Automatic Performance Analysis
of MPI Applications Based on Event Traces

Felix Wolf and Bernd Mohr

Research Centre Jiilich,
Central Institute for Applied Mathematics,
52425 Jiilich, Germany,
{f.wolf, b.mohr}@fz-juelich.de

Abstract. This article presents a class library for detecting typical per-
formance problems in event traces of MPI applications. The library is
implemented using the powerful high-level trace analysis language EARL
and is embedded in the extensible tool component EXPERT described in
this paper. One essential feature of EXPERT is a flexible plug-in mech-
anism which allows the user to easily integrate performance problem
descriptions specific to a distinct parallel application without modifying
the tool component.

1 Introduction

The development of fast and scalable parallel applications is still a very complex
and expensive process. The complexity of current systems involves incremen-
tal performance tuning through successive observations and code refinements.
A critical step in this procedure is transforming the collected data into a use-
ful hypothesis about inefficient program behavior. Automatically detecting and
classifying performance problems would accelerate this process considerably.

The performance problems considered here are divided into two classes. The
first is the class of well-known and frequently occurring bottlenecks which have
been collected by the ESPRIT IV Working Group on Automatic Performance
Analysis: Resources and Tools (APART) [4]. The second is the class of applica-
tion specific bottlenecks which only can be specified by the application designers
themselves.

Within the framework defined in the KOJAK project [6] (Kit for Objec-
tive Judgement and Automatic Knowledge-based detection of bottlenecks) at the
Research Centre Jiilich which is aimed at providing a generic environment for
automatic performance analysis, we implemented a class library capable of iden-
tifying typical bottlenecks in event traces of MPI applications.

The class library uses the high-level trace analysis language EARL (Event
Analysis and Recognition Language) [11] as foundation and is incorporated
in an extensible and modular tool architecture called EXPERT (Extensible
Performance Tool) presented in this article. To support the easy integration

of application-specific bottlenecks, EXPERT provides a flexible plug-in mech-
anism which is capable of handling an arbitrary set of performance problems
specified in the EARL language.

First, we summarize the EARL language together with the EARL model of
an event trace in the next section. In section 3 we present the EXPERT tool
architecture and its extensibility mechanism in more detail. Section 4 describes
the class library for detection of typical MPI performance problems which is
embedded in EXPERT. Applying the library to a real application in section 5
shows how our approach can help to understand the performance behavior of a
parallel program. Section 6 discusses related work and section 7 concludes the

paper.

2 EARL

In the context of the EARL language a performance bottleneck is considered as
an event pattern or compound event which has to be detected in the event trace
after program termination. The compound event is build from primitive events
such as those associated with entering a program region or sending a message.
The pattern can be specified as a script containing an appropriate search al-
gorithm written in the EARL trace analysis language. The level of abstraction
provided by EARL allows the algorithm to have a very simple structure even in
case of complex event patterns.

A performance analysis script written in EARL usually takes one or more
trace files as input and is then executed by the EARL interpreter. The input files
are automatically mapped to the EARL event trace model, independently of the
underlying trace format, thereby allowing efficient and portable random access
to the events recorded in the file. Currently, EARL supports the VAMPIR, [1],
ALOG, and CLOG [7] trace formats.

2.1 The EARL Event Trace Model

The EARL event trace model defines the way an EARL programmer views
an event trace. It describes event types and system states and how they are
related. An event trace is considered as a sequence of events. The events are
numbered according to their chronological position within the event trace. EARL
provides four predefined event types: entering (named enter) and leaving (exit)
a code region of the program, and sending (send) as well as receiving (recv) a
message. In addition to these four standard event types the EARL event trace
model provides a template without predefined semantics for event types that are
not part of the basic model. If supported by the trace format, regions may be
organized in groups (e.g. user or communication functions).

The event types share a set of typical attributes like a timestamp (time)
and the location (loc) where the event happened. The event type is explicitly
given as a string attribute (type). However, the most important attribute is the

position (pos) which is needed to uniquely identify an event and which is assigned
according to the chronological order within the event trace.

The enter and ezit event types have an additional region attribute specifying
the name of the region entered or left. send and recv have attributes describing
the destination (dest), source (src), tag (tag), length (len), and communicator
(com) of the message.

The concepts of region instances and messages are realized by two special
attributes. The enterptr attribute which is common to all event types points to
the enter event that determines the region instance in which the event happened.
In particular enterptr links two matching enter and ezit events together. Apart
from that, recv events provide an additional sendptr attribute to identify the
corresponding send event.

