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Abstract—We can profile the performance behavior of parallel
programs at the level of individual call paths through sampling or
direct instrumentation. While we can easily control measurement
dilation by adjusting the sampling frequency, the statistical
nature of sampling and the difficulty of accessing the parameters
of sampled events make it unsuitable for obtaining certain
communication metrics, such as the size of message payloads.
Alternatively, direct instrumentation, which is preferable for
capturing message-passing events, can excessively dilate measure-
ments, particularly for C++ programs, which often have many
short but frequently called class member functions. Thus, we
combine these techniques in a unified framework that exploits
the strengths of each approach while avoiding their weaknesses:
We use direct instrumentation to intercept MPI routines while we
record the execution of the remaining code through low-overhead
sampling. One of the main technical hurdles mastered was the
inexpensive and portable determination of call-path information
during the invocation of MPI routines. We show that the overhead
of our implementation is sufficiently low to support substantial
performance improvement of a C++ fluid-dynamics code.

I. INTRODUCTION

Effectively harnessing the many-fold parallelism available
on modern supercomputers becomes increasingly challeng-
ing. In particular, meeting the performance expectations for
programs running on today’s complex hardware can require
significant effort. We can reduce this effort through appropriate
performance-analysis technology, such as performance profiles
that measure the execution time spent in different parts of
the program. State-of-the-art parallel profilers, such as HPC-
Toolkit [1] and TAU [2], further reduce the effort through
context-sensitive analysis that differentiates not only between
different functions, but also between the call paths leading to
those functions, which delineate the performance phenomena
more precisely. In addition to time and hardware counters,
parallel profilers may also acquire parallelization metrics such
as message counts and the communication volume.

One can broadly distinguish between two profiling tech-
niques: sampling and direct instrumentation. The first ap-
proach periodically samples the program counter as the pro-
gram progresses to measure performance aspects statistically.
From the program counter value, the profiler can easily derive
the function the program was executing when the sample was

initiated by an interrupt. We then estimate the fraction of the
overall runtime spent in a given function by the fraction of
samples that occur during it. In contrast, direct instrumentation
(or event-based instrumentation), inserts hooks at function
entry and exit points. This insertion can occur at levels ranging
from the source code to the binary file or even the memory
image [3]. These hooks allow the profiler to maintain a shadow
stack at runtime. The stack stores the time at which a function
is entered, which is subtracted from the time when the function
returns. The accumulated differences precisely capture how
much time was spent in each function. To attribute times to
individual call paths, a call-path profiler can determine the cur-
rent call path in two different ways: It can maintain a shadow
function stack, again controlled by direct instrumentation; or
it can use the technically more complex stack unwinding,
sometimes also referred to as stack walking [4].

Sampling and direct instrumentation both have advantages.
We can easily control measurement dilation under sampling
by adjusting the sampling frequency. However, it delivers
an incomplete picture, potentially missing critical events or
providing inaccurate estimates. Moreover, because the timer
interrupt can occur at arbitrary program locations, sampling
complicates accessing not only the current call path, but any
details of the program state, such as the arguments of the cur-
rent function. As a result, many tools instead use direct instru-
mentation to capture communication metrics such as message
payload sizes. The MPI profiling interface [5], which leverages
direct instrumentation through interposition wrappers, reflects
this insight. However, direct instrumentation can result in
excessive measurement dilation if applied indiscriminately,
which quickly becomes apparent in C++ programs, which
often have many short but frequently called class member
functions. While heuristics can balance the amount of direct
instrumentation with the need to cover all relevant program
regions, they often require additional program runs.

Our approach combines the two methods in a unified frame-
work that exploits the strengths of each while avoiding their
weaknesses. Specifically, we make the following contributions:

• The design of a call-path profiling technique that com-
bines direct instrumentation of MPI routines with sam-



pling of all other program regions;
• Modifications of the call-path profiler of the Scalasca

toolset [6] to implement this technique;
• An inexpensive and portable enhancement of the classic

stack-unwinding mechanism that can identify the call
paths of frequently called communication routines with-
out incurring excessive overheads;

• A study of a fluid-dynamics code written in C++ that
demonstrates how our profiling technique sufficiently
reduces measurement intrusion to guide optimizations
that improve overall performance by a factor of 11.6 (and
reduce time for file writing 75-fold).

Overall, our approach captures accurate call-path profiles with
a variety of communication metrics for a broad range of
applications without requiring cumbersome function selection
or expensive runtime filtering mechanisms.

The article is structured as follows. The next section
presents our call-path profiling approach and its integration
into Scalasca. In Section III, we conduct a detailed experi-
mental comparison of our new method to Scalasca’s traditional
profiling options, giving evidence of cases for which it was the
only way to achieve acceptable overhead. Section IV presents
our study of the fluid-dynamics application.

II. HYBRID CALL-PATH PROFILING

Call-path profiling requires two ingredients: (i) a mechanism
to determine the call path at a given point in time and (ii)
a method to decide when such a point has arrived. In our
approach, we use stack unwinding for the former and combine
sampling with direct instrumentation for the latter.

