistical error bars, so to be visible.τ = R2

c/D is the correlation time for the
unrestricted diffusion. The numerical curves were taken from [1].

In fact, by graphical means (the data from the numerical calculations not having been at hand), it was not
possible to detect any deviations beyond the (small) statistical errors.
This result strongly suggests the correctness of the methodemployed.

For the periodic lattice structures,K(t) turned out to behave qualitatively similar, but to drop off de-
cidedly faster. In Fig. 4, the tilting angleα was zero and no neighboring capillaries were considered.
The effect of neighboring capillaries was in fact found to bevery small for the periodic lattices and can
therefore be neglected at this point.

The qualitative explanation for the faster drop-off in the case of the square (compared to the KM) might
be the following: The effectiveη is smaller in the case of the square, because angular regionswhich are
“cut off” (compared to a circle) are weighed stronger by the angular factor (cos(2φ)) of δω, while in the
corner regions this factor is small. Indeed, ifη is chosen larger for the square (i.e., so that the side length
of the square matches the outer radius of the KM) the curves are much closer (not shown here).

This, however, can not explain whyK(t) drops off even faster in the triangular model (see Fig. 3). In
fact, one would expect the contrary, the hexagonal being closer to the circle than the square.
Here, a different explanation seems likely: This even faster drop-off might be due to the fact, thatδω(~x)
has stronger gradients near the boundaries in the hexagonalmodel. More precisely, if a spin crosses a
boundary of the square, or is reflected at the outer edge of KM,theδω-field of the closest capillary re-
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Figure 4: (a):K(t/τ)/K(0) for the KM (red curve); the square-lattice model (green/dashed) and the
triangular lattice model (blue/dotted), withη = 0.1, 0.01, 0.001 (from right to left). (b):K(t/τ)/K(0)
for the KM (red), the square model withBz not tilted (α = 0) (green/dashed), the triangular model with
α = 0 (blue/dotted), the square model withα = π/4 (turquoise/dashed-dotted) and with averagedα
(pink/small dots).η is 0.1 for all.

mains the same, while for the hexagon it changes, sometimes even its sign (see Fig. 5). Although the
jump inδω when a boundary is crossed is an artifact that vanishes when more neighboring capillaries are
considered, the gradients persist, and it is rather obviousthat this tends to reduce the correlations.

To test this hypothesis, one may consider the case of a quadratic lattice with a~Bz being tilted byα = π/4.
Here those gradients are even stronger (the signalwayschanges when a boundary is crossed!), and thus
K(t) should drop very fast, which indeed it does (Fig. 4b, turquoise curve).
Surely, this dependence onα is something artificial that would not occur in patterns thatare not strictly
periodic (which one cannot expect of a biological tissue). Therefore simulations of the periodic lattices
have been carried out, in whichα was chosen at random for each trajectory, averaging out its effect (and
also the effect of the “effectively smaller”η for the square). For the triangular lattice, the result remained
practically unchanged, while for the square the curve lies between the to extremes (α = 0 andα = π/4),
as one would have expected (Fig. 4b, pink curve). Besides it happens to be very close to the curve for the
triangular lattice.

The results for the totally unordered lattice are very different. Most noticeably, one can observe a strong
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(a) (b) (c)

Figure 5: Schematic illustration of the change inδω at the boundaries (a) square lattice withα = 0: no
change (b) triangular lattice: moderate change, sometimeschange of sign (c) square lattice withα = π/4:
drastic change, always change of sign.

dependence on the cut-off radius, where for the ordered models, the corresponding factor (the number of
considered neighboring capillaries) had almost no influence. On the other hand, there seems to be little
direct influence of the volume fractionη (not shown here).

The NMR-Signals

As already mentioned, not even the KM allows for the signals to be calculated exactly, except for the
limiting cases. ForD = 0, the curve obtained by Ziener et al. [2] and the curve from thesimulation are
in convincing accordance, which is another endorsement forthe correctness of our algorithm. However,
for D > 0 the simulation and numerical results deviate considerably, matching more or less only for the
first 5ms, see Fig. 6.

(a) (b)

Figure 6: Comparison of the GE signals of KM for varying diffusion constants. Red curve: D=0, green:
D=1, blue: D=2, violet: D=5 turquoise: D=10 (µm2ms−1); δω0 = 1ms−1 (a) Approximate numeric
results obtained by Ziener et al. (b) The results from the simulation.

The oscillations one observes for the stationary case (D = 0), are predicted to become flattened for
D > 0 according to the numerical results, while the simulation predicts for them to reduce their period
(while the amplitude of the first valley/peak increases) forD=1,2 and to vanish only for larger D’s.
For the SE signal (Fig. 7), we also observe a severe discrepancy between the numerical and the simula-
tional results.

10



-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25  30  35  40
M

(t
)

t[ms]

Figure 7: SE signals for the KM. Red lines are numeric results, green (dashed) lines are simulation
results.D = 1, 2, 5[µm2ms−1] (from top to bottom).

The signals of the other models have been studied as well, some of the results are displayed in Fig. 8.
As was the case for the correlation functions, the signals ofthe regular lattices drop of faster than those
of the KM, but at least in a qualitatively similar way, while the signals for the randomized lattice seem
to be much more persistent. But in contrast to the correlation function, the signals of the random-model
turned out to remain almost unchanged when the cut-off radius was enlarged.
In addition to the two dimensional models mentioned here, several three dimensional models have been
studied. Here, the motivation was mainly to analyze the influence of contrast agents within vessels or
tissue. The results are interesting, but do not yet allow clear conclusions and shall therefore not be
presented in this context.

Conclusions and Outlook

It has become clear, that the ability of the Krough’s model tomimic a more realistic distribution of
capillaries is limited, its main shortcomings being the assumption that periodic boundary conditions can
be replaced by reflective ones (which only holds in special cases), and its disregarding of any randomness
in the capillary distribution. Furthermore we must conclude that the strong collision approach leads to
very inaccurate results for realistic values ofD andδω0.
One thing that still remains to be explained is the strong dependence of the correlation function on the
cut-off radius for the random lattice.
The Monte-Carlo method was proved to be an adequate tool for studying myocardial capillary systems.
It can easily be adjusted to different geometries, does not require to much computational effort in order
to produce precise results, and is well suited to be carried out on parallel architectures. The next step
would be to investigate models as close to reality [5] as possible, in order to obtain predictive results
which could then be compared to experimental data.

Acknowledgments

I would like to express my gratitude toward the JSC for enabling this work. Special thanks go to Robert
Speck and Matthias Bolten for the great organization of the guest student program, to Walter Nadler for
his patience and support and to my fellow students for all theuseful advice and the nice atmosphere.

References

1. C.H. Ziener, T. Kampf, V. Herold, P.M. Jakob, W.R. Bauer, W. Nadler,
J. Chem. Phys. 129 (2008) 014507

11



-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25  30  35  40

M
(t

)

t[ms]

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25  30  35  40

M
(t

)

t[ms]

Figure 8: GE signal for different models. (a) square model (green/dashed) and hexagon (blue/dotted)
with D = 0 (oscillating) andD = 5, respectively (b) randomized latticeD = 0, 1, 5 (from bottom to
top).

2. C.H. Ziener, T. Kampf, G. Melkus, V. Herold, T. Weber, G. Reents, P.M. Jakob, W.R. Bauer,
Phys. Rev. E 76 (2007) 031915

3. A. Abragan,
Principles of Nuclear Magnetism, 1st ed. (Oxford University Press, New York, 1961)

4. J.H. Jensen, R. Chandra, R.A. Ramani, H. Lu, G. Johnson, S.P. Lee, K. Kaczynski, J.A. Helpern,
Magn. Res. Med. 55 (2006) 1350

5. K. Rakusan, N. Cicutti, S. Kazda, T. Turek,
Hypertension 24 (1994) 205-211

12
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Abstract: With R-SWMS being a complex 3D simulation model for water flow, solute trans-
port and root growth, the need to present the generated amount of data in a clear, easy and un-
derstandable way is high. As most simple solutions fail at creating the complex images quickly
and without a quality that satisfies scientific needs, a new, more powerful concept is needed. We
present RSWMSViz, based on the extensive OpenGL accelerated VTK system. RSWMSViz is a
Java program for both, high performance and high quality R-SWMS data presentation, coupled
with user interaction and file export possibilities.

Introduction

Knowing the mutual influences between a plant and its surrounding soil means knowing the basis to be
able to efficiently distribute seedlings on agricultural land, taking optimal use of the available space and
minimal rivalry among plants into account. Analyzing and predicting these interactions - water flow and
solute transport in particular - between a plant and the surrounding soil will help understanding irrigation
and water scarcity problems. Water flow in the soil is determined by dynamic and non-linear parameters,
i.e. topography, soil properties, vegetation and boundaryconditions. Latter are given by external in- and
outflow events, such as rain, irrigation, evaporation, deepdrainage or runoff at the surface. The soil also
looses water to the plant, which takes up water during daytime to compensate the water loss caused by
transpiration at the leaves surfaces. This transpiration is a consequence of the photosynthetic process.
Water uptake starts in upper, more humid regions and shifts to lower layers as these regions get dry. At
night, water is relocated from deeper humid layers to upper dry layers.

A simulation system for these complex mechanisms, a fully coupled 3D soil-root-model, is R-SWMS
[3]. R-SWMS uses two separate systems for soil and root whichare coupled by a sink term to predict
root water uptake (RWU) based on water potential differences between soil and root. RWU is largely
affected by the spatial discretization of the soil around roots. R-SWMS provides several approaches to
deal with local soil-root interactions without loosing crucial information by coarser spatial resolution [4].

To understand the huge amount of data produced by simulations, a concept to extract and process this
data and finally present it in an eupeptic way has to be found. Due to human evolution, visual represen-
tations of the produced data are easy to understand and work with. Converting the received information
to on-screen images is a complex task mainly because of two reasons. On the one hand all important
information have to be drawn correctly and have to be intuitively understandable. For this purpose the
data have to be presented in sufficient quality. On the other hand the image creation process has to be
fast enough, not to simply show a single image but to present animations and allow interactions with the
3D data representations.



More accurate measurement techniques and root model development lead to large soil and root systems.
Drawing complex 3D root structures and dense soil grids using software rendering only is unbearably
slow. Software packages like MATLAB as interim solution arehighly inappropriate for this task. Irregu-
lar grids, obtained by grid refinement techniques [6], tend to complicate things additionally. To create a
platform to supply both, quality and speed, hardware acceleration is inevitable.
With this in mind, we need to find a concept for fast visualization of the prior described interactions and
geometry, which can supply a framework for high performancegraphics and adequate quality regarding
scientific expectations.

In this report, we will combine the R-SWMS model as data source, Java for an easy to use graphical user
interface and platform independency, and VTK [1, 2] for fastand high quality visualization to create a
program which satisfies all these requirements: RSWMSViz.

R-SWMS: a 3D detailed model for water flow in soil and roots

R-SWMS1 combines two models, basis of which is a 3D soil water flow and transport model [7], accom-
panied by a root water flow model [8]. The soil model already includes root growth but RWU is based on
empirical relationships. The root model is used for finding the water potential and RWU distribution in
the xylem network. Hereto boundary conditions in form of transpiration at the root collar and soil water
potential distribution at the root surface are needed. Bothsystems are coupled by the sink term. The sink
term is defined as a weighted sum of radial soil-root fluxes pervolume of soil. To find a solution to the
connected root-soil problem, iterative coupling between the systems is needed.

The geometry of the soil is given by a 3D cube grid, dividing the soil into voxels (Fig. 1). Each corner of
the cube grid represents a soil node for which the Richards Equation is solved.

Figure 1: Initial soil grid structure

The Richards Equation is given by

∂θ

∂t
= C

∂h

∂t
= ∇ · (K (h)∇ (h+ z)) − S (h) (1)

whereθ is the water content in
[
cm3 cm−3

]
, h the water potential (pressure head) in[cm], C (h) the

volumetric water capacity in
[
cm−1

]
defined byC = ∂θ

∂h , K the non-linear hydraulic soil conductivity
in
[
cm d−1

]
andS the sink term in

[
d−1
]
.

The geometry of the root is represented by a tree-like structure consisting of connected segments of
which each juncture defines a root node (Fig. 2, left). To calculate the xylem water potential (hx) for a
node, a linear system of equations is solved:

1Root - Simulating Water Flow and Solute Transport in Three-Dimensional Variably-Saturated Media
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Jr = Lr (hs − hx)

Jx = −Kx
dhx

dl
(2)

whereJ is a flux density in
[
cm d−1

]
, hs the water potential at the root surface,l the root segment length

in [cm],Kx the xylem conductance in
[
cm3 d−1

]
andLr the radial conductivity in

[
d−1
]
.

Figure 2: Left: root architecture, right: independent rootand soil structures

Root and soil use independent systems (Fig. 2, right), meaning their coordinates not necessarily use the
same grid. This leads to a problem regarding the water potential calculation at the root surface, which is
a boundary condition for the root system. Overall, four methods can be used to calculate water potential
[4, 5] (Fig. 3).

Figure 3: Incorporating local conductivity drop

A first simple method (A) obtains the water potential at the root surface by calculating a weighted aver-
age from all soil nodes surrounding a root node. A more accurate microscopic model (B, C, D; analytic
approach) uses a variation of the Richards equation. Model Bpreserves the original root node distribu-
tion. Model C redistributes the nodes for more heterogeneity and model D sums up all root nodes in the
soil voxel.

By averaging the water potentials (method A) at the soil corner nodes, crucial information is neglected
(if the spatial distribution is not fine enough) as the non-linear hydraulic conductivity causes a large drop
near the root, especially in dry soil regions. If this local drop is considered, significant changes in the
prediction of the xylem water potential are noticed, but thesoil water potential gradient is more or less
unaffected. The local drop should be considered. To get an accurate gradient throughout the soil and near
the root, grid refinement is needed.

Irregular grids reduce computational costs and still preserve high spatial resolution. Refinement is done
by bisecting all edges of a specific soil voxel and slicing thevolume along the corresponding planes
(Fig. 4). It is based on root information, the grid is dense near roots and coarser farther away in the soil
[6]. Refinement over time may be considered, based on a posterior error estimate.
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Figure 4: Refined grid

VTK

VTK is an open source library for scientific visualization and image processing. It is based on the ren-
dering library OpenGL and provides a higher abstraction level for easy application development. Written
in C++, it consists of over 700 classes supplying a huge framework containing lots of precast data struc-
tures, algorithms, modeling techniques and rendering equipment, empowering the developer to visualize
his data in high quality and with high performance. VTK provides wrappers for Tcl, Python and Java.

Graphics and visualization model

VTK uses so called data sets to represent different types of three dimensional data. All available VTK
data sets consist of a set of points, representing the raw geometry, and a list of cells, each to which a list
of points is assigned. The cells represent the topology of the data and allows e.g. interpolation between
points. These data sets are created, manipulated and finallyrendered by the VTK pipeline where data
sets are passed from object to object and constantly are transformed, extracted or enhanced. The Pipeline
can be divided into two sections, the data creation and manipulation phase and the image creation phase
(Fig. 5). For the creation phase VTK provides multiple classes to create primitive geometry, read in VTK
file formats or import different image files and 3D formats. The resulting data sets then can be modified
in many ways by using so-called filters or directly be sent to amapper for rendering. Many filters produce
multiple output and/or accept multiple input to perform their task. After modification, the data set has
to be passed to a mapper, which creates OpenGL compatible triangular 3D objects from the data sets.
The mapper again is assigned to an actor, which represents the object in the scene and handles color,
position or size. A renderer then is responsible for producing an image which is drawn into a render
window viewport. Finally an interactor can be used to manipulate objects in the scene or the camera of
the viewport.

Pipeline execution

Executing the pipeline follows a distinct concept in VTK. When talking about “Lazy Execution” we
describe a demand driven model where only the out-of-date parts of the pipeline execute if data has been
requested. To determine which parts of the pipeline will re-execute to keep the output data up to date,
VTK employs a timestamp system. A method call, which does notrequire re-execution of the specific
pipeline element, may return wrong results if the object wasmodified right before the requesting call,
but no update request was made. In almost every case a manual update request is not necessary as a
render initiates the request for data, sends an update request up the pipeline and provokes re-execution
of out-of-date elements. The updated data then travels downthe pipeline to be rendered (Fig. 6). This
execution concept may produce unexpected results if we try to manipulate output data sets somewhere
in the pipeline manually. All changes will be overwritten bythe next update request made to the pipeline
element we requested the output from. To bypass this effect,we simply can create a real copy of the
dataset and manipulate the copy, but this solution is quite ineffective regarding memory usage. Another
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Figure 5: Basic pipeline concept

way is to temporarily establish a pipeline to the point the manual modification should be done. Then
pipeline execution is forced and the pipeline is destroyed shortly after. Of course this only works out if
the pipeline is not needed anymore after first execution.

Figure 6: Pipeline data flow

Handling large data sets

VTK by default is configured to handle small amounts of data. To reduce execution time for large data
sets, as obtained with R-SWMS, and prevent not modified pipeline elements from re-executing, all filters
in the pipeline preserve intermediate results. These results can be freed after execution, but then the
whole pipline will have to re-execute on a parameter change.Using this method only will affect huge
amounts of data and accelerate computation by reducing overhead.

RSWMSViz

RSWMSViz is the program developed to visualize R-SWMS output files using VTK. RSWMSViz is
written in Java and is supposed to run in runtime environments of version 1.6 or higher. It uses a slightly
modified VTK 5.0.4 API. For thread safety during file writing processes, vtkPanel 1.18 is used. In the
mentioned component, which is part of the Java wrapping system, the VTK internal execution control
can be locked explicitly. By doing this, an error that occurswhen multiple threads try to access a Linux
system’s X-Server simultaneously, can be prevented. The situation occurs when using Java to implement
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a VTK pipeline and trying to write files using a vtkWriter. RSWMSViz can produce output in BMP,
JPEG, PNG and Postscript. Additionally, complete time-lines can be rendered into an MPEG2 movie.
To gain access to the generated root 3D mesh, the whole scene can be exported as Alias|Wavefront and
VRML2 compatible formats. RSWMSViz is capable of displaying rootstructures, vertical soil planes
and the velocity field. Root and soil planes can be mapped in several different ways, scalar zooming
is available for both. The root radius can be adjusted to match the applied mapping (Fig. 17). A wide
variety of helper objects can be displayed and manipulated.The velocity field can be clipped in upper
and lower vertical direction for better visibility of field details (Fig. 16). Streamlines show the way and
speed of an imaginary particle on its way through the vector field (Fig. 15). A loaded time-line can be
shifted simply by moving a slider, intersections of the rootwith the vertical planes can be computed
and displayed (Fig. 14). Vertical planes, velocity field andintersections can be viewed in a 2D topview
(Fig. 13). These and many other options are directly available at the user interface (Fig. 10). Advanced
options, mainly to acquire custom output pictures, can be changed directly inside the source code.

In the next paragraphs we will focus on only a couple of aspects of RSWMSViz. For a full functional
overview refer to the user manual.

Figure 7: Reduced overview of the most important VTK pipeline segments in RSWMSViz

R-SWMS output files

R-SWMS produces three types of output files which have to be read by RSWMSViz. Additionally, a file
containing the initial soil grid is read.

• Root data files (outRoot.#) - contain root data per node

Geometric data (coordinates, previous node, branch number)

Axial flow from node to node

Radial flow from root surface to xylem

Water potential at xylem and root surface

Axial and radial root conductivity

• Soil data files (outfem.#) - contain regular or irregular soil data

2Virtual Reality Modeling Language, a file format for representing and exchanging 3D interactive vector graphics
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Grid coordinates

Volumetric water content

Water potential

Concentration (solute transport)

Sink term (representing RWU)

• Velocity data files (veloci.#) - contain the vector field in x-, y- and z-direction

Coordinates

Velocity

RSWMSViz can load a whole set of data files to display changes over time. For this an interval referring
to the R-SWMS output file suffix is requested from the user. Foreach simulation output time a set of the
above three files types is loaded. The initial grid file, nodes.in, is loaded only once. It contains the initial
unrefined grid used by R-SWMS before any refinement has been performed (if applicable). The internal
data structure of RSWMSViz basically follows the structureof the input data.

Delaunay triangulation

A desired feature is the possibility to display the soil gridby means of planes for a specific depth, i.e.
z-coordinate. With only an unsorted set of points given, thepoints have to be ordered by their vertical
coordinate. The resulting subsets can then be connected to form a plane. An efficient way to produce tri-
angular meshes from point sets with good results is the Delaunay triangulation3. The Delaunay criterion
requires no other point of the given point set to be localizedinside a surrounding circle of any of the
triangular delaunay facets, so a circumcircle of a trianglecontains only the three defining points of this
very triangle. With this, a Delaunay triangulation maximizes the minimum angle over all triangles inside
the grid. The definition can be generalized for higher dimensional simplexes, but for the two dimensional
case, the created triangulation is optimal. There are many possible algorithms4 to implement a delaunay
triangulation, the best one runs atO (n log n). The Delaunay graph is the dual graph of the Voronoi tes-
sellation5. A VTK internal implementation is available for 2D and 3D point sets, where the 2D variation
simply ignores all z-coordinates the points may have.

Interpolation

Due to grid refinement, at some layers the planes will be incomplete (Fig. 8, left). To generate a smooth
transition while viewing the planes throughout the soil column, the incomplete planes have to be padded
by interpolation from the nearest complete planes atop and beneath the incomplete plane. To achieve
this the missing points have to be retrieved from an additional grid, which in this case is best chosen
as the initial unrefined grid used by R-SWMS as this guarantees the existence of the points needed for
interpolation in the adjacent layers. This grid can not be easily reconstructed from the given refined
grid and it is much more efficient to take the initial coarse grid (nodes.in). For RSWMSViz it suffices
to construct a file which contains each emerging x-, y- and z-coordinate only once because the initial
grid is always considered regular and the needed grid can be constructed with this minimal information.
Knowing all points of this regular grid, the missing points for a certain plane can be marked during point
ordering and are added before the delaunay triangulation constructs the final plane (Fig. 8, right).

3Boris Delaunay, 1934
4Possible algorithms are: flip, incremental, divide & conquer, sweep, voronoi and convex hull
5Georgy Voronoy; a pointp in the 2D plane belongs to the interior of a Voronoi-cell defined by a specific pointP out of a

given point setS, if p is closer toP as to any other point ofS.
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Figure 8: Not interpolated (left) and interpolated (final plane)(right) grid structures after delaunay trian-
gulation

Scalar zooming

When color mapping a 3D object with vertex colors from given per-point scalar values, the overall scalar
range determines the difference in color assigned to two adjacent scalar values onto the object. Very
small changes in scalar values might not show a visible change in color, not even by using a multicolor
gradient. To be able to visualize the scalar behavior in specific regions on the 3D object the color mapping
has to be altered. The scalar range, the mapper refers to, is reduced and adjusted to the desired values. To
achieve this, the scalar range is shifted using an exponential factor6, which allows more delicate control
at higher zoom levels. Here the shift has to increase more slowly so the user might not miss the desired
point or the point is not skipped due to the value stepping of the control component. To empower the
user to zoom into any region, the zoom target can be shifted over the whole scalar range. The color will
be interpolated along the new zoomed scalar range (Fig. 9). All scalars not in this interval will obtain the
corresponding color assigned to the minimum or maximum value.

Figure 9: The scalar zooming feature

An example

A large example root structure (Fig. 18) is read, constructed and rendered on a subsecond timescale.
Drawing the same root using MATLAB (Fig. 11) took a couple of hours and still was basically just a
colored line drawing. RSWMSViz generates a fully three-dimensional mapped root model the user can
interact with. Not only a 3D representation is created, RSWMSViz also extracts and computes additional
information from the given data. All important parameters can be changed on the fly, additionally com-
puted information like intersection contours can be generated and drawn without delay. Some features are
a little slower due to complex calculations (i.e. streamlines, anti-aliasing). Depending on performance of
the deployed graphics card, even very large root structures, dense soil grids and complex velocity fields
can be rendered and interacted with, simultaneously and in realtime (Fig. 12). Graphical output quality
is VTK specific on a high, scientific oriented level.

6An empirical derived function with good results is1
ex·m , wherex is a linear natural factor, given e.g. by an GUI control

element andm an multiplier whose optimal value for a certain scalar rangeis given bym =
ln( D

d
)

Xmax
, whereD is the overall

scalar range,d the minimum occurring difference of two adjacent scalar values andXmax the maximum value for the linear
scaling factor given by the GUI component. Computingd can only be done quite inefficiently, so a base value ofm = 0.05
is predefined but can be modified inside the RSWMSViz source code. As an alternative an approximately good value can be
found lettingd be the minimum difference over all scalar values.
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Conclusion and outlook

Alltogether the attempt to develop a platform for visualizing the complex R-SWMS root and soil struc-
tures sufficiently fast and in appropriate quality was successful. The user is provided with an extensive
amount of visualization options.

Still further improvements can be integrated:

• As R-SWMS will be able to simulate more than one root togetherin a soil volume, RSWMSViz
will have to support multiple roots in the future. It alreadycan handle more roots, if given in a
single file with disjunct node numbering. The main disadvantage here would be the joint scalar
ranges of the roots, which can approximately be overcome by using scalar zoom.

• A layered view of the soil grid already exists in vertical direction. Expanding in horizontal direc-
tions is desired.

• Data management is still not optimal and can be improved by eliminating unnecessary pipeline
segments and redundant data copies.

• The rudimentary graphical user interface was implemented for testing purposes only and will have
to be improved to be more intuitive and ordered.
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Figure 10: RSWMSViz graphical user interface (non-final version)

Figure 11: Former visualization result

22



Figure 12: RSWMSViz graphical output showing root structure, vertical soil plane and velocity field

Figure 13: RSWMSViz graphical 2D output showing a vertical soil plane with intersections and velocity
field
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Figure 14: RSWMSViz graphical output showing a transparentroot with soil plane intersections

Figure 15: RSWMSViz graphical output showing a root with velocity streamlines
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Figure 16: RSWMSViz graphical output showing a root with soil plane and clipped velocity field

Figure 17: RSWMSViz graphical output showing a root with radius depending on mapping
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Figure 18: A complex maize root structure of 24510 nodes in a soil column of 12 by 12 by 150 cm,
drawn by RSWMSViz with a proposed natural looking branch radius
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Abstract: PEPC – (Pretty Efficient Parallel Coulomb-solver)+ – is an efficient, portable imple-
mentation of a parallel tree code based on the ideas of Barnesand Hut [1]. This code for rapid
computation of long-range (1/r) Coulomb forces is presented for use as a ’black-box’ library
for molecular dynamics applications. Previous experiencewith the code shows that for some
particle configurations some processes have a lot more point-to-point communication than oth-
ers, ultimately leading to storage imbalance. The causes ofthis problem are analysed with the
help of additional statistical diagnostics and real-time visualisation of the tree structure.

