EARL - A Programmable and Extensible Toolkit
for Analyzing Event Traces of Message Passing
Programs -

Felix Wolf! and Bernd Mohr?

' TU Darmstadt, Graduiertenkolleg ” Infrastruktur fiir den elektronischen Markt”,
64283 Darmstadt, Germany
fwolf@rbg. informatik.tu-darmstadt.de
2 Forschungszentrum Jilich GmbH, ZAM, 52425 Jiilich, Germany
b.mohr@fz-juelich.de

Abstract. This paper describes a new meta-tool named EARIL which
consists of a new high-level trace analysis language and its interpreter
which allows to easily construct new trace analysis tools. Because of its
programmability and flexibility, EARL can be used for a wide range of
event trace analysis tasks. It is especially well-suited for automatic and
for application or domain specific trace analysis and program validation.
We describe the abstract view on an event trace the EARL interpreter
provides to the user, and give an overview about the EARL language.
Finally, a set of EARL script examples are used to demonstrate the
features of EARL.

1 Motivation

Using event tracing to analyze the behavior of parallel and distributed applica-
tions is a well accepted technique. In addition, there are a multitude of powerful,
graphical event trace analysis tools (e.g., AIMS[9], Paradyn[8], Pablo[6], STM-
PLE[5], VAMPIR][3], Upshot[4], and many more). However, all of them have one
or more of the following shortcomings:

1. The biggest problem (especially with graphical tools) is that event traces
generated on today’s large and fast machines are getting very big. Either the
tools show the recorded behavior by displaying an animation or they read in
the whole trace at once, display it, and then allow the user to zoom in and
out. If analyzing very large traces, a user looking for problems/bottlenecks
would either have to watch or zoom in and out for a long time. In the second
case, it 1s possible that the trace is too large to be read in in total. In either
case, the user never knows whether he missed something because he didn’t
look carefully enough or zoomed in at the wrong places. Clearly, a more
“automatic” way of analyzing large traces is needed.

2. Although the tools provide a large number of graphical views the right one
needed for the application might not be available. Typically, many of these

tools cannot be used if the analysis has to be carried out in a domain or
application specific way not covered by the graphical displays provided with
the tools. Also, many cannot handle user-defined events in a useful way. A
more flexible and easily programmable tool is needed. Such a tool would also
allow a tool expert to explore new ideas for trace analysis tools or to quickly
implement custom-made tools for ordinary users if needed.

3. Traditional performance analysis tools have very little or no support for
conducting experiments (i.e., repeated measurements with varying processor
numbers or input data sets). Often, they cannot analyze more than one event

trace at the same time (e.g., to support trace comparisons).

We therefore designed and implemented a new meta-tool called EARL (Event
Analysis and Recognition Language). EARL is actually a new high-level trace
analysis language which allows to easily construct new trace analysis tools by
writing scripts in the EARL language. These are then executed by the EARL
interpreter. Section 2 describes the EARL language and the implementation of
the interpreter in more detail. Two longer EARL script examples in Section 3
show how easy it is to use EARL to implement new trace analysis tools. Section 4

discusses related work and Section 5 concludes the paper and describes the
enhancements to EARL we hope to implement in the future.

2 The EARL Toolkit

In order to achieve the highest degree of flexibility and programmability for ana-
lyzing event traces, we designed and implemented a new high-level trace analysis
language. Although EARL is designed to be a generic event trace analysis tool,
the current prototype (which is described in this paper) concentrates on the anal-
ysis of event traces generated from message passing programs. This is not really
a restriction as most uses of event tracing are in the field of parallel program-
ming on distributed memory machines (which almost all use a one or two sided
message passing scheme for communication). In addition, analysis of message
passing traces is well understood and therefore allowed us to provide high-level,
well known abstractions as the programming interface to an EARL user.

2.1 Abstract View on an Event Trace

Much of the power of EARL comes through its very high-level abstraction of an
event trace which allows a programmer to concentrate on the trace analysis and
let EARL take care of the different trace formats and their encoding of functions
and event types, of input handling and buffering, and of keeping track of message
queues and call stacks.

