
http://hpc.sagepub.com

Computing Applications 
International Journal of High Performance

DOI: 10.1177/1094342007077862 
 2007; 21; 174 International Journal of High Performance Computing Applications

Allen D. Malony, Sameer Shende, Alan Morris and Felix Wolf 
 Compensation of Measurement Overhead in Parallel Performance Profiling

http://hpc.sagepub.com/cgi/content/abstract/21/2/174
 The online version of this article can be found at:

 Published by:

http://www.sagepublications.com

 can be found at:International Journal of High Performance Computing Applications Additional services and information for 

 http://hpc.sagepub.com/cgi/alerts Email Alerts:

 http://hpc.sagepub.com/subscriptions Subscriptions:

 http://www.sagepub.com/journalsReprints.navReprints: 

 http://www.sagepub.co.uk/journalsPermissions.navPermissions: 

 http://hpc.sagepub.com/cgi/content/refs/21/2/174 Citations

 at Forschungszentrum Julich Gmbh on May 15, 2009 http://hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/cgi/alerts
http://hpc.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.co.uk/journalsPermissions.nav
http://hpc.sagepub.com/cgi/content/refs/21/2/174
http://hpc.sagepub.com


174 COMPUTING APPLICATIONS

The International Journal of High Performance Computing Applications,
Volume 21, No. 2, Summer 2007, pp. 174–194
DOI: 10.1177/1094342007077862
© 2007 SAGE Publications
Figures 2, 12 appear in colour online: http://hpc.sagepub.com

COMPENSATION OF MEASUREMENT 
OVERHEAD IN PARALLEL 
PERFORMANCE PROFILING

Allen D. Malony1

Sameer Shende1

Alan Morris1

Felix Wolf2

Abstract

Performance profiling generates measurement overhead
during parallel program execution. Measurement over-
head, in turn, introduces intrusion in a program’s runtime
performance behavior. Intrusion can be mitigated by con-
trolling instrumentation degree, allowing a tradeoff of accu-
racy for detail. Alternatively, the accuracy in profile results
can be improved by reducing the intrusion error due to
measurement overhead. Models for compensation of
measurement overhead in parallel performance profiling
are described. An approach based on rational reconstruc-
tion is used to understand properties of compensation
solutions for different parallel scenarios. From this analy-
sis, a general algorithm for on-the-fly overhead assess-
ment and compensation is derived.

Key words: performance measurement and analysis, par-
allel computing, profiling, intrusion, overhead compensa-
tion

1 Introduction

To observe the performance of a parallel program, the
general technique of performance profiling is often used.
Performance profiling (Knuth 1971) can be implemented
by direct (in vivo) instrumentation of the program with
measurement code (e.g. see Mucci n.d.; Reed, Rose, and
Zhang 1998; Rose 2001; Fahringer and Seragiotto 2002;
Shende and Malony 2006), or by sampling (ex vivo) the
program periodically (via interrupts or passive monitor-
ing) to assign performance metrics to code regions identi-
fied by the sampled program counter (e.g. see IBM n.d.;
Janssen n.d.; Bell Laboratories 1979; Graham, Kessler,
and McKusick 1982; Mellor-Crummey, Fowler, and Marin
2002). The first technique is commonly referred to as
measurement-based profiling (or simply measured profil-
ing) and is an active technique. The program is instru-
mented to observe specific events of interest, such as the
entry and exit of a routine. The second technique is called
sample-based profiling (also known as statistical profil-
ing) and is a passive technique since it requires little or no
modification to the program. The “events” observed in
this case are considered to be either those events inferred
from the program “state” at the time of sampling (e.g. the
current routine on the call stack) or those events that trig-
gered the sampling action (e.g. overflow of a hardware
counter) or a combination of both.

In both statistical and measured profiling, performance
measurements are made during program execution. There
is an overhead associated with performance measurement
since extra code is being executed and hardware resources
(processor, memory, network) consumed. When perform-
ance overhead affects the program execution, we speak of
performance (measurement) intrusion. Performance intru-
sion, no matter how small, can result in performance per-
turbation (Malony 1991b) where the program’s measured
performance behavior is “different” from its unmeasured
performance. Whereas performance perturbation is diffi-
cult to assess, performance intrusion can be quantified by
different metrics, the most important of which is dilation
in program execution time. This type of intrusion is often
reported as a percentage slowdown of total execution time,
but the intrusion effects themselves will be distributed
throughout the profile results.

Advocates of statistical profiling argue against meas-
ured profiling in regards to time overhead and its impact
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175COMPENSATION OF MEASUREMENT OVERHEAD

on intrusion. The insertion of measurement code into
the program introduces direct overhead for every event
occurrence at the point in the program’s execution when
and where the event occurs. In contrast, statistical profil-
ing measures the the program’s performance only at the
time of sampling, whenever and wherever that occurs.
Hence, it is argued, statistical profiling can result in less
overhead and, consequently, less intrusion than measured
profiling. Measured profiling advocates retort that, while
this may be true in some cases, there are certain classes of
common events and execution actions that cannot be
observed by a statistical approach alone or at all. Even Unix
gprof-style profiling (Graham et al. 1982), typically imple-
mented via program counter sampling, requires direct
code measurement to keep track of the number of times
an event (i.e. routine entry) occurs during execution.