We conceptually divide the execution of each MPI process
into two disjoint, alternating phases – execution outside and in-
side the MPI library. Outside the MPI library, we use sampling,
which is independent of the frequency of routine entries and
exits and, thus, provides better control of runtime overhead.
Inside the MPI library, we use direct instrumentation, which
greatly facilitates calculation of metrics based on parameters
of MPI routines, such as the total number of bytes sent. We can
easily intercept MPI calls with PMPI wrappers by relinking or
dynamic loading, thus avoiding complex code transformations
required for some direct instrumentation mechanisms.

Stack unwinding is central to our approach. Because we
use direct instrumentation only for MPI routines, maintaining
a shadow stack with direct instrumentation of user code will
not work correctly. Stack unwinding is essentially a stateless
operation that can be applied at any time during program
execution, and it allows us to determine the call path that
leads to invocation of a particular MPI routine whenever it
occurs. Thus, stack unwinding is triggered by two different
classes of events, either when a timer interrupt occurs during
computation or when the program enters an MPI routine.

Another distinction concerns the attribution of the time
spent in these two states. We account for time spent outside
MPI to individual call paths based on the frequency of samples
that exhibit them. We account for time spent inside MPI
based on entry and exit timestamps. Our solution combines

the advantages of both techniques: rich and reliable MPI per-
formance information including messaging statistics and a low
overhead approximation of application performance elsewhere
with no impact from small, frequently called functions.

We integrate our solution into Scalasca [6], a postmortem
performance-analysis tool suitable for large-scale MPI codes.
We primarily target reduction of measurement dilation during
call-path profiling, particularly due to class-member functions
in C++ applications. The previous version of the call-path
profiler included in Scalasca relied exclusively on direct instru-
mentation to track the current call path and to determine the
time spent in specific call paths. In addition to elapsed times
and, optionally, hardware counter measurements throughout
the program, Scalasca collects communications metrics, typi-
cally the number of messages and bytes sent and received.

Although source-code translators and binary instrumenta-
tion are also available, Scalasca most commonly employs
automatic compiler instrumentation to insert hooks for direct
instrumentation into user functions. Scalasca can dynamically
filter out small but frequently called functions to lower the
overhead of indiscriminate user-code instrumentation. These
functions, which cause significant dilation but contribute little
to the overall execution time, are placed on black lists that
prevent them from invoking the code that was added during
instrumentation. However, this approach usually requires an
extra run of the application under full instrumentation to
identify the functions to place on the black list. Our new hybrid
approach eliminates this cost.

Our approach generically builds on third-party libraries
to perform the stack-unwinding procedure, which provides
increased portability and flexibility. We focus primarily on
an implementation that is based on libunwind [7], an easy-
to-use C library that supports a range of platforms and offers
advanced features such as changing the instruction pointer,
the stack pointer or different processor registers. The latter
capability directly supports our stack unwinding optimizations.
We demonstrate that our optimizations are independent of
the platform or the unwinding library through x86 64 and
PowerPC implementations based on StackwalkerAPI [8], a
C++ library with similar functionality.

Our approach faces two challenges. First, we must reduce
stack unwinding overhead in the presence of frequent MPI
calls. Second, we must integrate sampling-based and event-
based time measurements within the same experiment. We
discuss these challenges in the following subsections.

A. Fast Call-Path Unwinding

Although our approach avoids excessive measurement dila-
tion of user-code profiling through sampling, unwinding the
call stack during every MPI call can still dilate measurements
significantly if MPI calls are frequent. While we can easily
adjust the sampling rate, the rate at which an application calls
MPI functions is beyond our control. We therefore introduce
several optimizations to lower the overhead of stack unwinding
including non-trivial measures such as caching function start
addresses and thunk stacks.



1) Unwinding only relevant MPI functions: In extreme
cases, MPI call frequency exceeds the the sampling frequency
of 100Hz that we use in our implementation by orders of
magnitude. Many applications repeatedly invoke auxiliary MPI
functions with insignificant execution times. For example, in
the SPEC MPI2007 application 142.dmilc, more than 99.5%
of all MPI calls are to MPI_Comm_rank, while 68.4% in
147.l2wrf2 are to MPI_Cart_shift. We exploit Scalasca’s
ability to configure certain groups of MPI wrappers individ-
ually to turn off stack unwinding for a broad range of MPI
functions that are not performance critical. However, we still
count the occurrences of those calls with negligible overhead,
which facilitates eliminating unnecessarily frequent ones.

2) Caching region identifiers: Using libunwind to deter-
mine the name of a function with a given start address incurs
significant overhead. We also incur a high cost to map func-
tion names to region identifiers by which Scalasca uniquely
identifies the functions internally. Thus, we implement a
hash table that maps start addresses to their corresponding
region identifiers, which eliminates the name lookup and string
matching except for each function’s first occurrence.

3) Caching start addresses: We must use another, even
more expensive libunwind call to look up the start address
of the function being executed based on the current value of
the instruction pointer. Caching this information using a hash
table is non-trivial because the timer interrupt can occur during
execution of essentially any instruction, which would present
a large set of keys for non-trivial applications. Fortunately,
this problem only applies to the topmost stack frame. For all
other frames (and the topmost stack frame when unwinding
from MPI wrappers), the instruction pointer must refer to an
instruction just after a function call site, corresponding to the
return-pointer value of the function being called. Since the
largest applications only have several thousand call sites, we
can use a hash table to look up the function start address
for most stack frames. We handle instruction addresses in the
topmost stack frame (i.e., those the timer interrupts) with a
separate, less efficient look-up structure, in which we check
if the address falls in between the start and end address of a
known function. Caching the start address is our most effective
optimization, removing 90% of our unwinding overhead.