For each position in the event trace, EARL also defines a system state which
reflects the state after the event at this position took place. A system state
consists of a region stack per location and a message queue. The region stack is
defined as the set of enter events that determine the region instances in which
the program executes at a given moment, and the message queue is defined as
the set of send events of the messages sent but not yet received at that time.

2.2 The EARL Language

The core of the current EARL version is implemented as C++ classes whose
interfaces are embedded in each of the three popular scripting languages Perl,
Python, and Tcl. However, in the remainder of this article we refer only to the
Python mapping.

The most important class is named EventTrace and provides a mapping of
the events from a trace file to the EARL event trace model. EventTrace offers
several operations for accessing events: The operation event() returns a hash
value, e.g. a Python dictionary. This allows to access individual attributes by
providing the attribute name as hash key. Alternatively, you can get a literal
representation of an event, e.g. in order to write some events to a file.

EARL automatically calculates the state of the region stacks and the message
queue for a given event. The stack() operation returns the stack of a specified
location represented as a list containing the positions of the corresponding enter
events. The queue () operation returns the message queue represented as a list
containing the positions of the corresponding send events. If only messages with
a certain source or destination are required, their locations can by specified as
arguments to the queue() operation.

There are also several operations to access general information about the
event trace, e.g. to get the number of locations used by a parallel application.

For a complete description of the EARL language we refer to [12].

3 An Extensible and Modular Tool Architecture

The EXPERT tool component for detection of performance problems in MPI
applications is implemented in Python on top of EARL. It is designed according

to the specifications and terminology presented in [4]. There, an ezperiment
which is represented by the performance data collected during one program
run, i.e. a trace file in our case, is characterized by the occurrence of different
performance properties. A performance property corresponds to one aspect of
inefficient program behavior. The existence of a property can be checked by
evaluating appropriate conditions based on the events in the trace file.

The architecture of the trace analysis tool EXPERT is mainly based on the
idea of separating the performance analysis process from the definitions of the
performance properties we are looking for. Performance properties are specified
as Python classes which represent patterns to be matched against the event trace
and which are implemented using the EARL language. Each pattern provides
a confidence attribute indicating the confidence of the assumption made by a
successful pattern match about the occurrence of a performance property. The
severity attribute gives information about the importance of the property in
relation to other properties.

All pattern classes provide a common interface to the tool. As long as these
classes fulfill the contract stated by the common interface, EXPERT is able to
handle an arbitrary set of patterns.

The user of EXPERT interactively selects a subset of the patterns offered
by the tool by clicking the corresponding checkbuttons on the graphical user
interface. Activating a pattern triggers a pattern specific configuration dialogue
during which the user can set different parameters if necessary. Optionally, he
can choose a program region to concentrate the analysis process only on parts
of the parallel application.

The actual trace analysis performed by EXPERT follows an event driven
approach. First there is some initialization for each of the selected patterns
which are represented by instances of the corresponding classes. Then the tool
starts a thread which walks sequentially through the trace file and for each single
event invokes a callback function provided by the pattern object according to
the type of the event. The callback function itself may request additional events,
e.g. when it follows a link emanating from the current event which is passed as
an argument, or query system state information by calling appropriate EARL
commands. After the last event has been reached, EXPERT applies a wrapup
operation to each pattern object which calculates result values based on the
data collected during the walk through the trace. Based on these result values
the severity of the pattern is computed. Furthermore, each pattern may provide
individual results, e.g. concerning the execution phase of the parallel program
in which a pattern match was found.

Customizing EXPERT with Plug-Ins

The signature of the operations provided by the pattern classes is defined in a
common base class Pattern, but each derived class may provide an individual
implementation.

EXPERT currently manages two sets of patterns, i.e. one set of patterns
representing frequently occurring message passing bottlenecks which is described

in the next section and one set of user defined patterns which may be used to
detect performance problems specific to a distinct parallel application.

If users of EXPERT want to provide their own pattern, they simply write
another realization (subclass) of the Pattern interface (base class). Now, all they
have to do is to insert the new class definition in a special file which implements
a plug-in module. At startup time EXPERT dynamically queries the module’s
namespace and looks for all subclasses of Pattern from which it is now able to
build instances without knowing the number and names of all new patterns in
advance. By providing its own configuration dialogue which may be launched by
invoking a configure operation on it each pattern can be seamlessly integrated
into the graphical user interface.