Introduction

Two different algorithms for rapid summation of1/r potential developed in the mid-1980s – the hierar-
chical Tree Code and the Fast Multipole Method (FMM) [2], with respective scalings ofO(N logN) and
O(N) – have become the standard ’mesh-free’ tools for long-rangeN-body simulation across a broad
range of fields [3]. These methods reduce the number of directparticle-particle interactions through
the systematic use of multipole expansions, making it possible to perform simulations with millions of
particles.

PEPC was initially designed for mesh-free modelling of nonlinear, complex plasma systems [4], but
recently extended to other application areas in molecular dynamics in the form of a transparent library.
For the PEPC kernel, the Warren-Salmon ’hashed oct-tree’ scheme based on a space-filling ’Morton’
curve derived from 64-bit particle-coordinate keys has been adopted. The discontinuities inherent in this
curve, potentially leading to disjointed domains and additional communication overhead [5], is found to
be a relatively minor issue compared to load-balancing and geometrical factors.
The Hashed Oct Tree algorithm developed by Salmon and Warrenis well documented [6]: features
particular to the code PEPC are also described elsewhere [7,8].
The structure of this report is as follows: First some fundamentals of oct-trees are introduced,describing
the construction of particle keys and domain decompositionand give some definitions. We introduce the
Plummer model and some statistics and analysis routines fortheir later usage. In the following sections
we address two particular issues:

1. comparison between fetched particle keys intree_stats and used particle keys in the interac-
tion lists



2. analysis of the problematic processes with a large numberof particles per process for a non uniform
particle configuration

Fundamentals

Morton-Z-order and particles keys

We used binary coordinate keys to map the 3-dimensional spatial structure onto a one-dimensional space-
filling curve. The keys are constructed from the binary interleave operation:

key = placebit+
nbits−1∑

j=0

8j(4 bit(iz , j) + 2 bit(iy, j) + bit(ix, j)) (1)

The functionbit() selects thejth bit of the integer coordinate components(ix, iy, iz), which are com-
puted from:

ix = x/s , iy = y/s , iz = z/s

s = L/2nlevels

(simulation box length: L, maximum refinement level:nlevels)

For a 64-bit machine we can provide 21 bits per coordinate (nlevels=20) plus a place-holder bit:

placebit = 263

This procedure yields a space-filling curve following the so-called Morton- or Z-ordering.

Figure 1: space-filling curve in two dimensions for four processes

In Fig. 1 we give an example of a space-filling curve for some processes. At the transitions from one
process to another large discontinuities are observable.
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Plummer model

Plummer’s model is a standard model for a comparison of simulation methods. Particles are distributed
randomly in a sphere with changing density. In the center of the sphere the density is nearly one and falls
off with radius. In [9] the way to get initial coordinates is described in detail. In PEPC there is a lower
limit for the separation of two particles so the Plummer model has be truncated in the center by removing
some particles.

Definitions

In the following context we will use some parameters from thecode and some phrases which are often
repeated. Here we explain the used abbreviations:

work(1 : npp) - length of the interaction lists of all local particles, aftersum_force it equalslocal_work
total_work - summation ofwork over all previous time steps
fetches - number of all fetches keys in the actual time step
ships - number of all shiped keys in the actual time step
npp - local number of particles on process x

In the given example we analyse ’problematic processes’, also called ’maxima’. In the context of this
report it means processes with a largernpp than others.

Routines

pbalsort:

PEPC-B is equipped with a load-balancing function for domain decomposition. This function is adapted
from [10]. After every time stepwork is actualized. The value ofwork is a kind of scaling factor.
Processes with long interaction lists get fewer particles in the next time step and vice–versa. So it is
possible to increase the value ofwork with a additional factor greater than one or decrease with a factor
less than one. At the beginning of the simulation or after restart thework array is initialized with one.

tree_stats:
This routine is a simple serial output routine. Rank zero collects all required information from the last

time step and writes it to a single file. In addition to this simple task it looks for local maxima. In the
actual code the searching takes place on the basis ofnpp but it is very easy to modify the code to use
another values. In ado-loop it compares the value from every process with five neighbor processes
on both sides. If the actual one has the highestnpp tree_stats will select this process as a local
maximum. The user supplies the number of accepted maxima andcan specify:

• barrier: empirical value to accelerate the searching
(mostly 5000 particles per process; if there are no processes foundbarrier will decreased until
zero)

• start and end number for processes for selective visualization, the span in which maxima are
searched

• neighbors: number of processes next to a local maximum, which are taken, too (left & right)
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Uniform example

PEPC-E is used for the analysis of a pure uniform arrangement. All particles are randomly distributed
in a cube so that the density of the simulation area is nearly constant. Fig. 2(a) shows the same values
like the first example (Fig. 4 ). But it is much more homogeneous during all time steps. Also the span
between highest and lowestnpp is not so high. The same result can be seen in thetotal_work map.

(a) particles (b) total work

Figure 2: per process

This map shows that PEPC works well for a uniform arrangement. Every process has nearly the same
amount of particles and a relatively balanced total work. But the question is: In which way is the com-
munication balanced?

Communication efficiency

This refers to for the quality of the point-to-point communication. If there are just a few unused keys
nearly all performed point-to point communications are necessary and we can not spare any time at
tree_aswalk. To analyse the usage of keys we store all particles keys fromevery timestep in files. All
fetched keys can be found intree_aswalkwhile all used keys are located in the interaction lists. It is
enough when a key is used once in the interaction list so we have to compare both key lists. If a fetched
key appears the first time on the interaction list a counter variable is increased. For different passes in
tree_aswalkwe use various counters to reveal distinctions in every pass.

Results

The first setup for this routine wasΘ = 0.0 (Table 1). This means that every particle interacts with each
other so we should find every particle in the interaction list. In PEPC there are two routines where non
local keys are fetched from other processes:tree_aswalk andtree_branches. The keys from
the branch nodes are well known and there is no redundant point-to-point communication. The routine
tree_aswalkmay request much keys which are not used insum_force. It seems that many parent
nodes have to be requested to get few children nodes. We try two highly contrasting distributions of
particles. The first one is the same random arrangement whichis used above and the second one is the
aforementioned Plummer model.

The routine can be controlled by summation of the found keys,the local particles and the keys which are
fetched intree_branches for Θ = 0. This value equals the number of all particles. That means that
the routine works correctly. Tab. 1 shows thattree_stats has to fetch appr. 30 per cent more particle
keys than it use for the force summation if all particles interacted with each other.
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cube; random Plummer model
average found keys in the interaction lists for pass 1:

7709.31 7661.84

average max value min value average max value min value
difference between all found keys and all fetches
3341.22 3358 3327 3259.84 3275 3243
sum of all fetches
11050.53 11071 11036 10921.69 10938 10903
difference in per cent

30.24 30.33 30.15 29.85 29.94 29.74

Table 1: for 32 cpus , 8192 particles,Θ = 0.0

The values above are interesting but they are mostly uncommon for a real simulation withO(N logN).
A more typical example is the use ofΘ = 0.6 (Tab. 2). It seems that PEPC uses more fetched keys for

cube; random Plummer model
average found keys in the interaction lists for pass 1:

946.69 1057.53

average max value min value average max value min value
difference between all found keys and all fetches

0.13 1 0 0.25 3 0
sum of all fetches
946.81 1370 525 1057.78 1755 429
difference in per cent
0.012 0.124 0.00 0.029 0.281 0.00

Table 2: for 32 cpus , 8192 particles,Θ = 0.6

sum_force than expected. For this example PEPC used nearly all keys. Also for the Plummer model
(Tab. 2) which is a very non uniform distribution the difference is not much higher. One reason could
be the small number of particles which we used. To verify thishypothesis we also examined a larger
example (see Tab. 3). In this table we see a bigger differencethan before but a average variation of 13
per cent is not so bad. Also we can see small variations between different passes. It is remarkable that
the variation from time step two to three is tiny. But from pass 1 to pass 2 there a large variation of the

time step 2 time step 3
average found keys in the interaction lists for pass 1:

15977.38 15976.99

for pass 2:
3208.67 3209.20

average max value min value average max value min value
difference between all found keys and all fetches
3359.17 9183 23 3358.92 9182 23
sum of all fetches
22545.23 36614 7391 22545.12 36615 7391
difference in per cent

13.48 27.12 0.31 13.48 27.12 0.31

Table 3: for 512 cpus, 524288 particles,Θ = 0.6
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used keys. In pass 2 only 20 per cent of keys are found in comparison to pass 1. In the first step the most
particle keys are fetched and they are not needed in the next step. It indicates that all essential keys could
be fetched in single pass.

Non-uniform example

This example use the front end PEPC-B with the load-balancing function. It is designed to simulate
laser-plasma interactions.

Figure 3:total_work per process

Problem

This example starts with a thin layer of paarticles which areheated by a laser. After the first time step
particles spread out from the layer and move in different directions. This results in different densities in
the simulation area.
From the work of Zoltán Szebenyi [11] it is known that some processes cause high point-to-point com-
munications. The values of point-to-point-communicationare measured with SCALASCA. It is also
known from this work that this fact is related to a high numberof particles on certain processes. With the
routinetree_stats it is possible to illustrate the same attributes after everytime step. One can see
the same pattern in a map of ships per process for all 1000 timesteps and 1024 processes. In contrast a
map withtotal_work per process is very homogeneous (see Fig. 3 ). As a conclusionin this context the
load-balancing function seems to work very well.

Imbalanced number of particles

This fact leads to some questions:

1. Where are these processes located?

2. Why are there such high numbers of particles?

3. Why do they have some related patterns?
for example: two maxima move apparently together, some maxima appear or have a bend in the
same time step
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Figure 4: particle per process

In this concrete example there are 5 maxima. Fig. 4 shows thatthe maxima are not defined by only one
process. There is always a group of processes with too many particles. Also the first and the last process
provide a maximum.
To answer these questions one have to track the moving of the problematic processes. This problem
is solved intree_stats (see section ). For the report mostly we set this value to 8 (inrun.h –
num_bad_process) because we cannot expect to find always exact the 5 maxima of Fig. 4.

The result is shown in Fig. 5. The only problem is that there isonly one process for a group of processes
with highnpp’s. But this will corrected by the value ofneighbors.
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Figure 5: show all tracked processes
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Visualization – 1. question On Jugene one can use netcdf to show the location of the problematic
processes. After a complete pass of PEPC-B (here mostly 1000time steps) the netcdf file is sent to
XNbody viancreader. Here visualization mode 3 is used: All branches for a given list of processes
are sent to XNbody as colored boxes. This shows the location of a interesting process. The user can
switch the color code over to three different characteristics of the selected process. Fig. 6 shows the
branch boxes of some processes, in particular is the location of process 600. As Fig. 4 indicates process
600 gets between time step 900 and 1000 a part of the maxima.

(a) (b)

Figure 6: tracking process 600 (the darkest color)moves to the peripheral area and get a lot of particles
from (a) to (b), see Fig. 4 time step 900-1000

Process 600 moves from the area of high density to the peripheral area. Other shown processes are a
maxima, too, but the selected color code was not chosen well.There is no possibility for a comparison
of the two pictures for these processes. Although one can seethat all problematic processes are located
in the outer border region with low particle density.

(a) (b)

Figure 7: tracking one maximum with 4 neighbors to show the movement in every step, example at bend
from time step 900 to 1000 and from process 200 to 400, the darkcolors are high cpu-id’s

In Fig. 7 it becomes apparent that some processes completelychange their locations between different
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time steps. This can be explained with the characteristics of the Z-order while domain decomposition and
the sorting routine. These two parts are the only one which affect the dispersal of particles per process.

Large number of particles equals peripheral area – 2. question The question of the location of the
problematic processes leads us directly to an answer of the second question. All processes with high
number of particles seem to be located at the border of the simulation area. As mentioned above this area
has a low density of particles. This should result in short interaction lists of these processes. Thework
arrays of these processes have a lower value than of the processes in the main area with high density.
Processes at the border of the simulation area will therefore get more particles.
This fact is not important at the beginning of the simulation. The particle distribution density is nearly
the same in every part of the simulation area. After some timethe particles start to move away and
the density is not uniform any more. Processes with highnpp have to ship around much more particle
informations than others (cf. paragraph problem on page 32). The same pattern can also be found in the
value of fetches per process but these processes are minima there.

Possible explanation – 3. question The first and last process are always a problematic because ofthe
fixed start and end position of the Z-order (always at the border). It seems that the other patterns depends
on the spreading of the particles during every time step.

First solutions

The length of the interaction list is a vital parameter for the scaling ability of PEPC. It affects the memory
at each process for local and non local nodes. But a significant high amount of point-to-point communi-
cation is not acceptable for the whole algorithm and it will slow down the calculating.
Maybe it is possible to smooth these maxima with few changes of the code. In the next section we
describe and test some ideas .

Naive approach – resetwork

The simple reset of this array has no effect. After 200 time stepswork gets the value of one for all
processes. But in the next time step the same pattern appearsagain and the same distribution in the
values ofnpp andtotal_work as without reset.

Additional scaling

For a good smoothingwork is reduced for some processes so that these get fewer particles.

workp(1 : nppp) = workp(1 : nppp) · nppp

avg_npp
(2)

(processp, average particle/processavg_npp)

This scaling was used with different amounts of processes. The idea of taking one process per peak
coming fromtree_stats was ineffective. The surface of the heat map fornpp is smoother but the
high values remain. For Fig. 8 more than one process is scaled. The maxima are displaced to the upper
and lower processes.

The whole map seems much more uniform than before but it is conspicuous that the scale of the right
side has a bigger span.
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Figure 8: take±2 processes of the problematic one

Figure 9: take±5 processes of the problematic one and scale with hisnpp
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This effect is not sufficient for the neighbors so one can use the highestnpp for all neighbors:

workp(1 : nppp) = workp(1 : nppp) · nppbp

avg_npp
(3)

∀ p > p̂− 5 ∩ p < p̂+ 5 (4)

(process fromtree_stats p̂, actual processp, average particle/processavg_npp)

Figure 10: take±5 processes of the problematic one and scale witĥnpp

Fig. 11 shows that the above methods are not efficient enough to smooth the high Peaks well. If we take
a average value fornpp then large numbers of particles will influence their neighbors too:

n̂ppp =
1

Q

Q∑

q

nppq ∀ q > p− (Q/2 − 1) ∩ q < p+ (Q/2 − 1) (5)

here we useQ = 11 (6)

workp(1 : nppp) = workp(1 : nppp) · n̂ppp

avg_npp
(7)

The result in Fig. 10 looks like the maps before but a significant difference is another scale span on
the right. There are no larger maxima as before (see Fig. 4). The seen displacement of the maxima has
also nearly vanished although the area of smoothing was muchbigger than before. Per Peak we get 11
processes fromtree_stats and the average was taken from 11 processes, too. This results in a span
of 21 processes per peak. The map shows that there is a possibility to affect the behavior ofpbalsort
positively from ’outside’ the routine.

Comparison

To get a overview of all previous ideas Fig. 11 shows the ratiobetween the maximum of the actual time
step and the average number of particles per process.
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Figure 11: every time step; particles per process:(max
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Figure 12: time step from 800 to 1000; particles per process:(max
avg − 1) ∗ 100, more details
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In this case we would like to have a small factor between the average and the maximal values. The only
idea which provide a smaller ratio than the no-scaling curveis the last one. However, it seems that the
number of particles increases after the smoothing every second timestep (Fig. 12). This problem could
easily be fixed by an array which contains all scaled processes from few previous time steps or maybe
only the previous one.

Conclusions

With the remarks from above we see that PEPC still have problems with different densities in the simula-
tion area. The uniform cubic distribution shows only small variations in the vital parameters of particles,
total work, fetches and ships per process. Most of the fetched keys are needed for force summation even
for the Plummer model. This is an unexpected result because of the large density difference for this par-
ticle distribution. Such differences determine in the second example large problems. However, the usage
of fetched particle keys seems to do well. But for all that it could be correlated to the small number of
used processes and particles.
The second part of this report concerned a laser-plasma interaction scenario, results in a very inhomoge-
neous particle distribution. We showed the behaviour of some processes which moved at the border of
the simulation area, receiving much more particles than theaveragenpp. It seems that all processes with
a large number of point-to-point communications are located on the periphery. To smooth these maxima
it is not enough to choose the simple way of an additional scaling with the localnpp. A better correction
is the usage of an averagenpp over some neighbor processes. We were able to reduce high values at the
particle per process map without a displacement of the peaks.
The location of the maxima and their behaviour over some timesteps seems to be determined by the
progress of the Z-curve and the propagation of the particlesaway from the center. A solution of this
problem could be another space-filling curve and seperate handles of variable density. The resolution of
local trees at processes at the border could be reduced for processes in the center. But it is not known
in which way this action would interference with particles in an intermediate area. Another possibility
could be a group of predefined processes which manage the whole tree information and perform the main
point-to-point communication for other processes.
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Abstract: Structure prediction of proteins is an important task in biology. There are two princi-
pal ways – among others – in which computational methods can contribute to tackle this prob-
lem. The first approach consists of computer simulation using molecular dynamics or Monte
Carlo based on physical force fields. The second approach uses statistical predictions derived
from protein databases of known conformations. In this article a method is proposed to combine
the physical and the knowledge based ways of structure prediction by using statistical predic-
tions as constraints in Monte Carlo simulations.

Introduction

Proteins are macromolecules that consist of a chain of aminoacids. Each chain folds itself into a unique
macroscopic 3d structure, the so calledtertiary structure, which is completely determined by its sequence
of amino acids (primary structure). The tertiary structure determines the functionality of the protein. So,
understanding of the functionality of a protein requires knowledge about its tertiary structure. Determin-
ing those structures experimentally is a very time-consuming and expensive process, so there is a strong
demand for computer-based structure prediction.

This problem can be tackled from two directions, physical computer simulations and knowledge-based
statistics. Common methods for physical computer simulations are molecular dynamics and Monte Carlo,
which both have advantages and disadvantages. The latter method was used in the work of the present
article. The knowledge-based approach uses databases of protein conformations collected by experimen-
talists. Given a specific target protein one can search thosedatabases for proteins with local or global
sequence similarities and use statistical methods to derive a prediction of the configuration of the target.

Both ways of structure prediction can be combined by using the knowledge-based predictions as con-
straints in Monte Carlo simulations. The implementation and testing of such constraints in the MC sim-
ulation program SMMP ([1], [2] and [3]) was my task during theguest student program of the NIC.

The next section of this article will give a short introduction into proteins and the MC algorithms that
were used. Afterwards the implementation of the different constraint types is explained followed by two
sections about examples in which the impact of the constraints was tested on sequences whose structure
is known.

Proteins

Proteins belong to the wider class of peptides, i.e. they aremacromolecules consisting of a chain of amino
acids. Typical sizes of proteins range from 20 to 3000 amino acids, in this context also calledresidues.



There are 20 different types of residues most proteins are built of. The characteristic attribute that distin-
guishes proteins from other peptides is that each protein assumes a unique macroscopic folding shape,
only determined by its sequence of residues. This was demonstrated in the famousAnfinsen experiment
[4], named after the chemist and winner of the Nobel prize Christian B. Anfinsen.

Figure 1: The small peptide Met-enkephalin. The image is taken from [1].

The buildup of a protein is of the form

... NH − CαR− CO︸ ︷︷ ︸
Residuei

−NH − CαR− CO︸ ︷︷ ︸
Residuei+1

...

The repeating atomsN ,Cα andC build the backbone of the protein. One residue specific side chainR is
attached to eachCα-atom. As an example Fig. 1 shows the buildup of the small peptide Met-enkephalin,
consisting of five residues.

Describing the structure of proteins one distinguishes between the primary, secondary and tertiary struc-
ture. Primary structure just means the sequence of residuesthe protein is built of. The secondary struc-
ture is defined by hydrogen bonds between nearby residues that lead to specific local conformations. The
most common ones areα-helices andβ-sheets as shown in Fig. 2. By tertiary structure one means the
macroscopic folding scheme of the chain.

The way proteins achieve their stable folded conformation is not yet sufficiently understood. At this point
theLevinthal paradox[5] should be mentioned. This is a small sample calculation that makes clear that
the folded conformation cannot be found just by random fluctuations. In that case the folding process of
an average sized protein would take something in the region of 1024 years. In reality it happens at time
scales between milliseconds and minutes. It is therefore assumed that there are mechanisms that help
proteins to find their tertiary structure.

Proteins fulfill a variety of essential tasks in animate systems. There are, e.g., catalytic proteins, transport
proteins, or signaling proteins, just to name a few. The functionality is closely related to the tertiary
structure. It can happen that proteins do not fold into theirnative conformations. Some diseases can be
traced back to so calledmisfoldedproteins. BSE is a famous example. Until now it is not understood
why and under which circumstances proteins misfold.
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(a) α-Helix (b) β-Sheet

Figure 2: The two most common secondary structure elements. The dotted lines denote hydrogen bonds.

Protein Simulations

There are two main problems one tries to tackle with protein simulations. At first one wants to obtain
a better understanding of the folding process itself. The second task is structure prediction. This article
only deals with the latter.

For Monte Carlo simulation the protein is viewed as a thermodynamic system with fixed number of
particles exposed to a heat bath (the solvent), which keeps the temperature fixed. Such a system is called
a canonical ensemble and satisfies the Boltzmann distribution

pi =
1

Z
e−βEi , β =

1

kBT
(1)

that defines the probability to find a statei with energyEi in a system at temperatureT . Z is a normal-
ization constant being called the partition function.

As we know from statistical mechanics such systems always equilibrate to a configuration with a min-
imum in the free energy. So the aim of structure prediction isto find that minimum. Two problems are
connected to that aim.

The first problem is that the configuration space is huge. To restrict the degrees of freedom to a minimum
all bond lengths and bond angles are set to fixed values and only allows the molecule to change some
torsion angles that are displayed in Fig. 1. This is the standard geometry model that is also used by the
force fields implemented in SMMP. In this geometry model the protein has an average of about five to
six degrees of freedom per residue. This is still a large configuration space to sample.

The second problem is that the correct potential energy is not known and until now there is no sufficient
approximation in which the energy minima always coincide with the native conformations. So even if
you had sampled a big part of the configuration space and are sure to have found the global energy
minimum, you still cannot be sure that you also have found thenative structure.

The Metropolis Monte Carlo Algorithm

The key idea of MMC is to construct a Markov chain that underlies Eq. (1). This is done by anacceptance
rejectionmethod which leads to the correct transition probability. The algorithm consists of the following
steps:

1. Start from an initial configuration with the energyEold
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2. Change one or more degrees of freedom in a random way (move).

3. Calculate the new energyEnew.

4. Accept the move with the probabilityp = min{1,e−β(Enew−Eold)}.

• If the move was accepted setEold = Enew.

• If the move was rejected reverse it.

5. Continue with step 2.

Performing an infinite number of steps it is assured to find theglobal energy minimum. To find that
minimum in finite time is connected to the problem that the energy landscape is very rough. There
are many local minima separated by large barriers. If one chooses a low temperature that implies low
probabilities to accept moves leading to higher energy states one gets easily stuck in local potential
wells for long times. For high temperatures the probabilityis high to jump out of potential wells before
reaching their minima. An ansatz to overcome that problem isparallel tempering.

Parallel Tempering

In this method one createsN replicas of the target protein and starts an independent MC run for each
replica at a different temperatureTi. After a certain number of iterations replica with “adjacent” temper-
aturesTi andTj exchange their conformations with the probability

p = min{1, exp (−βiEj − βjEi + βiEi + βjEj)}. (2)

This has the effect that low energy conformations are handedover to low temperatures.

Constraints

As already mentioned in the introduction another way of performing structure prediction besides physical
computer simulations is to make statistical predictions based on the knowledge of conformations one
has about other proteins. Both methods can be combined by using the knowledge-based predictions
as constraints in MC simulations. The idea behind this is to focus the search around more probable
configurations. The two types of constraints that were implemented are distance and dihedral constraints.

Distance Constraints

Distance constraints were implemented as an additional energy term that depends on the distancer
between theCα atoms of two different residues and has a minimum at the expected distancerc.

A variety of analytic forms of such a potential is possible. Three different forms were tested:

E1(r) = C1(r − rc)
2 (3)

E2(r) = C2

(
r − rc
rc

)2

exp

[(
r − rc
0.2rc

)2
]

(4)

E3(r) = C3 exp

[(
r − rc
0.2rc

)2
]
− 1 (5)

Another parameter besides the analytic form of the potential is its strength, i.e., the factorsCi. C2 and
C3 were set to one for an initial test. For Eq. (3) an algorithm was implemented that fits the parameter
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C1 during the simulation. It works in a way that large deviations fromrc lead to an increase ofC1 while
small deviations lead to a decrease. The idea behind this is to make the constraint energy only as high as
necessary so that the loss of impact of the physical energy isas low as possible. The aspired setpoint is
that the relative deviations|r − rc|/rc are in 80% of the time less than 0.2 .

Dihedral Constraints

The dihedral constraints were implemented in form of an additional move in the metropolis algorithm
that prefers the expected dihedral angles. This move selects a new value of the current dihedral angle
from the von Mises distribution

P (φ) =
exp [κ cos(φ− φc)]

2πI0(κ)
. (6)

This distribution function can be viewed as a periodic analogon to the Gaussian distribution wherephic
is analog to mean value andκ−1 is analog to the standard deviation.I0(x) is the modified Bessel function
of order 0.

In this case there is no change in the evaluation of conformations – as in the case of the distance con-
straints – but in the sampling of conformations.

Technical Aspects

The constraints were implemented in the software package SMMP ([1] - [3]). This package written in
standard Fortran is freely available on the internet. It contains several modern Monte Carlo algorithms,
minimization routines and other useful tools for the simulation of proteins. Three different energy func-
tions are implemented. In the examples presented in this article only the Lund force field was used. See
[3] for a description of this force field.

Example 2: The Hairpin

In this section an example is presented where the different constraint types are tested and compared. The
target is a small sequence that was cut out from protein G. Itsnative structure is shown in Fig. 3a.

(a) Cartoon. In this illustration the secondary struc-
ture is pointed out.

(b) Technical. Each line represents a chemical
bond. The black dotted lines connect the pairs of
atoms under the influence of distance constraints.

Figure 3: The hairpin in two different representations created by thePyMOL Viewer(http://pymol.org/).