Any performance profiling technique, short of com-
pletely passive monitoring, will encounter measurement
overhead and will also have limitations on what perform-
ance phenomena can and cannot be observed (Malony
1991b). Until there is a systematic basis for judging the
validity and verifiability of differing profiling tech-
niques, it is more productive to focus on those challenges
that a profiling method faces to improve the accuracy of
its measurement. In this regard, we pose the question
whether it is possible to compensate for measurement
overhead in performance profiling. What we mean by
this is to quantify measurement overhead and remove the
overhead from profile calculations. (It is important to
note we are not suggesting that by doing so we are neces-
sarily “correcting” the effects of overhead on intrusion
and perturbation.) Because performance overhead occurs
in both measured and statistical profiling, overhead com-
pensation is an important topic of study.

In Malony and Shende (2004), we presented overhead
compensation techniques that were implemented in the
TAU performance system (Shende and Malony 2006) and
demonstrated with the NAS parallel benchmarks (Bailey
et al. 1995) for both flat and callpath profile analysis.
While our results showed improvement in NAS profiling
accuracy, as measured by the error in total execution time
compared with a non-instrumented run, the compensa-
tion models were deficient for parallel execution due to
their inability to account for interprocess interactions and
dependencies. The contribution of this paper is the mode-
ling of performance overhead compensation in parallel
profiling and the design of on-the-fly algorithms that
would be implemented in practical profiling tools, such
as in the TAU system.

Section 2 briefly describes the basic models from Mal-
ony and Shende (2004) and show how they fail on a sim-
ple master–worker example. We discuss the difficult issues
that arise with overhead interdependency in parallel exe-
cution. In Section 3 we follow a strategy to model paral-

lel overhead compensation for message-based parallel
programs based on the notion of rational reconstruction
of compensation solutions for specific parallel case stud-
ies. From the rationally reconstructed models we generate,
we derive an on-the-fly algorithm for overhead analysis
and compensation and argue for its general application.
The simple master–worker example is then reconsidered
in Section 4 in respect to the application of the algorithm.
Conclusions and future work are given in Section 5.

2 Basic Models for Overhead 
Compensation

In our earlier work (Malony and Shende 2004), we devel-
oped techniques for quantifying the overhead of perform-
ance profile measurements and correcting the profiling
results to compensate for the measurement error (i.e. over-
head) introduced. This work was done for two types of
profiles: flat profiles and profiles of routine calling paths.
The techniques were implemented in the TAU profiling
system and demonstrated on the NAS parallel bench-
marks. However, the models we developed were based on
a local perspective of how measurement overhead impacted
the program’s execution. Profiling measurements are, typi-
cally, performed for each program thread of execution.
(Here we use the term “thread” in a general sense. Shared
memory threads and distributed memory processes equally
apply.) By a local perspective we mean one that only
regards the overhead impact on the process (thread) where
the profile measurement was made and overhead was
incurred.

Consider a message passing parallel program com-
posed of multiple processes. Most profiling tools would
produce a separate profile for each process, showing how
time was spent in its measured events. Because the profile
measurements are made locally to a process (either through
direct instrumentation or sampling), it is reasonable, as a
first step, to compensate for measurement overhead in the
process-local profiles only. Our original models did just
that. They accounted for the measurement overhead gen-
erated during TAU profiling for each program process
(thread) and all its measured events, and then removed
the overhead from the inclusive and exclusive perform-
ance results calculated during online profiling analysis.
The compensation algorithm “corrected” the measure-
ment error in the process profiles in the sense that the local
overhead was not included in the local profile results.

Indeed, the models we developed are necessary for
compensating measurement intrusion in parallel compu-
tations, but they are not sufficient. Depending on the appli-
cation’s parallel execution behavior, it is possible, even
likely, that intrusion effects due to measurement overhead
seen on different processes will be interdependent. We
use the term “intrusion” specifically here to point out that
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176 COMPUTING APPLICATIONS

although measurement overhead occurs locally, its intru-
sion can have non-local effects.

Suppose our message passing program implements a
master–worker computation and consider the following
execution scenario. The master process sends work to
worker processes and then waits for their results. The
worker processes do the work and send their results back
to the master and terminate. The master finishes once all
the worker results are received. Figure 1(a) depicts the
above program execution with profiling enabled. The
arrows show the master-to-worker and worker-to-master
message communication and the local measurement over-
heads are shown by rectangles. The small triangles indi-
cate when the worker messages are received by the
master and the large triangle marks where the master ter-
minates. Worker termination is depicted by the vertical
line. Since no overhead compensation is performed in
Figure 1(a), the total execution (worker and master) time
is delayed. As shown, the overhead for the master process
is assumed to be negligible, since for most of the time it is
waiting for the workers to report their results.

Figure 1(b) portrays the effects of our original over-
head compensation algorithms. Each worker is slowed
down as a result of measurement overhead with the last
worker to report seeing an approximately 30% slowdown.
If we assume the local profile compensation works well
and accurately approximates the workers “actual” per-
formance, all the worker overhead will be removed. This
is depicted by the overhead bunched up at the end of each
worker’s measured timeline. As a result, the messages
returning results from the workers would have been sent
earlier (dashed arrows) and the workers would have fin-
ished earlier, as if no measurements had been made.
Because the master must wait for the worker results, it
will be delayed until the last worker reports. Thus, its exe-
cution time will include the last worker’s 30% intrusion.
Unfortunately, the master knows nothing of the worker
overheads and, thus, our “local” compensation algorithms

cannot account for them. The master’s profile will still
reflect the master finishing at the same time point (white
large triangle), even though its “actual” termination point
is much earlier (grey large triangle).