4 Automatic Performance Analysis of MPI Programs

Most of the patterns for detection of typical MPI performance properties we
implemented so far correspond to MPI related specifications from [4]. The set
of patterns is split into two parts. The first part is mainly based on summary
information, e.g. involving the total execution times of special MPI routines
which could also be provided by a profiling tool. However, the second part in-
volves idle times that can only be determined by comparing the chronological
relation between concrete region instances in detail. This is where our approach
can demonstrate its full power. A major advantage of EXPERT lies in its ability
to handle both groups of performance properties in one step.
Currently, EXPERT supports the following performance properties:!

Communication costs: The severity of this property represents the time used
for communication over all participating processes, i.e. the time spent in MPI
routines except for those that perform synchronization only. The computed
amount of time is returned as severity.

Synchronization costs: The time used exclusively for synchronization.

IO costs: The time spent in IO operations. It is essential for this property that
all IO routines can be identified by their membership in an IO group whose
name can be set as a parameter in the configuration dialogue.

Costs: The severity of this property is simply the sum of the previous three
properties. Note that while the severities of the individual properties above
may seem uncritical, the sum of all together may be considered as a perfor-
mance problem.

Dominating communication: This property denotes the costs caused by the
communication operation with maximum execution time relative to other
communication operations. Besides the total execution time (severity) the
name of the operation can also be requested.

! In [4] the severity specification is based on a scaling factor which represents the value
to which the original value should be compared. In EXPERT this scaling factor is
provided by the tool and is not part of the pattern specification. Currently it is the
inverse of the total execution time of the program region being investigated.

Frequent communication: A program region has the property frequent com-
munication, if the average execution time of communication statements lies
below a user defined threshold. The severity is defined as the costs caused
by those statements. Their names are also returned.

Big messages: A program region has the property big messages, if the average
length of messages sent or received by some communication statements is
greater than a user defined threshold. The severity is defined as the costs
caused by those statements. Their names are also returned.

Uneven MP distribution: A region has this property, if communication state-
ments exist where the standard deviation of the execution times with respect
to single processes is greater than a user defined threshold multiplied with
the mean execution time per process. The severity is defined as the costs
caused by those statements. Their names are also returned.

Load imbalance at barrier: This property corresponds to the idle time caused
by load imbalance at a barrier operation. The idle times are computed by
comparing the execution times per process for each call of MPT_BARRIER. To
work correctly the implementation of this property requires all processes to
be involved in each call of the collective barrier operation. The severity is
just the sum of all measured idle times.

Late sender: This property refers to the amount of time wasted, when a call
to MPI_RECV is posted before the corresponding MPI_SEND is executed. The
idle time is measured and returned as severity. We will look at this pattern
in more detail later.

Late receiver: This property refers to the inverse case. A MPI_SEND blocks un-
til the corresponding receive operation is called. This can happen for several
reasons. Either the implementation is working in synchronous mode by de-
fault or the size of the message to be sent exceeds the available buffer space
and the operation blocks until the data is transfered to the receiver. The
behavior is similar to an MPI_SSEND waiting for message delivery. The idle
time is measured and the sum of all idle times is returned as severity value.

Slow slaves: This property refers to the master-slave paradigm and identifies a
situation where the master waits for results instead of doing useful work. It
is a specialization of the late sender property. Here only messages sent to a
distinct master location which can be supplied as a parameter are considered.

Overloaded master: If the slaves have to wait for new tasks or for the master
to receive the results of finished tasks, this property can be observed. It
is implemented as a mix of late sender and late receiver again involving a
special master location.

Receiving messages in wrong order: This property which has been moti-
vated by [8] deals with the problem of passing messages out of order. The
sender is sending messages in a certain order, but the receiver is expecting
the arrival in another order. The implementation locates such situations by
querying the message queue each time a message is received and looking
for older messages with the same target as the current message. Here, the
severity is defined as the costs resulting from all communication operations
involved in such situations.

Whereas the first four properties serve more as an indication that a perfor-
mance problem exists, the latter properties reveal important information about
the reason for inefficient program behavior. Note that especially the implemen-
tations of the last six properties require the detection of quite complex event
patterns and therefore can benefit from the powerful services provided by the
EARL interpreter.