An EARIL programmer can view an event trace as a sequence of ewvents.
The events are sorted according to their timestamp and numbered starting at
one. There are different event types. EARL defines four predefined event types:
entering (named enter) and leaving (exit) a region, and sending (send) and

receiving (recv) a message. There may be more event types defined depending on
the underlying trace format. A region is a named section of the traced program
(e.g., it could be a loop or basic block, but mostly it is a function or subroutine).
If supported by the trace format, regions may be organized in groups (e.g., user
or system functions).

An event type is represented by a n-tuple of attributes. An event (instance)
is defined by a corresponding n-tuple of values assigned to these attributes. The
number of attributes depends on the type of the event. However, all event types
have the following attributes in common:

num: The number of the event.

node: The location (cpu, pe, or node) where the event happened. Nodes are
numbered for 0 to n-1 where n is the total number of locations used by the
parallel program.

time: The timestamp of the event as a floating point value in seconds.

type: The event type is explicitly given as a attribute value.

enterptr: The number of the enter event which determines the region in which
the event happened. For exit events, this means that their enterptr refers
to the matching enter.

The enter and exit event types have additional region and group attributes
specifying the name of the region entered or left and its group, and send and
recv have attributes describing the destination (dest), source (src), tag (tag),
length (len), and communicator (com) of the message. In addition, the recv
event type has a sendptr attribute pointing to the corresponding send event.

‘ F— — 9 j‘ enterptr
! [I
B ‘ T 7‘ | sendptr
[| vv | I !
vv enter | exit |
enter ! exit
\
|
Node A
send
A
Noce s [A
. ‘ >
[recv Time

Fig. 1. References provided by sendptr and enterptr

In addition to the basic event trace model, EARL provides the concepts of
regions and messages. These are defined as pairs of matching events: enter/exit
or send/recv respectively. In the EARL language, these concepts are supported

in the form of the enterptr and sendptr which are calculated automatically by
EARL based on the information available in the event trace and the semantic
knowledge about the message passing programming model. For each position
in the event trace, EARL also defines a region stack per node and a message
queue implemented as lists of enter and send events which define the regions
entered and messages not yet received at that time. In addition to query theses
structures directly, it i1s possible to navigate step-by-step through the region
stack using the enterptr attribute or to trace back messages by following the
sendptr attribute (see Figure 1).

All these facilities together allow to easily process complex event patterns
made out of regions and messages. This 1s demonstrated by the examples in
Section 3.

2.2 Implementation Notes

The EARL interpreter reads and decodes the underlying trace format and maps
it automatically to the EARL event types and attributes. This allows the pro-
grammers to write their trace analysis scripts independent from the format of
the event trace and of the encoding of event types and function/region names.
EARL only requires that the event trace recording system uses global times-
tamps (by means of hard- or software synchronisation) and that the recording
of each message transfer is complete (i.e., all of its send and receive events are
recorded or none; otherwise the matching of send and recv would fail resulting
in incorrect sendptr attributes). Currently, EARL supports the VAMPIR[3] and
ALOGI[4] trace formats.

Instead of re-inventing the wheel when implementing the EARL language,
we started with the well known scripting language TCL[2] and extended it with
commands for event trace and event record handling. The extensions are imple-
mented in C4++. The reasons for choosing TCIL were:

— TCL was originally designed as extensible tool command language, and
therefore was easy to extend.

— As a high-level scripting language, it allows rapid prototyping.

— TCL is very portable (it runs on UNIX, Macintosh, and Windows systems)

— There are already many useful extensions to TCL (e.g., the graphical toolkit
TK, piecharts, bargraphs) which can also be used for the development of
trace analysis tools.

— TCL comes with built-in interprocess communication (the TCL built-in send
command and sockets) which makes it easy to integrate it with other trace
analysis tools or programming environments.

— Like other Unix scripting languages, TCL allows to execute and control other
processes very easily making it very suitable to implement trace analysis
experimentation tools.

To improve efficiency, EARL automatically caches the most recently pro-
cessed events in the history buffer and stores important trace state information
(including the region stacks and the message queue) at fixed intervals in so-called
bookmarks to speed-up random access to events.

2.3 List of EARL Commands

This section gives an overview of the new commands we added to TCL in order
to allow high-level, portable, and efficient event trace analysis. The EARL ex-
tensions follow the object-oriented style which is also used in TK: the command
to open a event trace returns a trace object handle which i1s automatically regis-
tered as a new TCL command. The other EARL functions are implemented as
methods of the trace object. EARL supports the following functionality:

Trace handling: The earl open command takes the filename of the event
trace as an argument and returns a handle to it. It has optional switches
to pass the trace format (-format), the size of the history buffer (-hist),
and the distance between bookmarks (-mark). The close method closes the
event trace and releases all related resources.