Parallel overhead compensation is a more complex
problem to solve. This is not entirely unexpected, given
our past research on performance perturbation analysis
(Malony 1991a; Malony and Reed 1991; Malony, Reed,
and Wijshoff 1992). However, in contrast with that work,
we do not want to resort to post-mortem parallel trace
analysis to solve it. The problem of overhead compensa-
tion in parallel profiling using only profile measurements
(not tracing) has not been addressed before, save in a very
restricted form in Cray’s MPP Apprentice system (Wil-
liams, Hoel, and Pase 1994). Certainly, we can learn from
techniques for trace-based perturbation analysis (Sarukkai
and Malony 1993), but because we must perform over-
head compensation on-the-fly, the utility of these trace-
based algorithms will be constrained to deterministic par-
allel execution only, for the same reasons discussed by
Malony (1991b) and Sarukkai and Malony (1993).

At a minimum, algorithms for on-the-fly overhead com-
pensation in parallel profiling must utilize measurement
infrastructure that conveys overhead information between
processes at runtime. It is important to note this is not
required for trace-based perturbation analysis and is what
makes compensation in profiling a unique problem. Tech-
niques similar to those used in PHOTON (Vetter 2002)
and CCIFT (Bronevetsky et al. 2003a, 2003b) to embed
overhead information in MPI messages may aid in the
development of such measurement infrastructure. Photon
extends the MPI header in the underlying MPICH imple-
mentation to transmit additional information. In contrast,
the MPI wrapper layer in the CCIFT application level
checkpointing software allows this information to piggy-
back on each message.

However, we first need to understand how local meas-
urement overhead affects global performance intrusion

Fig. 1 Parallel execution measurement scenario.
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177COMPENSATION OF MEASUREMENT OVERHEAD

so that we can construct compensation models and use
those models to develop online algorithms.

3 Models of Parallel Overhead 
Compensation

To address the problem of overhead compensation in
parallel execution, we must develop models that describe
the effect of measurement overhead on execution intru-
sion. From these models we can gain insight into how the
profiling overheads can then be compensated. However,
unlike sequential computation, the models must identify
and describe aspects of parallel interaction that may
cause different intrusion behavior and, thus, lead to dif-
ferent methods for compensation. From the discussion
above, we know that the methods will involve the com-
munication of information between parallel threads of
execution at the time of their interaction. To be more
focused in our discussion, we will consider parallel com-
pensation in message passing computation. The parallel
overhead compensation models we present below allow
for information about execution delay to be passed between
processes during message communication. The goal is to
determine exactly what information needs to be shared
and how this information is to be used in compensation
analysis. The modeling methodology we develop extends
to shared memory parallel computing, but the case for
shared memory will not be presented here.

The approach we follow below constructs an under-
standing of the parallel compensation problem from first
principles. We begin with only two processes and then
consider three processes. From this in-depth study, our
hope is to gain modeling and analyses understanding that
can extend to the general case. We will follow a strategy
of “rational reconstruction” where we take scenario meas-
urement cases and reconstruct an “actual” execution as if
the measurement overhead were not present. From what
we learn, we derive a model that works for that case and
look for consistent properties across the models to for-
mulate a general algorithm.

3.1 Two Process Parallel Models

The simplest parallel computation involves only two
processes which exchange messages during execution.
Measurement-based profiling will introduce overhead
and intrusion local to each process that carries between
the processes as they interact. To model the intrusion and
determine what information must be shared for overhead
compensation, we consider the following two-process
scenarios:

One send Process P1 sends one message to process P2
Two sends P1 sends two messages to P2

Handshake P1 sends one message to P2, then P2 sends
one message to P1

General General message send and receive

For each scenario, we enumerate all possible cases for over-
head relations between the processes (called the “measured
execution” model) and for each case derive a representa-
tion of the execution with the overhead removed (called
the “approximated execution” model). We determine the
overhead-free approximation using a rational reconstruc-
tion of the “actual” event timings with the measurement
overhead removed.

Both models are presented in diagrammatic form. In
addition, we present expressions that relate the overhead,
waiting, and timing parameters from the measured execu-
tion to those “corrected” parameters in the approximated
execution. It is important to keep in mind that the goal is
to learn from the rational reconstruction of the approxi-
mated execution how profile compensation is to be done
in the other scenarios, especially the general case.

3.1.1 Scenario: One send To begin, consider a single
message sent between two processes, P1 and P2. Figure 2
shows the two possible cases, distinguishing which proc-
ess has accumulated more overhead up until the time of
the message communication. Execution time advances
from left to right and shown on the timelines are send
events (S) and receive events (Rb, receive begin; Re, receive
end). The overhead on P1 is o1 and the overhead on P2 is
o2. The overhead is shown as a blocked region immedi-
ately before the S or Rb events to easily depict its size in
the figure, but it is actually spread out across the preced-
ing timeline where profiled events occur. Also designated
is the waiting time (w) between Rb and Re, assuming
waiting time can be measured by the profiling system.

Case 1 occurs when P1’s overhead is greater than or
equal to P2’s overhead plus the waiting time (o1  o2 + w).
A rational reconstruction of the approximated execution
determines that P2 would not have waited for the mes-
sage (i.e. S would occur earlier than Rb). Hence, the approx-
imated waiting time (designated as w ) should be zero, as
seen in the approximated execution timeline. Of course,
the problem is that P2 has already waited in the measured
execution for the message to be received. In order for P2
to know P1’s message would have arrived earlier, P1
must communicate this information. Clearly, the infor-
mation is exactly the value o1, P1’s overhead. This is
indicated in the figure by tagging the message communi-
cation arrow with this value.

