
Scientific Programming 16 (2008) 167–181 167
DOI 10.3233/SPR-2008-0255
IOS Press

Performance measurement and analysis of
large-scale parallel applications on leadership
computing systems

Brian J.N. Wylie a,∗, Markus Geimer a and Felix Wolf a,b

a Jülich Supercomputing Centre, Forschungszentrum Jülich, Jülich, Germany
b Department of Computer Science, RWTH Aachen University, Aachen, Germany

Abstract. Developers of applications with large-scale computing requirements are currently presented with a variety of high-
performance systems optimised for message-passing, however, effectively exploiting the available computing resources remains
a major challenge. In addition to fundamental application scalability characteristics, application and system peculiarities often
only manifest at extreme scales, requiring highly scalable performance measurement and analysis tools that are convenient to
incorporate in application development and tuning activities. We present our experiences with a multigrid solver benchmark
and state-of-the-art real-world applications for numerical weather prediction and computational fluid dynamics, on three quite
different multi-thousand-processor supercomputer systems – Cray XT3/4, MareNostrum & Blue Gene/L – using the newly-
developed SCALASCA toolset to quantify and isolate a range of significant performance issues.

Keywords: Large-scale parallel applications and systems, performance measurement and analysis

1. Introduction

The modern landscape of high-performance com-
puting (HPC) is potentially highly rewarding for those
who wish to achieve previously unreachable goals, yet
it is extremely challenging and requires perseverance
and willingness to take on the unknown. Manufacturers
of HPC computing systems offer powerful machines,
in a diverse range of (often custom and idiosyncratic)
configurations, yet that raw power must be effectively
harnessed by applications to be productive. Standardis-
ation of system components and programming models
has made it relatively easy for applications which have
already been parallelised with MPI message-passing to
run on HPC computers, yet the achieved performance
is often disappointing, especially when progressing to
larger numbers of processors [17].

Performance analysis and tuning of HPC applica-
tions is a quest to reach new highs, taking on the chal-
lenges provided by new computer systems and previ-
ously unharnessed scales. When a sufficiently pleasing

*Corresponding author: Brian J.N. Wylie, Jülich Supercomput-
ing Centre, Forschungszentrum Jülich, D-52425 Jülich, Germany.
Tel.: +49 2461 61 6589; Fax: +49 2461 61 6656; E-mail: b.wylie@
fz-juelich.de.

and satisfying plateau is reached, that journey ends nat-
urally (or at least pauses). More often than not, how-
ever, an intermediate insurmountable barrier may re-
sult in exhaustion and frustration, where it must be
carefully decided whether the potential benefits of con-
tinuing are worth the further (possibly unsuccessful)
effort.

Teams of application developers and analysts work-
ing together are best equipped for undertaking these
record-breaking tasks, but even as a team they still have
limited capacity to learn and become adept with tools
and utilities that can assist on the way. Success is more
likely with a select set of flexible and multi-functional
tools, that are reliable and straightforward to apply,
which become indispensable aids to achieve mission
goals.

This paper presents the evolution of the established
KOJAK toolkit [25], which has been re-designed and
re-engineered specifically to address scalability of per-
formance measurement, analysis and investigation as
SCALASCA [10]. It embodies relatively familiar tech-
niques and technologies which have been specifically
integrated and customised to handle complex HPC ap-
plications on the largest system configurations. Af-
ter introducing the SCALASCA toolset and its usage

1058-9244/08/$17.00 © 2008 – IOS Press and the authors. All rights reserved

168 B.J.N. Wylie et al. / Performance measurement and analysis of large-scale parallel applications

model, three case studies are provided where an early
version was successfully applied to important, highly-
scalable HPC applications running on the most power-
ful computer systems, providing valuable insight into
application and system scalability hindrances that only
manifest at larger scale.

First subject is the SMG2000 benchmark on a com-
bined Cray XT3/4 system which demonstrates the abil-
ity of SCALASCA to measure and analyse applications
at extreme scales. This is followed by analysis of the
WRF-NMM numerical weather prediction code running
on the MareNostrum system (based on a large clus-
ter of commodity IBM compute blades) that was expe-
riencing intermittent performance anomalies. Finally,
SCALASCA was used for the discovery (and remedia-
tion) of the primary scalability bottleneck in the XNS

computational fluid dynamics solver on the highly-
customised IBM Blue Gene/L system.

2. Analysis procedure

SCALASCA analysis of large-scale application exe-
cutions uses a procedure of preparation followed by
measurement and analysis steps [26], as depicted in
Fig. 1. After an instrumented application executable
has been prepared, running it with specific measure-
ment configurations allows compact summaries or
comprehensive event traces to be collected for analy-

Fig. 1. SCALASCA toolset components for instrumentation of pro-
gram sources, runtime parallel measurement summarisation and/or
event tracing (specified via experiment configuration), parallel trace
analysis, and analysis report exploration.

sis. The initial measurement configuration typically
uses runtime summarisation of all execution events,
and provides a complete callpath summary report at
execution completion. Analysis of this profile can then
be used to configure subsequent measurements such
that base profiles are complemented with traces of se-
lected events analysed to provide more comprehensive
profiles and reports of instances of performance prob-
lems. Local trace data for each process rank is analysed
in parallel, using a set of unified definitions and map-
pings from local-to-global definition identifiers pro-
duced at measurement finalisation. As additional in-
sight becomes available, measurements can be recon-
figured and repeated, or new application executables
prepared with improved instrumentation or implement-
ing improved algorithms as part of an iterative tuning
procedure. These new measurement experiments can
be compared with the already collected experiments to
examine and quantify the impact of the modifications.

2.1. Application instrumentation

In common with most tools for MPI application
measurement, the SCALASCA toolset uses the standard
PMPI profiling interface to be able to interpose on MPI
library function calls, and thereby examine call argu-
ments and return values. Timers (and hardware coun-
ters) can also be accessed to provide event timestamps
or durations (and counter values or elapsed counts)
which can be recorded for later analysis or directly ag-
gregated into summaries.

While such measurements of the MPI communi-
cation and synchronisation behaviour are a valuable
part of parallel application execution analysis, espe-
cially if they include callpath information for the MPI
calls, they offer limited insight into the equally im-
portant purely computational part of the execution.
SCALASCA therefore can also exploit additional pro-
gram instrumentation which complements the MPI
events.

