FORSCHUNGSZENTRUM JULICH GmbH
Zentralinstitut fir Angewandte Mathematik

D-52425 Jilich, Tel. (02461) 61-6402

Interner Bericht

Automatic Performance Analysis for
CRAY T3E

Michael Gerndt, Bernd Mohr, Mario Pantano?*, Felix Wolf

FZJ-ZAM-IB-9808

Mai 1998
(letzte Anderung: 26.05.98)

(*) University of Vienna
Institute for Software Technology and Parallel Systems
Liechtensteinstral3e 22
A-1090 Vienna, Austria

Preprint: Proceedings of the Seventh Workshop on ComgideRBarallel Computers (CPC’98),
University of Linkdping, Sweden, June 29 - July 1 1998, pp7&9

Automatic Performance Analysis for CRAY T3E

M. Gerndt', B. Mohr', M. Pantano?, F. Wolf'

1Research Centre Juelich (FZJ)
Central Institute for Applied
Mathematics

52425 Julich, Germany

{m.gerndt, b.mohr, f.wolf}@fz-juelich.de

Abstract

One of the reasons why parallel programming is con-
sidered to be a difficult task is that users frequently
cannot predict the performance impact of implementa-
tion decisions prior to program execution. This results
in a cycle of incremental performance improvements
based on runtime performance data. While gather-
ing and analyzing performance data is supported by
a large number of tools, typically interactive, the task
of performance analysis is still too complex for users.
This article illustrates this fact based on the current
analysis support on CRAY T3E. As a consequence,
we are convinced that automatic analysis tools are re-
quired to identify frequently occuring and well-defined
performance problems automatically. This article de-
scribes the novel design of a generic automatic perfor-
mance analysis environment called KOJAK. Besides its
structure we also outline the first component, EARL,
a new meta-tool designed and implemented as a pro-
grammable interface to calculate more abstract metrics
from existing trace files, and to locate complex patterns
describing performance problems.

1 Introduction

The development of efficient parallel programs solving
scientific and industrial challenges 1s a cyclic process
of distinct phases: writing source code, executing it
on the target platform, evaluating the performance of
the program, and improving the program by manual
transformation.

Quite elaborate tools are available assisting the ap-
plication programmer in both steps of the performance
analysis phase: program instrumentation and perfor-
mance data inspection. Current techniques for pro-
gram instrumentation cover: instrumented libraries,
hardware performance monitors, source code instru-
mentation, object code instrumentation, and on-the-fly
dynamic instrumentation. Performance data inspec-
tion is supported via interactive tools offering graph-

2University of Vienna
Institute for Software Technology and
Parallel Systems
Liechtensteinstrasse 22
A-1090 Vienna, Austria

pantano@par.univie.ac.at

ical and textual displays: tables of profiling informa-
tion, time lines of event traces, animated diagrams, and
statistical analyzes.

Current tools support application programmers via
highly sophisticated user interfaces but lack knowledge-
based user guidance. The application programmers
have to be well trained. They do not only have to be
experts for their applications and for potential perfor-
mance bottlenecks but they have to understand the in-
tricate details of the performance analysis environment
also. This requires a time consuming learning effort for
handling details such as reducing the amount of trace
data and handling the powerful user interfaces. In ad-
dition, the application of these tools to real programs is
a time-consuming task as well, and often, the revealed
performance bottlenecks belong to a small number of
well-defined performance problems, such as load bal-
ancing and excessive message passing overhead.

In summary, the current situation is dominated by
an imbalance between the overhead in applying current
performance analysis tools, learning overhead as well as
case-based overhead, and the frequently revealed typi-
cal performance bottlenecks that seem to be easily de-
tectable. This imbalance is one of the most important
reasons why the user community does still not accept
current analysis tools and, due to this reluctance, par-
allel computers do frequently not deliver high perfor-
mance.

To improve the current situation, we designed
KOJAK (Kit for Objective Judgement and Automatic
Knowledge-based detection of bottlenecks), a generic
environment for automatic performance analysis. The
goal of KOJAK 1is to automatically reveal those well-
defined typical bottlenecks; It is not intended to au-
tomatically detect all bottlenecks that might exist in
parallel programs.