4) Light-weight thunk stacks: The optimizations that we
have discussed so far either reduce the number of unwind
operations or the time to perform actions related to a single
stack frame. Our next optimization reduces the number of
stack frames that we must examine to determine the full call
path. Specifically, we detect when the current frame is the last
element of a prefix of a previously unwound call path. Since
we already know the prefix, we can avoid re-examining its
stack frames. To mark prefix frames, we change each frame’s
return address as we unwind the stack. Based on these special
return addresses, we can later identify marked frames and
associate each with its corresponding prefix.

Changing bits in return addresses to mark frames could
alter the program’s control flow. Instead, we allocate a special
region of contiguous memory to hold a thunk stack, shown
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Fig. 1. Prefix optimization mechanisms.

in Figure 1(b). The thunk stack is composed of entries, or
thunks, that mirror the state of the runtime stack when it was
last unwound. Each time we walk over a stack frame during
unwinding, we create a thunk in the stack that branches to
that frame’s return address. We then modify the original return
address to point to the thunk. Since we know that instrumented
return addresses will fall somewhere inside the thunk stack,
we can identify them by comparing each return address to the
thunk stack’s location. Entries in the thunk stack are constant-
size, so we can compute the depth of a particular prefix by
subtracting the address of the bottom of the thunk stack from
an instrumented return address.

Other tools use different mechanisms to perform the same
optimization. HPCToolkit uses a lightweight trampoline, as
shown in Figure 1(a) [9]. Instead of pointing return addresses
to a stack, the topmost function of a prefix is instrumented
to return into a trampoline function. The trampoline performs
bookkeeping for profiling and tracks the frame in the dynamic
call tree to which it currently points. Upon return, the tram-
poline installs itself in the next lower stack frame so that that
frame’s function will also call the trampoline when it returns.

Each individual thunk is simpler than the HPCToolkit tram-
poline function. Figure 1(b) shows our thunk implementations.
On x86 64, the 64-bit jump performed by the thunk is a
single instruction, and on PowerPC it only requires four
instructions. Further, our thunks do not modify the stack as
the trampoline does. We thus avoid signal safety issues within



our instrumentation code, as our sampling signal handler does
not need to check whether it is within the trampoline to avoid
write conflicts. Our instrumentation is confined within unwind
routines and isolated from our thunks.

This arrangement decouples our optimization from the par-
ticular stack unwinder used. The trampoline approach requires
that trampoline code can interpret stack frames and insert
itself in the proper location in the next frame. Our thunks
do not perform stack surgery and, thus, can be implemented
separately from the main stack unwinding logic, which makes
our implementations less complicated than tramploine-based
implementations. Stack unwinding APIs only must support
writing to return address locations as we unwind the stack,
a feature that both libunwind and StackwalkerAPI provide.

Finally, our approach avoids the problem of non-local func-
tion exits. In languages that implement exception handling, a
routine may return into a routine other than its caller. This
event causes control flow to skip the return that would install
the trampoline in a lower frame. The trampoline approach thus
must instrument all non-local exits to routines, which requires
more complex code analysis [10]. Our approach avoids this
analysis by simply instrumenting all return addresses. Thus,
our scheme already instruments the frames in the prefix of
any frame that a non-local exit skips, whereas a trampoline
may be skipped entirely by a non-local exit.

5) Counting call-path visits: Our thunks support efficient
counting of the number of times that a call path is visited.
If a stack-walk step encounters a function in which we have
installed a thunk, then this function has not returned since the
previous unwind. Had it returned and been called again, its re-
turn address would not point to the thunk. This count is only an
estimate, because we do not necessarily take a sample at every
execution of a given call path, and we do not instrument non-
local routine exits. However, this count is a guaranteed lower
bound. Further, a unique property of our solution increases
the accuracy of this lower bound. We perform stack unwinds
not only during arbitrary timer interrupts but also inside every
PMPI wrapper. Thus, we frequently unwind call paths that
lead to MPI functions. In most cases, these functions always
call at least one MPI function every time they are executed,
which means that our visit count is likely to be exact. Overall,
we provide lower bounds for the visit counts of arbitrary call
paths, and exact visit counts for most call paths leading to
MPI functions. HPCToolkit similarly tracks the visit count,
but does most of the bookkeeping work inside its trampoline,
whereas we do this work within our unwind calls.

B. Hybrid Sampling Methodology

Our hybrid profiling approach combines two profoundly
different measurement modes. This combination requires that
we prevent undesirable interference between their underlying
mechanisms. Further, we must integrate their measurements in
a consistent and statistically sound manner.

1) Timer interrupts inside MPI: A possible interference be-
tween the two modes arises when timer interrupts occur during
MPI calls. Although at first glance it may seem reasonable just

to pause the timer whenever control is transferred to MPI, the
high frequency of MPI calls makes this approach extremely
expensive. Thus, we simply ignore interrupts that occur inside
MPI functions. We explain below how we correctly account
for ignored interrupts and how we avoid inaccuracies due to
MPI calls, which are not part of the sampled population.