With P1’s overhead information, P2 can determine
what to do about the waiting time. The waiting time has
already been measured and must be correctly accounted.
If the approximated waiting is adjusted to zero, where
should the elapsed time represented by w go? If the pro-

≥

′
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178 COMPUTING APPLICATIONS

filing overhead is to be correctly compensated, the meas-
ured waiting time must be attributed to P2’s approximated
overhead (o2  = o2 + w)! This is interesting because it
shows how, even in a very simple case, the naive over-
head compensation can lead to errors without convey-
ance of delay information between sender and receiver. It
is also important to note that Rb cannot be moved back
any further in the approximated execution. This suggests
that the only correction we can ever make in the receiver
is in respect to waiting time.

The overhead value sent by P1 with the message con-
veys to P2 the information “this message was delayed
being sent by o1 amount of time” or “this message would
have been sent o1 time units earlier.” We contend that this
is exactly the information needed by P2 to correctly adjust
its profiling metrics (i.e. compensate for overhead in par-
allel execution). We refer to the value sent by P1 as delay

and will assign the designator x to represent its modeling
and analysis that follows. For instance, P1’s delay is given
by x1. In this case, x1 = o1, but it is not always true that
delay will be equal to accumulated overhead, as we will
see. Now an interesting question arises. How much earlier
would future events on process 2 occur in the approxi-
mated execution after the message from P1 has been
received? In general, each process will maintain a delay
value (xi for process Pi) for it to include in its next send
message to tell the receiving process how much earlier the
message would have been sent. In the approximated exe-
cution, for denotational purposes, we show the x1 and x2
values for P1 and P2 as shaded regions after the last
events, S and Re, respectively. We also show an expres-
sion for the calculation of x2 for this case.

Moving on to the second case, the overhead and wait-
ing time in P2 is greater than that which P1 reports (i.e.

Fig. 2 Two-process, one-send – models and analysis.

′
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o1 < o2 + w). Rationally, this means that S happens after
Rb in the approximated execution. What is the effect on
w , the approximated waiting time? Interestingly, w  can
increase or decrease, depending on the relation of o1 to
o2. (Remember, o1 is the same as x1 in these cases.)
However, the occurrence of Re is certainly dependent on
S and, thus, x2 will be entirely determined by (and, in
fact, equal to) x1.

If this was all the two processes did, the models and anal-
ysis expressions would be all we need. Unfortunately, life
is not so simple. Let us add in a bit more complexity.

3.1.2 Scenario: Two sends To gain a better understand-
ing of this concept of a process carrying forward a delay
quantity (x) indicating how much earlier the next future
send event would occur, we look at the scenario of send-
ing two messages. This is shown in Figure 3. There are
four cases to consider. In each case, we show the analysis
of the first message following the modeling methods dem-
onstrated above. Then we consider the second message.
Notice the inclusion of additional profiling overheads in
the two processes after the first message (o1a and o2a) as
well as a second waiting term (y) in P2.

′ ′

Fig. 3 Two-process, two-send – models and analysis (Case: 1, 2).
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Consider Case 1. The first message is approximated
exactly as in Case 1 of the single send model. P1’s sec-
ond send event is easily approximated by subtracting the
accumulated overheads. P1’s delay is exactly this accu-
mulated overhead (o1 + o1a) and this information should
be sent to P2, as shown. P2’s second receive begins a
known amount of time after the first receive completes.
However, to correctly compensate for profiling over-
head, P2 must be able to determine the relative timing of
the second Rb event and the second S event.

With the x2 delay calculation from the first receive, P2
has all the information it needs. By comparing the value
o1 + o1a sent with the second message to x2 plus any
additional overhead and waiting time on P2 (o2a + y), we
can determine if the send event or the receive event
occurred earlier in the approximated execution. The sec-
ond message analysis introduces two new variables (O1
and O2), to bring out the similarities in the expressions
for the One Send models. As seen, P2 should never wait
in its approximated execution. Thus, its immediate future
events would occur earlier by an amount based solely on
its accumulated overhead and the waiting time it errone-
ously incurred. This analysis is successfully captured
with the expressions shown. Interestingly, these expres-
sions have a strong similarity to the One Send cases.

Does this similarity continue to hold for Case 2? Here,
we have the alternate first message case (i.e. Rb occurs
before S in the approximated execution), and the one
send analysis determines the value of x2. However, our
rational reconstruction leads to second message equa-
tions that are exactly the same as in Case 1. That is, after
the effects of the first message have been approximated,
we see that P2 would not have waited for the second
message, just as in Case 1.

The similarity in the form of the equations suggests that
it may be possible to handle the overhead compensation on
a message-by-message basis. We argue that the x delay
values maintained by a process are the key. This is evi-
denced in the last two cases for the Two Sends scenario
shown in Figure 4. These two cases differ from the first two
in respect to the outcome of the conditional test between
O1 and O2 + y. Here we consider two situations where
waiting will occur in the second message approximation.
Following the expression pattern for processing this case
in the One Send scenario, the equations result in a correct
updating of the overhead and waiting values. In addition,
the values of x1  and x2  are consistently calculated.

3.1.3 Scenario: Handshake So far, we have looked
only at cases of one process, P1, sending messages to
another process, P2. Here, the execution dependency is
only one way, with P2 dependent on arriving P1 messages.
While the overhead analysis handles the two scenarios
above, it does not address cases of process interdependen-

cies. The simplest example of such a scenario is a two
message “handshake” where P1 sends a message to P2
and P2 then sends a message to P1. When we add in over-
head and waiting variables, four cases result. These are
presented below. Specifically, what are we looking for in
this scenario is insight on what value P2 should send back
to P1 for overhead compensation analysis.