Six different runs were started:
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• Native dihedral constraints

• Native distance constraints with three different potentials

• Statistically predicted dihedral constraints

• No constraints

To test the effect of correct constraints four runs with native constraints, i.e. dihedral angles and distances
taken from the native structure, were started. One using dihedral constraints and one for each distance
constraint potential. Those constraints only influenced the turn of the molecule.

The dihedral constraints acted on theϕ andψ angles, i.e. the backbone dihedral angles, (see Fig. 1) for the
residues within the turn of the hairpin. The atom pairs subject to distance constraints are highlighted in
Fig. 3b by the black dotted lines. Another run was started using dihedral constraints that were statistically
predicted. In this case theϕ andψ angles of all residues were used. Additionally one run without any
constraints was performed for comparison.

In each of the six cases a parallel tempering run using 16 temperatures ranging from 274 K to 374 K was
made. Starting from a random conformation one million MonteCarlo sweeps were performed, while a
Monte Carlo sweep consists ofnMetropolis steps, as described above, wheren is the number of degrees
of freedom of the molecule. Each run was done twice with two different seeds of the random number
generator.

To evaluate the results a couple of measurements are compared. Doing this we always examine the values
of the current replica at the lowest temperature. At first we take a look at the minimal physical energies
that are plotted in Fig. 4. By comparing the two plots it becomes obvious that the minimal energy is
not a really significant evaluation criterion, because there are serious discrepancies between the results
of the two test series, especially for the run without constraints. So a significant statement based on this
evaluation criterion would require a larger ensemble of test series.

Much more fruitful is an analysis of the average physical energies as well as the average RMSDs1

plotted in Fig. 5 respectively 6. Looking at the curves of therun using the statistically predicted dihedral
constraints one first realizes that the fluctuations are muchsmaller compared to the other curves. The
reason is of course that in this case constraints were used for all residues contrary to the other runs.
Compared to the run without constraints there is a slight improvement concerning the average energies
and a more significant improvement concerning the average RMSDs. But the average level of the RMSD
is quiet high and outliers to low values are rare. This is of course the negative influence of some wrong
predictions that were used as constraints.

1RMSD = Root Mean Square Deviation. This quantity measures the similarity of the current conformation compared to the
native one.
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Figure 4: Minimal physical energies. The energy terms connected to the distance constraints are subtracted from
the total energy. Nevertheless the energies are minimal with respect to the total energy including the distance
constraint potentials. This is the reason why some curves are not monotonically decreasing.

A more convincing improvement was reached in the distance constraints runs. In most cases there are
lower average values concerning both the RMSD and the energy. The diagrams do not allow for a clear
comparison between the different types of potentials. Looking at test series 2 one would clearly favor
potential type three before two and one, but the picture of test series 1 does not look that clear. A larger
number of test series is necessary for a significant comparison and evaluation.

The most promising improvement was made in the runs under thenative dihedral constraints. In both test
series the RMSD reaches mean values below 3 Å in less than 50 K Monte Carlo sweeps and stays at this
level for the whole run. Here the aim of a restriction of the search space was reached very well.

As the last evaluation criterion we examine configurations of the minimal energy for each run that are
plotted in Fig. 10 and 11 in the appendix. The best results were reached in the runs with the native
dihedral constraints and those with the third distance constraints potential. This is compatible with the
evaluation of the mean RMSDs.

Technical Aspects

The simulation runs were performed to one half on the JUMP cluster of the JSC and to the other half on
the Nicole cluster of the NIC. Each run lasted between seven and eleven hours using 16 CPUs.
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Figure 5: Physical energies averaged over104 Monte Carlo sweeps. Again the energy terms connected to the
distance constraints are subtracted from the total energy.

Example 2: 1G9O

Often one is in the lucky situation that a known structure with a very similar sequence to the one under
consideration, a so calledtemplate, exists. In this case one does not start the simulation from arandom
or stretched configuration but from one that is as close as possible to the template.

The second example discussed in this article deals with thissituation. The target protein is theFIRST
PDZ DOMAIN OF THE HUMAN NA+/H+ EXCHANGER REGULATORY FACTOR, which can be found
in the RCSB protein data bank under the abbreviation 1G9O. Itconsists of 91 residues. Its native con-
formation is depicted in Fig. 7a. A good template that was found is The crystal structure of the first
PDZ domain of human NHERF-2 (SLC9A3R2)– 2OCS in RCSB protein data bank – with a sequence
similarity of more than 70 %. Its native structure is shown inFig. 7b.

The first thing one has to do is to exchange the residues in which the two sequences differ and guess
their conformations. The molecule that emerges after this does of course not fit into the geometry with
fixed bond angles and lengths used by the program. The simulation program includes a routine called
regularizationthat creates a conformation that fits into this geometry and is as close as possible to the
initial one while avoiding very high energies. A description of the routine can be found in [2]. The
resulting structure is shown in Fig. 8. This was used as a start configuration for several runs.

At first a usual canonical Monte Carlo run was performed at a very low temperature to simply minimize
the energy. 5000 sweeps were made at a temperature of 10 K. Thefinal structure is depicted in Fig. 9.
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Figure 6: Root mean square deviation in Å, averaged over104 Monte Carlo sweeps.

Obviously the Monte Carlo run has slightly worsened the result even though the energy was decreased.
There are two possible reasons for this. At first it might be due to the approximated force field. At second
reason could lie in the way the structure is determined experimentally. In this procedure one has to
produce a crystal consisting of many proteins at close quarters that influence of each other. Contrary to
that the Monte Carlo run simulates a single protein in a solvent. For that reason the RMSDs are calculated

(a) The target 1G9O. (b) The template 2OCS. The target 1G9O is depicted in grey
for comparison.

Figure 7: The target and its template
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excluding the long red tail.

Additionally three parallel tempering runs were started: One without constraints, one with a set of dis-
tance constraints and one with a set of dihedral constraints. The constraints were derived partially from
the template and partially from statistics. For each of the three runs 50 K sweeps were performed at 32
temperatures ranging from 274 K to 374 K. The minimal energy configurations can be viewed in Fig. 12
in the appendix. Obviously none of the runs improved the configuration that emerged after the regular-
ization, but at least the runs under constraints yielded better results than the one without constraints.

Technical aspects

The parallel tempering runs were done on theNicole cluster of the NIC. Each run took about twelve
hours using 32 CPUs.

Conclusion

It could be shown that the use of constraints has great potential to improve protein simulations. But there
are many things to do to exploit this potential.

Concerning the distance constraints one has to spend more effort in evaluating how strong the potentials
should be and which analytic form of the potential is suited best. Those analytic forms tested in this
work all diverge for great deviations with respect to the desired distance. This bears the danger that they
reach too high values so that the physical potential looses its influence. Especially when using wrongly
predicted constraints the impact could be disastrous. So another analytic form I would propose is

E({ri}) = −C

N

N∑

i=1

exp

[
−
(
ri − rci

σ · rci

)2
]
, (7)

whereN is the number of atom pairs under constraints. This has the advantage of a well defined maxi-
mum the potential converges to for large deviations. The weight of the constraint potential compared to
the physical potential can than easily be controlled by changing the parameterC. The second parameter
σ provides the opportunity to alter the range of movement of the constrained atom pairs. I would propose
a parameter study forC andσ measuring the deviations of the constraints with respect totheir desired
values in addition to the other evaluation criteria analyzed in the present article.

The dihedral constraints ansatz introduced here seems to work quite well in the case of correct con-
straints. So in my opinion the most important step to do next is to develop techniques to identify wrong

Figure 8: Conformation after the regularization. RMSD = 2.49 Å
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Figure 9: Conformation after canonical Monte Carlo run at 10 K. RMSD = 2.62 Å

constraints. A first ansatz would be to test if there is a significant correlation between the acceptance
rate of a constraint move for a specific angle and the deviation between its predicted value and its native
value.

Other questions to be answered are:

• How many constraints are helpful?

• When should they be used? During the whole run or only during parts of it?

• How does a combination of distance and dihedral constraintswork?
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Appendix

(a) No constraints, series 1. RMSD =
3.42 Å

(b) No constraints, series 2. RMSD =
5.71 Å

(c) Distance constraints 1, series 1.
RMSD = 2.53 Å

(d) Distance constraints 1, series 2.
RMSD = 3.89 Å

(e) Distance constraints 2, series 1.
RMSD = 3.86 Å

(f) Distance constraints 2, series 2.
RMSD = 3.08 Å

Figure 10: Lowest energy conformations 1. The native conformation is plotted in grey.
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(a) Distance constraints 3, series 1.
RMSD = 2.93 Å

(b) Distance constraints 3, series 2.
RMSD = 1.59 Å

(c) Predicted dihedral constraints, se-
ries 1. RMSD = 4.42 Å

(d) Predicted dihedral constraints, se-
ries 2. RMSD = 4.52 Å

(e) Native dihedral constraints, series
1. RMSD = 1.98 Å

(f) Native dihedral constraints, series
2. RMSD = 2.61 Å

Figure 11: Lowest energy conformations 2. The native conformation is plotted in grey.
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(a) No constraints. RMSD = 25.45 Å

(b) Distance constraints. RMSD = 14.75 Å

(c) Dihedral constraints. RMSD = 3.13 Å

Figure 12: Lowest energy conformations resulting from the parallel tempering runs.
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Abstract: We discuss a recently developed method for coupling molecular dynamics and con-
tinuum methods, which is based on a function space approach.The method modifies the bridg-
ing domain method by introducing new constraints. We particular focus on the parallel imple-
mentation of the method.

Introduction

Molecular dynamic simulations can be used for accurate simulation of critical material behavior, e.g.
fractures (see Fig. 1). However the current (massively parallel) computer systems limit the number of
atoms in a MD simulation. Unfortunately, the reduction of the system size might lead to spurious “fi-
nite size“ artifacts (e.g. due to reflection of sound waves atan artificial surface). Multiscale methods
tackle this “finite size problem“ by combining atomistic simulation models like molecular dynamics with
macroscopic theories like elasticity. Since e.g. a finite element discretization of a smooth displacement
field is possible with a relatively large mesh size, such methods provide ideal “boundary conditions“ for
a MD simulation. Still, a large portion of the simulation domain must be simulated by pure molecular
dynamics (e.g. around the crack tip). Additionally quantummechanical computations (e.g. first principle
molecular dynamics or density functional theories) might be used near the crack tip (see [1]). Here we
present new ideas regarding the parallelization of the weaktransfer method ([9, 11]). For this purpose, the
underlying theory as well as the parallelization of molecular dynamics and finite elements is reviewed.

Figure 1: Brittle to ductile transition in a thin3 dimensional Lennard Jones solid.



Multiscale modeling

Molecular dynamics with short range forces

Let us consider an ideal solid, filling up the volumeB ⊂ Rd, which undergoes some deformation, due
to internal and external forces. On the microscopic level wecan model the solid assuming an underlying
simple lattice

L =
( d∑

j=1

Zaj

)
∩ B .

In the reference configuration at each lattice site an atom islocated. We will denote the set of atoms byA

and use the notationXα for the location of the atomα ∈ A in the reference configuration. The interaction
between atoms is modeled by a potential functionV ∈ C1

(
(Rd)♯A; R

)
which we assume to be bounded

from below. Such a potential admits a series expansion of theform

V
(
(xα)α∈A

)
=
∑

α∈A

V1(xα) +
∑

α,β∈A

V2(xα,xβ) +
∑

α,β,γ∈A

V3(xα,xβ ,xγ) + . . . (1)

The1-body termsV1 is mostly ignored in the literature since external1-body forces are treated separately.
Following this principle we will assumeV1 = 0, i.e. there is no internal1-body potential contribution. In
the simplest case only the2-body termsV2 are taken into account. E.g., the Lennard-Jones potential

VLJ(xα,xβ) = 4 ·
(
|xα − xβ|−12 − |xα − xβ|−6

)

has been proposed for modeling an Argon liquid. There existsa great number of (semi-)empirical po-
tential like Finnis-Sinclair, EAM or MGPT potentials, which can be used for modeling “real“ solids (see
[12]). All of these potentials require the evaluation of multi-body terms in the expansion (1), increasing
the complexity of simulations significantly.

The mass matrix of the atomic system is defined byMA = diag(mα)α∈A,mα being the mass of atomα.
Arranging the positions and momentums of the individual atoms in a column vector, we can write down
the Hamiltonian for the particle system

H
(
x,p

)
=

1

2
p ·M−1

A
p + V (x) + Vext(x)

The resulting Hamiltonian equations

ż = J∇zH(z), z = (x,p)T, J =

[
0 1
−1 0

]

yield Newton’s low of motionMAẍ = F + Fext with F = −∇xV (x).
Molecular dynamics is naturally formulated in Lagrangian coordinates. When coupling molecular dy-
namics and elasticity theories (which are naturally formulated in Eulerian coordinates) it is necessary to
choose a common description. For this purpose we introduce the MD displacementuα = xα −Xα. The
space of all possible displacements isX :=

{
A → Rd

}
.

Example simulation

We describe the simulation of a mode I crack in a brittle two dimensional solid using the Lennard Jones
potential. This is an interesting example since the anisotropy of the underlying hexagonal lattice yields
an anisotropic stress-strain relation for large strains [2]. The path of the crack always turns in the strong
direction, that is the direction yielding the highest surface energy. Fig. 2 shows the time evolution of a
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crack initially directed in the weak and the strong direction, resp. As can be seen, the crack does not
propagate in the weak direction but rather branches. The newly created crack tips propagate in the strong
direction, the angle between the old and the new direction being approximately30 degree.
The experiments have been conducted using the parallel version of Tremolo [12].

Figure 2: A mode I crack in a2 dimensional Lennard Jones solid.

The simulation domain contained200000 atoms. Nevertheless, as can be seen in Fig. 3, the introduction
of artificial boundaries results in the reflection of sound waves at the boundary. Moreover, the emission,
reflection and returning of these waves takes place on a time scale which is relevant for the crack initiation
and propagation. This is a typical example of a finite size problem (see also [17] for another example)
and must be taken into account when evaluating the results. Multiscale methods are designed to tackle
this problem.

Figure 3: Sound waves propagating through a2 dimensional Lennard Jones solid.

Elasticity theory

Assuming the mean distance of neighboring atoms inL to be a few angstrom, we see that the simulation
of a cubic-shaped body with diameter1 mm× 1 mm× 1 mm requires the simulation of approximately
N = 1021 particles. The minimal storage requirement for a simulation withN atoms is≈ 1 ZB (1 billion
gigabyte). Such simulations are currently out of scope. From a macroscopic point of view however,
1 mm3 still remains small.
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Fortunately, many important mechanical properties of solids can be modeled utilizing continuum theo-
ries, i.e. neglecting the underlying lattice structure of the solid. From this point of view,B is a continuum
with Lebesgue measurem(B) > 0. The underlying lattice implicitly determines the densityfunction
̺ : B → (0,∞).
The deformation of the body is described by a volume preserving injectionϕ(t) ∈ C1(B; Rd) mappingB
at each timet to its deformed configurationϕ(B). The differenceu = ϕ− id is called the displacement
field.
The deformation of the body introduces internal stresses inB. The law of motion can be obtained from
momentum equilibrity in the deformed configuration. Here, we will describe a different approach which
works for the large class of homogeneous hyperelastic materials:
Similar to the microscopic model, we introduce a potential functionV : C1(B; Rd) → R measuring the
stored energy in the deformed configuration ofB. In applications the potential is mostly constructed from
a density functionw : Md → R by

V (u) =

∫

B
w(F) dx

Here,F = Id + ∇u ∈ Md denotes the deformation gradient. The Hamiltonian of the continuum theory
is

H(u,p) = T (p) + V (u) =

∫

B

1

2
p · ̺p dx +

∫

B
w(F) dx +

∫

B
b · u dx

The vector fieldb models volume forces. The Hamiltonian is a functional on the(infinite dimensional)
phase space and the Hamiltonian equations needs to be interpreted in a weak sense, i.e. by differentiating
the functional in the direction of a test functionv in an appropriate subspace ofH1(B)d. The resulting
law of motion reads ∫

B
̺ü · v dx =

∫

B
̺b · v dx +

∫

B
P : ∇v dx (2)

or ̺ü = ̺b− divP with the nominal stressP =
∂w

∂A
. The tensorP (which is not be confused with the

pressure) can be seen to be the (unsymmetric) Piola transformation of “true“ Cauchy-stressσ from the
deformed configuration toB.

The question remains, how the densityw should be chosen. A careful analysis (see [7]) shows that
for small deformations all materials behave similar to a Saint-Vernant material with material dependent
Lamè constants. For large deformations however complex (possibly non-convex) stored energy functions
w yield significantly different properties.
Since we want to couple molecular dynamics with elasticity and since the behavior of the atomistic
system is dictated by the choice of the interaction potential, it is natural to ask for way to construct
a stored energy function from an atomistic potential. Such homogenization procedures are a current
research interest.
With some restricts, the Cauchy-Born rule allows for the construction of a stored energy functionwCB

from an atomistic potentialV . It is assumed that the underlying lattice of the solid locally follows the
deformation gradient, i.e. locally the distancerα,β = xα − xβ = FRα,β, Rα,β = Xα − Xβ. In this
case the value ofwCB atA ∈ Md is obtained from the energy of the underlying lattice after stretching it
according to the transformationA, see [8]. For a2-body potential the stored energy function is

wCB(A) =
1

2 · ϑ0

∑

s∈L

V2(0,As) , ϑ0 = volume of principal unit cell ofL

In order to approximate the continuous displacement fieldu we employ aP1 or Q1 finite element dis-
cretization. LetT be a shape regular mesh such that

⋃
T∈T T = B (assume a polygonal shapedB for

simplicity). We denote the node set ofT by N . The finite element spaceS ⊂ H1(B)d is

S =
{
u ∈ C(B,Rd) s.t.u|T ∈ (P1)

d or u|T ∈ (Q1)
d f.a.T ∈ T

}
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The so called Lagrangian basis functions{θp}p∈N of S are uniquely characterized by the Kronecker-
delta propertyθp(q) = δp,q for q ∈ N . Obviously this implies compactness ofsupp θp in B.

Concurrent multiscale coupling

Every concurrent multiscale coupling scheme faces two fundamental problems:

• Molecular dynamics is formulated as an nonlinear ordinary differential equation (ODE) on the
finite dimensional phase space while continuum theories areformulated on an infinite dimensional
function space, yielding a partial differential equation (PDE) as law of motion.

• For efficient usage of the finite elements as an enveloping boundary for a MD domain it is nec-
essary to work with a FE mesh size which is typically an order of magnitude above the lattice
constant. Therefor the MD displacement field contains (highfrequency) components which are
not representable on the (coarse) FE scale. These components need to be removed from the molec-
ular domain without being reflected at the MD boundary.

The methods present in the literature can roughly been divided in two classes. Methods in the first class
(such as the concurrent coupling of length scales method [1]) use an adaptively refined mesh in the cou-
pling zone which allows for pointwise identification of atoms and mesh nodes. Methods in the second
class (such as the bridging scale method [18] and the bridging domain method [19]) use ideas originat-
ing from domain decomposition methods for the scale transfer. All of these methods work in a finite
dimensional space.

The weak coupling concept [9] is inspired by research in the field of nonconforming domain decom-
position methods, especially Mortar methods. These methods useL2 averaging at a coupling interface
between to FE meshes instead of pointwise identification to restore optimal convergence of the method.
The same ideas are applicable in our multiscale context oncewe are able to interpret the molecular dis-
placement(uα = xα − Xα)α∈A as anL2 function. To accomplish the transfer from the discrete space
X = {A → Rd} to the infinite dimensional spaceL2(B, ̺dx)d the authors use techniques from scattered
data approximation to be explained shortly:

The Partition of Unity method (PUM) is a meshless approximation method allowing for efficient ap-
proximation of the (discrete) MD displacement. The PUM constructs a basisϕα ∈ L2 of the space
XPU =

⊕
α∈A

Rdϕα such thatuβ ≈∑α∈A
uαϕα(Xα). This means that the coefficients of the approxi-

mationu of the MD displacement with respect to the generating system{ϕα}α∈A is simply the column
vector of the displacement field. The inclusion of the discrete field in the function space therefor comes
essentially for free.
The construction of the basis functions proceeds in two steps:

1. To each atom an open patchωα ⊂ B is attached so that the union of all patches covers the whole
body. The patches should be overlapping to guarantee a good approximation property of the space
XPU.

2. Following Shepard’s approach [16] we choose a weight function bα such thatsupp bα = ωα.
Usingϕα = bα surely is a bad choice since (in general) not even constant functions are exactly
interpolated. The latter property is equivalent to the partition of unity property

∑
α∈A

ϕα ≡ 1. To
construct a partition of unity{ϕα} we normalize the weighting functionsbα, i.e.

ϕα(x) =
bα(x)∑

β∈A
bβ(x)
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The evaluation of the denominator only requires the evaluation of neighboring weight functions
due to the local support ofbα.

Exploiting the crystalline structure of the atom starting positions, tree based construction methods can
easily been applied for the construction ofXPU (see [10]).

In [9] the weak coupling concept is applied to the bridging scale method. For this purpose the least
squares projectionP , used in the BSM to obtain a representation of the MD displacement on the FE
mesh, is replaced by anL2 projectionP : XPU → S. As shown in [9] this method can be interpreted as
an higher order bridging scale method.

The weak bridging domain method [11] combines the bridging domain method together and the weak
coupling idea. The method assumes an overlapping domain decomposition ofB in a MD domainΩD ⊂ B
and a (coarse) FE domainΩC ⊂ B. The intersectionΩB = ΩD ∩ΩC is called the bridging domain. The
geometric setup is also shown in Fig. 4.

ΩD ΩB ΩC

Figure 4: Geometry of a bridging domain simulation

The law of motion of the coupled system is derived from a combined Hamiltonian

H(uD,pD,uC ,pC ;λ) = ̟ · HMD(uD,pD) + (1 −̟) · HFE(uC ,pC) + g(uD,uC ,λ) (3)

Here,(uD,pD) and(uC ,pC) are points of the MD and FE phase space, respectively. The real-valued
functiong is used to constrain both scales to a common behavior in the bridging domain (see below).
The function̟ : B → [0, 1] is a weighting function which prevents from double countingthe en-
ergy in the coupling zone. To obtain a consistent energy we furthermore require̟ |ΩD\ΩB

= 1 and
̟|ΩC\ΩB

= 0.

Regarding equation (3) two important remarks are necessary:

1. The momentumspD andpC arenot the canonically conjugated momentums but rather the kine-
matic momentums of the MD and FE system respectively. The underlying structure really is a
weighted Lagrangian (see [11]).

2. The notation used in (3) is actually an abuse of notation since the multiplication of e.g. the MD
Hamiltonian by a real-valued function is not senseful. For atwo-body potentialV and an homo-
geneous, hyperelastic material the precise Hamiltonian is

H =
∑

α∈A

̟(Xα)
(pD)2α
2 ·mα

+
∑

α∈A

̟(Xα)
1

2

∑

β∈A\{α}
V2

(
Xα + (uD)α ,Xβ + (uD)β

)

+

∫

ΩC

1

2
(1 −̟(x))pC · ̺(x)pC dx +

∫

ΩC

(1 −̟(x)) · w(Id + ∇uC) dx
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The classical bridging domain method [19] utilizes pointwise constraints in the bridging domain. Let
N : S → X be the evaluation (or interpolation) map, i.e.(NuC)α = uC(Xα). Belytschko and Xiao use
the constraints

g =
∑

α∈A

λα · ((uD)α − uC(Xα)) = λT(uD −NuC

)

The Lagrange multiplierλ is chosen such that the induced Lagrange forces∇uD
g and∇uC

g yield a
corrected trajectory on the manifold{uD = NuC}.
Fine fluctuations of the MD displacement field which cannot berepresented on the FE mesh (due to
the reduced number of dofs) are implicitly removed by the constraints. However, since these fluctuations
cannot propagate into the bridging domain, high frequency waves are reflected at the interfaceΩD∩∂ΩB .
The authors propose the use of a lumped multiplier matrix to reduce this effect (see also [4]).

In the weak bridging domain method the pointwise constraints are replaced by equality in an averaging
sense. More precisely, using the approximateduD ∈ XPU ⊂ L2 the constraints are

g = (λ,uC − uD)L2 = (λ,uC − PuD)L2 , λ ∈ S

whereP : XPU → S denotes theL2 projection from the MD spaceXPU to S. The constrain manifold
therefor is{uC = PuD}.
Inserting the basis{θp} of S and{ϕα} of XPU we obtain the basis representation ofg = λ · (MCuC −
RuD) with

(MC)p,q =

∫

B
θpθq dx and Rq,α =

∫

B
θqϕα dx

The weak BDM decouples the information transfer between thescales and the damping of the fine fluctu-
ations, which are exactlyu′

D = QuD = uD −NPuD. Furthermore the number of Lagrange multipliers
now is♯ (N ∩ ΩB) instead of♯

(⋃
α∈A

{Xα} ∩ ΩB

)
.

Since the fine fluctuations in the MD displacement are not affected by the constraints they are allowed to
propagate into the bridging domain without disturbance. Therefor it is necessary to apply an additional
damping technique to remove these fluctuations.
An example of such a technique, which is particular suited for the weak bridging domain method, is
the discrete perfectly matched boundary layer (PML) method([13]). The PML method introduces two
additional force terms to the MD system.

FPML = −D2Qu − 2DQu̇ (4)

The first term alters the stiffness of the MD system inΩB while the second one is a frictional damping
term. The scalingD : XPU → XPU controls the strength of the additional force terms. It is chosen such
thatDα ≪ 1 near the interfaceΩC ∩ ∂ΩB , so that interface reflections are minimized. In [11]Dα is
chosen as a quadratic function of the distancedist(Xα,ΩC ∩ ∂ΩB).

Parallel implementation

Parallelizations based on the message passing paradigm have been successfully applied to both, molecu-
lar dynamics as well as finite elements. Multiscale methods allow for simulation of large systems with a
significantly reduce number of degrees of freedom compared to classical molecular dynamics, tackling
the so called finite size problem. However no methods are known to tackle the “finite time problem“,
meaning the limited simulation time due to the very small time steps. These are necessary to resolve
the small timescales of the atomic system. This requires a parallel multiscale method with an excellent
strong scaling behavior.
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Parallel molecular dynamic algorithms

In 1995 Plimpton classified parallel molecular algorithms for short range forces depending on the data/-
work decomposition [14]. This classification remains validup to now, even though clever hybrid methods
have been published (see e.g. [5, 17]). Methods utilizing the atom-decomposition of the workload assign
disjoint atom setsAP to the individual processor elements (PEs). The partitionA =

⊔
P AP is only

change if the load is unbalanced. Force-decomposition methods use a decomposition of the sparse force
matrix (Fα,β)α,β∈A

similar to parallel linear algebra algorithms.
In the following we will concentrate on the third class, the so called spatial decomposition methods
which assign a subdomainΩP ⊆ Ω to each PE. In most cases the decomposition is based on a Cartesian
splitting, as in Fig. 5. This allows for efficient neighbor communication with only4 or 6 send/receive
operations in2 or 3 dimensions (“Plimpton scheme“, see [14]).