This article motivates the design based on the cur-
rent performance analysis tool support for MPI pro-
grams on CRAY T3E. In this environment, application
programmers can use three interactive performance
analysis tools: Apprentice, PAT, and VAMPIR. All

three tools provide partially overlapping performance
information. In addition to these tools, the CRAY
compilers provide static program information in the
Compiler Information File (CIF). The CIF contains
mapping information to relate the optimized object
code back to the source code. This information enables
Apprentice to present performance data in relation to
the original code.

On CRAY T3E, KOJAK will be based on interfaces
to these information sources. It will take over all those
tasks that currently have to be done by the program-
mer:

e guide program instrumentation
e execute the program

e manage performance data of multiple program
runs

e evaluate performance data

The remainder of the paper motivates and introduces
the design of KOJAK. Tt is presented in the context of
CRAY T3E but KOJAK is designed to be a generic tool
which can be specialized for multiple targt machines
and programming environments. Section 2 summarizes
related work. Section 3 overviews the available per-
formance analysis tools on CRAY T3E. Section 4 de-
scribes a first component of KOJAK, a programmable
trace analyzer, which will be used to determine per-
formance metrics that are not directly included in the
trace files. The last section introduces the design con-
cepts of KOJAK in the context of the T3E environ-
ment.

2 Related work

Automatic performance analysis of parallel programs
has been investigated by a small number of projects.
The most well known one is Paradyn developed at the
University of Wisconsin-Madison by Jeff Hollingsworth
et.al. [10]. Paradyn is based on dynamic instrumenta-
tion, i.e., the executable image is modified at runtime
according to instrumentation requests. Paradyn sup-
ports automatic analysis via its Performance Consul-
tant for PVM-based message passing programs. It is
based on the W3 search model, i.e.; searching through
the three-dimensional space along the Why, Where,
and When axes. It introduced the approach of struc-
turing the search into a cycle of selecting hypotheses,
instrumenting the code, evaluating the performance
data, and refining the hypotheses according to a pre-
defined hierarchy of performance bottlenecks. Paradyn
is based on a dynamic instrumentation which is not
available on CRAY T3E. Paradyn cannot be used as
a post-execution analyzer which is desirable if the par-
allel machine is a limited resource. In addition, there

is no interface to already existing monitoring tools and
thus Paradyn cannot take performance information of
other sources into account.

KAPPA-PI is an automatic performance analyzer
for PVM-programs developed at the Universitat Au-
tonoma de Barcelona [5]. Tt is a post-execution tool
implemented in PERL that evaluates traces generated
by the Tape/PVM monitoring library. Based on a pre-
defined list of performance bottlenecks it searches for
performance problems and their causes. In addition to
trace data, it analyzes the source code based on pat-
tern matching. The early version seems to be limited
and not easily adaptable to other environments.

One additional design, POIROT, was published by
Robert Helm and Allen Malony [8]. The design is based
on the concept of heuristic classification. The main
properties of a program run are extracted from trace
data by a process called abstraction. These properties
are matched against a database of possible performance
bottlenecks. The selected bottleneck is refined to fit
additional properties of the program run. Performance
data are gathered via an environment interface that
makes Poirot independent of intricate details of the
programming environment, e.g., how to instrument a
program. Poirot has never been demonstrated and no
further publications exist.

3 Information sources

The programming environment of the CRAY T3E
supports performance analysis via interactive tools.
CRAY itself provides two tools, Apprentice and PAT,
which are both based on summary information. In ad-
dition, Apprentice accesses source code information to
map the performance information to the statements
of the original source code. Besides these two tools,
programmers can use VAMPIR, a trace analysis tool
developed at our institute. Within a collaboration
with CRAY, instrumentation and trace generation for
VAMPIR is being integrated into the next version of
PAT.

3.1
The F90 and C compilers on CRAY T3E generate

on request for each source file a compiler informa-
tion file (CIF). This file includes information about
the compilation process (applied compiler options, tar-
get machine characteristics, and compiler messages)

Compiler Information File

and source information of the compilation units (pro-
cedure information, symbol information, information
about loops and statement types, cross-reference infor-
mation for each symbol in the source file).

Apprentice requires this information to link the per-
formance information back to the source code. CIFs
are initially in ASCIT format but can be converted to

binary format. The information can be easily accessed
in both formats via a library interface.