Figure 5 shows the first two cases. The handling of the
first message sent from P1 to P2 is consistent with that of
Cases 1 and 2 of the Two Sends scenario. After the first
message is processed, the calculated value of x2 reflects a
delay in P2 caused by the combined effects of overhead
intrusion on P1 and P2. Thus, when P2 sends the mes-
sage to P1, it should indicate that its send was delayed by
x2 plus any additional overheads incurred (given by o2a)
since the last receive. If this is done, we claim the second
message received on P1 can then be processed in same
manner as the second message received in the Two Sends
scenario.

This is exactly what we see. The approach validates
the rational reconstruction of the approximated execu-
tion. Furthermore, we see a high degree of similarity in
the equations for processing the second message with
those for handling a single message, just the terms are
slightly different, rewritten as in the Two Sends scenario
and for the inverse situation of P1 receiving and P2 send-
ing. These observations are born out in Cases 3 and 4,
shown in Figure 6 for completeness.

As further validation of the equations for overhead,
waiting, and delay processing, we would expect to see
the execution interdependency due to the message hand-
shake result in a synchronization of sorts between the
two processes. This is apparent in the fact that the two
delay values (x1  and x2 ), when added to last events (Re
on P1 and S on P2), end at the same time.

3.1.4 General scenario The goal of the two process
models is to enumerate the possible cases arising from
send/receive message communication. From these cases,
we can rationally reconstruct the approximated execution
to determine how overhead, waiting, and delay times are
to be adjusted. From this reconstruction, we can then
derive expressions for overhead analysis and correction.
The outcome of the study is that we found a high degree
of similarity in the analysis results. This leads us to pro-
pose a general scenario for two processes that can be
applied to all scenario analyses.

The general scenario considers an arbitrary message
send on one process and corresponding message receive
on the other process. Thus, this is a generalization of the
One Send scenario. Figure 7 shows the two cases. As in
the One Send scenario, we only have two cases to con-
sider. In contrast, we use the delay values x1 and x2
instead of the o1 and o2 overheads in the analysis.

′ ′

′ ′
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The importance of the general scenario is the case
analysis showing how the delay values are updated and
what information is shared between processes during
message communication. (Keep in mind that we are arbi-
trarily designating P1 as the sender and P2 as the receiver.
The analysis also applies when P1 is the receiver and P2
the sender, with appropriate reversals of notation in the
expressions.) Notice that the overhead values o1 (not
shown) and o2 are accumulated overheads. The o2 value
is updated here to account for waiting time processing,

but whenever any new measurement overhead occurs on
P1 or P2, the accumulated overheads o1 and o2 must be
updated accordingly. Similarly, any new measurement
overhead must also be added to the delay values x1 or x2.

The conclusion of the two process modeling is that we
can handle the parallel overhead compensation for ALL
two-process scenarios by applying the general analysis
described above on a message-by-message analysis,
maintaining the overhead and delay values as the online
analysis proceeds.

Fig. 4 Two-process, two-send – models and analysis (Case: 3, 4).
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3.2 Three Process Parallel Models

The question at this point is whether that conclusion
applies to three or more processes. That is, can the general
two-process analysis be applied on a message-by-mes-
sage basis to all send/receive messages between any two
processes in a multi-process computation and, more impor-
tantly, give the desired overhead compensation result? In

this section, we look at two scenarios with three processes
to get a sense of the answer. These scenarios are:

Pipeline Process P1 sends a message to P2, then P2
sends to P3

Two Receive Process P1 and P3 sends a message each to
process P2

Fig. 5 Two-process, handshake – models and analysis (Case: 1, 2).
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We then argue that these two scenarios are enough to
elucidate all similar cases regardless of the number of
processes. Again, we follow a rational reconstruction
approach to determine approximated executions and then
derive expressions for updating overhead, waiting time,
and delay variables to match the reconstructed execu-
tions.

3.2.1 Scenario: Pipeline The Pipeline scenario is
chosen to investigate the effects of delay propagation.
The main issue is whether the calculated delay value
from the processing of the first message is sufficient to
correctly adjust the variables when the second message is
processed. Figure 8 shows the two cases based on the
relationship of the adjusted delay value (x2 ) sent by P2
to P3, and the overhead and waiting time on P3. (As in

Fig. 6 Two-process, handshake – models and analysis (Case: 3, 4).

′
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our earlier models, we assume here for simplicity that
this is the first message P3 receives. Clearly, in this case,
x3 = o3.)

The interesting outcome of the models is that the anal-
ysis and update of P3’s variables during the processing of
the second message is effectively independent of the first
message. Of course, the x2  delay value sent from P2 is a
derivative of the effects of the first message and x1, but
the expressions are invariant compared with those when
P2 sends a message to P3 without first receiving a mes-
sage from P1 (i.e. the Two-Process, General scenario).
This conclusion extends to cases where there is an arbi-
trary number of processes in the pipeline.

3.2.2 Scenario: Two receive Unfortunately, it is not
hard to find a scenario that raises issues in our ability to

correct overhead intrusion under a different set of receive
assumptions. These issues are brought on by the effect of
intrusion on message sequencing. The Two Receive sce-
nario exposes the problem. Here one process, P2, receives
messages from two other processes. There are four cases
to consider depending on the relative sizes of overheads
and waiting times. Figure 9 shows the first case. We
return to looking only at the first messages being sent and
received on each process, and consider the initial over-
heads (not the delay values) in the analysis.