Figure 5: two dimensional decomposition on a3 × 2 PE grid with periodic boundaries

For rapidly decaying potentials only interactions of particlesα, β with |xα − xβ | ≤ rcut are considered
relevant. This reduces the number of particles stored on remote PEs, that are needed for the local force
evaluation.
In each timestep the coordinates of particles near∂ΩP are communicated and stored in the halo cell of
the remote PEs. The forces on the local particles can then be evaluated in parallel. If communication
is cheaper than force evaluation (e.g. for MGPT) Newton’s third law can be used. This requires an
additional force reduction step. Since particles change their position, it is possible that atomα leaves
domainΩP . In this case the particle changes its owner process. The migration of particles is handled
in a second communication step. New methods (e.g. the midpoint method) reduce the communication
volume for the force evaluation by assigning particle pairsto the PEs (see e.g. [6]).
Let us note, that the ability to balance load between the PEs is limited due to the Cartesian geometry
of the decomposition. This is no problem for the simulation of e.g. biomolecules in a solvent where the
density is highly uniform. However, in solids, cracks and voids can yield a nonuniform density. For this
reason, theddcMD code [17] is based on an atom decomposition technique. Future work, will concentrate
on such methods.

The spatial decomposition allows for easy construction of the PU basis{ϕα}α∈A
since the same com-

munication schemes can be applied. First, on each processora local quad/octree is constructed. Then,
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boundary bordures are exchanged using the Plimpton communication scheme. Inserting the remote atoms
in a local copy of the remote tree, allows for a parallel construction of the generating system with quasi-
optimal complexity (see also [15]).
Let us assume rectangular or cuboid shaped patchesωα, i.e.ωα = {x | ‖x − Xα‖∞ < hα}. In this case
all particles in the bordure{dist(x, ∂ΩP ) < 2 · hα} must be communicated. Forhα ≈ rcut we see that
the communication volume is doubled compared to MD. Howeverthe scalability of the algorithm re-
mains (The construction of{ϕα}α∈A

needs to be done only once in the initialization phase).
There exists a second, extremely simple, parallel partition of unity method. Sinceϕα only depends on the
neighboring atoms{β |m(ωα ∩ ωβ) > 0} one might try to change patches of atoms near the processor
boundary∂ΩP by ωα → ωα ∩ ΩP . This allows for the construction ofϕα without any communication.
Therefor we term the method the “embarrassingly parallel partition of unity“ (EPPU) method. Unfortu-
nately, the approximation quality near the boundary is reduced since by constructionϕα ≡ 1 near∂ΩP

(compare Fig. 6). The same effect occurs near non-periodic boundaries.

Figure 6: Approximation of Franke’s function with50000 “atoms“ using EPPU and PPU on4 PEs. The
resulting graph has been triangulated.

Parallel finite element algorithms

Parallel finite element codes usually employ a domain decomposition ofΩ =
⊔

P ΩP of the simulation
domainΩ. Each subdomainΩP is assigned to an PE. Additionally, each PE stores halo cells. The width
of the additional bordure depends on various factors, e.g. the support of the basis functions{θp}.

Let loadP denote the load of a PEP . An easy performance model assumesloadP ∝ ♯TP whereTP is
the submesh ofT stored on the PE. If the mesh is held fix during the simulation,the load (as well as the
communication volume) remains fix. In the simple model, the communication volume can be assumed
to be proportional to the number of edges between remotely stored elements.
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Figure 7: Partition of a structured FE mesh.

The decomposition of a (unstructured) meshT into piecesTP such that

∣∣∣ loadP − 1

♯PEs

∑
P ′ loadP ′

∣∣∣ ≤ TOL

is not an easy task at all. Finding a balanced partition whichadditionally minimizes the communication
volume is a NP complete problem. Fortunately efficient heuristics for such graph-partition problems exist
(e.g. recursive coordinate bisection, recursive spectralbisection).

Parallel multiscale method

We will describe a parallel algorithm based on a disjoint partition of the available PEs in MD and FE
processors, i.e. every PE either stores atom coordinates ora submesh. This allows for parallel force
evaluation and for a flexible choice of the ratio♯(MD PEs)/♯(FE PEs) (in most cases we will use a lot
more MD processors elements than finite element PEs). However, scale transfer always requires message
passing. Overlapping schemes will be explored once experience with the disjoint approach has been
gained.

The weak bridging domain method allows for the use of structure preserving integrator for the constraint
coupled system. We will describe the use of the SHAKE/RATTLEintegrator. The following algorithm
describes one timestep with stepsizeτ .

1. Advance the momentumspn
D andpn

C to trial valuesp∗,n+1/2
? = pn

? + τ
2F

n
? , ? ∈ {D,C}.

2. Compute new trial positionsu∗,n+1
? = un

? + τ M−1
? p

n+1/2
? . HereM? denotes the mass matrices

of the resp. scales. For the finite element system we use a lumped mass matrix.

3. Compute the residualr = MCuC − RuD ∈ S. Lagrange multipliers are obtained inverting the

linear system
(1
2
τ2Λ

)
λ = r with Λ = M−1

C −RM−1
D RT.

4. Correct the trial valuesp∗,n+1/2
? andu∗,n

? , i.e.

p
n+1/2
? = p

∗,n+1/2
? − 1

2
τ (∇u?

g) λ un+1
? = u

∗,n+1/2
? − 1

2
τ2 (∇u?

g) λ

5. Compute forcesFn+1
? .

6. The molecular dynamics PEs compute the productu′
D = QuD and add the PML force terms (4)

to Fn+1
D .

7. Computep∗,n+1
? = p

n+1/2
? + 1

2τF
n+1
?

8. Solve the multiplier system
(1
2
τΛ
)
µ = p∗,n+1

C −RM−1
D p∗,n+1

D
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9. Correct the momentumspn+1
? = p∗,n+1

? − 1
2τ (∇u?

g) µ

The parallelization of steps1, 2, 5 and7 have been described above. Step4 and9 are easily executed in
parallel once the computed Lagrange forces have been communicated. Regarding the parallel execution
of step3, 6 and8 we face two problems:

• Due to the Lagrangian point of view in molecular dynamics algorithms, the intercommunicator
graph, i.e. the graph describing the communication betweenFE and MD processor elements,
is not time independent. This means that e.g. a finite elementPE a priori doesn’t know the set
{P ′ | existsα ∈ A s.t.xα ∈ (ΩD)P ′ andRp,α 6= 0} for p ∈ NP .

• The dimension ofQ andΛ is ♯
(⋃

α∈A
{Xα} ∩ ΩB

)
and♯ (N ∩ ΩB) respectively. In most cases

these matrices are too small to be distributed over all available PEs. Unfortunately this leads to
scalability problem since the serial nature of the multiscale SHAKE/RATTLE algorithm doesn’t
allow those PEs not involved in the computation ofQ ·(−) or Λ−1 to compensate the waiting time.
These PEs remain idle.

We will not address the second issue here since it most likelyrequires a complete redesign of the MD
and FE algorithms.
A possible solution to issue1 is the adaption of the intercommunicator graph in each particle commu-
nication step (see [3]). This allows each finite element PE toknow its MD neighbors and vice versa.
However additional communication is necessary in case of particle migration.
Assuming a static distribution of the matricesQ,R andΛ we propose the use of 1-sided communication
to build the intercommunicator graph implicitly. Using an all-to-all communication in the initialization
phase every particle knows the set of all PEs that require either the displacement or velocity vector of
the particle to accomplish their task. Moreover information about the buffer layout(s) of those PEs are
attached to each particle. Using PUT and GET operations eachparticle is able to either send a message
to a remote PE which is waiting for input or receive e.g. the values(QuD)α, (Qu̇D)α so that the PML
force term can be computed locally.

The matrixQ andΛ are distributed over all processorsP which either fulfillm
(⋃

T∈TP
T ∩ (ΩB)P

)
>

0 (in case of a finite element PE) or♯
(⋃

α∈A
{Xα} ∩ (ΩB)P

)
> 0 (in case of MD PEs). Assuming a

good balanced number of atoms/nodes a row wise block decomposition is appropriate.

Due to the disjoint partition of the PEs, in either FE or MD processor elements, data needed for the
assembling of the matricesR, Q andΛ are not in the memory of a single process. It is necessary to
collect data on either one of the both sides (or swap copies ofthe local memory). Differently from [3],
we choose the molecular dynamics PEs for the assembling of the three matrices. Using this approach
we can gain profit from the tree-structure used for the construction of {ϕα}α∈A ⊂ XPU. It is then
possible to assembleR,Q andΛ with quasi optimal complexityO(♯(BD elements) · log ♯(BD atoms)).
Furthermore, the number of molecular dynamics PEs is largertherefor yielding a better distribution of
the computational expensive cut-detection and quadrature.

Concluding remarks and acknowledgment

The implementation of a multiscale method, as the one presented, requires a large software stack. During
my stay at Juelich I was able to implement a large portion of the necessary software. Most of this work
found its way only implicitly (through experience gain) into this report.
Additionally, using the excellent infrastructure in Juelich, I was able to conduct many molecular dynam-
ics fracture simulations which greatly improved my knowledge.
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Fast Computation of the Ewald Sum
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Abstract: In this report a fast method for computing the Ewald sum for many-particle systems
based on the recently developed Fastsum algorithm [1] is proposed. The algorithm is imple-
mented inC and details of the implementation of this algorithm are described. The influence of
some parameters on the accuracy of this method is evaluated.

Introduction

We want to evaluate a central potential

V (rj) =

N∑

k=1, k 6=j

qj
‖rj − rk‖

,

j = 1, . . . , N , whereqj denotes the charge andrj ∈ R3 the position vector of a particlej in a three-
dimensional periodic system ofN particles. Let‖·‖ denote the Euclidean norm. This is motivated by the
need to calculate trajectoriesrj(t) of particles interacting along this potential by the equation of motion

mj
d2rj

dt2
= −qj∇jV,

wheremj denotes the mass of the particlej.

Because of the particles being part of a periodic system, or asystem with periodic boundary conditions,
i.e. we haveN particles inside a center box of dimension three and box length equal to one and this box
periodically expanded in every direction in the three-dimensional space, we have to evaluate

Vs(rj) =
∑

n∈Z3

′
N∑

k=1

qj
‖rj − rk + n‖ (1)

instead ofV (rj), where the prime denotes that forn = 0 the term withk = j is dropped. This can be
rewritten as

VE(rj) =
∑

n∈Z3

′
N∑

k=1

qk
erfc(α‖rj − rk + n‖)

‖rj − rk + n‖
︸ ︷︷ ︸

=:S1(rj)

+
∑

l∈Z3\{0}

N∑

k=1

qk
e−

π2‖l‖2
α2

π‖l‖2
e2πil·(rk−rj)

︸ ︷︷ ︸
=:S2(rj)

− 2α√
π
qj , (2)

whereS1(rj) is called the real space sum andS2(rj) the reciprocal space sum. Details on how this can
be done can be found in [2]. We call (2) the Ewald sum. On the following pages we want to propose an
algorithm to compute an approximation of this formula.



The Fastsum Algorithm

We want to compute the sums

f(rj) :=
N∑

k=1

qkK(rj − rk), (3)

j = 1, . . . , N , whereK(x), x ∈ R3 is a certain kernel function. In our case we are interested in

K(x) =
erfc(c‖x‖)

‖x‖ .

For the Fastsum algorithm we have to require that

‖rj‖∞ <
1

4
− εB

2
,

‖rk‖∞ <
1

4
− εB

2
,

⇒ ‖rj − rk‖∞ <
1

2
− εB .

We can computef(rj), j = 1, . . . , N in O(N logN) using the Fastsum algorithm proposed in [1].

The first step in this algorithm is to regularize the kernelK(x) near the singularity at0, i.e. inside
UI := {x ∈ R3 : ‖x‖ < εI}, and near the boundary ofΠ3 := [−1

2 ,
1
2 )3, i.e. inUB := {x ∈ R3 :

1
2 − εB < ‖x‖}. HereεI denotes the inner boundary andεB the outer boundary. Obviously we have to
state thatεI + εB < 0.5. We call this regularized kernelKR(x). The degree of smoothness ofKR(x) is
calledp. This regularization is done to get a smooth function, whichcan be continued one-periodically.

The regularized kernelKR(x) can now be approximated by its Fourier seriesKRF (x):

KR(x) ≈ KRF (x) =
∑

l∈Λ

bl e−2πil·x. (4)

whereΛ := [−n
2 ,

n
2 − 1]3 ∩ Z3. The regularization ofK(x) introduces an errorKNE(x) := K(x) −

KR(x) due to the inner regularization. Now we can approximateK(x) by

K(x) ≈ KNE(x) +KRF (x).

We callKNE(x) the nearfield.

The nearfield sumfNE(rj), j = 1, . . . , N , is calculated directly by evaluating the sum

fNE(rj) =
∑

k∈INE
εI

(j)

qkKNE(rj − rk), (5)

whereINE
εI

(j) := {k ∈ 1, . . . , N : ‖rj − rk‖ < εI}.

The Fourier sumfRF (rj), j = 1, . . . , N , can be calculated by

fRF (rj) =

N∑

k=1

qkKRF (rj − rk)
by (4)
=

N∑

k=1

qk
∑

l∈Λ

bl e−2πil·(rj−rk)

=
∑

l∈Λ

bl

(
N∑

k=1

qke
2πil·rk

)

︸ ︷︷ ︸
=:al

e−2πil·rj . (6)
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So, applying the NFFTT on the inner sum yields

fRF (rj) ≈
∑

l∈Λ

blale
−2πil·rj ,

which, after multiplication of the coefficientsbl andal, can be calculated by the NFFT.

Applying the Fastsum Algorithm on the Ewald Sum

The above described algorithm was designed for open systemsof particles. Therefore we have to adjust it
to work on systems with periodical boundary conditions as well. The first step to achieve this is to choose
the parameterα such that the sum overn in S1(rj) in (2) can be neglected due to the fast decrease of the
kernel function, i.e. only the term withn = 0 is considered. By the choice ofα we want to assure that
the function value of the kernel functionK(x) has already fallen beloweα for all x with ‖x‖ > 1

2 − εB .
We callRC := 1

2 − εB the cut-off radius of the real space sum and

eα :=
erfc(αRC)

RC
(7)

the truncation error introduced by neglecting the terms with n 6= 0. In figure 1 we see that the truncation
error decreases very fast for increasing values ofα, e.g., if we want to geteα = 10−9, we would choose
α ≈ 8.8.

Figure 1: The function value ofeα = K(x) = erfc(α‖x‖)
‖x‖ for x with ‖x‖ = 1

2 − εB depending onα.

By restricting the calculation of the formula given in (2) ton = 0, we assure that for each particle
j, j = 1, . . . , N , we only have to considerN − 1 particles from the setup of our periodic system as
described at the beginning as interacting partners. Unfortunatly, we cannot just choose one fixed box
with length one and allN particles inside and ignore all periodic image particles. If we would do so, the
potential calculated for particles near the boundary of that fixed box would be very erroneous, because
close neighbors of these particles with high influence on theresult would be neglected.

Instead, for each particlej at positionrj , j = 1, . . . , N , we have to consider an individual box with
length one and this particle at its center. So, for calculating interactions between particlej and the other
N−1 particles some particles in the center box have to been shifted by a vector inZ3\{0}. These shifted
particles are called image particles. Because the Fourier sum fRF (rj) in (6) is already one-periodic, we
do not have to adjust anything in the computation of this term.
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We only have to change the computation of the nearfield sumfNE(rj) in (5). Here we are going to
compute

fNE(rj) =
∑

k∈ĨNE
εI

(j)

qkKNE(rjk), (8)

whereĨNE
εI

(j) := {k ∈ 1, . . . , N : ‖rjk‖ < εI} andrjk = rj − rk + n with n such, that

‖rj − rk + n‖ = min
y∈Z3

‖rj − rk + y‖.

This means that‖rjk‖ is the minimum distance from particlej to particlek or any of its images. In our
algorithm we achieve this behaviour by calculatingrj − rk and componentwise shifting of this vector
by ±1 in such a way that we get a vectorr̃jk for which

‖r̃jk‖∞ ≤ 1
2

holds. Then it also holds true thatr̃jk = rjk.

This enables us to calculate

S1(rj) =
∑

n∈Z3

′
N∑

k=1

qk
erfc(α‖rj − rk + n‖)

‖rj − rk + n‖

≈
∑

k∈ĨNE
εI

(j)

qkKNE(rjk) +
∑

l∈Λ

bl

(
N∑

k=1

αke
2πil·rk

)
e−2πil·rj ,

j = 1, . . . , N , whereΛ = [−n
2 ,

n
2 − 1]3 ∩ Z3, in (2) using the Fastsum algorithm.

We can writeS2(rj), j = 1, . . . , N , as

S2(rj) =
∑

l∈Z3\{0}

N∑

k=1

qk
e−

π2‖l‖2
α2

π‖l‖2

︸ ︷︷ ︸
=:dl

e2πil·(rk−rj) =
∑

l∈Z3\{0}
dl

(
N∑

k=1

qke
2πil·rk

)
e−2πil·rj (9)

and reconsidering (2) leaves us with

VE(rj) ≈
∑

k∈ĨNE
εI

(j)

qkKNE(rjk) +
∑

l∈Λ

bl

(
N∑

k=1

αke
2πil·rk

)
e−2πil·rj

+
∑

l∈Z3\{0}
dl

(
N∑

k=1

qke
2πil·rk

)
e−2πil·rj +

2α√
π
qj. (10)

We introduce a cut-off parameterlmax ≤ n
2 − 1 such that we only have to pay attention todl with

‖l‖∞ ≤ lmax and can assumedl = 0 for ‖l‖∞ > lmax, see figure 2. E.g. if we want to neglect onlydl

with dl < 10−9 for α = 8.8 we would chooselmax = 11.

We define

b̃l :=

{
bl + dl if ‖l‖∞ ≤ lmax, l 6= 0,

bl otherwise.
(11)

Now we rewrite (10) as

VE(rj) =
∑

k∈ĨNE
εI

(j)

qkKNE(rjk) +
∑

l∈Λ

b̃l

(
N∑

k=1

αke
2πil·rk

)
e−2πil·rj +

2α√
π
qj. (12)

Thus we obtain the following fast algorithm, which we call FAST.
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Figure 2: Upper bound for the values of the neglected coefficientsdl depending onlmax for α = 8.8.

Precomputation:

i. Computation of the Fourier coefficientsbl for l ∈ Λ of the regularized kernelKR(x) as
described in [1].

ii. Computation of the coefficientsdl for l ∈ Λ̄ = [−lmax, lmax]
3 ∩ Z3 by (9).

iii. Computation of the coefficients̃bl for l ∈ Λ by (11).

iv. Computation ofKNE(rjk) for j = 1, . . . , N andk ∈ ĨNE
εI

(j).

1. Forl ∈ Λ compute by NFFTT

al :=

N∑

k=1

qke
−2πilxk .

2. Forl ∈ Λ compute

cl := alb̃l.

3. Forj = 1, . . . , N compute by NFFT

fRF (rj) :=
∑

l∈Λ

cle
2πilrj .

4. Forj = 1, . . . , N compute the nearfield corrections

fNE(rj) :=
∑

k∈ĨNE
εI

(rj)

qkKNE(rjk).

5. Forj = 1, . . . , N compute

f̃(rj) := fNE(rj) + fRF (rj).
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Direct Algorithms for Computing the Ewald Sum

For testing purposes two direct algorithms computing (2) were implemented. Both computeS2(rj),
j = 1, . . . , N , by

S2(rj) =
∑

l∈Z
3\{0}

‖l‖∞≤lmax

dl

(
N∑

k=1

qke
2πil·rk

)
e−2πil·rj

using a user-specified value forlmax.

The first algorithm, called PER, computes

S1(rj) =
∑

n∈Z3

′
N∑

k=1

qk
erfc(α‖rj − rk + n‖)

‖rj − rk + n‖

by evaluating the double sum for a user-specified range ofn. The purpose of this algorithm was mainly
to validate the correctness of the second algorithm, calledDIR. For DIR it is presumed that the cut-off
radiusRC is 0.5. I.e., each particlej, j = 1, . . . , N , of our central box interacts withN − 1 particles and
for each interactionrjk instead ofrj − rk is used, as described in (8), i.e. DIR computes

S1(rj) ≈
N∑

k=1

qk
erfc(α‖rjk‖)

‖rjk‖
.

For sufficently great values ofα the latter algorithm can be considered exact and is therefore used for
error calculations in relation to our fast algorithm.

Parameter Studies

The following parameters can be changed by the user to alter the behaviour of the fast algorithm outlined
above.

N Number of particles in the grid per dimension, so there will beN3 particles
total in the central box;

n Expansion degree, number of Fourier coefficients for the regularized kernel
functionKR(x) per dimension;

lmax Range of the coefficentsdl;
m Parameter for the truncation interval of the window functions in the NFFT

algorithm, see [1];
p Degree of smoothness of the regularized kernel function;
εI Boundary of the inner regularization of the kernel function;
εB Boundary of the outer regularization of the kernel function;
α Parameter of the kernel functionK(x).

Regular Grid

We set up our particles in a three-dimensional regular grid with alternating charges, i.e.

rj =
(j1, j2, j3)

T + 1
2

N
− 1

2
, qj = (−1)j1+j2+j3,

wherej = 1, . . . , N3 andj1, j2, j3 ∈ {0, . . . , N − 1} are chosen such thatj = 1 + j1 + j2N + j3N
2.

We chooseN = 12 and getN3 = 1728 particles in total.
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Furthermore, we set the truncation parameterm = 6, the degree of smoothnessp = 6, the inner boundary
εI = 0.1 and the outer boundaryεB = 0.1. Thus we getRC = 1

2 − εB = 0.4 for the cut-off radius of
the real space sum in (2). We chooseα = 7.11, and get

eα =
erfc(α ·RC)

RC
=

erfc(7.11 · 0.4)
0.4

≈ 1.4425 · 10−4

for the truncation error, see (7).

As a first step we want to determine the rangelmax for the coefficientsdl in the reciprocal sumS2(rj)
such that its calculation introduces no relative error bigger thaneα. In table 1a one can see the values
for S2(rj) calculated by the direct algorithm DIR for increasinglmax. Note that because of the setup of
the particles all calculated values are the same for each particle in the system. We consider the computed
value forlmax = 50 as correct and therefore chooselmax = 6.

lmax S2(rj)/qj
4 -1.2015561383818074e−16
5 -1.1473093337051994e−16
6 2.8361908863417218e−08
7 2.8361908863523468e−08
8 2.8361908863521638e−08
9 2.8361908863521578e−08

10 2.8361908863521578e−08
50 2.8361908863521578e−08

(a) Forα = 7.11.

lmax S2(rj)/qj
4 1.9180872965151214e−15
5 1.9181073806426144e−15
6 3.6291998815771393e−13
7 3.6291998815771393e−13
8 3.6291998815771383e−13
9 3.6291998815771373e−13

10 3.6291998815771373e−13
25 3.6291998815771373e−13

(b) Forα = 5.74.

Table 1: Values forS2, computed by DIR for increasing values oflmax inside the regular grid for different
values ofα.

In figure 3a we see the maximum relative error

E := max
j=1,...,N3

∣∣∣∣
V DIR

E (rj) − V FAST
E (rj)

V DIR
E (rj)

∣∣∣∣ , (13)

whereV DIR
E (rj) denotes the result of the direct algorithm withlmax = 25 andV FAST

E (rj) the result of
the fast algorithm, depending on the number of Fourier coefficients for the regularized kernel.

In addition to this we considerα = 5.74 as the kernel parameter. Here we get

erfc(5.74 · 0.4)
0.4

≈ 2.9154 · 10−3

as the truncation error. Similar to what we did above, we get table 1b and, after choosinglmax = 6, fig-
ure 3b, again containing the maximum relative errorE depending on the number of Fourier coefficients
of the regularized kernel.

Distorted Grid

We change the setup of our system by moving the 1728 particlesslightly away from their positions in
the regular grid, i.e. we have

rj =
(j1, j2, j3)

T + 1
2 + u

N
− 1

2
, qj = (−1)j1+j2+j3,
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20 40 60 80 100
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

n

m
ax

. r
el

. e
rr

or
 E

(b) Forα = 5.74.

Figure 3: The maximum relative errorE depending onn inside the regular grid for different values ofα.

wherej = 1, . . . , N3 andj1, j2, j3 ∈ {0, . . . , N − 1} are chosen such thatj = 1 + j1 + j2N + j3N
2 as

above. The offsetu is a pseudo random number that is uniformly distributed in[−2
5 ,

2
5 ]. We setα = 7.11

and therefore get a truncation error of1.4425 · 10−4. For the other parameters we use the same values as
before.

In table 2a one can see the average values forS2(rj), j = 1, . . . , N3, depending on increasing values of
lmax. Hereavgj=1,...,N3 |S2(rj)| denotes

1

N3

N3∑

j=1

|S2(rj)|.

We consider the results of DIR for one run withlmax = 25 as exact. Relative to this, the third column
contains the maximum relative error of DIR, which we define as

EDIR
S2

:= max
j=1,...,N3

∣∣∣∣∣
SDIR,25

2 (rj) − SDIR
2 (rj)

SDIR,25
2 (rj)

∣∣∣∣∣ ,

whereSDIR,25
2 (rj) is the result of DIR withlmax = 25 andSDIR

2 (rj) the one withlmax as outlined in the
table. Our choice islmax = 8.
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lmax avgj=1,...,Nd |S2(rj)| EDIR
S2

5 3.6644536306526931e+00 1.4252744120429841e+00
6 3.6645144045521389e+001.2161400630302546e−01
7 3.6645166036632268e+003.7538720204219581e−03
8 3.6645166954637993e+001.2883961507175747e−04
9 3.6645166950460055e+002.4138313578243623e−06

10 3.6645166948716570e+002.1087638633564823e−08
11 3.6645166948693109e+005.3731907791577379e−10
12 3.6645166948693082e+003.3732887006525980e−12
13 3.6645166948693086e+005.9865782119568971e−15
14 3.6645166948693086e+00 0.0000000000000000e+00
15 3.6645166948693086e+00 0.0000000000000000e+00
25 3.6645166948693086e+00 0.0000000000000000e+00

(a) Forα = 7.11.

lmax avgj=1,...,Nd |S2(rj)| EDIR
S2

3 2.9721054254298727e+00 5.1318339982418371e+00
4 2.9722702377648695e+001.8849066032676384e−01
5 2.9722616806350595e+009.0919837455896244e−03
6 2.9722623625160316e+006.2611485221720402e−05
7 2.9722623705516575e+001.0739409216685170e−06
8 2.9722623705810456e+005.3703826720300918e−09
9 2.9722623705812343e+002.4512142280307418e−11

10 2.9722623705812272e+001.9465702756890063e−14
11 2.9722623705812272e+00 0.0000000000000000e+00
12 2.9722623705812272e+00 0.0000000000000000e+00
25 2.9722623705812272e+00 0.0000000000000000e+00

(b) Forα = 5.74.