2) MPI calls inside sample intervals: While we directly
measure the time spent inside MPI, we only statistically
measure the time spent outside MPI (which we refer to as
computation in the following). We must separate these two
measurement realms so that we represent each as accurately as
possible while maintaining the invariant that their sum equals
the directly measured overall execution time.

Classic sampling methodology estimates the time tc con-
sumed by a certain call path c as:

tc =
nc

n
∗ t

with t being the total execution time, n being the total number
of samples, and nc being the number of samples exhibiting call
path c. We could calculate the execution time within a com-
putational call path either by including the ignored samples
into n, as if we were sampling everything, or to rescale the
equation variables as if the entire execution consisted only of
computation. Either choice could result in inconsistent timings
due to the representation of overall MPI time in two different
ways, directly via explicit wall-clock readings and indirectly
via the number of interrupts that occur inside MPI.

The frequency of MPI calls makes these solutions inade-
quate. Our experiments confirm that the two representations
correspond well, as long as applications alternate between
large contiguous phases of computation and communication.
However, there are slight deviations when the frequency of
MPI calls rises. Further, time assignments may be biased
depending on when a call path primarily executes at runtime,
because the MPI call frequency may differ not only between
applications, but also within phases of the same application.

Classic sampling methodology assumes evenly distributed
samples across the execution time with intervals between
consecutive samples having about the same length. Our hybrid
approach violates this assumption for two different yet related
reasons. First, we drop timer interrupts that occur inside MPI
calls. Second, the interval between two valid interrupts may
include MPI calls, which influence the effective length of
the interval. Depending on the duration of these MPI calls,
the effective length of this interval can be shorter or longer
than the normal timer interval. As illustrated in Figure 2, we
define the effective sample interval length of a sample taken
at interrupt i as the sum of the computation intervals since
the last interrupt outside MPI (i − 2 in the figure). We can
calculate this length as the distance between i and i−2 minus
the intervening time spent in MPI as determined by our direct
measurements. Depending on the extent of MPI execution, the
effective length can be greater than (Figure 2(a)) or less than
(Figure 2(b)) the regular timer interval length.

Instead of excluding the MPI time at a global level by
rescaling all measurements by the same factor, we use a more
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Fig. 2. The impact of MPI calls on interval lengths.

flexible solution that locally rescales the time attributed to
a sample. This approach accounts for local fluctuations of
the sampling frequency caused by MPI calls. Our solution
assigns a weight that corresponds to the length of the effective
sample interval to each sample taken outside MPI. Thus, we
use a variable sampling frequency that assigns more weight
to samples that are taken in regions with a lower effective
sampling frequency and less weight to call paths in regions
with a higher effective frequency. This approach ensures that
effective sample intervals and MPI times add up to the overall
execution time, preserving consistency as desired.

Figure 3 presents experimental evidence from the SPEC
MPI2007 application 128.GAPgeofem that we require our
approach to dropped interrupts. The bins in the histogram in
Figure 3(a) represent the sample interval before we subtract
the time spent in MPI. 75% of the intervals have normal
length, 14% are twice as long, 6% are three times as long,
and the remaining 5% are more than three times as long.
Figure 3(b) shows the histogram after we subtract the MPI
times, resulting in the effective sample interval length. 34%
of the intervals have exactly the normal length, which means
that they did not include any MPI execution. Another 42% of
the intervals have a length between zero and the normal timer
interval length. These intervals have the normal length in the
previous histogram, but included some MPI execution.

The peak of the histogram indicates that slightly less than
half of the sample interval is typically spent in MPI for
this application. We also see a dip to the left of the normal
interval length as any given interval rarely includes only a
small amount of MPI execution. Intervals that comprise the
second peak of Fig. 3(a) appear to the right of the normal
interval length in Fig. 3(b). These intervals, which must have
included MPI execution, are now distributed similarly to the
samples from the first peak, but at a different scale (on the
logarithmic y-axis). The histogram shows that even though
we allow variable and theoretically unbounded sample interval
lengths, most of the interval lengths are very close to the
normal timer interval. Having many arbitrarily long sample
intervals would not invalidate our method, but would slow
down its convergence.

C. Implementation Challenges

1) Compiler optimizations: Unwinding the call stack on
the x86 64 architecture requires great care. Some compiler
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Fig. 3. Logarithmic histograms of sample interval lengths with 0.0001s
resolution buckets on the x-axis for 128.GAPgeofem; the last bucket contains
all intervals that do not fit into the first 500 buckets.

optimizations such as tail calls or even hand-written assembly
code may confuse libunwind, leading to incorrect return val-
ues [11]. Especially when using thunks, bogus return values
from the unwinder will almost certainly lead to a fatal error.
To avoid such errors, we validate libunwind return values
by ensuring that the preceding instruction was a call to the
corresponding function. If it is not, we simply do not install
the thunk. StackwalkerAPI did not exhibit this problem.

2) Signal safety: Each function called from our interrupt
handler must be signal safe. However, we require that our
signal handler has access to the full Scalasca measurement
infrastructure, which is not signal safe. We solve this prob-
lem through guards to every entry point of the Scalasca
library. The guards check a single atomic flag (volatile
sig_atomic_t) and immediately return if it is set. After
the guards, the flag is set, and it is unset at Scalasca’s exit
points, which eliminates race conditions within Scalasca.