Program instrumentation is most easily achieved
using compilation options to automatically instru-
ment the enter and exits of functions. (Such options
and the arguments provided with the instrumentation
vary from compiler to compiler and often have little
or no documentation, however, they are increasingly
prevalent: e.g., -finstrument-functions of the
GNU Compiler Collection.)

Instrumentation may also be directly added to source
files using provided API calls or directives, which
are particularly useful for marking application-specific

B.J.N. Wylie et al. / Performance measurement and analysis of large-scale parallel applications 169

phases of execution or major loops. (Such instrumen-
tation is ignored when preprocessing or compiling un-
less it has been activated, so that it can conveniently be
left as annotations in production builds of the program
without instrumentation.)

Generating instrumented application program exe-
cutables therefore typically involves simply using a
SCALASCA instrumenter (that is prepended to com-
piler/linker commands in the application Makefile) to
compile the desired source modules and link the exe-
cutable. There is no need to change compiler or com-
pilation options, including optimisations.

2.2. Profile collection and analysis

Initial measurements are often undertaken without
detailed information regarding the frequency and quan-
tity of execution events to be analysed, and which
would directly impact the resources required for inter-
mediate storage and processing. Knowledge and ex-
perience with an application, from studying its design
or prior analyses, may provide some basis for select-
ing important events and configuring buffer sizes, how-
ever, this is often incomplete and unreliable, especially
when running on new, larger systems: truisms from
small scales can fail at larger scales.

A default measurement experiment using runtime
summarisation is collected when the executable con-
taining SCALASCA instrumentation is run, typically
under the control of a collection and analysis nexus
specified as a command prepended to the MPI appli-
cation launch command-line, whether part of a batch
script or interactive run invocation.

Runtime event summarisation provides a highly-
scalable mechanism for executions of arbitrary length
and complexity, and is therefore ideally suited for ini-
tial measurements and analyses. At execution com-
pletion, SCALASCA provides an integrated profile
per process and callpath [28] that includes callpath
visit count, elapsed time and hardware counter met-
rics: for MPI applications, these are augmented by
counts for various types of message-passing opera-
tions (collective or point-to-point, purely synchronis-
ing or involving data communication) and correspond-
ing numbers of bytes transfered. Process memory re-
quirements scale modestly with the complexity of the
application and are independent of the length of exe-
cution: SCALASCA uses local buffers to store defini-
tions and callpaths for each process, which are unified
into a set of global definitions at measurement com-
pletion with associated local-to-global identifier map-

pings used when collating measurement data into the
final summary report. When it is desired to further re-
duce storage and processing requirements, unimpor-
tant and uninteresting callpaths can be truncated dur-
ing measurement to eliminate fine detail without com-
promising the integrity of the complete callpaths.

Although the profile summary includes measure-
ments of aggregate time in MPI functions, and the
associated callpaths and process distributions, it does
not include metrics which would quantify imbalances
in waiting times entering collectives, late sends that
resulted in longer than necessary waits for early re-
ceivers, etc. Calculation of these metrics requires com-
parison of message events between processes that
would be prohibitively disruptive to acquire during ap-
plication execution measurement, but that are suited to
post-mortem analysis of event traces.

2.3. Trace collection and analysis

Tracing provides a potentially complete record of a
parallel application’s execution, and analysis of time-
stamped events by different processes opens an ad-
ditional dimension with insight into inter-process in-
teraction. To reduce measurement impact, definitions
and event records are buffered in each process’ mem-
ory during measurement, then unified and analysed af-
ter measurement is complete. Process trace sizes are
proportional to the number of recorded events, which
is dependent on the frequency and duration of event
recording. When the additional factor of the number
of processes is included, aggregate trace sizes rapidly
grow and require very careful handling: unnecessary
copying and merging large numbers of huge trace files
needs to be avoided.

SCALASCA uses separate buffers in each process
to store local definitions and event records, allow-
ing straightforward unification of definitions at mea-
surement finalisation (as done when producing sum-
maries). Each definition is given a numeric identifier
which provides a concise means for refering to it in
event records, and the local definitions and identifiers
used by each process during measurement must be
unified into a globally-consistent set to be able to re-
late events that occur on different processes. Mappings
from local to global identifiers for each process are
therefore also generated and stored in the experiment
archive at finalisation, allowing the local identifiers in
each event trace to be remapped on-the-fly when they
are read. The traces can then be efficiently analysed in
parallel, without having been merged or rewritten, us-

170 B.J.N. Wylie et al. / Performance measurement and analysis of large-scale parallel applications

ing a scalable replay approach that exploits the compu-
tational processing power and memory of the system
where the traces were collected, with the same number
of processes [6]. Trace analysis ideally follows mea-
surement collection using exactly the same processors
and configuration (e.g., within a single batch job), and
this is managed by the SCALASCA measurement col-
lection and analysis nexus when tracing is requested.

Nevertheless, it is impractical to record complete
traces of long complex executions in memory buffers,
and unsynchronised intermediate flushes of trace buff-
ers to files introduce perturbations that disrupt exe-
cution and compromise analyses. Appropriate event
selection and buffer (size) configuration is therefore
often necessary for practical trace collection within
available process memory. Required trace buffer sizes
can be determined by examining profile summary re-
ports for the quantities of message-passing and region
enter/exit events, and a report scoring utility is pro-
vided with the SCALASCA toolset which performs this
calculation. Event handling may also be disabled for
frequently-executed routines or callpaths with insignif-
icant elapsed times (that would also be most prone to
measurement overheads and introduce perturbation) or
callpaths without message-passing events. Users can
provide their own filter file listing routines to be ex-
cluded from measurements, and the summary report
scoring utility is being extended to provide appropri-
ate recommendations based on the frequency of occur-
rence and corresponding time accumulated by routines
on callpaths that do not include communication or syn-
chronisation. Ignoring such instrumented routines dur-
ing measurement significantly reduces their processing
overheads, but is not supported yet on all systems and
even where it is the residual instrumentation overhead
can still be prohibitive for certain routines [30]. In such
cases, the routines (or source modules) to be instru-
mented (or left uninstrumented) must be specified dur-
ing the initial application instrumentation stage.

2.4. Integrated and comparative analyses

Runtime summary and trace pattern analysis reports
in a common callpath profile format can readily be
compared and integrated into a holistic presentation of
the application execution performance that can be in-
teractively explored with the SCALASCA analysis re-
port examiner GUI. While the summary can cover the
entire execution measurement, tracing of selected in-
tervals and events permits more in-depth analyses of
key message-passing behaviour.