Table 2: Values forS2, computed by DIR for increasing values oflmax inside the distorted grid for
different values ofα.

The maximum relative errorE as defined in (13) depending on the number of Fourier coefficientsn3 of
the regularized kernel is plotted in figure 4a. Here again theresults of DIR are regarded as exact values
for the error computation. We see that the computational error of our fast algorithm is much smaller when
dealing with particles in regular configurations, just as wehad to expect.

We repeat the whole procedure forα = 5.74. The results are outlined in table 2b and, with the choice of
lmax = 6, figure 4b.

In figure 5 we have changed the size of the inner regularization of the kernel function by settingεI = 0.15
andεI = 0.25. The kernel parameter is set toα = 7.11. The other parameters are as above. By setting
εI = 0.25 we guarantee that for each particle all 26 direct neighbors are inside the nearfield of the real
space sum. This increases the accuracy of the results significantly but will also result in much more
computational effort for larger particle systems.

Summary and Outlook

We developed and implemented a fast algorithm that computesan approximate solution for the Ewald
sum (2) and requiresO(N logN) arithmetic operations. The implemetation features the computation of
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Figure 4: The maximum relative errorE depending onn inside the distorted grid for different values of
α.

an highly accurate direct algorithm which can be used for error calculations. All relevant parameters can
be set in the program. There are several debug output mechanisms in the program which can be activated
by compiler defines.

The algorithm was tested with two different particle configurations. In these tests we tried to find good
choices for the algorithm parameters. Two main requirements to succeed in this are not yet met. At first,
the algorithm has to be tested with particle systems holdingmuch more particles. Second, we can not
evaluate our algorithm until comprehensive time measurements have been done. After this we well be
able to compare the proposed algorithm with already existing algorithms with different approaches.
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Correcting Erroneous Quantum Algorithms
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Abstract: The IQCS (Improved Quantum Computer Simulations) softwarepackage is used
to simulate Grover’s quantum search algorithm. The programming language C, and the ma-
chines JUMP and JUGENE are used. The simulation deals with decoherence errors and gate-
imperfections and there are four different error stages implemented: ideal, erroneous, ancilla
QEC (Quantum Error Correction) and full QEC.

Introduction

A Quantum Computer is able to solve some problems more efficiently than classical computation can
do. The quantum mechanical generalization of a bit is calledqubit. One can think of it as an orthonormal
basis of a spin12 system. The notation for one general qubit is as follows:

|ψ〉 = α|0〉 + β|1〉, (1)

1 = |α|2 + |β|2 α, β ∈ C. (2)

In this text qubits sometimes are labeled in computational basis states and sometimes qubit-wise, so|0〉
means|0..0〉 or |4〉 means|100〉. For more information to the general definition of qubits andquantum
mechanics see [2], chapters 1-2.
In 1996 Lov Grover introduced his approach on quantum amplitude amplification [1], this is known as
Grover’s algorithm or quantum search algorithm ([2], chapter 6). We will recapitulate the very basic ideas
of quantum search and shortly repeat the basics of quantum error correction (QEC) and of the Steane
Code.

Grover’s Algorithm

The algorithm needs one “working” register which encodes the database in a binary form and in addition
some ancilla qubit to process calculations. The state may bewritten as|φ〉|y〉, where|φ〉 denotes (n-1)
qubits and|y〉 denotes the ancilla, so the state holds n qubits. As other quantum algorithms the quantum
search starts in the state

|φ〉|y〉 = |0..0〉|0〉 = |0〉⊗(n−1)|0〉. (3)

In order to prepare a database state which contains every possible entry up toN = 2n, a Hadamard trans-
formation on every qubit of the working register is performed (perfect superposition of every possible
state)

Ĥ⊗n
φ |φ〉|y〉 =

1√
N/2

N/2∑

x=0

|x〉 |y〉. (4)



In order to get the oracle function work properly, the ancilla should be prepared in|y〉 = 1√
2
(|0〉 − |1〉),

this can be achieved by

Ĥ⊗n
φ ĤyX̂y|φ〉|y〉 =

1√
N/2

N/2∑

x=0

|x〉 1√
2
(|0〉 − |1〉). (5)

In the further document|ψ〉 denotes the perfect superposition of (n-1) qubits|ψ〉 = 1√
N/2

N/2∑
x=0

|x〉.

The oracle is defined as an unitary operatorÔx0, so that

Ôx0|x〉 |y〉 = |x〉 |y ⊕ f(x)〉, (6)

f(x) : [0, 1]n 7−→ [0, 1] , with f(x) =

{
1 if x = x0,

0 otherwise.
(7)

With the previous definition of the ancilla|y〉 the effect ofÔx0 on the prepared state is a conditional
phase shift of the searched computational basis state

Ôx0|ψ〉 |y〉 = (−1)f(x) |ψ〉|y〉. (8)

Definition 1. Grover Operator Ĝ = (2|ψ〉〈ψ| − I) Ôx0.

By taking account of the geometric interpretation (in [2], chapter 6.1.3) the ideal number of Grover
iterations R can be determined. Let Cl(x) be the closest integer to the given real number x, then

R = Cl

(
π

4 arcsin( 1√
N

)
− 0.5

)
. (9)

Quantum Error Correction

This section is a very short repetition of QEC, it is based on ([2], chapter 10) and [3], which I advise to
read for further information. The basic idea of QEC is to add redundant information before erroneous
calculations take place and afterwards to find which error has occurred. The simplest way to do this is
the 3-qubit-code, where

|0〉 =⇒ |0〉|0〉|0〉,
|1〉 =⇒ |1〉|1〉|1〉.

It is crucial to get the fact straight that there is no cloningof states at this point. Ifoneerror occurs inside
the block to the next correction step, the position of this error can easily be determined; two errors destroy
our state. In addition to classical bitflip errors, phaseflips can also appear; together with the product of
both, a bitflipand a phaseflip, they form an orthogonal error basis. Steane’s code is able to correct one
bitflip and one phaseflip error in one block, whereas only 7 qubits per secured qubit are needed. It’s
another convenience of Steane’s 7-qubit-code that CNOT, Hadamard and the Pauli gates can be applied
transversally (for example, the X-gate cannot applied transversally on the 3-qubit-code encoded state).
As a penalty the transversal T-gate is not possible on steanecodes. Because this fact has some impacts
on the implementation of Grover’s algorithm, I will refer tothis point. The logical zero is encoded in the
equally weighted superposition of all even weight codewords of the Hamming code (even numbers of
1’s, see [3]):

|0〉Steane =⇒ 1√
8

(
|0000000〉 + |0001111〉 + |0110011〉 + |0111100〉

+|1010101〉 + |1011010〉 + |1100110〉 + |1101001〉
)
, (10)
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|1〉Steane =⇒ 1√
8

(
|1111111〉 + |1110000〉 + |1001100〉 + |1000011〉

+|0101010〉 + |0100101〉 + |0011001〉 + |0010110〉
)
. (11)

In this basis we are able to find and correct bitflip errors. In order to find phaseflips we have to rotate the
basis by applying one Hadamard rotation to each of the seven qubits (transversal H operator):

Ĥ =
1√
2

(
1 1
1 −1

)
. (12)

In the rotated basis bitflips are phaseflips and vice versa, sothat we can correct phaseflips (which are now
bitflips). The correction step needs 5 additional ancilla qubits for the purpose of fault tolerant processing.
The fundamental fact at this point is that in order to find errors, the error information of the unknown
pure state|ψ〉 is “copied” onto the ancillas, but the state of the ancillas has been carefully chosen (Shor
state) to ensure that only information about the error can beread by measurement.

If we store one qubit in an unknown pure state|ψ〉 on a storage device with imperfections and the
recovered state is denoted byρout, we are going to detect a loss of fidelity:

F = 〈ψ|ρout|ψ〉 = 1 − ε. (13)

If we use Steane’s code to encode the information in an 7-qubit-block then the recovered state can
maintain an improved fidelity, even if the encoding, decoding and error-recovery processes will suffer
from the same error:

F = 1 −O(ε2). (14)

IQCS

Improving Quantum Computer Simulations is a software package to simulate quantum computer algo-
rithms. The basic concept is to store the complex amplitudesof the whole state vector of a pure state|ψ〉,
constituted by n qubits. One qubit gates (which are2n × 2n matrices) have a clear inner structure so they
are applied to the state vector on the fly, instead of storing the whole data. The same is true for two qubit
gates. Among others the IQCS package implements CNOT, H,π/8- gates, which form a universal set of
gates.

Implementations

There are four different implementations: In the first one all errors are equal zero, in the second one oper-
ational and decoherence errors are enabled (error model is discussed later on), the third implementation
tries to stabilize the algorithm by encoding and correctingonly the ancilla qubit and the last is the fully
corrected algorithm.

Implementation of ideal Grover algorithm

If we take advantage of the following identities

ĤĤ = I and Ĥ⊗n|0〉 =
N∑

x=0

|x〉 (15)
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the Grover operator as defined above (Definition 1)Ĝ = (2|ψ〉〈ψ| − I) Ôx0 can be rewritten as

Ĝ = Ĥ⊗n(2 |0〉〈0| − I)Ĥ⊗n Ôx0. (16)

The matrix representation of an additional phase shift to state|0〉 equals the matrix representation ofÔ0

(oracle searching the state|0〉). So we rewrite the Grover operator according to

Ĝ = Ĥ⊗n Ô0 Ĥ
⊗n Ôx0. (17)

As Ĥ is already implemented in previous versions of IQCS, the only need is to implement the oracle
function. It is crucial to have in mind that the way to implement the Grover operator is not unique.
Besides it is possible to implement the additional phase shift without using the ancilla. As an impact
of the implementation which is chosen here, the ancilla becomes more important to the stability of the
algorithm, because it is accessed twice per grover iteration instead of once.

By convention the oracle is of kindCnNOT -Gate, whereas theCn functionality is implemented as
black box. The ideal implementation of the black-box-oracle is called fCNOT-function. First thing to do
is finding the rank of the processor and finding the index of thesearched state. The variable NSTATES is
defined as the number of states stored per processor and x is given as computational basis state (int).

i n t rank = x / NSTATES;
i n t i = ( x % NSTATES) ;

After rank and index are determined alocal NOT operation is performed. The operation is always local
on one processor, because the ancilla qubit is at position 0.

Start in|0〉⊗(n−1) |0〉

1. I⊗n−1 ⊗ X̂ancillar

2. Ĥ⊗n

3. perform R (see eqn. 9) grover iterations:

→ Ĝ = Ĥ⊗n Ô0 Ĥ
⊗n Ôx0

→ save data (amplitudes, etc.)

4. write out data

The algorithm is performed as described
in the left box, whereas one grover iter-
ation denotes one sequential use of the
grover operator of eqn. (17). The main
load of the algorithm are the repetitive ap-
plication of Hadamard-gates to the work-
ing qubits. There is no need for any statis-
tic iteration, since every run provides ex-
act the same result.

Figure 1: Ideal implementation, no statistic
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The result for this first implementation is shown in fig. (1). Because of the graphical interpretation that
was mentioned before, a squared sinus function is estimatedfor this graph. The simulation ran with 14
qubits, whereof 1 is the ancilla and the others are labeled “working qubits” (encoding the database). The
x-axis is assigned to the number of sequential grover applications and the y-axis to the probability of
measuring the searched state. The ideal number of grover operator applications is printed in the title and
labeled “Grover Iterations”. The amplitude of the searchedstate is found inside the program using the
same method as in theCn black box. The value is summed over both possibilities of theancilla qubit
since the measurement is performed only on the working qubits.

Implementation of erroneous Grover algorithm

The error model of the IQCS software package consists of operational and decoherence errors which
are labeled “sigma” and “deco” at this point. Decoherence ismodeled using the deco error to represent
the environment-qubit interaction. Every timestep each qubit suffers from decoherence, whereas one
timestep is simply the duration of one quantum operation (one must have in mind that it is possible to do
operations in parallel at this point). With probability(1 − q) nothing happens to the qubit, whereas with
probability q/3 each either bitflip, phaseflip or bitphaseflip is applied to the qubit. Gate-imperfections
are modeled using the sigma error. For this purpose every one- and two-qubit gate is fragmented into
planar rotationsRǫ or phase shiftsPǫ:

Rǫ(θ) =

(
cos(θ + ǫ) −sin(θ + ǫ)
sin(θ + ǫ) cos(θ + ǫ)

)
, Pǫ(φ) =

(
1 0

0 ei(φ+ǫ)

)
. (18)

The parameter sigma denotes the standard deviationσ of a Gaussian distributionf(ǫ) = 1
σ
√

2π
e−

1

2
( ǫ

σ
)2

for the angle errorǫ. For example the Hadamard operation:

Ĥǫ = Rǫ(
π

4
)Pǫ(π). (19)

The way to implement the fCNOT-function is straight forward: Cn part is the same as before (because the
memory layout is the same), but the NOT-operation is composed out of (18). In order to perform alocal
operation, only those ranks storing information of the searched statex0 join in the fCNOT-function, the
others are idle. For convention the preparation of the database and the ancilla qubit is free of any error,
only the grover operator is erroneous. There are done several runs with different single and combined
errors. In general the maximum amplitude of the searched state is smaller for higher error rates. The more
interesting fact is that its position is reached with less applications of the grover operator (as described
in [4]). The data is taken and processed in the same way as fig. (1). The area around the maximum
amplitude is fitted using a parabolic function; its parameters are used to get the abstract position of
maximum amplitude and the probability ofx0. Using different values of n, sigma and deco leads to the
plot shown in fig. (2a). But in order to compare the probabilistic quantum algorithm with the classic, non
probabilistic search of an unstructured database, a variable teff is introduced:

P
!
= 1 − (1 − p)k, (20)

teff = k ·NGrover. (21)

Whereas p is the probability to measure the searched statex0 andP is set toP = 0.99. The idea is to
repeat quantum search until the probability to fetchx0 is at leastP . The “time” needed for this repetition
is teff .

Errors provide less computational effort to reach the maximum possible amplitude. But fig. (2b) shows
that it is not possible to save computational power due to errors. If it was possible, curves with different
error rates would cross each other. Furthermore the minima of more erroneous curves would occur at
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(a) Comparison plot - The classic(x) and ideal(x) curves
are functions, so they do not suffer from integer divisions.
This is the reason why the other curves seem to have dis-
continuities.

(b) Is it possible to gain something by errors? The granu-
larity of this plot is because of the definition ofteff : The
type of the parameter k is integer, hence there are disconti-
nuities.

Figure 2: Plots

lower iteration numbers as the minima of less erroneous curves. Within the scope ofn = [9; 20] more
plots like fig. (2b) are gathered to foreclose special cases.

There are two different approaches to analyze the current error model. As previously discovered in [4] the
amplitude ofx0 decreases by fulfilling an exponential lawAx0

(niteration) = eαniteration. Due to conservation
of probability in long running times the amplitudes of all states should (in the average case) equal1

N . To
be able to confirm this result (even though in [4] is used a slightly different error model) there are made
some different runs with much more applications of Grover’soperator and different values of sigma/deco
(fig. 3a). The results are shown in fig. (3c), (3d). The dependency of the exponent of decreaseα on the
deco parameter shows a nearly linear behavior, in contrast to the more or less quadratic dependence on
the sigma parameter. This behavior is because the sigma parameter refers to a deviation and the deco
parameter is a probability. As second approach to analyze the error model, a couple of runs are taken
with different sigma and deco. The result is an array of curves: One error is left variable while the other
one is used as parameter for the set of curves and vice versa. The plots (see fig. 3b) should look like the
inverse of the so called “error-norm”-plots in [5], and indeed they are.

The data is gathered by building the arithmetic average overeach amplitude value of many independent
runs each starting from the same errorfree initial state. There are some statistical artifacts which are not
related to the quantum search algorithm. Taking the geometrical interpretation of amplitude amplifying
into account, the grover operator can be described as 2 dimensional rotation which rotates only by a fixed
angleβ. A first approach to transfer the sigma/deco error model intothis simplified interpretation is that
β is no more a fixed angle, but varies with deviationδk for each rotationk. In a sequence of rotations it is
clear thatδk < δk+1 since errors propagate quadratically. In this model there is only a flux of probability
from one state to another by courtesy of rotations (which is asimplification), so every amplitude-vector
Ĝk|ψ〉 lies on a circle around the origin for everyk. Whereas

Ĝ ∈ SO(2) and |ψ〉 ∈ R2. (22)

By taking the average over all statistical iterations points laying on a segment of a circle of length corre-
sponding toδ are summed up. Due to this summation the mean norm of the resulting vector|ψ〉k afterk
rotations becomes smaller (see fig. 4a). To relate this to thewhole algorithm: Even if there are no prob-
ability transferring errors, the over-all probability will decrease because of taking the mean value. This
effect has another impact onto the minima, by taking the meanvalue for every probability, sometimes
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(a) An exponential law is used to describe the decay of
the amplitude of the searched database entry. The constant
part is because of conservation of probability during the
algorithm.

(b) The behavior of quantum search while considering dif-
ferent errors.

(c) Dependence of the exponent of decrease on the sigma
parameter. The quadratic part of an polynomial interpolat-
ing function is highly exaggerated.

(d) Dependence of the exponent of decrease on sigma er-
ror. The behavior is nearly linear.

Figure 3: Plots analyzing the current error model.

points laying on the flank of the minimum are summed up into theminimum (compare fig. 4e). As a
result the minimum at positionk has a higher probabilitypmin,k as in a single run and also:

δk < δk+1 ⇒ pmin,k < pmin,k+1. (23)

But both the whole curve and the minima obey a law of exponential decrease, so there is a maximum
pmin,j

∃j, ∀k : pmin,j > pmin,k. (24)

To verify that this effect is due to statistical averaging, avector-matrix multiplication with independent
erroneous rotation angles has been implemented usingMathematica, the results are shown in fig. (4).

Stabilized ancilla qubit

The main load of the algorithm is to calculate Hadamard operations. If they work faultily only a full QEC
scheme helps to correct them. The only other operation is theoracle operator, or fCNOT-function. It only
works properly if the ancilla qubit is well prepared in the state |y〉 = 1√

2
(|0〉 − |1〉). So the first basic
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(a) The average norm of a 2 dimen-
sional vector over 10.000 statistical it-
erations. The vector is rotated 100 times
each iteration, using imperfect rotation
angles. The initial state is similar to the
Grover algorithm initial state|ψ〉, the
rotation angle isβ and the system refers
to n = 7 qubits. Because of the sum-
mation to get the mean value, the norm
decreases.

(b) Simplified 2 dimensional model to
reproduce the output of grover simula-
tion. Only using imperfect rotations and
adjacent building of the mean value, the
resulting envelope seems to decrease
exponentially.

(c) The same as picture the left one,
but magnified to identify the behavior
of the minim-as.

(d) Simulation of Grover’s algorithm with IQCS. Magni-
fied y-axis to see the behavior of the minim-as.

(e) The position of the first and second minimum differ in
each statistical iteration, but to get the average they all are
summed up into one value respectively.

Figure 4: Plots analyzing statistical artifacts.

approach to stabilize the algorithm is to stabilize the ancilla qubit. For this purpose a 7-qubit Steane code
is used. The encoding and decoding functions in IQCS are implemented in a fault-tolerant way, so the
Steane code needs 5 additional qubits, so called “measurement” qubits. The whole memory layout has
to be adjusted:

nw︸︷︷︸
working qubits

+ 7︸︷︷︸
ancilla qubit

+ 5︸︷︷︸
measurement qubits

. (25)

The algorithm is implemented as shown in fig. (5a). The main task is the implementation of the fCNOT-
function: The NOT-part is realized transversally (a huge advantage of Steane codes), but theCn-part
differs a little bit from previous implementations. At the final measurement the state of the 7 ancilla qubits
and the 5 measurement qubits does not matter and is thereforenot measured. Therefore all amplitudes
of the27+5 different lower order bit states can be summed giving the amplitude of the working qubits
basis state respectively. As the only interesting amplitude is the one corresponding tox0, only the sum
of these27+5 possible states contributing tox0 are calculated and written out each grover iteration. In
the same manner theCn-part of the fCNOT-function has to find the right27+5 block and then perform
the transversal NOT operation. In general the different ranks have to communicate to do this, so the
variables rankStart, rankStop, indexStart, indexStop arecalculated in order to find the right ranks, which
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are contiguous, and the right index where the data is stored.Afterwards a new split-communicator is
created in MPI and the NOT operation is performed within the local index range of indexStart and
indexStop.

(a)circuit diagram - only the preparation is ideal. The “y” denotes the well prepared
ancilla-state|y〉 = 1√

2
(|0〉 − |1〉).

(b) Simulated using sigma=0.001. Only the first maximum
in probability ofx0 is illustrated. The statistical iterations
are very insufficient, but the probability seem to become
higher.

(c) The same plot as to the left, but with sigma=0.0001.
The statistical iterations are insufficient too, which is illus-
trated by the standard deviation of the measurement.

Figure 5: Analyzing stabilization of ancilla qubit.

The results of the implementation to stabilize the ancilla qubit are unfortunately still unfinished. Prob-
lems are the insufficient statistical iterations and therefore too little computational power. The achieved
outcomes of the simulation are not precise enough to decide whether the approach of stabilizing the an-
cilla is stabilizing the whole algorithm. There are done measurements with 2, 16, 22, 27 and 28 qubits;
in case of 2 qubits the results are discussed later on, together with full QEC schemes. Because much
more statistical iterations are needed to provide proper results in the presence of decoherence, this error
is switched off and only the sigma error is simulated. The task is to find a maximum error threshold the
current correction scheme provides an improvement in the maximum probability ofx0. In general the
former discussed error threshold is only true in case of fullQEC. So the searched threshold could depend
on the size of the system. The simulation is very expensive, because to find a threshold, the standard
deviation of the mean amplitudes must be disjoint. Therefore the investigation is focused on the n=2 and
n=27 qubits case to get more precise results. For the case n=27, one run denotes 100 statistical iterations
and take time of≈ 10hs.. In fig. (5c) one run is drawn and the result of merging two runs. The problem
is, that one run includes only one event that cannot be corrected by the current QEC scheme (2 bitflip or
2 phaseflip errors in one block). In order to take the right mean value it is crucial that at least 100 or more
“events” take place, so there is a need of at least a factor of 100 more statistics to get acceptable results
using this method. The approach to find the threshold in case of smaller operational errors is displayed in
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fig. (5c). The smaller error rates worsen the problem as events of uncorrectable errors appear even more
rarely. Our preliminary result is that it is not possible to correct the whole algorithm by only stabilizing
the ancilla qubit.

Stabilized algorithm

The last implementation that is done concerns the fully encoding of all “working” qubits and the ancilla
qubit. The new memory layout is

7 · nw︸ ︷︷ ︸
working qubits

+ 7︸︷︷︸
ancilla qubit

+ 5︸︷︷︸
measurement qubits

. (26)

Because the complexity of this scheme is much higher than in previous implementations, our simulation
is limited tonw = 2, which uses a total number ofn = 26 qubits. The total state vector needs1.6gb
of memory (which is doubled for every additional qubit), thenext possibilitynw = 3 needs206gb.
Furthermore by using eq. (9) withn = 2 the value R denoting the grover iterations becomesR = 1 and
the possibility to measurex0 after 1 grover iteration isp = 1, so every value except 1 must occur due
to errors. The implementation of thecn-part of the fCNOT-function is now more artificial as in previous
implementations. The states of the working qubits are now distributed over the whole state vector. There
are three possibilities of how theCn can be implemented. The first one(a) is to use unitary operator
decompositions, but for this case aπ

8 -gate is necessary and this can not be implemented transversally
on Steane codes. The second one(b) is to perform ideal decoding before each fCNOT, then read out
the amplitude as before and afterwards to perform ideal encoding. The disadvantage is that there is a
passive error correction included, since the whole possibilities of 27 states are projected into one state.
This passive correction has no physical reason and is treated as artifact of the method. The third one(c)
discussed here is to calculate the exact position and blocksize of all 8nw Steane code parts which form
one computational basis state and perform a local NOT operation on this states. This third method is also
very artificial, because the other states, beside the Steanecode states, could have nonzero amplitudes in
case of errors, but these amplitudes are completely ignored. The implementation here follows the second
(b) possibility.

The first approach is to encode all qubits, but introduce correction steps only onto the ancilla qubit, as it
is displayed in fig. (6a). The results of several runs with different sigma errors (the decoherence is again
turned off to reduce computation time) are shown in fig. (6b).Stabilizing only the ancilla qubit in the
case ofn = 2 again turns out to be unsuitable to stabilize the whole algorithm. Although the statistics
is insufficient, the trend of the curve points to worse values. Up toσ = 0.0005 full QEC improves the
probability to findx0 compared to uncorrected Grover. As expected, the full QEC scheme gets worse
for higher sigma values (threshold lays between[0.001; 0.0005]), this is because of the enhanced length
of the algorithm due to error correction. This approach of a fully corrected Grover algorithm works
because of the passive correction that takes place during the fCNOT-function. The next improvement is
to introduce correction steps to each of the encoded workingqubit, at the same place where the correction
steps of the ancilla qubit are performed. The difference of this “really” full QEC scheme to the previous
one is marginal (see fig. 6c) (this fortifies the prediction that the passive correction has a huge influence
to the algorithm).

Scaling

The scaling measurements are done for every different implementation. The time to perform the quantum
search is measured using the MPI command “Wtime()” and the data is displayed as speed-up plots. The
ideal case would be a straight line, as running the task with doubled number of processors should be done
in half the time. The best performance until system size ofn ≈ 19 qubits can be achieved in running
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(a) circuit diagram - only the preparation is ideal. The “y” denotes the well prepared ancilla-state|y〉 =
1√
2
(|0〉 − |1〉).

(b) Plot comparing three QEC schemes in case of
n=2. Statistics: without QEC 100,000,000, ancilla QEC
3,200,000 and full QEC 30,000 iterations. The worst
method is to apply correction steps to the ancilla. For
higher errors the full encoding scheme becomes worst.