3) StackwalkerAPI: Our approach required extensions to
StackwalkerAPI to export information about the location of
return addresses in unwound call paths. We worked with
the StackwalkerAPI developers to add this functionality for
x86 64 and PowerPC versions, which also allowed us to
decouple our implementation from StackwalkerAPI.
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III. EXPERIMENTAL EVALUATION

We investigate the benefits of our techniques on a rep-
resentative set of MPI applications, the twelve applications
of the SPEC MPI2007 v2.0 benchmark suite [12] with large
reference datasets. We also test with the DROPS application
since 126.lammps is the only C++ application in SPEC
MPI2007. The DROPS CFD software package [13] is an
object-oriented framework implemented in C++ that incurs
prohibitive measurement overheads [14].

We compile all codes with the Intel 11.1 compilers and
run them with ParaStation MPI 5.0 on the Juropa system,
which has 2208 twin quad-core Intel Xeon X5570 (Nehalem-
EP) compute nodes connected with Infiniband QDR and Sun
Data Center 648-port switches [15].

Figure 4 shows wall-clock times for executions with 64,
256 and 1024 processes. The programs generally exhibit good
scalability for fixed problem sizes: 1024-process runs complete
in a few minutes. However, DROPS fails to scale even to 256
processes (even with file output disabled), while scalability of
142.dmilc and 128.GAPgeofem is poor after 256 processes.

We prefer longer measurement runs since run-to-run vari-
ation of several seconds (e.g., due to use of the shared file
system) complicates performance comparisons. Thus, we fo-
cus on the 256-process executions. With this processor count,
we measure each code three times and observe under 3%
run-to-run variation in most cases. However, some executions
took more than twice as long. To reduce the impact of this
variability, we use the fastest of the three runs as the reference
time for an uninstrumented execution, which we compare to
runs with Scalasca to assess measurement overheads.

We compare two Scalasca measurement sets. The first set
uses Scalasca’s existing capabilities. The second set uses our
new call stack unwinding approach. Both sets employ the
Scalasca measurement library in its default runtime summa-
rization mode, which produces an analysis report that inte-
grates call-path profiles from each process. The measurements
include a full complement of wrappers for MPI routines,
enabling capture of MPI_Init and MPI_Finalize and all
other MPI events according to its runtime configuration.

With the optimized application object files only relinked
to include the Scalasca measurement library, the simplest
measurement consists of a (flat) profile of MPI routines. We
expect this measurement to have the lowest overhead, provid-
ing comprehensive MPI communication and synchronization
statistics, albeit without call-path contexts. The rightmost
(blue) set of bars in Figure 5 shows that, while 143.dleslie
execution took 3.5% longer than the uninstrumented reference,
the other applications (including DROPS ) were dilated less
than 1%, confirming the low overhead of basic PMPI profiling
with Scalasca. While unnecessary for these applications, we
could disable groups of MPI events if required to reduce
measurement overhead further.

A. Direct Instrumentation

The Scalasca instrumenter, when used as a prefix to the
usual compile and link commands, configures the compiler to
instrument the entry and exits from user-level source routines.
Although details vary by compiler, almost all contemporary
compilers offer such a capability. By observing these entry
and exit events for routines, the Scalasca runtime library can
track the current stack of instrumented routines as they execute
and update its call-path profile accordingly on each process.
As MPI events occur, delivered by the PMPI wrapper library,
they naturally augment the call paths in the profile.

The leftmost (red) bars in Figure 5 show that nine of the
applications have less than 4% measurement overhead, which
is sufficiently low for most uses. While 125.RAxML (8%)
is borderline, 142.dmilc (50%) and 122.tachyon (237%) have
excessive overhead. Finally, the 1770% overhead for DROPS
confirms that it is extremely challenging for this approach.

When we instrument and measure every user-level source
routine, high dilation can occur, particularly for small/short
computational routines that execute frequently. We can reduce
this overhead significantly by filtering such routines with the
black-list approach discussed earlier. In this case, they are not
included in the analysis report, as if the compiler inlined them.
We typically only need to filter a few user-level source routines
to reduce dilation. However, it is often convenient to filter all
routines that are not executed on call paths to MPI routines
(i.e., those engaged in local calculation).

These filters always reduce overhead, as the middle (green)
set of bars in Figure 5 shows. They reduce overhead for
125.RAxML to 1% and for 142.dmilc to 4%. Although the
122.tachyon overhead is down to 44%, it remains a concern:
with all overhead due to a single routine, selective instrumen-
tation could be employed to avoid instrumenting it entirely.
DROPS measurement also benefits from a comprehensive
filter (listing more than a thousand routines), yet the dilation
of 190% may still result in undesirable distortion. We examine
this issue in detail in Section IV. Thus, instrumentation of user-
level source routines proves straightforward and effective for
most but not all applications and is sometimes inconvenient.
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B. Stack Unwinding

We employ stack unwinding to determine the call path of
PMPI events for executables without compiler instrumentation.
The resulting call-path profile roughly corresponds to that
produced by the filtering scenario that excludes all user-
level source routines not on call paths to MPI operations.
We expect small differences, e.g., when the compiler changes
inlining decisions and from routines that the compiler does not
instrument (such as Fortran interfaces to MPI library routines).
The rightmost (dark brown) set of bars in Figure 6 shows the
measured overhead for direct measurement of MPI routines
only with no sampling. For most applications, overhead is un-
der 2% (and under 1% for DROPS ). Exceptions are 143.dleslie
(4%), 147.l2wrf2 (8%) and 142.dmilc (14%).