All measurements include inherent overheads which
have an impact on the execution of the subject appli-
cation. Buffers and data-structures used for measure-
ment are an obvious overhead, which is particularly
important on systems with limited amounts of compute
node memory. The overhead of handling instrumented
events, e.g., acquiring and processing timestamps, re-
sults in a small time dilation throughout the mea-
surement which is difficult to isolate. More immedi-
ately observable are the major overheads of initial-
ising the measurement infrastructure and experiment
archive during MPI_Init, and the measurement fi-
nalisation during MPI_Finalize: on systems with-
out globally synchronised clocks, clock synchronisa-
tion is included in both measurement initialisation and
finalisation overheads. Although these latter overheads
prolong the time for acquiring the measurement, they
do not perturb the measurement of the parallel execu-
tion since they occur during global synchronisations.

Applications themselves often have substantial ini-
tialisation and finalisation phases, generally reading in-
put files and writing output files, which can also vary
significantly from run to run. The costs of these are
typically amortised by extended periods in solvers or
simulation kernels, on which performance analysis and
tuning is focused. Selective instrumentation and mea-
surement can reduce or eliminate the overhead of mea-
surement (and analysis) for uninteresting phases, or
complete analysis reports can be post-processed with a
provided utility which extracts the sections of particu-
lar interest.

Measurements are controlled via configuration set-
tings specified in files and environment variables read
by each process when measurement is started, allow-
ing a series of customised summary and trace mea-
surements and analyses to be made with a single
instrumented executable. Some of the most impor-
tant configuration settings specify whether summari-
sation and/or tracing is to be activated, optional hard-
ware counter metrics to be included, an optional fil-
ter file listing regions or callpaths to ignore, and buffer
sizes. Callpaths are truncated by default at a depth
of 32 frames (with no distinction made for recursive
calls), however, this is also configurable.

Beyond the user convenience of preparing and using
a single instrumented executable, along with straight-
forward exploitation of profile summaries from earlier
measurements to effectively configure trace collection,
integration of the two capabilities enables numerous
synergies. Most significant is the opportunity to exploit
these complementary techniques cooperatively. Execu-

B.J.N. Wylie et al. / Performance measurement and analysis of large-scale parallel applications 171

tion information that is better suited to runtime sum-
marisation, such as elapsed hardware counter metrics,
can be omitted from traces while retained in the pro-
file summary. Similarly, runtime callpath tracking and
event selection can eliminate undesired non-message-
passing events from traces while retaining the infor-
mation necessary to perform full analysis of message
transfers.

3. Experience

3.1. Supercomputer systems

Early versions of the SCALASCA toolset were in-
stalled and tested on a range of computer systems, from
a variety of desktops and clusters to several of the
most powerful supercomputers. Of particular interest
have been IBM Blue Gene/L, IBM BladeCenter clus-
ters and Cray XT3/4 systems with processor counts in
the thousands. These systems have been specially de-
signed and highly optimised for large-scale MPI ap-
plications, and although they utilise different proces-
sor and interconnect technologies, and different op-
erating environments (including compilation systems,
batch systems, filesystems, as well as the base oper-
ating systems themselves, though these are all based
on Linux), it is often straightforward to re-compile and
run portable MPI applications on any of them.

Measurements on the leadership computer systems
discussed in the remainder of this section were made
with the versions of operating systems, MPI libraries
and compilers installed at the time, even though such
systems are continually upgraded to address functional
and performance deficiencies. Timings quoted are rep-
resentative, however, all measurements and analyses
were undertaken on shared systems, where consider-
able run-to-run variation in I/O and filesystem per-
formance is unavoidable. Furthermore, the substantial
time typically required to configure and release a large
machine partition is not included.

Basic scalability testing was undertaken with the
SMG2000 multigrid solver benchmark on each sys-
tem, followed by investigation with locally important
real-world applications for numerical weather predic-
tion (WRF-NMM) and computational fluid dynamics
in a blood pump (XNS-Debakey). After preparing in-
strumented application executables, measurement and
analysis experiments were collected with different
numbers of processes, with only some of the largest
scale experiments summarised here. In each case, an

initial summarisation experiment (or set of experi-
ments) was examined and used to appropriately con-
figure a subsequent trace collection and analysis ex-
periment (using the same instrumented executable and
modified measurement configuration).

3.2. SMG2000 on Cray XT3/4

Immediately after the integration of formerly sep-
arate Cray XT3 and XT4 systems at Oak Ridge Na-
tional Laboratory in mid-2007, Jaguar [21] was ranked
second in the 2007/06 Top500 list [20]. It was config-
ured with 11,508 compute nodes, each with 2.6 GHz
dual-core AMD Opteron processors and 4 GB of mem-
ory. Each node was connected to a Cray SeaStar router,
with the SeaStars interconnected in a 3D-torus. It used
UNICOS/lc 1.5.52 combining Linux running on the
service nodes with a Catamount microkernel on the
compute nodes and the Lustre parallel filesystem. Port-
land Group compilers generated code for the compute
nodes. Notably, the compute nodes did not have glob-
ally synchronised clocks, therefore clock offset deter-
mination and correction are required before comparing
timestamps from different nodes.

ASC benchmark SMG2000 [1] is a parallel semi-
coarsening multigrid solver, which uses a complex
communication pattern. The MPI version uses a three-
dimensional decomposition and performs a lot of non-
nearest-neighbour point-to-point communication op-
erations (and only a negligible number of collective
communication operations). Configuring with a fixed
64×64×32 problem size per process and five solver it-
erations results in a fairly constant application run-time
as additional CPUs were employed (i.e., weak scaling):
with 22,528 processes arranged 32×32×22 total run-
time was 20 seconds, of which 7 seconds was the par-
allel solver part.

Callpath tracking determined that 3114 distinct call-
paths were executed (with a maximum depth of
16 frames), of which 212 (7%) were in the solver
phase. 94 of the total callpaths included (instrumented)
MPI functions, of which 29 (31%) were in the solver
phase. Producing the integrated profile at the end of
measurement collection required 19 minutes (for the
22,538-process case): two-thirds of this time was re-
quired for unification of identifiers (proportional to the
number of callpaths and number of processes)1, with
the remainder for gathering the measurements (from

1Subsequent algorithmic optimisations have reduced the time re-
quired for unification by more than a factor of 6.