(c) The same plot as the left one, but with magnified y-
axis. There is one interesting point: At sigma=0.0005 full
QEC is better than no QEC. This point is simulated using
full QEC and full, active QEC (with correction steps on all
qubits).

Figure 6: Analyzing stabilization of all qubits.

serial jobs (see fig. 7a). The interesting thing is that in case of n=[20;23] the simulation behaves in a
super-scalar manner. There are two opposed effects: The time needed to calculate the operations on the
local processor and the time needed to send the data through the network. If the local data is too small,
the communication will delay the calculation, on the other hand if the data is too big, the local performed
calculation will delay the whole program. The optimum system size seems to be n=22, as the super-scalar
manner reaches its maximum. This can be understood as cache effect, as the cache-size on the JUMP
system is 4mb and the local memory needed to store the state vector is in the same scale. But, this effect
is not analyzed deeply during this work, as the simulation time in the region where the effect occurs is
too long to get results in an equitable timescale.

Conclusion and Outlook

Grover’s algorithm was implemented using the IQCS softwarepackage and the programming language
C. There were four different implementations: ideal, erroneous, ancilla QEC, full QEC and the algo-
rithm could suffer from decoherence errors and imperfections in gate applications. The error model was
analyzed and the results are suitable to further investigations. We could quantify the dependence of the
probability to find the searched database entry on decoherence and operational errors. We analyzed the
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(a) Machine: JUMP (b) Machine: Jugene.

Figure 7: Scaling plots

deviation of the searchtime ideally scaling as∼
√
N in the presence of these errors. There are different

statistical artifacts: Displacement of minima, decrease of the amplitude in dependence of the number of
grover applications (additional to the “real” decrease, which can be seen in single runs). As a preliminary
result (due to low statistics) stabilizing only the ancillaqubit does not result in a higher amplitude of the
searched element. Within the black box implemented fCNOT-function the correctness of QEC could be
verified. For our investigated system we could quantify thatup toσthres≈ 5·10−4 full QEC does improve
the grover algorithm compared to non QEC. As forecast the next logical step is the implementation of a
transversalπ8 -gate as shown in [6], to make the fCNOT-function a unitary operator.
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Abstract: High Performance Computing is playing a major role in the research and the devel-
opment process nowadays. The increasing performance of thecomputers and the development
of the data storage devices open the door for new research fields and discoveries. However, the
increasing number of processors used in the supercomputerstoday poses a new problem to the
developers: the scalability of the applications.
One of the major factors for this is the data access and storage. How should the data be written
in parallel? Is there an optimized way for doing this? How arethe files maintained?
SIONlib is an attempt to answer these questions by providing an easy and efficient interface for
working with binary files in parallel.

Introduction

SIONlib, theScalableI /O library for Native parallel access to binary files, started as an output library
for Scalasca[1], a performance analysis toolset, but later onSIONlib was separated from measurement
toolkit. It is a small library for writing and reading data inparallel from thousands of processors and it
is especially designed to work with binary files. This file access pattern is the most commonly used in
many different applications, e.g.,

• Trace files for performance analysis tools

• Scratch/Temporary files

• Application dependent checkpointing

The library provides a simplified file handling for parallel programs that formerly had to read or write
binary data in parallel from/to separate files. Handling of thousands of files is no more needed as there is
only one or a few big files containing all the data.
Reading/writing can be done using the standard C-I/O interface so minor changes are needed to convert
an existing code to work withSIONlib. Just the standardfopen()andfclose()should be replaced with a
customized version fromSIONlib. Later on, the normalfread() and fwrite() can be used for reading or
writing binary data using that pointer.
Moreover, when creating a file,SIONlibaligns the data blocks of that file with the file system blocks.



Idea and Motivation

The increasing computational power of the computers and thedecreasing price of the data storage devices
provide new research opportunities. Simulation programs are becoming more and more complex and
they are dealing with huge amount of data. Storing or retrieving this data might take a major part of the
program’s runtime and has a great influence on the scalability of the applications. There are different
problems and solutions when it comes to parallel I/O and someof them are presented in the following
sections.

File locking

Distributed filesystems are mainly used for the high performance computing to provide storage space
and parallel access to files. They exchange information about the blocks that compose a file but not about
the files themselves. This approach has the advantage of packed placement of the data and increased
performance.

However, the integrity of the filesystem should always be maintained. This is done by protecting the file
system meta-data from concurrent access using a mechanism called Block Locking. This is done using
low level locks and has the effect of serializing parallel accesses to the internal data structures of the
filesystem.

The same procedure is also used to maintain data consistencyof the files. No two processes are allowed
to write to the same block at the same time. The internal structure of the filesystem is mainly based on
inodes. Each one of them contains all the information about a file except the data stored in it (filename,
size, access rights, number of links to this file, etc). It is vital to protect this information from concurrent
modification in order to maintain the integrity of the filesystem.

Parallel file access strategies

There are different approaches when working with files in parallel. They solve some of the problems one
faces when using files in parallel but also introduce different problems.

The two most common ones are:

• Parallel I/O using separate files

• Parallel I/O using native direct access

The first strategy is the easiest to implement and it is the most common one. It uses a separate file for
each process so the number of files depends directly on the number of processors. Due to the increasing
number of CPUs nowadays, this approach has problems with scalability and maintenability. The main
problems are:

• Serialization on the output folder:
Directories are a special case of a file in Unix. As such they also haveinodes. This inode contains
information about the files inside the folder and it is updated when a file is either added to or
removed from the directory. This information should be keptconsistent during parallel accesses so
the same mechanism of locking is used on the folder’s inode.
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Having to create thousands of files at once will inevitably lead to folder locking and the process
will be serialized. This has a impact on the performance and rises major scalability problems.

• Difficult to handle and backup the files:
Execution on more than 10k cores will create a huge amount of files. Migrating and archiving so
many files and organizing the data are a complicated and time consuming tasks. This situation may
also lead to fragmentation of the filesystem.

The second common approach is using native direct access forworking with the files. It solves the
problem of maintenability by storing all the data in one big file. Unfortunatelly, it brings other problems:

• The filesystem locks the access to the data block-wise in order to maintain data consistency.
Tasks writing to the same data block need to wait and the process is again serialized. This leads
again to low performance and poor scalability.

• No information about the file structure such as start of the data for each task, size, structure, etc, is
available.
The data structure inside the file should be hardcoded in the specific program and it will not be
portable. Creation of generic tools for working with the files will not be possible.

• Chunksize should be specified in advance.
The precise size of the data that will be written to the file should be known in advance. This size
cannot change after the file is created.

MPI I/O is also part of this parallel file access strategy. Its performance and features strongly depend on
the specific implementation. However, it is designed to workwith derived datatypes and not directly with
binary data. This approach provides flexibility but makes the I/O interface more complex - special care
should be taken when working files. What is more, it does not use a standard C-I/O interface making it
difficult to integrate in existing software code. [4]

Features of SIONlib

In an attempt to solve these problems and provide an easy and efficient way of working with files in
parallel,SIONlibwas designed. It solves many of the problems that the other two approaches are facing
and at the same time staying as simple to use as possible.SIONlibcan use one or a few files to store the
data from all processes. The main advantages are:

• Data aligned in chunks each with the size of the filesystem blocks (Fig. 1):
There is no need of locking because each process accesses itsown block. As a result there is no
more serialization on the access to the file providing a better scalability and performance.

• Meta information about the data structure in the file:
Generic tools exist that can operate on any file created withSIONlib. These include splitting a big
file in small pieces containing only the data from each task, rearranging and defragmenting the
data in the file, information about the data stored, etc.

• Chunksizes should also be specified in advanced.
However,SIONlibwill automatically flush the file and assign more space if it isneeded. This way
the size of the data written by each task can increase dynamically.
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Figure 1: SIONlib File Format

Fortran API

High performance computing deals mainly with scientific simulations and a lot of the software is written
in Fortran. Being written completely in C, there was no support for these applications. As a result, the
library was extended and the Fortran API was included.
Due to the differences in the way Fortran and C handle files, all the I/O is done in pure C. This way, the
created files are portable and they can be used from programs written in both languages. Wrapper func-
tions are also provided for writing/reading binary data to/from the files:fsion_fwrite()andfsion_fread().

Integration of SIONlib in PEPC

As a direct application of the this new feature,SIONlibwas integrated in a development version of PEPC.
The name is an abbreviation for Pretty Efficient Parallel Coulomb-solver and it is a parallel tree-code for
rapid computation of long-range Coulomb forces in N-body particle systems. The public version of
PEPC is divided into kernel routines and ’front-end’ applications. A front-end called PEPC-B, code for
simulating laser- or beam-plasma interactions, was selected andSIONlibwas integrated in it. [2]

Initially, it was using one file per task and time step. All thefiles were seperated in folders according to
the processes they belong to - each task having its own directory. This was done as a workaround for the
common problem of folder’s inode locking. However, this approach does not scale good because of the
need to create thousands of folders and later on hundreds of files in each one of them. All the folders are
created in the preprocessing phase and as a result it long delay till the simulation is up and running.
What is more, one can easily hit the maximum number of files limit. This will lead to an I/O error and
the program behaviour will be unexpected.

In an attempt to overcome this problems and improve the scalability of PEPC,SIONlibwas integrated in
a development version. This extension provided the following advantages:

• Only one file per time step needed
⇒ No more thousands of folders
⇒ Faster startup & Easy handling of the simulation data

• Homogeneous execution after restart
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Multiple Files Support

Another recently added feature ofSIONlib is the support for working with multiple physical files using
only one logical file. The main reasons for this extension are:

• Maximum filesize limit
Different systems have different restrictions on the filesize. This may lead to problems, for exam-
ple, with performance analysis tools that generate trace files with the size of more that 2TB. One
way to overcome this limit is by using a few smaller files instead of a big one.
Another example is the limit of the 32-Bit systems. The filesize is restricted to about 2GB when
using a standard 32-Bit file pointer to index the number of bytes. However, this problem no longer
exists on newer systems due to the extended support for largefiles (LFS).

• Different optimal strategies on different filesystems
On one hand, the best performance some filesystems can be achieved using just a few big files. On
the other hand, many small files can be the optimal strategy for others.

• Metacomputing

– Local files for each computing resource

– Less communication and data trasfer
⇒ Better performance and scalability

• Local files on not consistent global filesystems
There might be a delay after creating a file on a global filesystem until it becomes visible to
the rest of the compute nodes. This might lead to unexpected behaviour of the application and
different I/O errors. One possible workaround for this problem is to use only files that are local to
each compute node. This way, the file will be accessible directly after creation and the workflow
will be consistent.

• IO Nodes oriented approach on BG/P
Having one file per I/O node leads to faster performance on theBlue Gene/P platform.

Current State

The following chapter gives a short look at the current stateof SIONliband my work connected with this
library during the 10 weeks guest gtudent program at the Jülich Supercomputing Centre.

• C and Fortran Interfaces:
Initialy, only support for applications written in C existed, but the support was extended also for
Fortran code.

• Multiple files can be read/written at a time: In the beginning, SIONlibwas designed to use only one
big file for all tasks. However, this proved to be inefficient in some situations and now the library
can work with multiple files at once. There are two different ways of specifying the number files
used:

– Directly specifing the number of files:
Exactly that many physical files will be created and they willbe equally distributed among
the processes.
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– Specifing a global and a local communicator:
The number of physical files will be equal to the number of local communicators inside the
global one. Thus, the processes in each local communicator will get a separate file. This
approach can be used when the number of local communicators is not known in advance.

This files are opened using only one function call. This will return a file pointer that will be specific
to each process and will point to different physical files. Asa result, there will be only one logical
file and multiple physical ones(Fig. 2).

(a) Single file (b) Multiple files

Figure 2: Multiple files support

• Doxygen documentation:
The whole API and the internal structures are now documentedwith Doxygen. This provides a
cleaner and more detailed information about the library. Help documentation can be generated in
many different formats just with a simple command.

• Tested on GPFS, Lustre:
Extensive tests of the library were completed on the GeneralParallel File System (GPFS). Basic
functionality was also tested on a Lustre file system.

• Integration in a development versions of Scalasca and PEPC-B: As a direct application of the new
Fortran API,SIONlibwas integrated in PEPC-B. There exists a development version of Scalasca
working with the this library. However, it is using an old version ofSIONliband an update is to be
completed soon.

SIONlib Internals

SIONlib File Format - Overview

The file format used bySIONlibcan be seen onFig. 3. It contains the following three main parts:

• Metablock 1:
This block contains static file information(Fig. 4) and it is written exactly after the file is opened.

• M blocks of chunks:
One chunk is allocated for each process. It contains the datawritten by that task and has the size
requested in the beginning. If a process tries to write more data than specified, a new block of
chunks is created and the current file pointer is set to the correct position in the new block. This
way, the size of the data can be dynamically increased and is not restricted by the requested value.
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• Metablock 2
This block stores dynamic information depending on the number of tasks and writes(Fig. 5). It is
written just before the file is closed.

Figure 3: SIONlib File Format

SIONlib File Format - Metadata

As already mentioned, the internal information about the file and the data structure is saved in two blocks.
Their structure can be seen onFig. 4 andFig. 5.

Figure 4: SION Metablock 1 Figure 5: SION Metablock 2

SIONlib File Format - chunksize dependence

When the file is created, the chunks of the file belonging to each process are aligned with the filesystem
blocks. The resulting data structure depends on the ratio between the chunk size and the filesystem block
size. The most common case are:

• When the requested chunk size if less than half of the filesystem block size, the whole block is still
allocated and more than two chunks of data can be written to it. This is done in order to eliminate
possible block locking by assigning the whole block to one task. As a result, there might be empty
space left after the data.
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Figure 6: Chunksize
FSBlkSize <

0.5
1

• Another situation is when two chunks of data perfectly fit into one filesystem block. There is no
empty space after the data.

Figure 7: Chunksize
FSBlkSize = 0.5

1

• Most often, the chunk fits exactly the filesystem block. This results in a nicely structured data in
the file with no empty spaces.

Figure 8: Chunksize
FSBlkSize = 1

1

SIONlib Fortran API

Writing a Fortran API for a C library is not always a straight-forward procedure. There are some key
points that need to taken into account:

• Arguments:
Fortran passes arguments byreferenceso all C function arguments should be defined as pointers

• Strings:
For each string argument Fortran passes an additional argument being the length of the string. This
is represented in C by along int variable which is passed by value. Thus, additional parameters
should be included after the normal arguments in the C functions.
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• Procedure name:
In Fortran the name of a function after compilation depends on the compiler. There are different
conventions:

– All letters uppercase

– All letters lowercase

– Trailing underscore(_)

– Trailing double underscore (__)

This name should be the same in both C and Fortran object files for the successful linkage of the
final executable. To overcome this problem, different macrodefinitions are used for each case.

• Sharing I/O between C and Fortran:
Generally, writing a file in C and later on reading it in Fortran is not recommended. Even though
Fortran uses internally file pointers just like C, access to them is not provided to the programmer.
What is more, Fortran writes the data based on records and inserts special information in the file.
A better and more portable strategy is to do all the I/O eitherwith C or Fortran. AsSIONlibis com-
pletely written in C, all the I/O in the Fortran API is also done with the C-I/O interface. Wrapper
functions are also provided for working with binary files from Fortran.

As a final result,SIONlibworks internally with C file pointers and the files are accessed from For-
tran using a special SION identifier (INTEGER)! This approach provides portability of the datafiles,
data consistency and resembles the Fortran handles files.

Local and global communicators

As an alternative to the common way of opening a SION file wherethe number of files should be ex-
plicitly specified, there is a version working directly withcommunicators. Both a global and a local
communicators should be specified andSIONlibwill create one file for each local communicator. No ad-
ditional information about the splitting of the processes is needed, thus providing easier code integration.

However, there is no MPI function that returns the number of subcommunicators of a communicator. So
after the processes are divided in groups, there is no way getfurther information about the splitting. The
following algorithm is used inSIONlib for this purpose:

1. Get the global and local ranks of the current process.

2. UseMPI_Gatherto collect the local ranks to the global task 0.

3. gRank 0: Check the collected local ranks and for each 0 entry increment a counter.

4. gRank 0: Send the current counter value to the task having alocal rank 0.

5. lRank 0: After receiving the value, that task broadcasts it in the local communicator.

6. A file suffix is formed using the received value.

7. The final value of the counter is the number of local communicators.
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SIONlib Workflow - Create a new file for writing

When a file is opened in write mode, the workflow is as follows:

• sion_paropen_multi_mpi(. . . )

1. Generate a suffix for the output file(s)

2. Create a SIONLIB ID

3. Allocate space for the internal stuctures

4. Open the file(s)

5. Write Metablock 1

6. Set the task specific file position

• sion_ensure_free_space(. . . )

1. Get the current position in the file

2. Add to it the required data size(nbytes)

3. Compare it with the size of the allocated chunk in the block

4. If bigger⇒ create a new block and flush the file

5. Set the new file position accordingly

• fwrite(. . . )

• sion_parclose_mpi(. . . )

SIONlib Workflow - Open a file for reading

The following steps are performed when a file is opened for reading:

• sion_paropen_multi_mpi(. . . )

1. Generate a suffix for the input file(s)

2. Create a SIONLIB ID

3. Allocate space for the internal data stuctures

4. Open the file(s)

5. Read Metablock 1

6. Read Metablock 2

7. Set the task specific file position

• sion_bytes_avail_in_block(. . . )

1. Check if there the end of the current block is reached

2. If yes⇒ set the pointer to the next available block

• fread(. . . )

• sion_parclose_mpi(. . . )

102



Benchmarks

Benchmark Environment

The following benchmarks were performed on the Jugene system in the Jülich Supercomputing Centre.
It is based on the Blue Gene / P platform with 16 racks in total.Specific for this system is the presence
of pure compute nodes and others doing in I/O [5]. Every 128 compute nodes access one I/O node. As a
result, there are 8 I/O nodes and 1024 compute nodes in 1 rack of the Jugene system.
All the compute nodes connect to the I/O nodes using internalnetwork. The latter are connected with
a 10 Gb optical network to the file-server. Thus, the theoretical bandwidth of the I/O operations is up
to 10 GB per rack. In practice, however, it was measured to be 6GB/s using a special I/O benchmark
directly on the file server. This is mainly due to the current configuration of the fileserver in the Jülich
Supercomputing Centre.

GPFS Benchmarks

SIONlib PARTEST on Jugene

As a small benchmark, a test program was run on 1024 compute nodes in VN mode (4 cpu cores per
compute node) with 1 TB of data being first written to and then read from the filesystem. In the VN mode
there is one MPI task running on each core. Table 1 shows the results of this test usingSIONlib.

Files Size
Open / s Close / s BW / MB/s

W R W R W R
1 1024 3.24 0.17 13.65 0.43 1510 4093
2 1024 1.55 0.58 10.00 1.35 2022 3794
4 1024 0.30 0.33 3.19 0.16 2471 3693
8 1024 0.31 2.15 3.45 1.76 2543 4104
16 1024 1.65 1.79 1.60 6.16 2554 4076

Table 1: 1 Rack PARTEST Benchmark (4096 MPI Tasks)

Table 2 shows the results from a test with the same configuration but on 8 racks having in total 32768
cores.

F Size
Open / s Close / s BW / MB/s

W R W R W R
1 1024 7.25 0.16 0.15 0.06 3468 5792
2 1024 8.14 1.72 1.41 1.72 2825 5778
4 1024 6.90 2.40 0.57 0.79 2978 5632
8 1024 10.46 2.60 12.06 5.86 4796 5793
16 1024 8.70 0.32 6.85 8.15 5112 5685
64 1024 12.70 15.00 8.94 10.42 5598 5753

Table 2: 8 Racks PARTEST Benchmark (32768 MPI Tasks)
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MPI-IO Test on Jugene

Table 3 shows the results of the same test using a MPI I/O without specifying implementation specific
options.

Files Size
Open / s Close / s BW / MB/s

W R W R W R
1 1024 - - - - - -
2 1024 - - - - - -
4 1024 0.30 0.24 0.10 0.33 2095 2709
8 1024 46.10 0.30 0.29 0.09 2087 2790
16 1024 156.35 0.31 1.61 0.52 2551 2907

Table 3: 1 Rack MPI-IO Benchmark

PEPC-B IO Benchmarks

Two versions of PEPC-B were compared: the original one dumping the particles as ASCII and the new
version usingSIONlib. The benchmark was done on 128 processors using 3000000 ions. For the sake
of the measurement, only two time steps were performed and then the simulation was restarted for 8
additional steps. As it can be seen fromFig. 9, the distribution of the user mode time after starting is
homogeneous in both versions. However, there is an additional preprocessing phase in the normal PEPC-
B where the whole output folder structure is created. As already discussed this approach brings many
disadvantages and can take a long time to complete.
Moreover, after the simulation is restarted, the user mode time is not uniformly distributed with the
normal ASCII version. This is not the case with the version that includesSIONlib.
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Outlook

Being in development phase, there are still different features to be included inSIONlib. The following
list presents the most important ones:

• Different Endianess Support

• OpenMP Support

• Calculation of the number of files depending on the total global size and the maximal size per file

• Redundancy information for file reconstruction

Summary

SIONlib provides a simple interface for working in parallel with files. It can be easily integrated in
existing software codes with just some minor changes. An example of this is the addition ofSIONlib
support in PEPC-B where only two files were changed and it was done using the new Fortran API.
Another feature of the library is the portability of the filescreated. All the files contain information about
the structure of the stored data and they can be used by different programs written both in C and Fortran.
Using this meta-information, one can create generic tools for working with the files. The following
programs are already available:

• sionsplit - splits a big file in smaller pieces containing only the data for one process;

• siondefrag - orders the data in the file;

• siondump - prints the meta-information from a file;

Moreover,SIONlib is also independent from the underlying communication libraries. This way, the sup-
port for different parallel interfaces can be easily extended so that it can work with OpenMP, PThreads,
etc.
SIONlibcan work with multiple files allowing different optimization strategies and it can overcome lim-
its such as maximum file size, number of files quota, etc.
Last but not least, the library provides fast file access - around 5.6 GB/s out of maximum 6 GB/s in the
completed GPFS tests, and can improve the scalability of theapplications.
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Abstract: In this report the Conjugate Gradient Algorithm is explained and the results of
the SPARSKIT implementation of this method are shown. Some properties of Incomplete LU
Factorization with Threshold are examined and its capability to be used as preconditioner for
CG is analyzed. Finally, some attempts are made to detect a problem occurring when using
ILUT and CG for certain matrices.

Introduction

Preconditioners are used in many areas of numerical mathematics, e.g. whenever large sparse linear sys-
tems are to be solved for different right-hand-sides or the convergence rate of an iterative solver should
be improved. Due to the fact that most preconditioning techniques only work for special tasks or need
information about the input data, it is not easy to find a preconditioner that is applicable to most sparse
problems. The Incomplete-LU-Factorization-with-Threshold-approach (ILUT) described in this report
is an example for this kind of preconditioner. Therefore, many mathematical libraries contain an imple-
mentation of ILUT or a similar preconditioner.
ILUT is used at the Jülich Supercomputing Centre (JSC) in a Jacobi-Davidson eigenvalue solver, too.
This software requires repeated solutions of a linear system (with different parameters and right-hand-
sides) up to 1,000 times by a user supplied method. A combination of ILUT and the Generalized Minimal
Residual method (GMRES) is used for this task. Since there are known problems with certain matrices
using this eigenvalue software, the aim of this project is toexamine the behavior of the ILUT precon-
ditioner implemented in the library “SPARSKIT”. Furthermore, the performance boost provided for the
Conjugate Gradient Algorithm from the same library is to be analyzed.

Data

The following section describes the input data and points out some special characteristics. Table 1 shows
dimensionn and number of nonzero elementsnnz of the input matrices. The left half of this table
contains three matrices, which are known to cause problems in the eigenvalue software. Two of them
(kurbel and w124g) appear twice, as different numbering schemes are tested (see figure 1). All five
matrices originate from the finite elements context and occupy 350 to 650 MB disk space each. The
five matrices on the right half of table 1 are normal equation matrices from a geodetic context. They are
generated using spherical harmonic expansion up to degree and order 30 respectively 100 (implied by
the first number in matrix name). All matrices of degree and order 100 are produced with the same set of
observations. If the matrix name contains “oM” (one missing), one arbitrary observation is deleted before
computing the normal equations. This destroys the block diagonal structure (see figure 1f). In order to
create sparse matrices, every element below some thresholdis dropped. As there were many elements



(a) Matrix: K0001 (b) Matrix: kurbel, numb. scheme: 1(c) Matrix: w124g, numb. scheme: 1

(d) Matrix: w124g, numb. scheme: 2 (e) Matrix: N_100_5e6 (f) Matrix: N_100_oM_5e6

Figure 1: Structure plots of some of the used input matrices.

with large values the threshold is set to1e6 respectively5e6. Although these five matrices have a smaller
dimension, they are denser than the other matrices.
All matrices are block diagonal dominant, symmetric and positive definite.

Matrix n nnz Matrix n nnz
K0001 235.962 12.860.848 N_30_5e6 957 6,032

kurbel_1 192,858 24,259,521 N_100_5e6 10,197 171,049
kurbel_2 192,858 24,259,521 N_100_1e6 10,197 192,331
w124g_1 401,595 20,825,882 N_100_oM_5e6 10,197 296,897
w124g_2 401,595 20,825,882 N_100_oM_1e6 10,197 8,177,599

Table 1: Input matrices with dimension d and number of non-zero elements nnz.

Conjugate Gradient Algorithm (CG)

Description of the algorithm

The Conjugate Gradient Algorithm (CG) is a commonly used iterative solver for linear systems of equa-
tions of type

Ax = b. (1)

A is a symmetric and positive definite input matrix,b is a vector containing the elements of the right-
hand-side of the linear system andx is the solution, which is to be computed. It is a Krylov Subspace

108



Method (like Arnoldi’s Method or the Generalized Minimal Residual Method described e.g. in [3]). If
A does not have the mentioned characteristics, CG can still work, but this is not guaranteed. Finding the
solution is seen as a minimization problem of the quadratic form

f(x) =
1

2
xTAx− bTx + c. (2)

The name Conjugate Gradient is due to theA-orthogonality (conjugacy) of each search direction to all
the others. Two vectorsa andb areA-orthogonal if

aTAb = 0. (3)

Therefore, one only needs to go once in each direction. WhileCG is not often used as a direct solver (due
to roundoff errors), it is more frequently applied to problems as an iterative one, since it approximates
the solution well after very few steps.
Using CG for solving a linear system consists of iterativelycomputing the following terms (see [4]):
First, a starting pointx0 is to be determined (e.g.x0 = 0). The residualr is chosen to be the initial
search directiond0

d0 = r0 = b− Ax0. (4)

The step-lengthα is the distance covered at each step (computed by line search)

αi =
rT
i ri

dT
i
Adi

. (5)

The residualri+1 and the solutionxi+1 of the next iteration step can be computed utilizing this informa-
tion

xi+1 = xi + αdi, (6)

ri+1 = ri − αAdi. (7)

Afterwards, the Gram-Schmidt-Conjugation is used, computing a factorβ for updating the next search
directiond

βi+1 =
rT
i+1ri+1

rT
i
ri

, (8)

di+1 = ri+1 + βi+1di. (9)

The steps mentioned above are repeated until a maximum number of iterations or a given convergence
criterion is reached. As the residualr is computed in each iteration, the decrease of its norm is often used
as convergence criterion.