The latter two codes incur more overhead primarily because
they frequently invoke certain MPI routines that we do not
really need to profile. The Scalasca measurement library can
selectively disable measurement of such routines. Although
this is unnecessary with direct instrumentation, the cost of fre-
quent stack unwinding from such routines is prohibitive. Dis-
abling the group containing MPI_Comm_rank for 142.dmilc
and this group plus the one that contains MPI_Cart_shift
for 147.l2wrf2 reduces measurement overheads to under 1%.
Figure 6 shows the best results with solid bars, and the two
cases without this optimization with outlined white bars.

When an interval timer is configured to deliver interrupts at
a specified rate to each process, we can use stack unwinding
from these signals to augment the call-path profile with
non-MPI call paths approximating the profiles produced by
(unfiltered) compiler instrumentation. This approach includes
additional call paths since signals occur during execution of
uninstrumented routines (such as those in system libraries).

The leftmost (brown) and central (orange) sets of bars in
Figure 6 are for measurements including one-hundredth of
a second (100Hz) and one-tenth of a second (10Hz) timer
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Fig. 6. Measurement overhead percentage with interval timer event samples
and PMPI call-stack unwinding.

interrupts. We find slightly higher measurement overhead as
expected, but it remains below 4% for all but 143.dleslie, for
which it rises to 14% at 100Hz. Interestingly, measurement
overheads decreased for DROPS.

We measured the time to perform stack unwinding from
PMPI and non-PMPI events for each application, as Fig-
ure 7 shows for 10Hz and 100Hz. The PMPI unwind cost
(lower/cyan bars) dominates in most cases, equivalent to over
6% of the execution time for DROPS, 3% for 128.GAPgeofem
and 2% for 143.dleslie. Non-MPI unwind costs (middle/orange
bars) are negligible at 10Hz and only over 1% at 100Hz for
147.l2wrf2, 132.zeusmp2, 137.lu and 143.dleslie.

Stack unwinding from PMPI or non-PMPI events sometimes
fails, which we categorize as “failed unwinds” in the Scalasca
profiles. These failures mostly occur within system libraries,
specialized mathematical libraries, and the MPI library. The
upper/purple bars in Figure 7 show that the proportion of
failures is generally low and roughly consistent regardless
of the sampling frequency. For eight of the SPEC MPI
codes call-stack unwind failures correspond to under 0.2% of
execution time, with the worst cases being 122.tachyon (4%)
and 147.l2wrf2 (7%). For DROPS it is also only 0.4%.

Overall, our new approach provides reliable and convenient
comprehensive call-path profiling of PMPI and user-level
routines. We observe negligible measurement overheads (well
under 5%) for all test applications except 143.dleslie on Juropa
(and 15% dilation can also still be acceptable).

We show libunwind measurement overheads with and with-
out our thunk optimization in Figure 8(a). 142.dmilc shows
improvement, however, only when we include unwinding
from unimportant MPI routines. Although the thunk does not
provide a major reduction in overhead, at least on Juropa, it
still helps to provide more accurate call path visit counts.
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Fig. 7. Measurement distortion due to call-stack unwinding of MPI and
non-MPI events including impact of unsuccessful unwinding.

C. StackwalkerAPI

We implement the thunk optimization for StackwalkerAPI
on Jugene, a BlueGene/P system [16], which shows that
it is portable across platforms and stack-unwinding APIs.
Figure 8(b) shows that overheads on Jugene are similar to
those on Juropa with most SPEC MPI applications. Overhead
dilation is low with and without the optimization for all ap-
plications except 143.dleslie and 128.GAPgeofem. The thunk
optimization provides observable benefit in the latter case.

IV. C++ APPLICATION EXAMPLE

As already seen in Figure 4, the DROPS application ex-
ecution fails to scale on Juropa, and therefore provides a
suitable test case for applying the new measurement and
analysis capability incorporated in the Scalasca prototype. First
we examine the primary performance bottleneck relating to
writing an output file. After applying a straightforward remedy
for this problem, we then identify a second critical issue in
the solver when calculating new parameter distributions.

A. Excessive Flushes Writing Output File

Figure 9 shows views of the Scalasca summary analysis
reports of DROPS executions on Juropa with 256 processes,
combining PMPI measurements with 100Hz call-path sam-
pling. Metrics listed in the leftmost panel apply to the entire
measurement (e.g., time aggregated for all processes), which
can be refined to selected call paths shown as a tree in the
middle panel. 66% (1.32 million seconds) of the total time
occurs in the MPI_Allreduce call on the call path:

main
+ DROPS::Strategy<DROPS::ZeroFlowCL>

+ DROPS::SolveCoupledNS<...>
+ DROPS::LevelsetP2CL::GetInfo<...>

+ MPI_Allreduce

The over 6000 MPI_Allreduce calls encountered dur-
ing execution occur on 56 distinct call paths. However, the
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Fig. 8. Measurement overhead percentages with and without thunks with
StackwalkerAPI stack unwinding from PMPI wrappers.

critical call path is readily revealed by following the color-
coded markers to the call paths with the largest values and
selectively expanding them. We show the time breakdown for
each of the 256 processes in the rightmost panel with that
call path selected in the analysis report explorer. This time
varies considerably (between 5000 and 7000 seconds) across
MPI processes with process rank 0 a notable exception with
only 0.08 seconds. Clearly the other processes must wait for
rank 0 in this synchronizing collective communication. We
next identify why rank 0 is delayed.