5 Analyzing a Real Application

In order to demonstrate how the performance analysis environment presented
in the previous sections can be used to gain deeper insight into performance be-
havior we consider a real application named CX3D which is used to simulate the
Czochralski crystal growth [9], a method being applied in the silicon waver pro-
duction. The simulation covers the convection processes occurring in a rotating
cylindric crucible filled with liquid melt.

The convection which strongly influences the chemical and physical proper-
ties of the growing crystal is described by a system of partial differential equa-
tions. The crucible is modeled as a three dimensional cubical mesh with its round
shape being expressed by cyclic border conditions. The mesh is distributed across
the available processes using a two dimensional spatial decomposition. Most of
the execution time is spent in a routine called VELO and is used to calculate the
new velocity vectors. Communication is required when the computation involves
mesh cells from the border of each processors’ sub-domain.

The VELO routine has been investigated with respect to the late sender pat-
tern. This pattern determines the time between the calls of two corresponding
point-to-point communication operations which involves identifying the match-
ing send and recv events. The Python class definition of the pattern is presented
in Fig. 1.

Each time EXPERT encounters a recv event the recv_callback() opera-
tion is invoked on the pattern instance and a dictionary containing the recv
event is passed as an argument. The pattern first tries to locate the enter event
of the enclosing region instance by following the enterptr attribute. Then, the
corresponding send event is determined by tracing back the sendptr attribute.
Now, the pattern looks for the enter event of the region instance from which
the message originated. Next, the chronological difference between the two en-
ter events is computed. Since the MPI_RECV has to be posted earlier than the
MPI_SEND, the idle_time has to be greater than zero. Last, we check whether
the analyzed region instances really belong to MPI_SEND and MPI_RECV and not
to e.g. MPT_BCAST. If all of that is true, we can add the measured idle time to
the global sum self.sum idle_time. The complete pattern class as contained
in the EXPERT tool also computes the distribution of the losses introduced by
that situation across the different processes, but this is not shown in the script
example.

The execution configuration of CX3D is determined by the number of pro-
cesses in each of the two decomposed dimensions. The application has been

class LateSender(Pattern):
[... initialization operations ...]

def recv_callback(self, recv):
recv_start = self.trace.event(recv[’enterptr’])
send = self.trace.event(recv[’sendptr’])
send_start = self.trace.event(send[’enterptr’])

idle_time = send_start[’time’] - recv_start[’time’]
if (idle_time > 0O and
send_start[’region’] == "MPI_SEND" and
recv_start[’region’] == "MPI_RECV"):

self.sum_idle_time = self.sum_idle_time + idle_time
def confidence(self):
return 1 # safe criterion

def severity(self):
return self.sum_idle_time

Fig. 1. Python class definition of the late sender pattern

executed using different configurations on a Cray T3E. The results are shown
in Table 1. The third column shows the fraction (severity) of execution time
spent in communication routines and the rightmost column shows the fraction
(severity) of execution time lost by late sender. The results indicate that the
process topology has major impact on the communication costs. This effect is
to a significant extent caused by the late sender pattern.

For example, in the 8 x 1 configuration the last process is assigned only a
minor portion of the total number of mesh cells since the corresponding mesh
dimension length is not divisible by 8. This load imbalance is reflected in the
calculated distribution of the losses introduced by the pattern (Table 2).

Table 1. Idle times in routine VELO introduced by late sender

#Processes Configuration = Communication Cost Late Sender

8 2x4 0.191 0.050
8 4x2 0.147 0.028
8 8x1 0.154 0.035
16 4x4 0.265 0.055
16 8x2 0.228 0.043
16 16x1 0.211 0.030
32 8x4 0.335 0.063

32 16 x 2 0.297 0.035

However, the results produced by the remaining configurations may be de-
termined by other effects as well.

Table 2. Distribution of idle times in an 8 x 1 configuration

Process 0 1 2 3 4 5 6 7

Fraction 0.17 0.08 0.01 0.01 001 0.01 0.05 0.68

6 Related Work

An alternative approach to describe complex event patterns was realized by
[2]. The proposed Event Definition Language (EDL) allows the definition of
compound events in a declarative manner based on extended regular expressions
where primitive events are clustered to higher-level events by certain formation
operators. Relational expressions over the attributes of the constituent events
place additional constraints on valid event sequences obtained from the regular
expression. However, problems arise when trying to describe events that are
associated with some kind of state.

KAPPA-PI [3] performs automatic trace analysis of PVM programs based
on a set of predefined rules representing common performance problems. It also
demonstrates, how modern scripting technology, i.e. Perl in this case, can be
used to implement valuable tools.