Methods

Since CG is a well-known iterative solver, it is implementedin many packages of mathematical software.
In this project a CG routine from the Fortran77 library “SPARSKIT” by Yousef Saad is used, which is
described in detail below (see also [2]). Some additional Fortran90- and C-subprograms were written,
whenever needed functions were not provided in the library.It was tried to modify the “SPARSKIT”-
library itself as few as possible (most modifications done are only for debugging or the output of
some interim values). As the intention was to analyze the efficiency of preconditioners for CG, the
first step was to use this iterative solver without a preconditioner in order to have a comparison. Most
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routines of “SPARSKIT” (including the preconditioners) work with matrices in CSR-format (see sec-
tion “SPARSKIT” for details on the different formats). Since the CG module of “SPARSKIT” is de-
signed to be used with a preconditioner, it needs theA-matrix as input in the CSR-format as well as a
preconditioner-matrixM in MSR-format .
Hence, a C-function was written, which designs an identity matrix of sizen in MSR-format. This sub-
routine can be called instead of a function provided by “SPARSKIT” in order to create the needed input
data for the CG module. Using an identity matrix for preconditioning will lead to the same results as
doing no preconditioning (but with additional computationtime due to some matrix vector products).
Having only the input matrix given, a right-hand-side-vector b is to be created, for which the system is
to be solved. This is done by computingb = Ax, with x containing only ones (different values were
tried without influencing the behavior). Except for some matrices, for which the use of a special initial
value is mentioned, the initial guess was chosen to be a zero vector of lengthn.

Results

The following results were computed solving the linear system with the CG-algorithm from “SPARSKIT“
on the cluster “JULI” (Jülich Linux Cluster) with the parameters mentioned above. As the library only
provides sequential programming, all calculations were done on a single processor. First, the system
was solved for the three input matricesK0001, kurbel andw124g, which originate from FEM context
(see introduction). Whilekurbel andw124ghave a similar structure and size,K0001does not (see fig-
ure 1), which may explain its different behavior shown in figure 2. In this figure, the (slow) decrease of
the residual is plotted versus the number of iterations (logarithmic scale). Having computed more than

Figure 2: Convergence of CG for three different input matrices (residual norm vs. iterations).

30,000 iterations, the criterion of convergence

||r|| = trel ∗ ||b|| + tabs (10)

was satisfied forK0001with the relative tolerancetrel = 10−10 and the absolute tolerancetabs = 10−6.
Solving the system for the other two matrices was aborted after 72 hours without satisfying the above
criterion. In order to maintain comparability, same tolerances were used for all input data. No “weaker”
tolerances were chosen, as this would have led to an earlier convergence for matrixK0001, whose final
residual norm is already high for this choice of the tolerance parameters.
The effect of resorting elements in input matrices is shown in figures 3 and 4. While the overall behav-

110



Figure 3: Convergence of CG for input matrixkurbelwith different numbering schemes.

ior of the residual norm of the twokurbel matrices is similar (except one part in the centre), there isa
significant “jump“ in the resorted version ofw124g. Both phenomena are probably effects of roundoff
errors that appear at different parts of the computation. This “jump” can be interpreted as the change of
the CG algorithm into another search-subspace.
The same issue is plotted for some matrices from geodetic context in figure 5. To guarantee compara-

bility the right-hand-sides of these systems of normal equation matrices are computed the same way as
above. All the matrices generated using spherical harmonicexpansion up to degree and order 100 behave
similarly, unaffected by potential deletions of observations. Solely the matrix containing coefficients up
to degree and order 30 shows unexpected behavior: After a first decrease of the residual norm, there is
a peak at the 116th iteration, followed by another phase of decrease until convergence is reached. This
might be due to the fact that the residual norm||r|| is plotted and not||A1

2 r|| which has a monotone
convergence behavior.
One problem yet unsolved is, that for four of the matrices (degree/order: 100) CG only converges if
the initial guess is close to the actual solution. Otherwise, it aborts with an error message while trying
to computedTAd, because the values exceed the range provided bydouble. Usinglong double
instead ofdouble enlarges the range in which the initial guess has to be. But this approach also fails
for larger differences to the actual solution. This may be caused by an inappropriate distribution of the
huge values inA. As preconditioning will probably change this, no further attempts (e.g. normalizing
the system) were made to avoid this.

Preconditioner

Since the convergence rate of iterative solvers is stronglyinfluenced by the condition of the input matrix
A, many attempts were made to improve the condition number without distorting the solution. In par-
ticular, if one system is to be solved for different right-hand-sides, preconditioning could save a lot of
computation time. The common approach is to solve the linearsystem

M−1Ax = M−1b (11)

instead of the original problemAx = b. M is the so-called preconditioner matrix. As the identity matrix
has the best condition number possible,M = A would be a perfect preconditioner. However, as comput-
ing the inverse ofA would be as expensive as solving the original problem, several attempts were made
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Figure 4: Convergence of CG for input matrixw124gwith different numbering schemes.

to choose a different preconditioner matrixM. Beside approaches such as the Jacobi preconditioner, the
Gauss Seidel preconditioner or successive overrelaxation(all described in [3]), there are some “classic”
factorization techniques, which can be modified and used as preconditioners: Incomplete Cholesky and
incomplete LU factorization. This report focuses on incomplete LU factorization.

Incomplete LU Factorization (ILU)

The basic principle of the Incomplete LU Factorization (ILU) is the same used for ordinary LU Factor-
ization: The matrixA is decomposed in a lower triangular matrixL with ones on the main diagonal and
an upper triangular matrixU

A = LU. (12)

Then these two matrices are stored together, neglecting theknown diagonal entries ofL.

M = LU (13)

is used as preconditioner. One big drawback is that the LU Factorization of a sparse matrix does not have
to be sparse itself. Therefore, instead of computing an entire LU Factorization,A is decomposed into

A = LU− R. (14)

The residual matrixR is used to drop specified elements ofA and is often realized in practice by a non-
zero patternP , which contains the indices of allowed non-zero elements. Doing an ILU consists of two
major steps (same as in the Gaussian Elimination), which areconstantly repeatedbut only for elements
of the non-zero patternP. The first step is to divide each element of the linek by the diagonal entry
akk and to use this as a factor for the elimination process in the following rows

aik := aik/akk, if (i, k) ∈ P, (15)

aij := aij − aikakj , if (i, j) ∈ P. (16)

It can be shown, that ILU retains most matrix characteristics (depending on the chosen version of ILU,
see below). IfA is a Minkowski-matrix (M-matrix), all properties will be preserved. M-matrices arise
e.g. from discretisations of elliptic Partial Differential Equations (PDEs) - e.g. the Laplace-matrix - and
have following characteristics [1]:
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Figure 5: Convergence of CG for input matrices from satellite geodesy, the first number determines
degree and order of the spherical harmonics, the second the threshold used for dropping elements.“oM”
signals that an arbitrary observation was deleted, before computing normal equations.

1. ai,i > 0 for i = 1, ..., n,

2. ai,j ≤ 0 for i 6= j, j = 1, ..., n,

3. A is nonsingular,

4. A−1 ≥ 0.

An M-matrix is defined by the properties 2 and 4. If these are satisfied, properties 1 and 3 are as well.
The last property is equal to the request for weak diagonal dominance.
Different versions of ILU could be distinguished by their way of choosing the non-zero patternP (and
sometimes additional computations):
The “basic” version is called “Zero Fill-in ILU”(ILU(0)) . Here,P is chosen to be exactly the non-zero
pattern ofA. As a result, there are only slightly more elements inA if the productLU is computed
explicitly, than there were in the “original”A.
The next possible step is called “ILU with level of fill”(ILU(p)) and allows additional entries inL and
U, depending on the level of fillp.
The “Modified ILU” (MILU) uses another approach: The sum of all elements dropped of onerow is
added to the diagonal entry.
Not the location but the magnitude of the elements inA is important for the decision of dropping an
element or not, when “ILU with threshold”(ILUT) is used. Sometimes this approach is referred to as
“ILUT with Pivoting” ( ILUTP ) when the reordering of matrix elements is also implemented.
Several other versions of ILUs were developed and used, suchasILUS or ILUC . For more details on
the above mentioned methods, see [3]. One big advantage all these ILU-versions have in common is, that
no information about the structure of the input matrix is required (preconditioners with that property are
rare). In the following, this report will focus on ILUT and its use as preconditioner for the CG algorithm.

ILU with Threshold (ILUT)

One big drawback of ILU(0)/ILU(p) is their blindness to numerical values. This can lead to keeping
“uninteresting” close to zero elements inL or U while dropping far bigger elements. ILUT tries to avoid
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this by dynamically choosing its patternP with a double threshold strategy: Every element which is
below some thresholdτ is dropped. Next, only thep largest elements in each row ofL andU are kept.
While τ is used to reduce computation cost,p helps to control memory usage.p is also called level of
fill, which is somewhat misleading, because it has a different meaning from the level of fill of ILU(p).
ILUT can be computed, using equations 15 and 16 and replacingthe patternP by the two dropping rules
depending onτ andp.
It is important that only off-diagonal entries are dropped,as otherwiseM−1A does not necessarily have
the same characteristics asA. As the non-zero patternP is chosen dynamically,ILUT will destroy
symmetry, which will cause problems if combining it with CG.

SPARSKIT

“SPARSKIT” is an open-source Fortran77-library by Yousef Saad [2], which provides four different ILU
preconditioners (including ILUT) and nine iterative solvers (CG, GMRES, etc.). Besides solving linear
systems, one aim of this - since 2005 in version 2 available - software package is to enable easy data
exchange or conversion between different working groups orinstitutes. Designed for sparse matrix com-
putation, it internally uses the Compressed Sparse Row format (CSR) for storing matrices.
All computations done for this project are computed using “SPARSKIT”-routines whenever possible.
That is not only true for the pure solving-step of the equation system, but also for the reading in of data
in different formats, converting these formats, generating test matrices, plotting the results and using
“SPARSKIT”-provided “BLAS”-routines.

The test-programme

As there are existing problems with the ILUT from “SPARSKIT”for the shown input matrices, a test-
programme was written in order to detect the root of the problem and to determine the performance boost
provided by the preconditioner.
The main programme is written in C, calling the “SPARSKIT” Fortran77- and some additional Fortran90-
and C-functions. First, the header of the input matrix is read and memory is dynamically allocated.
“SPARSKIT” uses three working arrays for computation and control: One integer array, which para-
meters have to be set (like the kind of convergence criterion, etc.), a double array, which contains some
parameters (like tolerances) and the double arrayw, in which (interim) data can be stored. The para-
meters are set as mentioned above and the right-hand-side iscomputed in the described way. Now the
matrix entries are read by a “SPARSKIT” provided function, stored in the memory allocated and the
Fortran90 routine “testcg” is called, which was developed by adjusting and extending a “SPARSKIT”
intern test-programme. Depending on whether a preconditioner should be used or not, either the routine
for generating an identity matrix or for the ILUT preconditioner is called. In both cases, the time spent
in the subroutine is measured. The last step is to call the CG-routine, measure the time it takes for each
iteration and output the results (first elements of the solution and norm of solution).
These steps work well for most test matrices (generated withor without use of “SPARSKIT” and in
different sizes), but fail for the matrices described in theintroduction. Depending on the level of fillp,
different errors occur: If the level of fill is greater than one, the CG-routine aborts with the error message:
“while trying to detect a break-down, an abnormal number is detected”. Ifp equals one, no error message
occurs, but CG diverges and if the level of fill equals zero, CGdiverges forK0001and seems neither to
diverge nor to converge for the other matrices. In each of these cases, the error only appears, if ILUT is
used for preconditioning, but the ILUT error-flag signals always: “successful return”.
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Debugging

Some additional challenges arise when debugging a programme that uses input data of several hundred
megabytes. For example, it might no longer be possible to haveA andM in the memory of the worksta-
tion (1 GB) at the same time. Allocation should be done dynamically as static allocation would lead to
problems with the stack limit of JUMP (Jülich Multi Processor), which is used for debugging, as there
are no debugging tools available on JULI. It might also causeproblems to check some matrix properties
during runtime (like computing a determinant) as this will take a lot more computation time and use
additional memory.
Detecting the origin of the problem, two major directions are to be examined. The first is to determine
whether the ILUT generated preconditioner matrix does not assure thatM−1A has the same properties
asA. The second possibility is a general malfunction of ILUT under certain conditions.
As “SPARSKIT” does not provide a symmetric version of ILUT, it is assumed that preconditioning will
destroy symmetry. This could lead to problems with the CG algorithm, but since they also occur for a
level of fill of zero, which means thatM is not only symmetric but also a diagonal-matrix in this case, this
can not be the reason for the malfunction. Another possibility is, that ifA is only barely positive definite
some numerical problems might appear while preconditioning. In order to avoid this, small values were
added to the diagonal entries of the input matrixbeforepreconditioning. This distorts the result, but may
lead to better diagonal dominance. Unfortunately, it did not prevent CG from “detecting an abnormal
number”. The next approach was to add small values to the diagonal ofM after preconditioning. This
would not get the problem by its root, but may help to fix it and get a better understanding of what goes
wrong. Unfortunately, the abnormal numbers remain and CG detects “Not a Number”s (NaNs) on the
main diagonal of the preconditioner matrix. Since adding anarbitrary value toNaN will be NaN again
(at least in Fortran), this ansatz also failed. The next approach made to avoid loss of necessary properties,
was the conversion of the main-diagonal-NaNs into (small) positive values. As above, this should also
be seen as an effort to fix the problem in order to detect its origin, not to compute accurate results. But as
before, that does not lead to any changes in behavior. Due to abnormal numbers in off-diagonal entries
CG aborts again. No efforts were made to convert all theseNaNs, as this would have only led to more
distortion of the results and did not seem to be very promising in order to find the root of the problem.
Since the approaches to obtain the necessary properties by modifying A or M failed, the position in the
source-code where abnormal numbers appear first is to be localized: The errors seem to occur only while
dropping elements of the upper MatrixU. The dropping procedure is realized by computing

aij = aij − r, (17)

with r = 0 if aij is a fill-in element andr = aij else. The elementr, which should be subtracted, contains
sometimesNaN . This variable is not only used for dropping purposes but also as interim variable for
swapping elements in the working arrayw, which is used for storing elements ofA, x andb. In order to
detect the problem more precisely, this variable was split in two (s ands_). Due to the fact thatNaNs
still occur in both variables, it is assumed that there are abnormal numbers inw already (because the
swapping variables as well as the dropping variables_ obtain their values from this working array).
The first appearance of the error depends on the chosen level of fill. The higherp is set, the earlier the
error occurs (not strict for small changes inp).

Conclusions and outlook

The routines ILUT and CG from “SPARSKIT” were tested with several input data and different param-
eters. While CG works well, problems appear for certain matrices if ILUT is used for preconditioning.
As the approaches to modify the input matrixA and the preconditioner matrixM in order to prevent CG
from aborting failed, it was attempted to detect the root of the problem. Due to the restricted time of the
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guest-student’s programme misbehavior of ILUT was partly localized, but its root is still indistinct.
Further possible steps in order to detect the root were not pursued due to the lack of time. For example,
one could try to catch the error one step earlier by detectingtheNaN -producing computation, with

0

0
,

∞
∞ ,

√
−x or 0 · ∞.

as possible candidates. Using the test matrices as input forother programmes providing ILU / ILUT
might also help to gain a better insight into the structure ofthe problem (libraries like “ILUPACK”,
“MUMPS” or “hsa” could be used for this purpose). Successfulpreconditioning with the ILUT-routines
of these packages would be another indication for a “SPARSKIT” intern problem.
While “SPARSKIT” is a well-working tool in general, one has to be aware that there could be difficulties
occasionally with particular routines that only appear under certain conditions. Especially the examined
ILUT-routine seems to be vulnerable to instabilities. So, if other ILUT implementations would also fail
for the test matrices used, it might be better to use more stable alternatives such as ILU(p). This would
also take in account that “SPARSKIT” does not provide a symmetric version of ILUT, which could lead
to further problems with the combination of ILUT and CG.
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Abstract: The Blue Gene/P system of IBM is the newest supercomputer at the “Forschungszen-
trum Jülich GmbH” in Germany. It is used for applications in natural sciences that are expensive
in terms of computational effort. One of Blue Gene’s specialties is the dual floating point unit
“Double Hummer” which is able to perform two floating point operations in parallel. It enables
the user to decrease the runtime of applications significantly. During the usage of the dual FPU
various problems appeared. The goal of this work is to show what the user should do and what
he should avoid to get an optimal performance while using “Double Hummer”. We also show
how the performance behaves if we modify the code of calling routines or if we use special
compiler options. In this way this paper should be a little help for users to get full benefits of
the IBM Blue Gene/P architecture.

Introduction

The IBM Blue Gene/P Architecture

The Blue Gene/P system at the “Forschungszentrum Jülich GmbH” (JUGENE) has 16384 nodes or
chip cards, each consisting of 4 IBM Power PC 450 processors with 850 Mhz clock speed. One core is
relatively slow but this allows a high power efficiency, a lowcooling effort and a very high density of
processors in the machine [1]. 32 nodes form one node card and32 node cards are combined to one rack.
The complete JUGENE system consists of 16 racks (= 16× 32× 32× 4 = 65536 cores). Every node has
a theoretical peak performance of 13.6 GFlops/s and so the whole machine reaches a peak performance
of 222,8 GFlops/s. The LINPACK benchmark provides a performance of approximately 180 GFlops/s
(80% of peak) [2]. Each core has a 32 KB private L1 cache and anda 2 MB private L2 cache which is
used as prefetch buffer. There is also an 8 MB shared L3 cache on each node. Additionally every chip card
has an amount of 2 GB physical memory with a bandwidth of 13.6 GB/s. 150 I/O nodes manage the data
flow between the Blue Gene system and an external file system (JUST) by an external 10 GB/s Ethernet.
Several service and login nodes deal e.g. with user logins and job submits. Furthermore the Blue Gene/P
system offers five highly efficient application oriented network topologies e.g. the 3-d torus, the global
tree or the collective network. The 3-d torus is a 3-d mesh on which nodes on opposite sides are also
directly connected. This structure provides a high bandwidth of 5.1 GB/s per node and low worst case
latency of 3.2µs [3].



The Dual Floating Point Unit “Double Hummer”

In addition to the the regular PowerPC floating point instructions (operating on the primary registers),
new parallel floating point instructions have been added to operate simultaneously on both the primary
and secondary registers. Some of the new dual FPU instructions perform identical operations on each set
of registers in parallel. Other instructions allow operands to be copied from one register set to the other,
or perform complex cross operations optimized for complex arithmetic. A set of load/store instructions
has also been added to perform loads and stores to both sets ofFP registers with a single instruction.
Since the PPC450 chip can issue at most one load/store and oneFPU operation per cycle, the parallel
instructions have the potential to double the floating pointperformance of the chip. The IBM Mathemat-
ical Acceleration Subsystem (MASS) library (and the vectorMASSV library), and the IBM Engineering
and Scientific Software Library (ESSL) take advantage of theparallel instructions to fully utilize the
dual FPU. Hand written code using the parallel instructionscan easily access this performance increase.
New builtin functions have been added to the IBM XL C and C++ compilers to generate the parallel
instructions. Intrinsic functions have been added to the IBM XL Fortran compiler.
The IBM XL compilers will automatically generate parallel FPU instructions, but doubling the floating
point performance benefit is not usually achieved for arbitrary floating point code [4].

Introducing Examples

Influence of the Compiler Options on the Data Alignment

Choosing well aligned data is a crucial issue when using BlueGene/P. Bad aligned data can cause an
extensive loss of performance. Double precision data should be 16B-aligned which means that the data
should be saved within the 16B borders of the RAM. If a floatingpoint number is not well aligned an
alignment exception will be thrown during the runtime. The environment variableBG_MAXALIGNEXP
can be set to control the number of allowed alignment exceptions before the execution of the program
aborts. The default value on JUGENE isBG_MAXALIGNEXP= -1. In this case alignment exceptions will
not force the program to terminate. One may setBG_MAXALIGNEXP = 0 to let the program terminate
after the first alignment exception. Thus this can be used to check if the program accesses bad aligned
data. To change the value of this environment variable one just has to add an additional option while
callingmpirun or llrun.

export BG_MAXALIGNEXP=[value]
[mpirun/llrun] [options] -exp_env BG_MAXALIGNEXP [exec_file]

Compiler options have a strong influence on the efficency of the code. High optimization levels are able
to detect bad aligned data structures as one will see in the following code example.
Consider a Fortran program that uses two common blocks.

INTEGER MAXLEN
PARAMETER ( MAXLEN = 500000 )
INTEGER A, B
DOUBLE PRECISION X1( MAXLEN ) , X2( MAXLEN ) , Y1( MAXLEN ) ,

$ Y2( MAXLEN )
COMMON /COMBLK1/ X1 , X2 , A, /COMBLK2/ Y1 , B , Y2

The first common block consists of two arraysX1 andX2 that each contain 500000 double precision
floating point numbers.X2 directly followsX1 and so both are contiguously located in the memory at
runtime as well. The second common block is in principle the same but the sequence of 8B floating point
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numbers is interrupted by one integer. HenceCOMBLK2 is a bad aligned data structure because the 16B
pattern required by Blue Gene is destroyed by one integer that shifts all entries ofY2 by 4B in memory.
Consider now additionally two subroutinesSUM1 andSUM2 that perform each a vector addition ofX1
with X2 andY1 with Y2 respectively using the appropriate common blocks defined inthe main program.

SUBROUTINE SUM1( X )
IMPLICIT NONE
INTEGER MAXLEN
PARAMETER ( MAXLEN = 500000 )
INTEGER A, I
DOUBLE PRECISION X( MAXLEN ) , X1( MAXLEN ) , X2( MAXLEN )
COMMON /COMBLK1/ X1 , X2 , A
DO 10 I = 1 , MAXLEN

X( I ) = X1( I ) + X2( I )
10 CONTINUE

RETURN
END SUBROUTINE SUM1

The code forSUM2 is similar but it includes the common blockCOMBLK2 instead ofCOMBLK1. For
compiling the source code the IBM XLF Fortran compiler is used as well as different compiler op-
tions to see how these affect the effiency of the code. In the following time measurement we always
include the options-qarch=450 -qtune=450 for compiling without optimization for the dual FPU
or -qarch=450d -qtune=450 for compiling with considering the dual FPU. Table 1 shows how
alignment exceptions slow down and how further optimizations from-O0 (no optimization) up to-O5
(maximum optimization) speeds up the execution of the program.

Options
SUM1 SUM2

-qarch=450 -qarch=450d -qarch=450 -qarch=450d

-O0 0.019751s 0.019751s 0.883256s 0.847652s
-O1 0.019750s 0.019751s 0.883260s 0.847640s
-O2 0.007943s 0.007943s 0.833583s 0.833555s
-O3 0.005296s 0.004120s 0.833665s 0.834572s

-O3 -qhot 0.005296s 0.003239s 0.864001s 0.833932s
-O4 0.005296s 0.003237s 0.005297s 0.833926s
-O5 0.005296s 0.003237s 0.005297s 0.003250s

Table 1: Execution time of subroutinesSUM1 andSUM2 with different compiler options

In SUM1 the performance improves for-O2 or higher optimization levels. If one uses-03 or higher
the impact of the dual FPU is detectable. Starting from-O3 -qhot “Double Hummer” will reduce the
runtime by approximately 40%. The execution of this subroutine takes orders of magnitude more time
than that ofSUM1 at lower optimization levels. But it is also observable thatthe dual FPU improves
the performance by a few percent at-O0 and-O1. For a very high optimization level the compiler
recognizes the misalignment, corrects it and the runtime iscomparable toSUM1. With -qarch=450
this already works for-O4, with -qarch=450d -O5 is needed.
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Influence of the Array Declaration on the Performance

Investigation of a C program

In this subsection it is checked how the declaration of arrays in a program affects its performance. Con-
sider a simple handwritten C program that performs the real matrix-matrix multiplicationC := αAB+C
which is also provided by the LAPACK routine DGEMM.
The static definition of the used arrays looks like the following.

# d e f i n e nmax 1000;
double matA [ nmax ] [ nmax ] ;

The arraysmatB andmatC are defined in the same way. Now the simplest approach to perform the
operation is used.

f o r ( i =0; i <nmax ; i ++) {
f o r ( j =0; j <nmax ; j ++) {

f o r ( k =0; k<nmax ; k++) {
matC [ i ] [ j ]= matC [ i ] [ j ]+ a l pha∗matA [ i ] [ k ] ∗matB [ k ] [ j ] ;

}
}

}

The order of the three loops as well as the parity ofnmaxwere changed to look if there occur differences
in terms of runtime. The IBM XLC compilermpixlc_rwas used with the following flags.