172 B.J.N. Wylie et al. / Performance measurement and analysis of large-scale parallel applications

each process for each callpath and metric) and writing
the summary report. While summarisation time is pro-
portional to the complexity of the (instrumented) appli-
cation, it is independent of the length of measurement,
and therefore scalable for long-running applications.

Since the initialisation and setup phases are unin-
teresting, but would skew the percentage calculations,
the solver phase was extracted from the analysis re-
port. This functionality is offered by one of several re-
port algebra utilities [10] which read and write call-
path profile reports applying a variety of algebraic op-
erations to the analysis data. Figure 2(a) shows the
profile summary extract presented by the SCALASCA

analysis report examiner GUI, with the metric hierar-
chy in the left pane partially expanded, the callpath hi-
erarchy in the middle pane expanded for the solver,
and the MPI process topology distribution in the right
pane. The considerable quantity and volume of point-
to-point communication is already evident, and it ac-
counts for 65% of the total solver execution time, as
reported in the status bar below the metrics pane.

Within each tree, collapsed nodes present inclusive
metrics while expanded nodes present exclusive met-
rics (i.e., excluding their child node values). Naviga-
tion to the most significant severities is aided by boxes
colour-coded according to the range scale (at the bot-
tom of the window) and the mode specified for each
panel (from the menu above it). Absolute severity val-
ues can be shown as percentages of the metric tree root
value or percentages of the currently selected metric
value, while process severities can be shown in two
additional modes corresponding to the percentage of
the highest peer process value or in a peer distribution
from lowest to highest process value. Depending on
the nature of the analysis investigation, these different
modes help to keep track of the (relative) significance
of individual severity values, from overall context to
variation amongst peers. Status fields at the bottom of
each panel detail the current selection within that panel
and the associated range value.

Investigating further required a trace to be collected,
and because the number of events traced for each
process increases with the total number of processes,
the aggregate trace volume increases faster than lin-
early. From the callpath and message statistics in the
profile summary, the buffering requirements for a com-
plete trace of 22,538 processes was calculated to re-
quire 5TB with a maximum buffer size of 328 MB.
The complete execution trace took 20 minutes to write
(75% of which was identifier unification and writing
the global definitions and mappings files), with the fol-

lowing trace analysis and report production requiring
an additional 16 minutes.

From the trace analysis (Fig. 2(b)), the point-to-
point communication time can be refined, with half of
the total time determined to be waiting time of early
receivers blocked due to senders being late to initiate
message transfers, i.e., Late Sender time. The distri-
bution of waiting time per process (which is difficult
to distinguish in the figure due to the large number of
processes) indicates that certain processes in the inte-
rior of the grid are most responsible, and this indicates
that there could be an opportunity to improve overall
performance by rearranging the mapping or work dis-
tribution.

With its fixed problem size per process configu-
ration for weak scaling behaviour, SMG2000 pro-
vides a convenient vehicle for examining the scalabil-
ity of SCALASCA measurement and analysis on dif-
ferent systems. Figure 3 charts runtime summarisa-
tion and trace collection & analysis times on the Cray
XT3/4 with different numbers of processes. While total
trace size increases slightly faster than linearly, mea-
surement and analysis times scale less than linearly
with the number of processes, despite saturating avail-
able I/O bandwidth around 30 GB/s when writing and
15 GB/s when reading with 8,192 processes.

3.3. WRF-NMM on MareNostrum

In early 2007, Barcelona Supercomputing Cen-
tre MareNostrum consisted of 10,240 IBM PowerPC
970MP 2.3 GHz processors (arranged in 44 Blade-
Center 1350 xSeries racks of 4-way JS21 blades) [2]
and ranked fifth in the 2006/11 Top500 list [20]. Each
dual-processor dual-core JS21 Server Blade had 8 GB
of shared memory, with Myrinet interconnect between
processors, and ran Linux with the GPFS parallel
filesystem. Each blade has an independent clock, so
measurements required clock offset determination and
correction. MPI is based on MPICH optimised for
Myrinet, and while both IBM XL and GCC compilers
were provided, the former were used in these experi-
ments.

WRF-NMM is a public domain numerical weather
prediction code developed by the U.S. National Oce-
anic and Atmospheric Administration (NOAA) Na-
tional Centers for Environmental Prediction (NCEP),
consisting of the Non-hydrostatic Mesoscale Model
(NMM) within the Weather Research and Forecasting
(WRF) system [24]. Version 2.1.2 (released January
2006) is a flexible, state-of-the-art atmospheric sim-

B.J.N. Wylie et al. / Performance measurement and analysis of large-scale parallel applications 173

(a)

(b)

Fig. 2. Solver extracts of 22,528-process analysis reports of SMG2000 on Cray XT3/4. (a) Runtime summary showing Point-to-point communi-
cation time. (b) Trace analysis showing Late Sender blocking time.

ulation system designed to be portable and efficient
on parallel computing platforms. It consists of 530+
source files running to over 300 thousand lines of code
(75% Fortran, 25% C).

Simulations were analysed using the Eur-12km
dataset with a default configuration, apart from reduc-
ing the duration of the forecast to 3 hours and disabling
intermediate checkpoints: it was not determined how

174 B.J.N. Wylie et al. / Performance measurement and analysis of large-scale parallel applications

Fig. 3. SCALASCA measurement and analysis scalability for SMG2000 on Cray XT3/4.

to disable dumping the initial state, which resulted in
an unnecessarily costly start-up. The simulations used
a two-dimensional (squarish) decomposition and map-
ping to processors, and by running a fixed problem size
and the same length of forecast on varying numbers of
processors, strong scaling was expected. Notably, each
simulation timestep has its own characteristics, deter-
mined by the configured physics and its implementa-
tion, such that some are relatively quick while others
take much longer (even when excluding I/O).

SCALASCA callpath tracking determined that 1970
distinct instrumented callpaths were executed (with a
maximum stack depth of 20 frames), of which 272
(14%) were in the simulation timestep phase. 85 of
the total callpaths included (instrumented) MPI func-
tions, of which 8 (9%) were in the simulation timestep
phase. Producing the integrated callpath profile (in-
cluding 8 hardware counter metrics) at the end of mea-
surement collection took less than 3 minutes (for the
1,600-process case).