3.2 Apprentice

Apprentice is a post-execution performance analysis
tool for message passing programs [4]. Originally it was
designed to support the CRAFT programming model
on the CRAY T3E predecessor system, the CRAY
T3D. Apprentice analyzes summary information col-
lected at runtime via an instrumentation of the source
program.

The instrumentation is performed by the compiler
and is triggered via an appropriate compiler switch. To
reduce the overhead of the instrumentation, the pro-
grammer can selectively compile the source files with
and without instrumentation. The instrumentation is
done in a late phase of the compilation after all op-
timizations already occured. This prevents that in-
strumentation affects the way code i1s compiled. Dur-
ing runtime, summary information is collected at each
processor for each basic block. This information com-
prises:

e cxecution time

e number of floating point, integer, and load/store
operations

e Instrumentation overhead

For each subroutine call the execution time as well
as the pass count is determined. At the end of a pro-
gram run, the information of all processors is summed
up and written to the runtime information file (RIF).
In addition to the summed up execution times and pass
counts of subroutines calls, their mean value and stan-
dard deviation, as well as the minimum and maximum
values are stored.

The size of the resulting RIF is typically less than
one megabyte. But the overhead due to the instrumen-
tation can easily be a factor of two which results from
instrumenting every basic block. This severe drawback
of the instrumentation is partly compensated in Ap-
prentice by correcting the timings based on the mea-
sured overhead.

When the user starts Apprentice to analyze the col-
lected information, the tool first reads the RIF as well
as the CIFs of the individual source files. The per-
formance data measured for the optimized code are
related back to the original source code. Apprentice
distinguishes between:

e parallel work: user-level subroutines
e 1/0: system subroutines for performing 1/0

e communication overhead: MPI and PVM rou-
tines, SHMEM routines

e uninstrumented code

The available barcharts allow the user to identify
critical code regions that take most of the execution
time or with a lot of I/O and communication over-
head. Since all the values have been summed up, no
specific behaviour of the processors can be identified.
Load balance problems can be detected by inspecting
the execution times of calls to synchronization subrou-
tines, such as global sums or barriers. Based on the
available information, the processors with the least and
the highest execution time can be identified.

While Apprentice does not evaluate the hardware
performance counters of the DEC Alpha, it estimates
the loss due to cache misses and suboptimal use of the
functional units. Based on the number of instructions
and a very simple cost model (fixed cycles for each type
of instruction) it determines the loss as the difference
between the estimated optimal and the measured exe-
cution time.

3.3 VAMPIR
VAMPIR (Visualization and Analysis of MPI Re-

sources) is an event trace analysis tool [11] which was
developed by the Central Institute for Applied Mathe-
matics of the Research Centre Julich and now is com-
mercially distributed by a German company named
PALLAS. Its main application area is the analysis
of parallel programs based on the message passing
paradigm but it also has been successfully used for
other areas (e.g., for SVM-Fortran traces to analyze
shared virtual memory page transfer behaviour [7] or to
analyze CRAY T3E usage based on accounting data).
VAMPIR has three components:

e The VAMPIR tool itself is a graphical event trace
browser implemented for the X11 Window system
using the Motif toolkit. It is available for any ma-
jor UNIX platform.

e The VAMPIR runtime library provides an API for
collecting, buffering, and generating event traces
as well as a set of wrapper routines for the most
commonly used MPI and PVM communication
routines which record message traffic in the event
trace.

e In order to observe functions or subroutines in the
user program, their entry and exit has to be instru-
mented by inserting calls to the VAMPIR runtime
library. Observing message passing functions is
handled by linking the program with the VAMPIR

wrapper function library.

VAMPIR, comes with a source instrumenter for
ANSI Fortran 77. Programs written in other pro-
gramming languages (e.g., C or C++) have to

be instrumented manually. To improve this sit-
uation, our institute in collaboration with CRAY
Research is currently implementing an object code

mstrumenter for CRAY T3E. This is described in
the next section.

During the execution of the instrumented user pro-
gram, the VAMPIR runtime library records entry and
exits to instrumented user and message passing func-
tions and the sending and receiving of messages. For
each message, its tag, communicator, and length is
recorded. Through the use of a configuration file, it is
possible to switch the runtime observation of specific
functions on and off. This way, the program doesn’t
have to be re-instrumented and re-compiled for every
change in the instrumentation.