CCFLAGS = −O[ l v l ] −qarch =[ va l ] −q tune =450 [ more_opts ]

Comp.
-O0 -qarch= -O3 -qarch= -O5 -qarch=
450 450d 450 450d 450 450d

ijk-loop 111.0806s 111.0845s 5.4821s 5.1861s 5.4791s 3.7432s
ikj-loop 54.8142s 54.8005s 5.4820s 5.1860s 5.4791s 3.7413s
jik-loop 111.1539s 111.1581s 5.4821s 5.1861s 5.4791s 3.7835s
jki-loop 106.0454s 106.0522s 5.4821s 5.1860s 5.4791s 3.7413s
kij-loop 51.8134s 51.8105s 5.4821s 5.1860s 5.4792s 3.7412s
kji-loop 105.9441s 105.9516s 5.4821s 5.1861s 5.4791s 3.7465s

essl 0.8587s 0.8564s 0.8578s 0.8576s 0.8562s 0.8576s

Table 2: Time measurement of matrix-matrix multiplications in C with nmax=999 and static arrays
under different compiler options and loop orders, comparison with optimized ESSL routine

Table 2 shows the results of the time measurement for different compiler options and loop orders for
nmax=999 and Table 3 fornmax=1000. A measurment of the Blue Gene/P-optimized ESSL library
routine DGEMM is also included. It is called by

dgemm ( "N" , "N" , nmax , nmax , nmax , a lpha , matB , nmax , matA , nmax , 1 . 0 0 0 , matC , \
nmax ) ;

For -O0 one gets very different results for different loop orders. The reason is that for some loops the
memory structure is not well exploited. That means that in advantageous cases (ikj- and kij-loops) the
read-write head just has to move to the next entries in the represention of the matricesB andC within
the memory to perform the next cycle in the innermost loop whereas the corresponding element ofA
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Comp.
-O0 -qarch= -O3 -qarch= -O5 -qarch=
450 450d 450 450d 450 450d

ijk-loop 107.3586s 107.3587s 5.8468s 3.2114s 5.6723s 3.9227s
ikj-loop 54.9437s 54.9437s 5.8469s 3.2115s 5.6724s 3.9255s
jik-loop 111.4669s 111.4679s 5.8468s 3.2115s 5.6723s 3.9255s
jki-loop 106.3641s 106.3641s 5.8469s 3.2114s 5.6724s 3.9254s
kij-loop 51.8563s 51.8553s 5.8469s 3.2115s 5.6724s 3.9255s
kji-loop 106.3183s 106.3194s 5.8469s 3.2114s 5.6724s 3.9255s

essl 0.7513s 0.7513s 0.7525s 0.7512s 0.7525s 0.7512s

Table 3: Time measurement of matrix-matrix multiplications in C withnmax=1000 and static arrays
under different compiler options and loop orders, comparison with optimized ESSL routine

stays untouched. However in the other cases jumps between the rows of some matrices are necessary.
With -O3 and higher optimzation levels the compiler applies loop interchanges to the loop nest and
unrolls outer loops twice. Additionally the-O3-optimization leads to an awesome performance boost.
Moreover the dual FPU is activated and further reduces the runtime by a few percent in the odd case
and by approximately 45% in the even case. For-O5 the results for-qarch=450 are compareable
to those of-O3 whereas for-qarch=450d one gets an additional improvement of 30% in the odd
case but a decline of≈ 20% in the even case. For higher optimizations the runtimes in the even case
are a bit worse than those of the odd case. But especially the behaviour for-O3 -qarch=450d is
conspicuous and does not fit to the rest of the results. It can be observed that if matrices of odd size are
embedded into arrays of even size the runtime behaves similar to that of the even case (Table 3). The
ESSL implementation of DGEMM reacts positively on an even amount of input data but otherwise its
runtime is constant under all optimizations of the calling routine.
Consider now the same code but with a dynamic contiguous definition of the arrays.

# d e f i n e nmax 1000;
double ∗∗matA = (double∗∗ ) mal loc ( nmax∗ s i z e o f( double ∗ ) ) ;
double ∗matA1d = (double∗ ) mal loc ( nmax∗nmax∗ s i z e o f( double ) ) ;
f o r ( i =0; i <nmax ; i ++)

matA [ i ] = &matA1d [ i ∗nmax ] ;

Again,matB andmatC are declared similarly. For calling the ESSL version of DGEMM with dynami-
cally allocated arrays one just has to call the routine with the 1-d versions of the arrays defined above.

dgemm ( "N" , "N" , nmax , nmax , nmax , a lpha , matB1d , nmax , matA1d , nmax , 1 . 0 0 0 , \
matC1d , nmax ) ;

Table 4 and 5 show the results for the same time measurements as above but with dynamic arrays.

As in the static case without optimization there are completely different results for different loop orders.
Again ikj- and kij-loop provide the shortest runtime. But now higher optimization levels do not have any
influence on this behaviour. The runtime decreases for higher optimization but the compiler does not
perform any loop interchanges or loop unrollings. Note thatthe relative time saving for the ikj- and the
kij-loops are the highest among all loop orders. Furthermore the usage of the dual FPU has no influence
on the runtime and there is unlike the static case just a little difference between arrays of odd and even
size. Note that the behaviour of the the ESSL routine DGEMM isthe same for static and dynamic arrays.
As a conclusion it can be said that one should use statically declared arrays if possible. Static arrays
provide the best runtime especially for-O3 or higher optimization levels and the dual FPU takes a
positive influence on the runtime. The optimization possibilities of the compiler are higher due to the
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Comp.
-O0 -qarch= -O3 -qarch= -O5 -qarch=
450 450d 450 450d 450 450d

ijk-loop 127.6543s 127.6542s 79.5691s 79.6006s 36.8541s 36.8471s
ikj-loop 64.8427s 64.8427s 24.2691s 24.4611s 10.6261s 10.5008s
jik-loop 128.0674s 128.0673s 79.5345s 79.5929s 36.8968s 36.4679s
jki-loop 130.8488s 130.8487s 96.3188s 97.1742s 79.0192s 79.2330s
kij-loop 62.6452s 62.6453s 25.8485s 26.0783s 11.0350s 10.9230s
kji-loop 130.7086s 130.7083s 96.2278s 97.0431s 78.8980s 79.1170s

essl 0.8564s 0.8563s 0.8578s 0.8586s 0.8578s 0.8575s

Table 4: Time measurement of matrix-matrix multiplications in C withnmax=999 and dynamic arrays
under different compiler options and loop orders, comparison with optimized ESSL routine

Comp.
-O0 -qarch= -O3 -qarch= -O5 -qarch=
450 450d 450 450d 450 450d

ijk-loop 123.6689s 123.6693s 77.8859s 77.8861s 33.8415s 33.8517s
ikj-loop 64.9763s 64.9766s 23.7375s 23.7376s 11.0541s 11.0542s
jik-loop 127.7432s 127.7426s 78.5880s 78.5883s 34.6879s 34.7536s
jki-loop 128.0071s 128.0075s 95.5732s 95.5734s 78.5005s 78.5004s
kij-loop 62.8064s 62.8065s 25.1701s 25.1701s 12.947s 12.9471s
kji-loop 127.8701s 127.8704s 95.5007s 95.5010s 78.4533s 78.4534s

essl 0.7518s 0.7516s 0.7521s 0.7523s 0.7523s 0.7522s

Table 5: Time measurement of matrix-matrix multiplications in C withnmax=1000 and dynamic arrays
under different compiler options and loop orders, comparison with optimized ESSL routine

better knowledge of array properties at compile time.

Investigation of a Fortran program and comparison to the C results

Consider now a Fortran program that performs exactly the same operations as the C code above. The
goal of the following is to analyse the behaviour of the IBM XLF compilermpixlf90_r under the
same optimization flags and to compare the results to those ofthe C version.

Comp.
-O0 -qarch= -O3 -qarch= -O5 -qarch=
450 450d 450 450d 450 450d

ijk-loop 115.1892s 115.1693s 5.7313s 4.8419s 5.7258s 4.4502s
ikj-loop 111.1044s 111.0705s 5.7313s 4.8419s 5.7258s 4.4830s
jik-loop 115.1409s 115.1328s 5.7313s 4.8419s 5.7258s 4.4916s
jki-loop 59.0778s 59.0725s 5.7313s 4.8420s 5.7258s 4.4310s
kij-loop 110.9408s 110.9410s 5.7313s 4.8419s 5.7258s 4.4798s
kji-loop 56.9662s 56.9558s 5.7313s 4.8419s 5.7258s 4.4484s

essl 0.8576s 0.8588s 0.8571s 0.8578s 0.8571s 0.8563s

Table 6: Time measurement of matrix-matrix multiplications in Fortran withnmax=999and static arrays
under different compiler options and loop orders, comparison with optimized ESSL routine
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Comp.
-O0 -qarch= -O3 -qarch= -O5 -qarch=
450 450d 450 450d 450 450d

ijk-loop 115.5159s 115.5139s 4.9150s 3.5254s 4.9149s 4.2921s
ikj-loop 111.4825s 111.4829s 4.9150s 3.5255s 4.9149s 4.2812s
jik-loop 111.2701s 111.2612s 4.9150s 3.5254s 4.9149s 4.2812s
jki-loop 59.2390s 59.2137s 4.9150s 3.5254s 4.9149s 4.2847s
kij-loop 111.3162s 111.3167s 4.9150s 3.5254s 4.9149s 4.2812s
kji-loop 56.9461s 56.9453s 4.9150s 3.5254s 4.9149s 4.2815s

essl 0.7517s 0.7513s 0.7512s 0.7506s 0.7512s 0.7525s

Table 7: Time measurement of matrix-matrix multiplications in Fortran withnmax=1000 and static
arrays under different compiler options and loop orders, comparison with optimized ESSL routine

Table 6 and 7 contain the measurement results for static arrays. They are similar to those of the C code
but here arrays of even size provide a faster program execution than odd arrays. Note as well that the
options-O3 -qarch=450d show the same unexpected behaviour than for the C code (here with using
evenly allocated arrays). However the performed optimizations are a bit different. For-O5 the compiler
listing just shows a 6 times inner loop unrolling only for ijk- and jik-loops.

Comp.
-O0 -qarch= -O3 -qarch= -O5 -qarch=
450 450d 450 450d 450 450d

ijk-loop 145.7739s 145.7740s 30.5930s 35.6756s 5.7858s 5.8885s
ikj-loop 140.9074s 140.9088s 37.0187s 37.0199s 5.7858s 5.8885s
jik-loop 145.7471s 145.7469s 30.5807s 35.6015s 5.7858s 5.8885s
jki-loop 89.6512s 89.6311s 10.3027s 10.3720s 5.7858s 5.8885s
kij-loop 140.6853s 140.6850s 36.9467s 36.9463s 5.7858s 5.8885s
kji-loop 87.3443s 87.3542s 12.6150s 12.5981s 5.7858s 5.8885s

essl 0.8577s 0.8581s 0.8578s 0.8567s 0.8577s 0.8574s

Table 8: Time measurement of matrix-matrix multiplications in Fortran withnmax=999 and dynamic
arrays under different compiler options and loop orders, comparison with optimized ESSL routine

Comp.
-O0 -qarch= -O3 -qarch= -O5 -qarch=
450 450d 450 450d 450 450d

ijk-loop 146.2608s 146.2372s 30.5369s 36.3783s 4.9950s 4.9986s
ikj-loop 141.3701s 141.3645s 37.1243s 37.1242s 4.9951s 4.9994s
jik-loop 142.0382s 142.0389s 25.2470s 35.7083s 4.9950s 4.9996s
jki-loop 89.9853s 89.9098s 10.0569s 10.0568s 4.9951s 4.9994s
kij-loop 141.1833s 141.1698s 37.0656s 37.0658s 4.9950s 4.9986s
kji-loop 87.3795s 87.3141s 12.2902s 12.2902s 4.9950s 4.9995s

essl 0.7513s 0.7513s 0.7520s 0.7511s 0.7527s 0.7517s

Table 9: Time measurement of matrix-matrix multiplications in Fortran withnmax=1000 and dynamic
arrays under different compiler options and loop orders, comparison with optimized ESSL routine

For dynamic arrays the Fortran compiler is able to perform more optimizations than the C compiler.
For-O0 the Fortran version takes about 10 - 50% more time to run, depending on loop order. But using
-O3 decreases that time to 10 - 25% of that one without using optimizations, whereas using a C compiler
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only decreases the runtime to approximately 45 - 75% of the original amount. For-O5 the compiler even
performs 4 times inner loop unrollings for the ijk- and jik-loop. Then the runtime can be compared to
that for static arrays using the same flags. There is also a difference between oddly and evenly allocated
arrays which cannot be observed for the other analysed optimizations. Similarly to the C case there is
almost no influence of the dual FPU recognizable. But if one uses-O3 there are exceptions for the ijk-
and jik-loops where the execution with-qarch=450d takes about 20 - 40% more time.
Finally it can be said that the XLF compilers can deal better with dynamic arrays than the XLC compilers.
But for both one can observe strange behaviour which is explained above. Additionally the optimization
possibilities for static arrays are much greater. Thus the user should apply static arrays if possible. In the
static case there are small runtime differences between arrays of odd and even size but there is no pattern
determinable.

Deeper analysis of the static case with-O3 and -O5

Due to the unexpected behaviour of the compiler on static arrays a more exhaustive analysis of this case
is done with matrices of order 1999 and 2000 respectively. The results are shown in Table 10.

Options
C Fortran

nmax=1999 nmax=2000 nmax=1999 nmax=2000

-O3 -qarch=450 36.970s 33.731s 42.525s 36.813s
-O3 -qarch=450d 50.084s 47.058s 51.462s 47.817s
-O5 -qarch=450 36.916s 33.731 42.525s 35.333s

-O5 -qarch=450d
30.000s (ijk), 21.691 - 21.997s 37.756s (kji), 24.876 - 24.983s

52.937 - 53.248s 39.804 - 39.924s

Table 10: Runtime of matrix-matrix multiplications in Fortran and C under different compiler flags

Compared to Tables 2, 3, 6 and 7 one gets completely differentresults. First of all, if-O3 is activated
the results become much worse while using-qarch=450d. Fornmax=999 andnmax=1000 a con-
trarious behaviour can be observed. Second for both C and Fortran arrays of even size now show a better
runtime than those of odd size, as it is expected. Third for-O5 the dual FPU is exploited in a stronger
manner if the arrays have even size. But for the C code the runtime is increased by almost 50% except
the ijk-loop was used.
Further tests also show that if thealpha in the innermost loop of the computation is supressed the run-
time may increase significantly although the computationaleffort decreases, e.g. for Fortran,nmax=2000,
-O5 -qarch=450d the runtime increases from approximately 24,9s to more than41s.
All this leads to the assumption that there are still some bugs in the IBM XL compilers.

Library Routine Analysis

Considered Libraries

• BLAS: The BLAS (Basic Linear Algebra Subprograms) are routines that provide standard building
blocks for performing basic vector and matrix operations [5].

• PBLAS: The PBLAS are the Parallel Basic Linear Algebra Subprograms. The PBLAS are a small
core library of linear algebra utilities, which can be highly optimized for various parallel architec-
tures [6].

• LAPACK: LAPACK (Linear Algebra PACKage) is written in Fortran77 andprovides routines
for solving systems of simultaneous linear equations, least-squares solutions of linear systems of
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equations, eigenvalue problems, and singular value problems. The associated matrix factorizations
are also provided, as are related computations [7].

• ESSL: The ESSL (Engineering and Scientific Subroutine Library) isan IBM product and consists
of highly optimized mathematical routines that can be assigned to the following fields: matrix
operations (BLAS and more), equation systems, eigenvalue problems, FFT, sorting, interpolation,
numerical integration and random number generators [8].

• BLACS: The BLACS (Basic Linear Algebra Communication Subprograms) project is an ongo-
ing investigation whose purpose is to create a linear algebra oriented message passing interface
that may be implemented efficiently and uniformly across a large range of distributed memory
platforms [10].

• ScaLAPACK: The ScaLAPACK (or Scalable LAPACK) library includes a subset of LAPACK
routines redesigned for distributed memory MIMD parallel computers. It is currently written in a
Single-Program-Multiple-Data style using explicit message passing via BLACS for interprocessor
communication [11].

• MUMPS: MUMPS (MUltifrontal Massively Parallel Solver) is a package for solving linear sys-
tems of equations of the formAx = b, whereA is a square sparse matrix that can be either unsym-
metric, symmetric positive definite, or general symmetric.MUMPS uses a multifrontal technique
which is a direct method based on either theLU or the theLDLT factorization of the matrix.
MUMPS exploits both parallelism arising from sparsity in the matrixA and from dense factoriza-
tion kernels [12].

Analysis of the PBLAS routine PDGEMM

Because of the intensive usage of PBLAS subroutines in parallel program packages it is a crucial issue
to analyse the behaviour of this library first. In this subsection the parallel matrix-matrix multiplication
PDGEMM for the operationC := αAB+βC is investigated. A5× 5 process grid is chosen to evaluate
the runtime of the operation for square matrices of sizesN = 3000 . . . 4000. The blocksizeNB(= MB)
of the two-dimensional block cyclic distribution is set to 100.

0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3
0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3
0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3
0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3

Figure 1: Two-dimensional block cyclic distribution

In Figure 1 one can see an example of the two-dimensional block cyclic distribution. ConsiderP pro-
cesses arranged in aPr × Pc rectangular array of processes, indexed in a two-dimensional fashion by
(pr, pc) with 0 ≤ pr < Pr and0 ≤ pc < Pc. All the processes(pr, pc) with a fixedpc are referred to as
process columnpc. All the processes(pr, pc) with a fixedpr are referred to as process rowpr. The figure
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fits e.g. forN = 16, P = 4, Pr = Pc = 2 and block sizesMB = NB = 2. This layout permitsPc-fold
parallelism in any column and calls to the Level 2 BLAS and Level 3 BLAS on local subarrays. Finally
this layout also features good scalability properties [13]. The analysis of the considered routine implies
again static and dynamic arrays of odd and even size respectively. For compilation

mp ix l f90_ r −qarch =[ va l ] −q tune =450−O3

was used.
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Figure 2: Runtime of PDGEMM with statically allocated arrays on a5 × 5 process grid andNB = 100

In the static case the local leading dimension (LLD) of the distributed matrices on each process is fixed to
999 or 1000. From Figure 2 it can be easily seen that like in thesection above arrays of even size provide a
much better performance than those of odd size. The reason isthe more advantageous alignment of evenly
allocated arrays. Furthermore one notices that there are jumps in each graph forN = 3000 . . . 3100
andN = 3500 . . . 3600. ForN = 500M, M ∈ N every process has the same number of blocks and
those are completely full. If one increases the problem sizenow one process row will have more blocks
than the others. For increasing matrix sizes the new entrieswill be assigned to that blocks and thus the
corresponding processes will have more work to do than the other ones. This will of course increase the
runtime in a particularly strong manner. Note as well that-qarch=450d has no perceptible influence
on the performance of the program. PDGEMM is based on the BLASand since the matrix is distributed
on the processors BLAS routines will be called locally. On JUGENE the BLAS routines are included
in the ESSL library and as one can read above the ESSL codes arehighly optimized for using “Double
Hummer”.
Consider now the operation with dynamic instead of static arrays. Now every process gets exactly that
amount of memory it needs. For the analysis of the odd case matrices of orderN = 2999+50M, M ∈ N

are investigated. There are almost no differences to the static behaviour except of periodic oscillations
for oddN . To explain that in more detail Figure 3 shows a time plot in a higher resolution. Here the time
is measured for allN = 3150 . . . 3250 and the results are combined to two graphs for odd or evenN
respectively. In the odd case a remarkable reduction of the runtime is ascertainable betweenN = 3199
andN = 3201. In this example forN = 3199 one process row contains matrix blocks that are stored
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in an array of local leading dimension699 whereas the other process rows consist of blocks that are
stored in arrays with local leading dimensions of either600 or 700. If the problem size is now increased
to N = 3201 all arrays of local size699 will be completed to size700 and a corresponding number
of arrays of size600 will be enlarged to size601. That means that the arrays of odd dimension will be
reduced during that step. Due to the dominating influence of arrays with odd size on the runtime this
jump in the curve can be explained by the reduced size of odd-sized arrays during that step.
Note that for PDGEMM the block size does not have a major impact on the results as long as the work
load distribution is similar on all processors.
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Figure 3: Runtime jumps of PDGEMM with dynamically allocated arrays on a5 × 5 process grid and
NB = 100

Analysis of the ScaLAPACK routine PDSYEVX

PDSYEVX computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrixA
by calling the recommended sequence of ScaLAPACK routines.Eigenvalues/vectors can be selected by
specifying a range of values or a range of indices for the desired eigenvalues [11]. First the matrixA is
reduced to tridiagonal form using Householder transformation (call PDSYNTRD), second the eigenval-
ues are computed using bisection (call PDSTEBZ) and third the eigenvectors are computed using inverse
iteration and back-transformation (call PDSTEIN and PDORMTR) [14].
Here matrices of orderN = 3000 . . . 3050 are taken for the computations. They are built with random
eigenvalues that are already known before the computationsto verify the results. The goal is to compute
the largest 10% of the eigenvalues and their corresponding eigenvectors. The measurements take place on
a4×4 process grid. The block size of the two-dimensional block-cyclic distribution is 32. The compilers
mpxlf for FORTRAN 77 andmpixlf90_r for Fortran 90 codes were used with the flags

FFLAGS = −O3 −qarch =[ va l ] −q tune =450 [ more_opts ]
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Figure 4: Runtime of PDSYEVX with dynamic arrays on a4 × 4 process grid

First the dynamic case is tested. The results can be seen in Figure 4. First one recognizes that the runtimes
are arranged in clusters. Unlike in the investigation of PDGEMM local arrays of odd leading dimension
do not necessarily lead to a bad performance. Second-qarch=450d has again no major influence on
the runtime of the routine though there is a very small improvement in general. The reason is again that
ScaLAPACK makes intensive use of PBLAS routines which then rely on ESSL calls.
The results of the static case are compareable to those of thedynamic one. Again the values belong to
clusters but now the two graphs have different cluster patterns. Like in the dynamic case there is almost
no performance improvement by using-qarch=450d.

Analysis of the MUMPS library

Last the MUMPS package was analysed. MUMPS uses a self-defined datastructureDMUMPS_STRUC
whose definition is contained indmumps_struc.h in the include directory. This new type contains all
the information needed e.g. input and output data, control variables or error indicators. Here a variable
mumps_par of typeDMUMPS_STRUC is used.

INCLUDE ’ dmumps_struc . h ’
TYPE (DMUMPS_STRUC) mumps_par

First a real world problem is considered in which a matrix from a finite element discretization of a crank
appears. The matrix is square and has an order of 192858. It itsparse due to the fact that it has only
12226189 nonzero entries in the lower triangle. Furthermore it is symmetric positive definite and thus
MUMPS is able to exploit this structure (setmumps_par%SYM = 1). A master-slave-setup is used
(mumps_par%PAR = 0) which means that the host is not involved in factorization and solve phase.
The host will only hold the initial problem, perform symbolic computations during the initial phase,
distribute data, and collect results from other processors[12]. The MUMPS versions 4.7.3 and 4.8.1 are
compared both with and without using the dual FPU respectively. Figure 5 shows the results of measure-
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ments of the runtime of a linear system having the crank matrix as system matrix for2, 4, 8, . . . , 512
processors. With 64 processors the dual mode (-mode DUAL) and for 128 and more procssors the vir-
tual node mode (-mode VN) were used for the computations. That means that two or four cores on
each node are chosen to run the application. This has the advantage of a higher node effiency but the
disadvatage of less memory per core because the memory of onenode is shared among all its cores. This
may lead to program crashes caused by a lack of memory. This happens for example if one tries to solve
a crank system under neglection of the positive definity withmumps_par%SYM = 2 and 64 or more
processors in dual or VN mode. From Figure 5 it can be seen firstthat version 4.7.3 provides a slightly
better performance for a lower amount of processors whereasversion 4.8.1 shows a better runtime for
a high amount of processors. Second it can be seen that MUMPS is not scaling well for many cores.
The optimal runtime is reached with 64 processors. For more processors the amount of communication
already increases the runtime. Third it can be observed thatusing-qarch=450d does not lead to a
noticabel performance improvement. If one takes a look intothe code of MUMPS one recognizes that
there are a lot of integer computations that basically deal with the indices of nonzero matrix entries to
improve its structure. The factorization step itself is using ScaLAPACK and from above one may read
that it is already highly optimized due to the intensive use of ESSL calls.
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Figure 5: Runtime of MUMPS with the crank matrix and exploiting the structure properties using a
master-slave setup

MUMPS was also analysed for systems with unsymmetric systemmatrix. Here a square matrix of order
4000 with 160000 nonzero elements was chosen to test the program package. The matrix is built in such
a way that each row contains exactly 40 nonzero entries. For those systems MUMPS cannot exploit any
matrix structure properties and thus the amount of memory which is needed and the execution times rise
to a high level. Hence it can happen that a MUMPS call already crashes on Blue Gene/P with matrices
of just a few million entries because of memory overflow.
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Figure 6 shows the results for the described unsymmetric system. Notice that now version 4.7.3 has a
slight runtime advance to version 4.8.1 in most cases. This difference becomes especially visible for
256 and more processors where version 4.7.3 needs about 10% less time than version 4.8.1. The rea-
son is probably the new defined datastructureDMUMPS_STRUC which generates a lot of misalignment
warnings during the compile process.
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Figure 6: Runtime of MUMPS with an unsymmetric system using amaster-slave setup

Last a system without using a master-slave scheme was analysed (setmumps_par%PAR = 1). Now
the host is involved in the factorization and solve phases. If the initial problem is large and memory is an
issue, PAR = 1 is not recommended if the matrix is centralizedon processor 0 because this can lead to
memory imbalance, with processor 0 having a larger memory load than the other processors. Note that
seeting PAR to 1 and using only one processor leads to a sequential code [12].
For an unsymmetric system with a well balanced work load version 4.7.3 always behaves better than
version 4.8.1. The runtime benefit is small but anyway about 5- 10%. Note as well that the sequential
version provides a faster program execution than a parallelone with 2 processors.

Conclusion

In the introducing section it could be seen how misalignments can increase the runtime of applications
by orders of magnitude. So it is recommended to carefully align the data and regard on corresponding
warnings during the compile process. Additionally the behaviour of the IBM XL compilers was analysed
under different optimization flags and array declarations.Static arrays could be easily optimized by the C
compiler as well as by the Fortran compilers. The test programs showed different preferences for arrays
of odd or even size and the dual FPU provided a reasonable performance boost for a suitable optimization
level. However for dynamic arrays one could not recognize such a high performance improvement like
in the static case while using the dual FPU. Also the Fortran compilers behave much better for those
arrays and can perform better optimizations. Though unexpected low runtimes could be observed for
some cases that still pose some questions.
In the second section specific routines from different linear algebra libraries and packages were analysed.

130



During the investigation of the PBLAS routine PDGEMM arraysof even size showed an improved
runtime. However for the ScaLAPACK routine PDSYEVX such a behaviour could not be observed
although it makes extensive use of the PBLAS routines and thus of the ESSL library. Finally two versions
of the MUMPS package for the solution of large sparse equation systems were considered. A worse
runtime of the new version 4.8.1 could be observed for a high amount of processors but generally both
show similar results.
All the analysed libraries and packages highly rely on the ESSL routines which already provide code that
is optimized for using the dual FPU. Thus high performance improvements for libraries that are compiled
with -qarch=450d are not observeable. The main program may also be compiled with-qarch=450
while the used libraries are compiled with-qarch=450d and vice versa.
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