The basic summary profile of WRF-NMM execu-
tion time and message-passing statistics is augmented
with measured hardware counter metrics and associ-
ated derived metrics, similarly structured into hierar-
chies [27]. Figure 4(a) shows the solve_nmm extract
of the summary presented by the SCALASCA analy-
sis report browser, with the metric hierarchy partially
expanded, the callpath hierarchy with the turbulence
physics selected, and the application’s 40 × 40 MPI
process topology distribution.

Having selected the metric for the 1.4% of data loads
that come from the second level of cache (derived

LOAD_HIT_L2$ = PM_LD_MISS_L1 – PM_DATA_
FROM_MEM from native CPU counts), the values for
this metric are shown as percentages for each call-
path, where 10.5% occur in turbl, and then the dis-
tribution of values per process shown using the MPI
virtual topology. It is clear that the imbalance arises
from the physical nature of the simulation data, since
processes with mostly surface water have values no-
tably lower than processes with mostly land, with val-
ues also higher close to the simulation grid boundary.

From the callpath and message statistics in the pro-
file summary, the buffering requirements for a com-
plete trace of this execution were estimated to be
118 MB per process (not including tracing hard-
ware counters). Due to the limited I/O capabilities of
MareNostrum, and to avoid the overhead and perturba-
tion of small, uninteresting functions, a filter file with
a short list of functions to be ignored during measure-
ment was prepared, and specified during trace collec-
tion to reduce traces below 15 MB.

Flushing the resulting 23 GB of buffered trace data
to disk at the end of 10 minutes of execution measure-
ment collection took 3 minutes, and this was subse-
quently analysed in another 5 minutes. With this new
report, it becomes possible to investigate the origins of
the various communication and synchronisation times.
Most of it is due to the master process broadcasting the
initial data to the others, and its relative importance is
an artifact of the shortness of the traces. Focusing on
the solver itself (Fig. 4(b)), significant amounts of time
are identified in point-to-point operations where the re-
ceiver was blocked waiting for the sender to initiate the

B.J.N. Wylie et al. / Performance measurement and analysis of large-scale parallel applications 175

(a)

(b)

Fig. 4. Solver extracts of 1600-process WRF-NMM (Eur-12km) analysis reports on MareNostrum. (a) Runtime summary showing LOAD_HIT_L2$
in solver turbulence step with MPI Cartesian virtual topology. (b) Trace analysis showing MPI N × N Completion time in solver advection step
with physical machine topology.

message transfer (Late Sender) and imbalance when
processes enter all-to-all collectives and must wait on
others (Wait at N × N).

Of particular interest is the highlit N × N Comple-

tion time, which indicates an unusual imbalance ex-
iting the MPI_Allreduce in the advection module
of the solver. Generally this time would be negligible,
and initially was thought to be due to limitations of

176 B.J.N. Wylie et al. / Performance measurement and analysis of large-scale parallel applications

the schemes employed to determine clock offsets and
correct clock drifts. From closer investigation of the
traces, however, it was determined that in this case it is
significant because it shows a single occurrence where
a few of the processes were substantially late exiting,
over 1.75 seconds.

The distribution can be presented using a rep-
resentation of the physical topology of MareNos-
trum (Fig. 4(b)), where servers are shown vertically,
blades horizontally, and the four processors on a blade
obliquely. The affected processes are often in groups
of four sharing a JS21 blade, e.g., ranks 120..123 on
s02c1b07 and 632..635 on s06c1b08, but not always,
e.g., only two of the ranks 888..891 on s09c1b08.
While this is a relatively small amount of wasted time
in total, it imbalances the other processes who attempt
to exchange data immediately afterwards, and is the
origin of the bulk of the Late Sender instances and sub-
sequent Wait at N×N for the next MPI_Allreduce.
Occurrences of this uncoordinated exit from collective
operations are sporadic and relatively infrequent, but
result in serious disruption of the smooth execution of
the application.

Other applications using collective operations on
MareNostrum have also been found to be impacted by
this anomalous MPI behaviour, with different process-
es (and associated processors/blades) in each occur-
rence. This suggests that neither the applications nor
the hardware are responsible, and it appeared that op-
erating system jitter or the MPI(CH) implementation
for Myrinet is the culprit: several versions of MPI have
been tried, but no fix or workaround has yet been ef-
fective. Since the impact of this disruption grows pro-
portionally with the number of processes, it makes the
use of larger MareNostrum processor configurations
unproductive for afflicted applications.

3.4. XNS-DeBakey on Blue Gene/L

At the end of 2006, the JUBL Blue Gene/L sys-
tem installed in Forschungszentrum Jülich had 8,192
dual-core 700 MHz PowerPC 440 compute nodes
(each with 512 MB of memory), 288 I/O nodes, and
additional service and login nodes [23,9] and was
ranked 13th in the 2006/11 Top500 list [20]. Com-
pute nodes ran a Linux-based microkernel that did
not support dynamic linking nor virtual memory. The
constrained process memory was a significant chal-
lenge for applications and associated tools, though the
dedicated network for collectives and fully-connected
three-dimensional torus interconnect reliably delivered

good MPI performance with IBM MPICH and IBM
XL compilers. The system was running the V1R3 soft-
ware release with GPFS parallel filesystem configured
with 4 servers. Globally synchronised clocks avoid
the need for clock offset and drift correction when
analysing timestamped events.

XNS is a computational fluid dynamics (CFD) code
for simulations of unsteady fluid flows, including mi-
crostructured liquids, in situations involving significant
deformations of the computational domain, developed
by the Chair for Computational Analysis of Technical
Systems of RWTH Aachen University. Simulations are
based on finite-element techniques using stabilised for-
mulations, unstructured three-dimensional meshes and
iterative solution strategies [11,29]. The parallel im-
plementation is based on message-passing communi-
cation libraries, exploits mesh-partitioning techniques,
and is portable across a wide range of computer archi-
tectures.

The XNS code, consisting of more than 32,000 lines
of Fortran90 in 66 files, uses an EWD substrate library
which fully encapsulates the use of BLAS and com-
munication libraries, which is another 12,000 lines of
mixed Fortran and C within 39 files. Although the MPI
version of XNS was already ported to BG/L, and avail-
able datasets allowed simulations to run with up to
4,096 processes, scalability of the code at that point
was only acceptable up to 900 processes.