Large parallel programs consist of several dozens or
even hundreds of functions. To ease the analysis of
such complex programs, VAMPIR arranges the func-
tions into groups, e.g., user functions, MPI routines,
I/0 routines, and so on. The user can control/change
the assignment of functions to groups and can also de-
fine new groups.

VAMPIR provides a wide variety of graphical dis-
plays to analyze the recorded event traces:

e The dynamic behaviour of the program can be an-
alyzed by timeline diagrams for either the whole
program or a selected set of nodes. By default,
the displays show the whole event trace, but the
user can zoom-in to any arbitrary region of the
trace. Also, the user can change the display style
of the lines representing messages based on their
tag/communicator or the length. This way, mes-
sage traffic of different modules or libraries can
easily be visually separated.

e The parallelism display shows the number of nodes
in each function group over time. This allows to
easily locate specific parts of the program, e.g.,
parts with heavy message traffic or 1/0.

o VAMPIR also provides a large number of statisti-
cal displays. It calculates how often each function
or group of functions got called and the time spent
in there. Message statistics show the number of
messages sent, and the minimum, maximum, sum,
and average length or transfer rate between any
two nodes. The statistics can be displayed as bar-
charts, histograms, or textual tables.

A very useful feature of VAMPIR is that the statis-
tic displays can be linked to the timeline diagrams.
By this, statistics can be calculated for any arbi-
trary, user selectable part of the program execu-
tion.

e If the instrumenter/runtime library provides the
necessary information in the event trace header,

the information provided by VAMPIR can be re-
lated back to source code. VAMPIR provides a
source code and a call graph display to show se-
lected functions or the location of the send and
the receive of a selected message.

In summary, VAMPIR is a very powerful and highly
configurable event trace browser. It displays trace files
in a variety of graphical views, and provides flexible
filter and statistical operations that condense the dis-
played information to a manageable amount. Rapid
zooming and instantaneous redraw allow to identify
and focus on the time interval of interest.

However, because of its power and complexity,
VAMPIR is not easy to use, especially for applica-
tion programmers. Also, with very large traces, a
user looking for problems/bottlenecks would have to
look through the displays and zoom in and out for a
long time. The programmer would never know whether
he missed something because he didn’t look carefully
enough or zoomed in at the wrong places. Clearly,
a more ”automatic” way of analyzing large traces is
needed.

3.4 PAT

PAT (Performance Analysis Tool) is the second perfor-
mance tool available from CRAY Research for CRAY
T3E. The two main differences to Apprentice are that
no source code instrumentation or special compiler sup-
port is necessary. The user only needs to re-link his/her
application against the PAT runtime library (because
CRAY Unicos doesn’t support dynamic linking). Sec-
ond, PAT aims at keeping the additional overhead to
measure/observe program behaviour as low as possible.
PAT is actually three performance tools in one:

1. PAT allows the user to get an rough overview
about the performance of the parallel program
through a method called sampling, i.e., interrupt-
ing the program at regular intervals and evaluat-
ing the program counter. PAT can calculate then
the percentage of time spent in each function. The
sampling rate can be changed by the user to adapt
it to the execution time of the program and to
keep overhead low. Because the sampling method
provides only a statistical estimate of the actual
time spent in a function, the tool also provides a
measure of confidence in the sampling estimate.

In addition PAT determines the total, user, and
system time of the execution run and the number
of cache misses and the number of either flointing
point, integer, store, or load operations. These are
measured through the DEC Alpha hardware coun-
ters. The user can select the hardware counter by
setting an environment variable. All this statisti-
cal information is stored after the execution in a
so-called Performance Information File (PIF).

2. If a more detailed analysis i1s necessary, PAT can

be used to instrument and analyze a specific func-
tion or set of functions in a second phase. PAT can
instrument object code (however only on the func-
tion level). This is a big advantage especially for
large complex programs because they do not have
to be re-compiled for instrumentation. In addi-
tion, it is possible to analyze functions contained
in system or 3rd-party libraries. A third advan-
tage is that programs written in more than one
language can be handled. The big disadvantage is
that it is more difficult to relate the results back
to the source code.