Event access: EARL provides two methods for accessing events: set fills an
specified associative array arr in a way that arr(attr;) == value;, while
the get method returns an event as a list {attr; value; attrs; values...
attr, value,}. Both take the number of the event to process as argument.
In addition, they set the current event pointer to the processed event unless
the optional switch -fetchonly is used. Both methods come in three flavors:
the user can pass the number of the event to process, or move through
the trace sequentially forward or backward (relative to the current event
pointer) by using the additional methods setnext and getnext or setprev
and getprev.

State access: EARIL automatically keeps track of the state of the region stacks
and the message queue for the current event. The stack method returns the
stack of a specified node as a list of either the region names (-sym switch) or
the event number of the corresponding enter events (default). The queue
method returns the message queue as a list of event numbers which point to
the corresponding send events.

General information access: The info method gives access to general infor-
mation about the event trace. It allows to get a list of all defined event types
(eventtypes), a list of all attributes for a specified type (attributes), the
filename (filename) and format (format) of the event trace, the number of
nodes used in the parallel application (nodecount), and a list of all defined
regions (regions) and groups (groups).

Statistics: Event trace analysis often involves keeping statistics of a large num-
ber of values like the execution times of a region or the transfer rates of mes-
sages. EARL supports this by providing statistic objects. The command earl
stat creates a new statistic object and returns a handle to it. The method
addval adds a new value to the data set. At any point, the user can ask for
the number of values in the data set (method count), the minimum (min),
maximum (max), mean (mean), median (med), sum (sum), variance (var), and
the 25% and 75% quantiles (q25, q75). The quantiles (med, 925, q75) are
actually estimates computed with the P2 algorithm[10] which makes it un-
nessary to store the complete dataset. Finally, there are methods to reset
or delete statistic objects.

3 EARL Script Examples

This section describes two EARL script examples. Each of them is generic in the
sense that it can be used with any message passing trace supported by EARL.
Although simple (all are around 20 lines of code) they perform quite complex
calculations. The simplicity comes from the abstractions defined in the EARL
event trace model and the high-level nature of the TCL scripting language.

3.1 Example 1: Compute Wasted Time of MPI_Recv

The first example demonstrates the capabilities of EARL for solving nonstandard
problems, especially recognizing complex events patterns. Consider the following:
For a set of event traces from a parallel MPI program, determine the time which
is wasted when a MPI Recv is posted before the corresponding MPI _Send was
executed (see Figure 2).

Here is the complete EARL script code!:

1: #!/usr/local/bin/earl

2: foreach arg $argv {

3: set t [earl open $arg]

4: set sum_wasted O

5: while {[$t setnext curr] != -1} {

6: if {$curr(type) == "recv"} {

7: $t set recv_start $curr(enterptr) -fetchonly

8: if {$recv_start(region) != "MPI_Recv"} continue

9: $t set send $curr(sendptr) -fetchonly
10: $t set send_start $send(enterptr) -fetchonly
11: if {$send_start(region) != "MPI_Send"} continue
12: set wasted [expr $send_start(time)-$recv_start(time)]
13: if {$wasted>0} {
14: set sum_wasted [expr $sum_wasted+$wasted]
15: ¥
16: }
17: }
18: puts "[$t info filename]: $sum_wasted seconds wasted."
19: $t close
20: }

Line 1 is a special comment which tells a Unix system which command to
use to execute the following script file. Line 2 loops through a set of trace files
specified as command line arguments. Line 3 opens the trace file which is specified
by the current command line parameter arg and stores the handle in variable
t. The while in line 5 steps sequentially through the event trace setting the
array curr to the next event. If we find a recv event (line 6), we fill the array

1 .
The line numbers are not part of the source code.

enter

MPI _Send
wast ed send
oo I -
enter recv W

MPI _Recv

Fig. 2. Wasted Time in Message Passing Programs

recv_start with the enter event of the enclosing region (line 7). If the enclosing
region is not MPI Recv (the message could have been sent from another routine,
e.g., MPI Broadcast), we skip the rest of the loop and continue the search (line
8). Next, we set array send to the corresponding send event (line 9), and again
check whether it originated from a MPI_Send (lines 10 and 11). We compute the
difference between the begin of MPI_send and MPI Recv (line 12) and add it to
the variable sum_wasted if MPI Recv executed before MPI_Send (line 14). Finally,
we print the result (line 18) and close the trace (line 19).