The first case is similar in many ways to the other sce-
narios. We show a two-part approximated execution, with
part one (top) showing the state after the first message is
processed and part two (bottom) showing the result after
the second message is processed. The analysis follows the
approach we used before, with new waiting values (w  and

Fig. 7 Two-process, general – models and analysis.

′

′

 at Forschungszentrum Julich Gmbh on May 15, 2009 http://hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com


185COMPENSATION OF MEASUREMENT OVERHEAD

y ) being calculated and P2’s delay value (x2) updated. In
this case, no waiting time would have occurred. Other-
wise, nothing particularly strange stands out in the
approximated result.

This is also true of the second case shown in Figure 10.
The conditional expression in the analysis of the first
message is the same as in the first case, but the opposite
condition is found for the second message. Waiting

Fig. 8 Three-process, pipeline – models and analysis.
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occurs on the second message and will be correctly
adjusted based on the analysis expressions we developed
before. Case 3, shown in Figure 11, also offers no sur-
prises. Here we see the opposite condition for the first
message with the same condition for the second message
of Case 2.

What would be a surprising result? If the overhead
analysis resulted in a reordering of send events in time,
between the measured execution and the approximated
execution, then there would be concerns of performance
perturbation. In Figure 12, we see the send events chang-
ing order in time in the approximated execution, with
P3’s send taking place before P1’s send. As with the other
cases, our analysis reflects a message-by-message process-
ing algorithm.

In the rational reconstruction, we assume the message
communication is explicit and pairs a particular sender
and receiver. Under this assumption, the order of mes-
sages received by P2 must be maintained in the approxi-
mated execution. In this case, is the time reordering of

send messages in Figure 12 a problem? In fact, no. It is
certainly possible that a process (P2) will first receive a
message from a process (P1) sent after another process
(P3) sends a message to the receiving process. This just
reflects the strict order of P2 receives. However, if we
consider receive operations that can match any send, the
send reordering exposes a problem with overhead com-
pensation, since the message from P3 would be received
first in the “real” execution.

The application of our overhead compensation models
to programs using receive operations that can match any
send message produces profile analysis results constrained
to message orderings as observed in the measured execu-
tion. These message orderings are affected by intrusion
and, thus, may not be the message orderings that occur in
the absence of measurement. However, while it is possi-
ble to detect reordering occurrences (i.e. measured versus
approximated orderings), it is not possible to correct for
reordering during online overhead analysis and compen-
sation. Why? There are two reasons. First, our analysis is

Fig. 9 Three-process, two-receive – models and analysis.
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unable to determine if it is correct to associate a receive
event with a different send event. That is, the analysis
does not know which type of receive is being performed,
one that is for a specific sender or one that can accept any
sender. Second, even if we know the type of receive
operation, it is not possible to know whether changing
the receive order will affect future receive events. There-
fore, the models must, in general, enforce message
receive ordering. That said, other techniques may be
brought to bear on the problem. For instance, the analysis
could relax the constraint, allowing measured order to be
locally altered, and then apply algorithms developed by
Kranzmüller (2000) to look for future message event vio-
lations.

3.3 Summary

Our above modeling and analysis of measurement over-
head in parallel message passing programs has produced
four important outcomes. First, the rational reconstruc-

tions of the measurement scenarios and the analysis of
the approximated executions has resulted in a robust pro-
cedure for message-by-message overhead compensation
analysis in parallel profiling. It correctly updates waiting
times associated with message processing and calculates
per process values that capture online the amount a proc-
ess has been effectively delayed as a result of measure-
ment overhead and its effects. From this overhead
compensation foundation, the parallel profiling opera-
tions used to update inclusive and exclusive performance
can be applied. Second, this analysis requires ALL send
messages to be augmented with the delay value of the
sender process at the time the message is sent. This infor-
mation is necessary for the receiving process to apply the
analysis procedures. Third, the general two-process anal-
ysis covers the general multi-process analysis case with
the understanding of the issues concerning compensation
effects on message order. Fourth, approximation models
based on receive type can result in more accurate over-
head handling and profile results, but the accuracy gains

Fig. 10 Three-process, two-receive – models and analysis (Case: 2).
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are anticipated to be minor compared with the processing
complexity involved.

4 Implementation

To test our models of parallel overhead compensation, we
built a prototype using the TAU performance system
(Shende and Malony 2006) and the Message Passing
Interface (MPI). Our goal was to produce a widely portable
prototype that could be efficiently implemented and easily
applied. We chose MPI as the communication substrate
because of its wide acceptance in the parallel computing
community as the de facto message communication stand-
ard, as well as due to its portable tool support.

4.1 MPI Profiling Support

MPI supports creation of portable profiling and tracing tools
using its profiling interface, PMPI. This interface allows

a tool to interpose a library between the application and
the MPI substrate and intercept one or more MPI calls.
MPI provides a name-shifted interface to all its calls. For
example, an MPI call such as MPI_Send() is also avail-
able as PMPI_Send(). Both are guaranteed by the MPI
standard to provide the same functionality. Furthermore,
if a tool defines an MPI_Send() call, it takes precedence
over the MPI library’s MPI_Send() call (this is done by
using weak bindings for defining the library’s calls). The
tool can then define one or more MPI bindings and create
measurement timers and start and stop them around the
name-shifted version of the corresponding MPI call. Every
MPI implementation must implement this profiling inter-
face to conform to the MPI standard. This mechanism
allows vendors of parallel systems to optimize the imple-
mentation of MPI to their target platforms and at the
same time expose the hooks for tracking MPI perform-
ance to tool builders without providing them access to
their proprietary source code.