Performance was studied with a test-case consisting
of a 3-dimensional space-time simulation of the Mi-
croMed DeBakey axial ventricular assist blood pump.
Very high resolution simulation is required to accu-
rately predict shear-stress levels and flow stagnation
areas in an unsteady flow in such a complex geome-
try. The mesh for the pump consisted of 3,714,611 ele-
ments (1,261,386 nodes) divided by a graph partitioner
into element sets which form contiguous subdomains
that are assigned to processes. With each set of ele-
ments assigned to a single process, the nodes are then
distributed in such a way that most nodes which are in-
terior to a subdomain are assigned to the process which
holds elements of the same subdomain. Nodes at a
subdomain boundary are assigned to processes sharing
that boundary. The formation of element-level com-
ponents of the system of equations proceeds fully in
parallel, with all data related to a given element re-
siding in the same process. The solution of that sys-
tem of equations takes place within a GMRES itera-
tive solver, and it is here that the bulk of inter-process
communication occurs, with the element-based struc-
tures (stiffness matrices and local residuals) interact-

B.J.N. Wylie et al. / Performance measurement and analysis of large-scale parallel applications 177

ing with node-based structures (global residuals and
increments). Required movement of data from node-
level to element-level takes the form of a scatter and
the reverse movement from element-level to node-level
takes the form of a gather. These operations are done
in two stages: one local to the subdomain (and free
of communication) and another at the surface of the
subdomains (where communication is required). Four
Newton–Raphson iterations are typically carried out in
the solver per simulation timestep.

SCALASCA callpath tracking determined that 896
distinct callpaths were executed (with a maximum
depth of 12 frames), of which 408 (46%) were in the
solver timestep loop. 187 of the callpaths included (in-
strumented) MPI functions, of which 65 (35%) were in
the solver timestep phase. For the 4,096-process mea-
surement of the 16 minute XNS execution, producing
the integrated profile at the end of measurement re-
quired an additional 4 minutes.

Initial SCALASCA runtime summaries with up to
4,096 processes (Fig. 5(a)) showed MPI times start-
ing to dominate when the number of processes ap-
proached one thousand, and identified growing quanti-
ties of point-to-point synchronisations (in the form of
MPI_Sendrecv operations) in the scatter and gather
routines as particularly worthy of closer investigation.

Such MPI point-to-point sends and receives with no
data payload can be useful for pairwise process co-
ordination, or can be indicative of unnecessary mes-
sage traffic when there is no actual data to transfer.
While MPI_Sendrecv provides a convenient opti-
mised combination of MPI_Send and MPI_Recv,
employed to exchange boundary elements between
partitions, the fact that each process made the same
number of calls suggested that an exchange was be-
ing done for every possible combination, even when
there was no data to transfer. With the current imple-
mentation of the SCALASCA measurement system it
is not possible to determine the associated (time) cost
of such transfers during runtime summarisation, how-
ever, it is possible from the trace analysis. (Other pro-
filing tools distinguish point-to-point synchronisation
indirectly via metrics for minimum message sizes [22]
or from a set of message-size bins [7].)

From examination of the summary report, the trace
buffer requirements for a complete trace of 4,096 pro-
cesses were estimated at 277 MB per process
(1,100 GB in total), due to both the quantity of those
synchronisations and a similarly expensive but uninter-
esting initialisation phase. This implied that it would
not be possible to trace and analyse more than one

solver timestep, even after filtering undesirable ap-
plication functions. Fortunately, profiles of different
numbers of timesteps showed no significant differ-
ence between the first and subsequent timesteps, so
the trace analysis would remain representative. Subse-
quent analysis of the collected traces (Fig. 5(b)), con-
centrating on the central timestep solver iteration loop,
highlit the crippling cost of those point-to-point syn-
chronisations in both scatter and gather that impedes
scalability.

In conjunction with the XNS application devel-
opers, the first attempt at remediation was to re-
place the MPI_Sendrecv operations with separate
MPI_Send and MPI_Recv operations, in each case
checking the size and only performing the transfer
when actually required. Since a static partitioning of
the mesh is employed, the number of elements link-
ing each partition is known in advance (by potential
senders and receivers), and when there are no links
there is no data to transfer. This straightforward (and
in this context safe) optimisation, which eliminated
point-to-point synchronisation had little benefit on the
performance with less than 1,024 processes, since
the communication matrix remains relatively dense at
this scale. Figure 6(a) shows how performance im-
proved dramatically for larger configurations though,
resulting in a more than fourfold overall performance
improvement to over 460 simulation timesteps/hour
with 4,096 processes (compared to the best perfor-
mance of the original version which peaked around
1,024 processes).

SCALASCA analysis of the modified version (re-
ported in [29]) confirmed the elimination of this initial
performance problem, and has revealed several further
inefficiencies which are currently being investigated:
e.g., load imbalance indicated by waiting time entering
barriers and receivers waiting for late senders, both of
which can only be determined by trace analysis. Fur-
ther scalability is therefore also promising, however,
lack of suitably partitioned datasets for larger numbers
of processes has prevented pursuing this to date. Use of
asynchronous (non-blocking) message transfers within
the gather and scatter was found to produce no addi-
tional performance improvement, which may be due to
the small amount of computation available for overlap
with communication within these routines.

4. Related work

There is a substantial history of tools developed for
scalability on parallel systems (e.g., [18]), however,

178 B.J.N. Wylie et al. / Performance measurement and analysis of large-scale parallel applications

(a)

(b)

Fig. 5. Analysis reports of XNS (DeBakey dataset) simulation on Blue Gene/L. (a) Runtime summary of 4,096 processes showing Point-to-point
synchronisation operations. (b) Trace analysis extract of 2,048 processes showing Point-to-point synchronisation time.

the requirements and challenges have continued to
grow with each generation of highly-parallel comput-
ers [15]. Computer systems are typically provided with
vendor-specific profile and trace collection and analy-
sis tools, offering broadly similar functionality with

distinct user interfaces and generally non-interoperable
formats: e.g., IBM HPCT [8] and CrayPat/Apprentice2
[5]. Although custom-developed for their respective
large-scale HPC computer systems, significant training
is required with each tool to be able to use and apply it

B.J.N. Wylie et al. / Performance measurement and analysis of large-scale parallel applications 179

(a) (b)

Fig. 6. Comparison of original and subsequently revised XNS solver performance with DeBakey axial pump on various partition sizes of Blue
Gene/L. (a) Originally unacceptable large-scale performance is improved significantly to perform over 460 timesteps/hour. (b) Breakdown
of the solver component costs/timestep shows good scalability of the primarily computational components and significant improvement to
Gather/Scatter scalability (original: solid lines, revised: dashed lines).

effectively. One recent study [4] surveys a range of per-
formance tools available on Blue Gene/L, and demon-
strated how summarisation tools were simple and easy
to use compared with tracing tools that required appro-
priate configuration to avoid I/O problems. By integrat-
ing summarisation and tracing capabilities, with im-
proved support for trace collection configuration and
analysis, the SCALASCA toolset combines powerful
functionality with enhanced ease of use.