This detailed investigation of function behaviour is
called Call Site Report by PAT. It records for each
call site of the instrumented functions how often
it got called and time spent in this instantiation of
the function. Execution times are measured with
a high-resolution timer. The results are available
for each CPU used in the parallel program. The
next version of PAT will allow to gather hard-
ware counter statistics for instrumented functions
as well.

. Last, if a very detailed analysis of the program
behaviour is necessary, PAT also supports event
tracing. The object instrumenter of PAT can also
be used to insert calls to entry and exit trace rou-
tines around calls to user or library routines. En-
try and exit trace routines can be provided in two
ways:

e The user can supply function-specific wrap-

per functions. The routines must be writ-
ten in C, they must have the same number
and same types of arguments as the routine
they are tracing, and finally, the wrapper
function name for a function func must be
func_trace_entry for entry trace routines and

func_trace_exit for exit trace routines.

o If specific wrapper routines for the requested
function are not available, PAT uses generic
wrapper code which just records the entry
and exit of the function in the event trace.

In addition, PAT provides extra tracing runtime
system calls, which can be inserted in the source
code and allow to switch tracing on and off, and to
insert additional information into the trace (e.g.,
information unrelated to functions).

The tracing features of PAT were developed in
a collaboration of Research Centre Jilich with
CRAY Research. Our institute implemented all
the necessary special wrapper functions for all
message passing functions available on the T3E

(MPI, PVM, and SHMEM and for both the C and

Fortran interfaces) which record the message traf-
fic in the event trace. In addition, we implemented
a tool for converting the event traces contained in
PIF files into VAMPIR, trace format.

The major drawback of PAT’s object instrumenta-
tion is the very low-level interface for specifying the
functions to be instrumented. The user has to specify
the function names as they appear in the object code,
i.e., C++ functions or F90 functions which are local
or contained in modules have to be specified in the
mangled form (e.g., ”__0FDfooPd” instead of the C++
function name ”int foo(double *)”). Clearly, a more
user friendly or automatic way for the instrumenter
interface needs to be added to PAT.

In addition, the combination of three different in-
strumentation/analysis techniques into a single tool is
very confusing for users. This confusion is further in-
creased since the supported techniques overlap with the
techniques applied in the other tools.

3.5 Summary

The previous subsections pointed out that the CRAY
T3E has a programming environment that includes the
most advanced performance analysis tools. On the
other hand, each of these tools comes with its own
instrumentation, provides partially overlapping infor-
mation, and has a totally different user interface. The
programmer has to understand the advantages and dis-
advantages of all the tools to be able to select and apply
the right ones. Table 1 summarizes the main features
of these three tools.

4 EARL: Postprocessing trace
data

As a first step to automate trace analysis, we de-
signed and implemented a new meta-tool named EARL
(Event Analysis and Recognition Language). EARL is
actually a new high-level trace analysis language which
allows to easily construct new trace analysis tools by
writing scripts in the EARL language. These are then
executed by the EARL interpreter. Tt is intented as
a programmable interface to calculate more abstract
metrics, and to locate complex patterns describing per-
formance problems.

Although EARL is designed to be a generic event
trace analysis tool, the current prototype concentrates
on the analysis of event traces generated from mes-
sage passing programs. This is not really a restric-
tion as most uses of event tracing are in the field of
parallel programming on distributed memory machines
(which almost all use a one or two sided message pass-
ing scheme for communication). In addition, analy-
sis of message passing traces is well understood and

| | Apprentice | VAMPIR | PAT
data collec- | instrumentation via | source instrumenta- | sampling object code instrumentation
tion compiler tion by preproces-
sor
intrusion high / corrected high low high
selective instr. | not required, op- | required - required
tional
selection compiler switch GUI or ASCII file - ASCII interface or file
interface
level of detail | summary informa- | event trace statistics summary event trace
tion information
information total time and | subroutine statistical total time | subroutine
oper. counts for | start/stop and | distr. of | and pass | start/stop
basic blocks and | send/recv events time (sub- | counts for | and
call sites routines) call sites send /recv
events
strength source-level, analy- | many displays for | low over- | total time | object code
sis of loops message passing | head profil- | for call | instr. for
history and for | ing sites, no re- | VAMPIR,
statistics of arbi- compilation | no recompi-
trary execution lation
phases
Table 1: User interface and properties of performance analysis tools on CRAY T3E

therefore allowed us to provide high-level, well known
abstractions as the programming interface to an EARL
user.