Fig. 11 Three-process, two-receive – models and analysis (Case: 3).
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4.2 Schemes to Piggyback Delay

To transmit the local delays encountered in a process
(due to program instrumentation) to other processes, we
examined several alternatives. The first scheme modifies
the source code of the underlying MPI implementation
by extending the header sent along with a message in the
communication substrate (Photon, see Vetter 2002, uses
this approach). Unfortunately, it is not portable to all MPI
implementations and relies on a specially instrumented
communication library. The second scheme sends an
additional message containing the delay information for
every data message. This scheme only requires changes
to the portable MPI wrapper interposition library for the
tool. While it is portable to all MPI implementations, it
has a performance penalty associated with transmit-
ting an additional message, a penalty not incurred by the
first scheme. As a result, the overhead caused by the
additional message would require further compensa-
tion.

The third scheme copies the contents of the original
message and creates a new message with our own header
that would include the delay information. This scheme
has the portability advantage of the second scheme and
avoids the second scheme’s transmission of an additional
message. However, copying contents of a message could
prove to be an expensive operation, especially in the con-
text of large messages that are transmitted in point-to-
point communication operations.

We implemented a modification of the third scheme,
but instead of building a new message and copying buff-
ers in and out of messages (at the sender and the receiver),
we create a new datatype. This new datatype is a structure
with two members. The first member is a pointer to the
original message buffer comprised of n elements of the
datatype passed to the MPI call. The second member is a
double precision number that contains the local delay
value. Once created, the structure is committed as a new
user-defined datatype and MPI is instructed to send or
receive one element of the new datatype. Internally, MPI

Fig. 12 Three-process, two-receive – models and analysis (Case: 4).

 at Forschungszentrum Julich Gmbh on May 15, 2009 http://hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com


190 COMPUTING APPLICATIONS

may transmit the new message by composing the message
from the two members by using vector read and write
calls instead of its scalar counterparts. This efficient trans-
mission of the delay value is portable to all MPI imple-
mentations, sends only a single message, and avoids
expensive copying of data buffers to construct and extract
messages.

4.3 TAU Overhead Compensation Prototype

To test the validity of our parallel profile compensation
models, we built the portable prototype within the TAU
performance system (Shende and Malony 2006). We pre-
viously implemented local overhead compensation, and
now included the parallel compensation support. TAU
computes parallel profile data during execution for each
instrumented event. At runtime, TAU maintains an event
callstack for each thread of execution. This callstack has
performance information for the currently executing event
(e.g. a routine entry) and its ancestors. We compute the
delay that a process sees locally by first adding the number
of completed calls to half the number of entries along the
thread’s callstack. We assume that an enter profile call
takes roughly the same time as an exit profile call, which
is true in most cases. Once we know the total number of
timer calls and the total overhead associated with calling
the enter and exit methods (see Malony and Shende 2004
for details), their product gives the local timer overhead.
We keep track of adjusted wait times in a process, as
explained earlier and subtract it from the local overhead to
compute the local delay. This delay value is then piggy-
backed with a message.

4.3.1 Mapping MPI calls The essence of our paral-
lel overhead compensation scheme is that whenever two
processes interact with each other, the receiver is made
aware of the sender’s delay value, or how much sooner
the communication operation would have taken place in
the absence of instrumentation. We have discussed above
how this scheme operates for synchronous message com-
munication operations using MPI_Send and MPI_Recv.
In this section we explore how other MPI calls can be
made aware of remote delays.

4.3.2 Asynchronous operations When storing or
retrieving the piggyback value, we create an auto varia-
ble on the stack in our wrapper routines for MPI_Send
or MPI_Recv. Synchronization operations involve loads
or stores to this variable. The logic to process the piggy-
back value when it is received is incorporated in the
MPI_Recv wrapper routine. Here, we compare the local
and remote delays to arrive at how much adjustment needs
to be made to the waiting time. Now let us examine the
asynchronous MPI_Isend and MPI_Irecv calls. When

the user issues the MPI_Isend call, we compute the
local delay and create a global variable where this is
stored. The location of this global piggyback variable in
the heap memory is used when we create our struct for a
new datatype for sending the message.

On the receiving side, a similar arrangement of the pig-
gyback value is used. When the message is finally received,
MPI automatically copies the contents of the piggyback
value into the heap where this value is to be stored. We
also create a map that links the address of the MPI request
to the address of this piggyback value. The logic that com-
pares the local and remote delays cannot be incorporated
in the MPI_Irecv wrapper due to the very nature of the
asynchronous operation (the values are not received when
the routine executes). Hence, we do not adjust the time
spent in MPI_Irecv as we did for MPI_Recv. Instead,
an asynchronous message is visible to the program only
after executing the MPI_Wait, MPI_Test, or variants of
these calls (Waitall, Waitsome, Testall, Test-
some) to wait for or test one or more requests. When a
request is satisfied, we examine the map and retrieve the
value of the piggyback variable where the remote proc-
ess’ overhead is stored. Then, a comparison of local and
remote delays and an adjustment of waiting time is made
on the receiving side. When more than one message is
received by the process, we need to examine all the
remote delays to determine how much time the process
would have waited in the absence of instrumentation. We
discuss this in more detail next with collective opera-
tions.