Furthermore, for application developers who work
on multiple computer systems (from different ven-
dors), including their local (Linux) cluster or lap-
top/desktop system, proprietary tools that are only
available on certain systems are an impediment to
their incorporation within their regular development
process. Open-source tools are often a preferred alter-
native which are portable to a range of computer sys-
tems and can be customised for new systems when
required. Examples include the mpiP and FPMPI-2
profilers of MPI message-passing [7,22] and PAPI
for acquiring metrics from system-specific hardware
counters [3]. Many other important performance tools
exist, though they typically have yet to be ported
to the special environments of the largest supercom-
puters or demonstrate scalability to multi-thousand
processes.

The SCALASCA toolset shares functionality (and
a certain amount of development) with the widely-
available TAU toolset [19], which integrates numer-
ous tools, including profiling and tracing capabilities.

TAU can build application executables with differ-
ent instrumentation and measurement libraries to sep-
arately collect profile summaries and traces for auto-
matic or interactive analysis. Furthermore, instrumen-
tation and measurement can be configured to improve
its effectiveness. TAU can already be configured to col-
lect SCALASCA traces, and use SCALASCA presenta-
tion of analysis reports, and it should be straightfor-
ward to integrate the latest SCALASCA functionality
into the TAU system. In this combination, TAU profile
summaries could thereby improve application instru-
mentation and configuration of measurement and trace
collection, or exploit SCALASCA’s integrated profiling
and tracing capabilities from a single instrumented ex-
ecutable.

Performance analysis is rarely complete with a rel-
atively high-level analysis of performance properties,
regardless of the extent of automation and thorough-
ness of the search, and generally is complemented
with the ability to examine specific instances of per-
formance problems in detail. SCALASCA traces (af-
ter conversion, if necessary) can therefore be visu-
alised and analysed with Vampir [16] or Paraver [13],
and preliminary work has demonstrated integration
which isolates and examines problem instances ex-
tracted from execution traces. VampirServer supports
parallel trace file visualisation and analysis [12], while
Paraver addresses analysis scalability with multi-level
processing of event traces, e.g., automatically extract-
ing key phases from long traces and using software
counters to summarise event sequences [14].

180 B.J.N. Wylie et al. / Performance measurement and analysis of large-scale parallel applications

5. Conclusions and future work

By using SCALASCA toolset capabilities to measure
and analyse the performance of quite different complex
HPC applications on diverse leading-edge supercom-
puters, the scalability of applications, toolset and com-
puter systems have all been assessed. Working at these
as yet uncommon and unfamiliar scales, numerous im-
maturities and opportunities for considerable improve-
ment abound, which will be critical when progressing
to the next generations where scales will continue to
increase.

Complementing runtime summarisation with selec-
tive event tracing, the SCALASCA toolset demonstrated
that it is fundamentally suited for its task of analysing
complex applications at the largest scales. At the
same time, scalability limitations became evident in
the measurement system, trace analysis, and analy-
sis data model and report examiner. Often these only
impact particular systems or configurations, each of
which is unique in many ways, and the benefit of cus-
tomised approaches needs to be evaluated. Manage-
ment of the voluminous quantities of measurement and
analysis data requires ongoing careful consideration of
lean and efficient data structures and operations: the
open-source SCALASCA 1.0 release [10] incorporates
a 25-fold improvement in definition unification time
and 15% reduction in memory required for trace analy-
sis, amongst numerous other functionality and perfor-
mance enhancements.

More flexibility in the configuration of instrumen-
tation, measurement and analyses are currently under
investigation to allow more directed and efficient in-
tegrated analysis. Integration and automation are also
areas where ease-of-use can continue to be improved,
and there are many opportunities to further exploit the
newly available synergies.

Acknowledgements

This work was partially funded under the German
Helmholtz Association Young Investigators Program
under Contract No. VNG-118. Collaboration with the
developers of the XNS application from RWTH Aachen
University was undertaken using resources of the John
von Neumann Institute for Computing as part of the
first Blue Gene/L Scaling Workshop in Jülich.

Part of this work was carried out using resources
of the Barcelona Supercomputing Centre under the
HPC-EUROPA project (RII3-CT-2003-506079), with

the support of the European Community Research In-
frastructure Action under the FP6 “Structuring the Eu-
ropean Research Area” program.

This research also used resources of the National
Center for Computational Sciences at Oak Ridge Na-
tional Laboratory, which is supported by the Office of
Science of the U.S. Department of Energy under Con-
tract No. DE-AC05-00OR22725.

The authors are grateful for the assistance and guid-
ance provided by the support and scientific staff of the
respective supercomputer centres.

References

[1] Advanced Simulation and Computing Program, The ASC
SMG2000 benchmark code, https://asc.llnl.gov/computing_
resources/purple/archive/benchmarks/smg/, 2001.

[2] Barcelona Supercomputing Centre (Spain), IBM BladeCenter
JS21 cluster MareNostrum, //www.bsc.es/.

[3] S. Browne, J.J. Dongarra, N. Garner, G. Ho and P. Mucci,
A portable programming interface for performance evaluation
on modern processors, Int. J. High Performance Computing
Applications 14(3) (2000), 189–204.

[4] I.-H. Chung, R.E. Walkup, H.-F. Wen and H. Yu, MPI perfor-
mance analysis tools on Blue Gene/L, in: Proc. SC06, Tampa,
FL, USA, IEEE Computer Society, 2006.

[5] Cray Inc., Cray performance analysis tools, CrayDoc S-2474-
31, //docs.cray.com/, 2006.