Much of the power of EARL comes through its very
high-level abstraction of an event trace which allows a
programmer to concentrate on the trace analysis and
let EARL take care of the different trace formats and
their encoding of functions and event types, of input
handling and buffering, and of keeping track of message
queues and call stacks.

An EARL programmer can view an event trace as a
sequence of events. EARL defines four predefined event
types: entering and leaving a region, and sending and
receiving a message. There may be more event types
defined depending on the underlying trace format. A
region is a named section of the traced program (e.g.,
it could be a loop or basic block, but mostly it is a
function or subroutine). If supported by the trace for-
mat, regions may be organized in groups (e.g., user or
system functions).

For all event types the following information is pro-
vided: the number of the event, the location, the time-
stamp, the event type, and the number of the enter
event which determines the region in which the event
happened. The enter and exit event types have an ad-
ditional region attribute specifying the name of the re-
gion entered or left, and send and recv have attributes
describing the destination, source, tag, length, and
communicator of the message. In addition, the recv
event type has a sendptr attribute pointing to the cor-
responding send event.

In addition to the basic event trace model, EARL

provides the concepts of regions and messages. These
are defined as pairs of matching events: enter/exit or
send /recv respectively. For each position in the event
trace, EARL defines a region stack per node and a
message queue implemented as lists of enter and send
events which define the regions entered and messages
not yet received at that time. All these facilities to-
gether allow to easily process complex event patterns
made out of regions and messages.

The EARL interpreter reads and decodes the un-
derlying trace format and maps it automatically to the
EARL event types and attributes. This allows the pro-
grammers to write their trace analysis scripts indepen-
dent from the format of the event trace and of the en-
coding of event types and function/region names. Cur-
rently, EARL supports the VAMPIR [1] and ATL.OG [9]
trace formats. Instead of re-inventing the wheel when
implementing the EARL language, we started with the
well known scripting language TCIL and extended it
with commands for event trace and event record han-
dling. The extensions are implemented in C4++.

EARL supports the following functionality:

e Trace handling: opening and closing event trace

files

e Event record access: both sequential access and
random access is supported.

e State access: EARI automatically keeps track of
the state of the region stacks and the message
queue for the current event.

o General information access: allows to get a list of
all defined event types, regions, attributes, and to
get the number of nodes used in the application.

We just completed our first prototype of EARL.
For a complete and more detailed description see [14].
Early experiments show that although simple in design,
EARL is a powerful and easy to use meta-tool for ex-
perts to implement generic or custom-made program or
application domain-specific event trace analysis tools.
Because of its programmability and flexibility, EARL
can be used for a wide range of event trace analysis
tasks:

1. calculation of performance indices and trace statis-
tics of all kinds

2. finding all locations of possible bottlenecks (which
then can be analyzed with traditional graphical
trace analysis tools if necessary)

3. performance visualization and animation (as far as
TK or other TCL graphics extensions are suitable
for this task)

4. experiment management where within an experi-
ment the instrumentation of the parallel program
and generation of traces is based on results calcu-
lated from earlier runs. This allows to implement
automatic program optimization tools.

5. application or domain-specific versions of these
tasks

In the next months, we want to implement a library
of useful generic EARL scripts and subroutines which
then can be used by programmers to analyze their par-
allel applications. We also hope to implement addi-
tional decoder modules for other trace formats (e.g.,
PICL [6] or SDDF [13]) and to add more direct support
for traces generated by programsin other programming
paradigms than message passing.

Also, we will use EARL in our KOJAK project as
a trace post-processing tool. In this project, we plan
to explore different ways of representing and locating
bottlenecks. Here, we plan to use EARL in order to
easily implement and evaluate the different methods.

5 KOJAK design

The complexity of the current performance analysis en-
vironment on the CRAY T3E as well as similar experi-
ence in other environments, e.g., the SVM-Fortran pro-
gramming environment and the native message passing
environment on the Intel Paragon and the HPF+ envi-
ronment [3], motivate the design of the automatic per-
formance analysis environment KOJAK (Kit for Ob-
jective Judgement and Automatic Knowledged-based
detection of bottlenecks).