4.3.3 Collective operations Consider the class of col-
lective operations supported by MPI. Let us first examine
the MPI_Gather call where each process in a given
communicator provides a single data item to MPI. The
process designated with the rank of root gathers all the
data in an array. It is important to communicate the local
delays from each process to the root process. To do this,
we form a message with the piggyback delay value and
call a single MPI_Gather call. At the receiving end, we
receive a single contiguous buffer where the application
data and the delay values are put together in a single buffer.
We extract the piggyback values out of this buffer and
construct the application buffer with the rest. Once we get
an array of the delay values from each process we com-
pute the minimum delay value from the group of proc-
esses. Since the collective operation cannot complete
without the message with the minimum delay, it must
adjust its waiting time based on this value. So, the collec-
tive operation reduces to the case where the receiver gets
a message from one process that has the least delay in the
communicator. We can now apply the performance over-
head compensation model as described in the previous
section.
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When broadcasting a message from one task to sev-
eral, MPI_Bcast is modeled based on the two process
overhead compensation model (see Malony and Shende
2005). We create a new datatype, on the root process,
that embeds the original message and the local delay
value. This message is sent to all other members of the
group. Each receiver compares the remote delay with its
local delay and makes adjustments to the waiting time
and local overhead, as if it had received a single message
from the remote task. We use the model described earlier
to do this.

To model MPI_Scatter, which distributes a distinct
message to all members of the group, we create a new
datatype that includes the overhead from the root proc-
ess. This is similar to the MPI_Gather operation. After
the operation is completed, each receiver examines the
remote overhead and treats it as if it had received a single
message from the root node, applying our previous scheme
for compensating for perturbation.
MPI_Barrier requires all tasks to block until all proc-

esses invoke this routine. MPI_Barrier is implemented
as a combination of two operations: MPI_Gather and
MPI_Bcast, sending the local delay from each task to
the root task (arbitrarily selected as the process with the
least rank in the communicator). This task examines the
local delay and compares it with the task with the least
delay, adjusts its wait time and then sends the new local
delay to all tasks using the MPI_Bcast operation. This
mechanism preserves the efficiencies that the underlying
MPI substrate may provide in implementing a collective
operation. By mapping one MPI routine to another, we
exploit those efficiencies.

4.4 Caveats

Overhead compensation for parallel profiling requires
transmitting delay information with messages. Doing so
undoubtedly introduces more overhead into the process,
in apparent contradiction to our goals. Our methods do not
adequately account for these overheads, nor is it obvious
exactly how they can or should. While the approach
described attempts to balance portability and efficiency
concerns, its overhead in practice will depend on what the
underlying MPI implementation does with datatypes, and it

might do different things with different network interfaces.
If the technique is deployed in production environments,
it will be important to evaluate MPI implementations to
determine their overhead effects.

5 Experimental Results

We validate our parallel performance intrusion compen-
sation model using a prototype implemented within the
TAU performance system. To illustrate the problem, we
examine a parallel MPI application that computes the
value of π using the Monte-Carlo integration algorithm.
The program calculates the area under the π function

curve ( 4/(1 + x2)dx) from 0 to 1. The program comprises

of a master (or server) task that generates work packets
with a set of random numbers. The master task waits for a
request from any worker and sends the chunk of randomly
generated numbers to it. For each pair of numbers that is
given to a particular worker, it finds out if the pair of car-
tesian co-ordinates represented by the numbers is below or
above the π function curve. Then, collectively, the work-
ers estimate the value of π iteratively until it is within a
given error range. This simple example highlights how
instrumentation overheads accumulated at the worker
tasks are communicated to the master task. We execute the
application in four modes: when there is no TAU instru-
mentation, with instrumentation without any compensa-
tion, with local perturbation compensation, and finally,
with parallel perturbation compensation. As shown in
Table 1, these experiments are shown as distinct columns
and we show the time spent in the worker and master tasks.
We show the minimum times spent in the respective tasks.
The timer overhead associated with a TAU timer was 480
nanoseconds on an Intel®Itanium2 Linux machine run-
ning at 1.5 GHz. The accuracy of compensation improves
when we use high resolution timers, such as those pro-
vided by PAPI (Browne et al. 2000).

The results in Figure 13 and Table 1 show that local
compensation schemes do manage to reduce the overhead
in the worker tasks, but they fail in the master. The paral-
lel compensation scheme reduces the overhead properly
in both master and worker tasks.     

0

1

∫

Table 1
A comparison of parallel overhead compensation schemes in Monte-carlo integrator.

Task No instrumentation No compensation Local compensation Parallel compensation

Master 73.926 128.179 139.56 73.926

Worker 73.834 128.173 73.212 73.909
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Fig. 13 Parallel overhead compensation in TAU.
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6 Conclusion

Most parallel performance measurement tools ignore the
overhead incurred by their use. Tool developers attempt
to build the measurement system as efficiently as possi-
ble, but do not attempt to quantify the intrusion other than
as a percentage slowdown in execution time. Our earlier
work on overhead compensation in parallel profiling
showed that the intrusion effects on the performance of
events local to a process can be corrected (Malony and
Shende 2004). In this paper, we model how local over-
heads affect performance delays across the computation
and implement these parallel models in the context of
MPI message passing and demonstrate that parallel over-
head compensation can be effective in practice to improve
measurement error. The engineering feats to accomplish
the implementation are novel. In particular, the approach
to delay piggybacking can be generalized to other prob-
lems where additional information must be sent with mes-
sages.

It is important to understand that we are not saying that
the performance profile we produce with overhead com-
pensation represents the actual performance profile of an
uninstrumented execution. The performance uncertainty
principle (Malony 1991b) implies that the accuracy of
performance data is inversely correlated with the degree
of performance instrumentation. Our goal is to improve
the tradeoff, that is, to improve the accuracy of the per-
formance being measured during profiling. What we are
saying in this paper is that the performance profiles pro-
duced with our models for performance overhead com-
pensation will be more accurate than performance results
produced without compensation.
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