[6] M. Geimer, F. Wolf, B.J.N. Wylie and B. Mohr, Scalable par-
allel trace-based performance analysis, in: Proc. 13th Euro-
pean PVM/MPI User’s Group Meeting, Bonn, Germany, Lec-
ture Notes in Computer Science, Vol. 4192, Springer, 2006,
pp. 303–312.

[7] W. Gropp and K. Buschelman, FPMPI-2 fast profiling library
for MPI, //www-unix.mcs.anl.gov/fpmpi/, 2006.

[8] IBM Advanced Computing Technology Center, High Perfor-
mance Computing Toolkit, //www.research.ibm.com/actc/.

[9] The Blue Gene/L Team at IBM and LLNL, An overview of
the Blue Gene/L supercomputer, in: Proc. SC2002, Baltimore,
MD, USA, IEEE Computer Society, 2002.

[10] Jülich Supercomputing Centre, Forschungszentrum Jülich,
SCALASCA: Scalable performance analysis of large-scale par-
allel applications, //www.scalasca.org/.

[11] J.G. Kennedy, M. Behr, V. Kalro and T.E. Tezduyar, Implemen-
tation of implicit finite element methods for incompressible
flows on the CM-5, Computer Methods in Applied Mechanics
and Engineering 119 (1994), 95–111.

[12] A. Knüpfer, H. Brunst and W.E. Nagel, High performance
event trace visualization, in: Proc. 13th EuroMicro Conf. on
Parallel, Distributed and Network-Based Processing, PDP,
Lugano, Switzerland, IEEE Computer Society, 2005, pp. 258–
263.

[13] J. Labarta, S. Girona, V. Pillet, T. Cortes and L. Gregoris, DiP:
A parallel program development environment, in: Proc. 2nd
Int’l EuroPar Conf. on Parallel Processing, Lyon, France, Lec-

B.J.N. Wylie et al. / Performance measurement and analysis of large-scale parallel applications 181

ture Notes in Computer Science, Vol. 1124, Springer, 1996,
pp. 665–674.

[14] J. Labarta, J. Gimenez, E. Martinez, P. Gonzalez, H. Servat,
G. Llort and X. Aguilar, Scalability of visualization and tracing
tools, in: Proc. 11th Parallel Computing Conf. (ParCo 2005),
Málaga, Spain, John von Neumann Institute for Computing Se-
ries, Vol. 33, 2006, pp. 869–876.

[15] B. Mohr, B.J.N. Wylie and F. Wolf, Performance measurement
and analysis tools for extremely scalable systems, in: Proc.
23rd Int’l Supercomputing Conference (ISC’08), Dresden, Ger-
many, to appear.

[16] W. Nagel, A. Arnold, M. Weber, H.-C. Hoppe and K. Solchen-
bach, Vampir: Visualization and analysis of MPI resources, Su-
percomputer 63(1) (1996), 69–80.

[17] L. Oliker, A. Canning, J. Carter, C. Iancu, M. Lijewski,
S. Kamil, J. Shalf, H. Shan, E. Strohmaier, S. Ethier and
T. Goodale, Scientific application performance on candidate
petascale platforms, in: Proc. 21st Int’l Parallel and Distrib-
uted Processing Symp. (IPDPS), Long Beach, CA, USA, IEEE
Computer Society, 2007, pp. 1–12.

[18] D. Reed, R.D. Olsen, R.A. Aydt, T.M. Madhyastha, T. Birkett,
D.W. Jensen, B.A.A. Nazief and B.K. Totty, Scalable perfor-
mance environments for parallel systems, in: Proc. 6th Dis-
tributed Memory Computing Conf., Portland, OR, USA, IEEE
Computer Society, 1991, pp. 562–569.

[19] S.S. Shende and A.D. Malony, The TAU parallel performance
system, Int’l J. High Performance Computing Applications
20(2) (2006), 287–331.

[20] TOP500 Supercomputing Systems, //www.top500.org/, 2007.

[21] U.S. National Center for Computational Sciences, Oak Ridge
National Lab., Cray XT Jaguar, //info.nccs.gov/resources/
jaguar.

[22] J. Vetter and C. Chambreau, MPIP – lightweight, scalable MPI
profiling, //www.llnl.gov/CASC/mpip/, 2005.

[23] John von Neumann Institute for Computing, Forschungszen-
trum Jülich, Jülicher Blue Gene/L, //www.fz-juelich.de/zam/
ibm-bgl/.

[24] Weather Research Forecast code, //www.wrf-model.org/.

[25] F. Wolf and B. Mohr, Automatic performance analysis of
hybrid MPI/OpenMP applications, J. Systems Architecture
49(10/11) (2003), 421–439.

[26] F. Wolf, B.J.N. Wylie, E. Ábrahám, D. Becker, W. Frings,
K. Fürlinger, M. Geimer, M.-A. Hermanns, B. Mohr, S. Moore,
M. Pfeifer and Z. Szebenyi, Usage of the SCALASCA toolset
for scalable performance analysis of large-scale parallel appli-
cations, in: Tools for High Performance Computing, Springer,
2008.

[27] B.J.N. Wylie, B. Mohr and F. Wolf, Holistic hardware counter
performance analysis of parallel programs, in: Proc. 11th Par-
allel Computing Conf. (ParCo 2005), Málaga, Spain, John
von Neumann Institute for Computing Series, Vol. 33, 2006,
pp. 187–194.

[28] B.J.N. Wylie, F. Wolf, B. Mohr and M. Geimer, Integrated
runtime measurement summarisation and selective event trac-
ing for scalable parallel execution performance diagnosis, in:
Proc. 8th Workshop on State-of-the-Art in Scientific and Par-
allel Computing (PARA’06), Umeå, Sweden, Lecture Notes in
Computer Science, Vol. 4699, Springer, 2006, pp. 460–469.

[29] B.J.N. Wylie, M. Geimer, M. Nicolai and M. Probst, Perfor-
mance analysis and tuning of the XNS CFD solver on Blue
Gene/L, in: Proc. 14th European PVM/MPI User’s Group
Meeting, Paris, France, Lecture Notes in Computer Science,
Vol. 4757, Springer, 2007, pp. 107–116.

[30] Z. Szebenyi, B.J.N. Wylie and F. Wolf, SCALASCA parallel per-
formance analyses of SPEC MPI2007 applications, in: Proc.
1st SPEC Int’l Performance Evaluation Workshop (SIPEW),
Darmstadt, Germany, Lecture Notes in Computer Science,
Vol. 5119, Springer, 2008.