The goals of the KOJAK project are to:

e automatically detect frequently occuring perfor-
mance problems

e develop a generic tool that can be specialized for
multiple programming paradigms and target ma-
chines

e integrate the new tool into existing environments
and thus reuse already available performance in-
formation

It is important to note that we are aiming at de-
tecting frequently occuring performance problems only.
There will still remain the area of very program-specific
bottlenecks that can only be detected by manually ap-
plying existing performance analysis tools.

The structure of KOJAK is shown in Figure 1. The
entire performance analysis enviroment for the target
system will consist of three main components: informa-
tion supply and transformation tools, the performance
database, and KOJAK.

The information supply tools on CRAY T3E are
the compilers, Apprentice, VAMPIR and PAT. In ad-
dition, we already have the first transformation tool
available, EARL, which is partly an incarnation of the
generic summarizer tool. Further transformation tools
will be a scalability analyzer computing speed up num-
bers from different program runs and a prediction tool
deducing performance characteristics from already ex-
isting performance data [12].

The performance database will be the repository for
all performance data. For each supply tool, a special-
ized input filter will be developed which transforms
the tool-specific format into the database representa-
tion. KOJAK will trigger the information supply tools
to generate required data and to input these into the
database and will use the database query interface to
retrieve information required for the analysis process.

We plan to base the implementation of the perfor-
mance database on a standard database system be-
cause of the following database features:

e high-level specification of the available perfor-
mance data

e low-level storage management
e data persistence

e client/server support for tool development

With respect to performance considerations, the
granularity of the performance information has to be
defined carefully [2]. Summary information, e.g. to-
tal execution time of program regions, and source code
information can easily be stored in a database and effi-
ciently accessed. Individual records of large trace files

user-suppied

application hypctheses

&,

%o
ing

Database

program information
trace data

summary information

scalability information

s

proven hypotheses

Figure 1: Structure of the automatic analysis environment KOJAK

will not be stored in the database, but the entire trace
files will be stored as individual entries.

Information, required to prove performance prob-
lems, not included in the database but available in the
trace files will be extracted from the trace files with
the help of EARL. The advantage of storing trace files
in the database is that the database will also serve as
a vehicle for organizing multiple program versions and
program executions.

Similar to Paradyn, KOJAK is based on the con-
cept of hypothetical assumptions of existing bottle-
necks (hypotheses). If a hypothesis is correct, it is
called a bottleneck. For example, the hypothesis load
balancing problem in subroutine foo can be checked by
analyzing the execution time measured by Apprentice,
VAMPIR, or PAT. If this hypothesis can be proven, a
refinement is necessary to determine the location more
precisely. Thus, the hypothesis should be refined into a
set of hypotheses, one for each barrier synchronization
in the subroutine.

KOJAK consists of four components which together
control the whole environment:

1. Auto Controller

The auto controller is the central component
which guides the whole process by refining proven
hypotheses. Based on the current set of hypothe-
ses the other three components will be applied.

2. Auto Instrumenter

The auto instrumenter analyzes the set of hy-
potheses and determines the best way to gather
the required information. For the hypothesis men-
tioned above it decides whether to access available
data or whether to run the program with any of
the instrumentations, e.g., source code instrumen-
tation for Apprentice or VAMPIR, or object code
instrumentation with PAT. Its decision has to take
all hypotheses into account to gather as much in-
formation as possible in the next program run.
The instrumenter has to know the instrumenta-
tion interfaces to generate the correct commands.

. Auto Executer

Once the program is instrumented, it has to be
executed on the target machine and the trace files
have to be inserted into the database. This is the
task of the executer which is based on the infor-
mation how to run a program and how to handle
the generated information.

. Auto Vertifier

For each hypothesis a predicate has to be checked
against the database to prove that the hypothesis
is valid and thus is a bottleneck. The verifier re-
trieves the required information from the database
to check all the hypothesis. In addition to infor-
mation in the database complex patterns can be
directly checked on the trace files based on EARL.

During the whole process a lot of information is re-
quired which should not be hardcoded. According to
our goal to develop a generic tool that can be special-
ized for each target environment, the intensive use of
specification languages as well as the representation of
knowledge in a flexible form, such as rules, is required.