The specifications from [4] on top of which the class library presented in this
paper is build, serve also as foundation for a profiling based tool COSY [5]. Here
the performance data is stored in a relational database and the performance
properties are represented by appropriate SQL queries.

A well-known tool for automatic performance analysis is developed in the
Paradyn project [10]. In contrast to our approach Paradyn uses online instru-
mentation. A predefined set of bottleneck hypotheses based on metrics described
in a dedicated language is used to prove the occurrence of performance problems.

7 Conclusion and Future Work

In this article we demonstrated how the powerful services offered by the EARL
language can be made available to the designer of a parallel application by
providing a class library for the detection of typical problems affecting the per-
formance of MPI programs.

The class library is incorporated into EXPERT, an extensible tool component
which is characterized by a separation of the performance problem specifications
from the actual analysis process. This separation enables EXPERT to handle an
arbitrary set of performance problems.

A graphical user interface makes utilizing the class library for detection of
typical MPI performance problems straightforward. In addition, a flexible plug-in
mechanism allows the experienced user to easily integrate problem descriptions
specific to a distinct parallel application without modifying the tool.

Whereas our first prototype realizes only a simple concept of selecting a
search focus, we want to integrate a more elaborate hierarchical concept sup-
porting stepwise refinements and experiment management in later versions.

Furthermore, we intend to support additional programming paradigms like
shared memory and in particular hybrid models in the context of SMP cluster
computing. A first step would be to extend the EARL language towards a broader
set of event types and system states associated with such paradigms.

References

[1] A. Arnold, U. Detert, and W.E. Nagel. Performance Optimization of Parallel Pro-
grams: Tracing, Zooming, Understanding. In R. Winget and K. Winget, editors,
Proc. of Cray User Group Meeting, pages 252-258, Denver, CO, March 1995.

[2] P. C. Bates. Debugging Programs in a Distributed System Environment. PhD
thesis, University of Massachusetts, February 1886.

[3] A. Espinosa, T. Margalef, and E. Luque. Automatic Performance Evaluation
of Parallel Programs. In Proc. of the 6th Euromicro Workshop on Parallel and
Disributed Pocessing(PDP’98), 1998.

[4] T. Fahringer, M. Gerndt, and G. Riley. Knowledge Specification for Automatic
Performance Analysis. Technical report, ESPRIT IV Working Group APART,
1999.

[6] M. Gerndt and H.-G. Effer. Specification Techniques for Automatic Performance
Analysis Tools. In Proceedings of the 5th International Workshop on High-Level
Programming Models and Supportive Environments (HIPS 2000), in conjunction
with IPDPS 2000, Cancun, Mexico, May 2000.

[6] M. Gerndt, B. Mohr, M. Pantano, and F. Wolf. Performance Analysis for CRAY
T3E. In IEEE Computer Society, editor, Proc. of the 7th Euromicro Workshop
on Parallel and Disributed Pocessing(PDP’99), pages 241-248, 1999.

[7] W. Gropp and E. Lusk. User’s Guide for MPE: Extensions for MPI Programs.
Argonne National Laboratory, 1998. http://www-unix.mcs.anl.gov/mpi/mpich/.

[8] J.K. Hollingsworth and M. Steele. Grindstone: A Test Suite for Parallel Per-
formance Tools. Computer Science Technical Report CS-TR-3703, University of
Maryland, Oktober 1996.

[9] M. Mihelcic, H. Wenzl, and H. Wingerath. Flow in Czochralski Crystal Growth
Melts. Technical Report Jiil-2697, Research Centre Jiilich, December 1992.

[10] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Hollingsworth, R. B. Irvine,
K. L. Karavanic, K. Kunchithapadam, and T. Newhall. The Paradyn Parallel
Performance Measurement Tool. IEEE Computer, 28(11):37-46, 1995.

[11] F. Wolf and B. Mohr. EARL - A Programmable and Extensible Toolkit for
Analyzing Event Traces of Message Passing Programs. In A. Hoekstra and
B. Hertzberger, editors, Proc. of the 7th International Conference on High-
Performance Computing and Networking (HPCN’99), pages 503-512, Amsterdam
(The Netherlands), 1999.

[12] F. Wolf and B. Mohr. EARL - Language Reference. Technical Report ZAM-IB-
2000-01, Research Centre Jiilich, Germany, February 2000.