A computational imbalance heuristic that identifies serial
execution isolates most of the serialized execution on rank 0
to a call path in a routine that writes output to file after each
solver iteration. Most of the time occurs in the C++ standard
IOstream library std::endl routine, which inserts a newline
character and flushes the buffer for the output stream:

main
+ DROPS::Strategy<DROPS::ZeroFlowCL>

+ DROPS::SolveCoupledNS<...>
+ DROPS::Ensight6OutCL::Write

+ DROPS::Ensight6OutCL::putGeom
+ std::endl

The 6278 seconds associated with this std::endl call
path are excessive. The associated source code calls it after
writing each line of values, which results in a huge num-
ber of calls and corresponding buffer flushes to disk. This
performance killer is widely documented, but unfortunately
common in C++ codes. We can easily remedy it by substituting
explicit newline insertions and only using std::endl to
flush the buffer at the end of a block of writes. Replacing
two instances of std::endl reduces the total execution time
for DROPS more than 11-fold to 174,000 seconds (visible
in the background display in Figure 9) and reduces the time
in the previous MPI_Allreduce bottleneck to 20 thousand
seconds (11.7%). While serial file writing remains a significant
bottleneck, which varies from run to run, reduced to under 90
seconds its performance impact is no longer quite so crippling.



Expanding the call path to 
Write shows std::endl 
taking 6278s on Process 0 
as the source of the 
bottleneck.

Around 6000s of waiting time in MPI_Allreduce on every process except rank 0 in the 
original is only around 90s in the revised version incorporating the fix (underneath).

66% of total time spent 
in this MPI_Allreduce11.6x reduction 

in total time

Fig. 9. Scalasca analysis report explorer that shows DROPS performance with 256 MPI processes before and after remedying the most serious bottleneck.
The upper display shows that the other MPI processes wait in MPI_Allreduce 66% of the original total time for rank 0, which is delayed in
DROPS::Ensight6OutCL::Write, including 6278 seconds in calls to std::endl (as seen in the lower display). Eliminating excessive std::endl
calls (and associated implicit flushes to disk) reduced the serial writing time 75-fold and the other processes wait much less in MPI_Allreduce (partially
visible in the background), resulting in 11.6 times faster overall execution.



The compiler-based instrumentation approach would not
identify this I/O problem as easily. Although we could still find
the MPI_Allreduce bottleneck, despite the significant mea-
surement dilation, we could only localize the origin on rank 0
to DROPS::Ensight6OutCL:putGeom since routines in
system libraries (such as std::endl) are not instrumented
by the compiler. A more detailed localization would require
manual instrumentation, which would further exacerbate the
measurement overhead.

B. Parameter Redistribution Bottleneck

To investigate the performance of the solver, with less run-
to-run variation due to the shared file system, we next per-
formed measurements with writing of the output file disabled,
again with 256 processes on Juropa. We show analysis reports
from a measurement done with full compiler instrumentation
(and runtime filtering of routines on non-MPI call paths) and
one with direct measurement of MPI calls and 100Hz sampling
in Figure 10. We summarize the key contents in Table I.

Although the compiler-instrumented measurement was di-
lated more than 250%, and overhead for unwinding call
stacks in the sampling measurement was almost 8%, both
measurements show remarkable agreement in the critical time
metrics, such as the 85% of total time that is in MPI. Of
course, MPI statistics for the number of synchronizations,
communications and bytes transferred match exactly. Compiler
instrumentation inhibited inlining of various routines (such as
DROPS::ProcCL::Probe), and other cases indicate that
inlining optimizations were performed differently, complicat-
ing comparisons of call paths and call trees.

Over half of the total time is concentrated in MPI_Probe
calls that block while waiting for a matching message to arrive
within DROPS::LevelsetModifyCL::maybeModify,
which redistributes parameters to improve load balance.
Rank 0 is again distinguished from the other ranks. We find
a local calculation in DROPS::FastMarchCL::Reparam
that only rank 0 performs. This calculation accounts for the
bulk of the time, creating a serial execution bottleneck that im-
pairs performance. The sampling-based measurement resolves
the execution time further than compiler instrumentation can,
to a variety of std::_Rb_tree operations related to the use
of STL sets or maps.

Comparison with the 64-way measurement using the same
input confirmed that the time for this serial section is inde-
pendent of the number of processes. Since it requires more
than half of the execution time with 256 processes, it explains
the poor scaling for this test case. Better scaling will require
efficient parallelization of this part of the application.

V. RELATED WORK

Individually, both statistical sampling and direct instrumen-
tation are used in a wide array of tools. HPCToolkit [1] is one
example of a tool that exclusively relies on sampling and uses
this data to deliver a comprehensive performance profile to the
end user. It implements call-path profiling by gathering stack
traces at each sample. It then uses this information to map the

profile data back to the user’s source code and its dynamic
execution path. In order to keep overhead low, HPCToolkit
applies a trampoline-based prefix optimization [9], [11] similar
to the thunk optimization presented in this paper. We discussed
the advantages of our approach in Section II-A4. Arnold and
Sweeney present an earlier sampled call-path profiler for Java
Virtual Machines [17], but this approach requires VM support
for marking return addresses with special bits.