6 Conclusions

This article described the very advanced performance
analysis support on CRAY T3E, consisting of three
tools Apprentice, VAMPIR, and PAT, but demon-
strated that this environment is complex to handle for
application programmers (subsection 3.5). Frequently,
application programmers are satisfied with their pro-
gram’s performance if the most important performance
problems have been detected and fixed. Many of the
users of our two CRAY T3E systems installed at the
Research Centre Jilich either insert their own measure-
ments into their codes because this seems to be easier
to them than learning the available tools, or they invest
a lot of time to learn the tools and are disappointed be-
cause the detected problems belong to a small class of
frequently occuring performance bugs.

The design of KOJAK, described in this article, takes
into account the concepts and ideas already developed
in other projects but combines these with the flexibil-
ity of a generic environment which can be specialized
to cooperate with already existing performance analy-
sis tools of the target parallel machine. This enables
KOJAK to reuse already available performance data.
This article also described the first step towards an im-
plementation of KOJAK, the meta-tool EARL, which
is a programmable interface to calculate abstract met-
rics and to locate complex patterns in trace files.

References

[1] A. Arnold, U. Detert, W.E. Nagel: Performance
Optimization of Parallel Programs: Tracing,
Zooming, Understanding, CRAY User Group
Meeting, Denver, Col., Eds: R. Winget and K.
Winget, pages 252-258, 1995

[2] R. Borgeest, Ch. Rédel: Trace Analysis with a
Relational Database System, Fourth Euromicro
Workshop on Parallel and Distribued Process-
ing, pp. 243-250, 1996

[3] M. Calzarossa, L. Massari, A. Merlo, M. Pan-
tano, D. Tessera: Integration of a compilation
system and a performance tool: the HPF+ ap-
proach, HPCN Europe 1998, LNCS 1401, pp.
809-815, 1998

[4] CRAY Research, Introducing the MPP Appren-
tice Tool, CRAY Manual IN-2511, 1994

[5]

[10]

A. Espinosa, T. Margalef, E. Luque: Automatic
Performance Evaluation of Parallel Programs,
Sixth Euromicro Workshop on Parallel and Dis-
tribued Processing, 1998

G.A. Geist, M.T. Heath, B.W. Peyton,
P.H. Worley: PICL: A Portable Instru-
mented Communication Library, Technical Re-
port ORNL/TM-11130, Oak Ridge National
Laboratory, Tennessee, 1990

M. Gerndt, A. Krumme, S. Ozmen: Perfor-
mance Analysis for SVM-Fortran with OPAL,
Proceedings Int. Conf. on Parallel and Dis-
tributed Processing Techniques and Applica-
tions (PDPTA’95), Athens, Georgia, pp. 561-
570, 1995

B.R. Helm, A.D. Malony: Automating Perfor-
mance Diagnosis: a Theory and Architecture,
International Workshop on Computer Perfor-
mance Measurement and Analysis (PERMEAN
’95), 1995

V. Herrarte, E. Lusk: Studying Parallel Pro-
gram Behavior with Upshot, Technical Report
ANL-91/15, Mathematics and Computer Sci-
ence Division, Argonne National Laboratory,

1991

B.P. Miller, M.D. Callaghan, J.M. Cargille,
J.K. Hollingsworth, R.B. Irvin, K.L.. Karavanic,
K. Kunchithapadam, T. Newhall: The Para-
dyn Parallel Performance Measurement Tools,
IEEE Computer, Vol. 28, No. 11, pp. 37-46,
1995

W.E. Nagel, A. Arnold, M. Weber, H-C. Hoppe,
K. Solchenbach, VAMPIR: Visualization and
Analysis of MPI Resources, Supercomputer 63,
Vol. 12, No. 1, pp. 69-80, 1996

M. Noelle, M. Pantano, X-H. Sun: Communica-
tion Querhead: Prediction and Its Influence on
Scalability, To Appear PDPTA’98

D.A. Reed, R.D. Olson, R.A. Aydt, T.M. Mad-
hyasta, T. Birkett, D.W. Jensen, A.A. Nazief,
B.K. Totty: Scalable Performance FEnuviron-
ments for Parallel Systems, 6th Distributed
Memory Computing Conference, pages 562-569,
IEEE Computer Society Press, 1991

F. Wolf, B. Mohr: FARL - A Programmable
and FErtensible Toolkit for Analyzing FEuvent
Traces of Message Passing Programs -, Techni-
cal Report FZJ-ZAM-1B-9803, Research Centre
Julich, 1998