3.2 Example 2: Passing Messages Out of Order

The second example demonstrates how EARL can be used to find programming
errors in message passing programs. The example is taken from the Grindstone
test suite for parallel performance tools[12] and highlights the problem of passing
messages ”out-of-order”. This problem could arise if one process is expecting
messages in a certain order, but another process is sending messages which are
not in the expected order. In Figure 3, an extreme example is shown: in the first
part of the program, Node 1 is processing incoming messages in the opposite
order they were sent from Node 0. Processing them in the order they were sent
would not only speed-up the program but also requires much less buffer space
for storing unprocessed messages.
The EARL code for this example is trivial:

#!/usr/local/bin/earl

set t [earl open [lindex $argv 0]]

while {[$t setnext curr] != -1} {

if {$curr(type) == "recv"} {
foreach send [$t queue $curr(node) $curr(src)] {
if {$send < $curr(sendptr)} {

puts "Received message in wrong order:"
puts " on node $curr(node) at $curr(time)"
puts " call stack: [$t stack $curr(node) -sym]"
break

© 00 N O N WN =

-
o

500,0 ms 1000.0 ms 1.5s 2.0s 2.5 3.0s
i i i i ' EMPI
BARRIER
HRIGHT
HEWRONG

Node 0 &

Node 1§

Fig. 3. Passing Messages Out of Order

11: }
12: }
13: }

14: }

15: $t close

We open the trace file specified as first command line parameter (line 2) and
sequentially loop through the events of the trace (line 3). If we find a recv event
(line 4), we check all messages still in the message queue sent to the current
node from the same source node as the current message (line 5), whether the
corresponding send event happened before the send event of the current message
(line 6). As we only have to determine the order of these events in time and EARL
provides references to other events in the form of event numbers, the necessary
comparison can be done by comparing the references since the event numbers
are assigned in chronological order. If we find such an outstanding message, an
error message is printed (line 7 to 9).

4 Related Work

EARL is certainly not the first programmable tool for event trace analysis:

— EDL[1] was one of the first trace analysis tool which was programmable.
EDL allows to define custom hierarchies of events based on regular event ex-
pressions. The expressions were translated into an automaton which tried to
locate the defined events in an event trace. While working well for sequential
programs, parallel programs required the use of a special interleaving opera-
tor. The use of this operator results in huge automatons so the tool can only
be used with small short parallel programs or simple parallel patterns only.

— SIMPLE[5] is an environment for event trace analysis. It includes a large set
of tools for specific tasks, each of which defines its own command language
for adapting it to specific trace formats or application areas. Although very
powerful, this makes the usage of SIMPLE very complex. Also, it is not
possible to combine the tasks of the different tools, so that in the worst case,
each task requires the processing of the whole event trace. EARL on the
other side, allows to combine different scripts, so that an event trace must
be read only once.

— Pablo[6] is a very powerful, programmable, graphical event trace analysis
tool. Pablo can be programmed by arranging predefined modules for trace
input, event record processing, and visualization in a configuration window
and connecting them. The modules are highly configurable. It is simple to
use as long as the desired analysis matches the intended use of the prede-
fined modules otherwise the graphical programming can be cumbersome or
difficult. It cannot easily be extended because the implementation of new
(user-defined) modules is quite complex.

Another solution to the shortcomings listed in the motivation is to use no
tracing at all. Paradyn[8] is a tool for on-line performance analysis and opti-
mization of parallel programs. It automatically tries to locate performance bot-
tlenecks. Measurement overhead is kept low by dynamic and selective instrumen-
tation. It is also one of the few tools which support experiment management[11].

5 Conclusion and Future Work

We just completed our first prototype of EARL. Early experiments show that
although simple in design, EARL is a powerful and easy to use meta-tool for
experts? to implement generic or custom-made program or application domain
specific event trace analysis tools. Because of its programmability and flexibility,
EARL can be used for a wide range of event trace analysis tasks:

— calculation of performance indices and trace statistics of all kinds

— finding all locations of possible bottlenecks (which then can be analyzed with
traditional graphical trace analysis tools if necessary)

— performance visualization and animation (as far as TK or other TCL graph-
ics extensions are suitable for this task)

— experiment management where within an experiment the instrumentation
of the programs and generation of traces is based on results calculated from
earlier runs. This allows to implement automatic program optimization tools.