While sampling-based systems can only provide profiles,
direct instrumentation can be used for both profiling (i.e., pro-
viding aggregate information over the runtime of the process)
and tracing (i.e., delivering all events as they occurred during
the execution of the program). Closely related to our work is
mpiP [18], a profiler for MPI operations. Like our system, it
uses the PMPI profiling layer to implement its functionality
and to gather basic statistics about the usage pattern of MPI,
including call-path context.

On the tracing side, tools like strace provide per-process
trace information. For parallel applications, tools such as
Vampir [19], Jumpshot [20] or the Intel Trace Analyzer and
Collector [21] record all message transfers between MPI
processes and store them to disk with complete timestamps.
They can then display the collected trace on a timeline. This
approach allows the user to carefully examine each individual
message event, but it comes at the price of large storage
requirements for the detailed trace files.

So far, little work has combined these two paradigms.
However, several tools exist that offer both sampling and
direct instrumentation side by side. The standard UNIX tool
gprof [22] uses direct instrumentation to generate call-path
displays for sequential programs in addition to sampling for
a separate flat profile. In the area of parallel performance
analysis, multiple tool sets offer both approaches in a single
environment. CrayPAT [23] has mutually exclusive sampling
and direct instrumentation modes. Open|SpeedShop [24] and
the Oracle (formerly Sun) Studio Performance Tools [25]
simultaneously record sampled and instrumented events, but
ultimately present separate analyses. Only recently and con-
currently to our work, TAU/ParaProf [26] started to prototype
integrating sampling and instrumentation annotation events in
a single measurement and to visualize them together [27].
However, the TAU approach records profiles and traces sep-
arately for the two sources of information, and is only able
to merge them after measurement. By comparison, our work
avoids storage and processing overheads of large traces by
integrating the two sets of events into call-path profiles as
they occur and carefully accounts for their interaction.

VI. CONCLUSION

We have presented a novel hybrid approach for call path pro-
filing. This approach combines the low overhead of sampling
with the detailed measurement of MPI routines possible with
direct instrumentation. While the concept is straightforward,
we found that several challenges arise in practice. First, we
must use stack unwinding even for the direct measurements
since we can no longer observe (nearly) all calls to determine



Compiler instrumentation Unwound 100Hz sampling
Fig. 10. Scalasca analysis report explorer summary reports from compiler instrumentation and sampling-based measurements (both with PMPI library
interposition) of DROPS with 256 processes (where file output was disabled). The upper displays show more than half of the execution time on all processes
is in DROPS::LevelsetModifyCL::maybeModify, and the lower displays focus on the MPI_Probe call path where all but rank 0 must wait.

TABLE I
SELECTED METRICS, CRITICAL CALL-PATH AND PROCESS VALUES FOR COMPILER-INSTRUMENTED AND SAMPLING-BASED MEASUREMENTS OF DROPS.

Compiler-instrumented Unwound sampling Metric / Call path / Processes
(s) (%) (s) (%)

330,000 100.0 126,000 100.0 Time
— 474 0.4 - Failed unwind
— 32 0.0 - Not unwound

330,000 100.0 117,000 92.8 - Execution time
278,000 84.2 107,000 84.9 - MPI

43 0.0 15 0.0 main
6 0.0 11 0.0 + DROPS::Strategy<DROPS::ZeroFlowCL>

263 0.1 20 0.0 + DROPS::SolveCoupledNS<DROPS::ZeroFlowCL>
14 0.0 — + DROPS::LinThetaScheme2PhaseCL<...>::DoStep

11,900 3.6 48 0.0 + DROPS::LinThetaScheme2PhaseCL<...>::SolveLsNs
0 0.0 0 0.0 + DROPS::LevelsetModifyCL::maybeModify
1 0.0 0 0.0 + DROPS::LevelsetP2CL::ReparamFastMarching

704 0.2 60 0.1 + DROPS::FastMarchCL::Reparam
0 0.0 0 0.0 + DROPS::FastMarchCL::Distribute
0 0.0 — + DROPS::ProcCL::Probe

180,000 54.5 65,900 56.3 + MPI_Probe
0 / 708 0 / 259 Rank 0 / Others



call path information. However, the frequency of MPI calls
requires several stack unwinding optimizations to keep mea-
surement overhead sufficiently low. Second, we must ensure
that the two instrumentation techniques do not interfere with
each other. This challenge led us to develop a novel sampling
methodology that accounts for the omission of samples that
occur during MPI routines.

We implemented our hybrid profiling approach within
Scalasca and presented a detailed evaluation of the costs to
gather call path profiles with direct instrumentation, sampling
and our hybrid approach. We found that all approaches work
well for many applications in the SPEC MPI2007 suite.
However, direct instrumentation suffers significant overhead
for some applications, whereas sampling alone makes gath-
ering some critical information difficult. Our case study of
the DROPS CFD application demonstrates that the detailed
information and reduced overhead of our hybrid approach
facilitates analysis of bottlenecks in real applications. Overall,
our approach significantly improves on existing techniques and
we are working to make it available in a forthcoming release
of the open-source Scalasca toolset.
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