— application or domain specific versions of these tasks

In the next months, we want to implement a library of useful generic EARL
scripts and subroutines which then can be used by programmers to analyze their
parallel applications. We also hope to implement additional decoder modules for

2 especially if they know Tcl :-)

other trace formats (e.g., PICL[7] or SDDF[6]) and to add more direct support
for traces generated by programs based on other programming paradigms than
message passing.

In addition, we recently started a new project to design and implement an en-
vironment for the automatic detection of standard bottlenecks in parallel or dis-
tributed applications called KOJAK (Kit for Objective Judgement and Automatic
Knowledge-based detection of bottlenecks)[13]. In this project, we plan to ex-
plore different ways of representing and locating bottlenecks. Here, we plan to
use EARL in order to easily implement and evaluate the different methods.

References

1. P. Bates, Debugging Programs in a Distributed System Environment, Ph.D. Thesis,
University of Massachusetts, February 1986.

2. J. Ousterhout, Tcl and the Tk Toolkit, Addison-Wesley, 1994.

3. A. Arnold, U. Detert, and W.E. Nagel, Performance Optimization of Parallel Pro-
grams: Tracing, Zooming, Understanding, in: R. Winget and K. Winget, editors,
Proc. Cray User Group Meeting Spring 1995, pages 252-258, Denver, CO, 1995.

4. V. Herrarte and E. Lusk, Studying Parallel Program Behavior with Upshot, Tech-
nical Report ANL-91/15, Mathematics and Computer Science Division, Argonne
National Laboratory, August 1991.

5. B. Mohr, Standardization of Event Traces Considered Harmful or Is an Implementa-
tion of Object-Independent Event Trace Monitoring and Analysis Systems Possible?
in: J.J. Dongarra and B. Tourancheau, editors, Proc. CNRS-NSF Workshop on En-
vironments and Tools For Parallel Scientific Computing, volume 6 of Advances in
Parallel Computing, pages 103-124, Elsevier, September 1992.

6. Reed, D.A. and Olson, R.D. and Aydt, R.A. and Madhyasta, T.M. and Birkett, T.
and Jensen, D.W. and Nazief, A.A. and Totty, B.K., Scalable Performance Envi-
ronments for Parallel Systems, in: Proc. 6th Distributed Memory Computing Con-
ference, pages 562-569, |EEE Computer Society Press, 1991.

7. G.A. Geist, M.T. Heath, B.W. Peyton, and P.H. Worley, PICL: A Portable Instru-
mented Communication Library, Technical Report ORNL/TM-11130, Oak Ridge
National Laboratory, Tennessee, July 1990.

8. B.P. Miller, M.D. Callaghan, J.M. Cargille, J.K. Hollingsworth, R.B. Irvin, K. Kun-
chithapadam, K.L.. Karavanic, and T'. Newhall, The Paradyn Parallel Performance
Measurement Tools, IEEE Computer 28(11), November 1995.

9. J. C. Yan, S. R. Sarukkai, and P. Mehra, Performance Measurement, Visualiza-
tion and Modeling of Parallel and Distributed Programs using the AIMS Toolkit,
Software Practice & Experience, Vol. 25, No. 4, pages 429-461, April 1995.

10. R. Jain, I. Chlamtac, The P2 Algorithm for Dynamic Calculation of Quantiles and
Histograms Without Storing Observations, in: Communcations of the ACM, Vol.
28, No. 10, Oct 1985.

11. K.L. Karavanic, B.P. Miller, Experiment Management Support for Performance
Tuning, in: Proc. Supercomputing’97, San Jose, Nov 1997.

12. J.K. Hollingsworth, M. Steele, Grindstone: A Test Suite for Parallel Performance
Tools, Computer Science Technical Report CS-TR-3703, Univ. of Maryland, 1996.

13. M. Gerndt, B. Mohr, M. Pantano, F. Wolf, Performance Analysis on CRAY T3E,
Euromicro Workshop on Parallel and Distributed Processing (PDP ’99), IEEE Com-
puter Society, pages 241-248, 1999.

