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Abstract. CATCH is a profiler for parallel applications that collects
hardware performance counters information for each function called in
the program, based on the path that led to the function invocation. It
automatically instruments the binary of the target application indepen-
dently of the programming language. It supports MPI, OpenmP, and hy-
brid applications and integrates the performance data collected for differ-
ent processes and threads. Functions representing the bodies of OpenMP
constructs are also monitored and mapped back to the source code. Per-
formance data is generated in XML for visualization with a graphical user
interface that displays the data simultaneously with the source code sec-
tions they refer to.

1 Introduction

Developing applications that achieve high performance on current parallel and
distributed systems requires multiple iterations of performance analysis and pro-
gram refinements. Traditional performance tools, such as SvPablo [7], TAU [11],
Medea [3], and ATMS [14], rely on experimental performance analysis, where the
application is instrumented for data capture, and the collected data is analyzed
after the program execution. In each cycle developers instrument application and
system software, in order to identify the key program components responsible
for the bulk of the program’s execution time. Then, they analyze the captured
performance data and modify the program to improve its performance. This
optimization model requires developers and performance analysts to engage in
a laborious cycle of instrumentation, program execution, and code modifica-
tion, which can be very frustrating, particularly when the number of possible
optimization points is large. In addition, static instrumentation can inhibit com-
piler optimizations, and when inserted manually, could require an unreasonable
amount of the developer’s time.
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Moreover, most users do not have the time or desire to learn how to use
complex tools. Therefore, a performance analysis tool should be able to provide
the data and insights needed to tune and optimize applications with a simple
to use interface, which does not create additional burden to the developers. For
example, a simple tool like the GNU gprof [9] can provide information on how
much time a serial program spent in which function. This “flat profile” is re-
fined with a call-graph profiler, which tells the time separately for each caller
and also the fraction of the execution time that was spent in each of the callees.
This call-graph information is very valuable, because it not only indicates the
functions that consume most of the executions time, but also identifies in which
context it happened. However, a high execution time does not necessarily in-
dicate inefficient behavior, since even an efficient computation can take a long
time. Moreover, as computer architectures become more complex, with clus-
tered symmetric multiprocessors (SMPs), deep-memory hierarchies managed by
distributed cache coherence protocols, and speculative execution, application
developers face new and more complicate performance tuning and optimization
problems. In order to understand the execution behavior of application code
in such complex environments, users need performance tools that are able to
support the main parallel programming paradigms, as well as, access hardware
performance counters and map the resulting data to the parallel source code
constructs. However, the most common instrumentation approach that provides
access to hardware performance counters also augments source code with calls
to specific instrumentation libraries (e.g., PAPI [1], PCL [13], SvPablo [7] and the
HPM Toolkit [5]). This static instrumentation approach lacks flexibility, since it
requires re-instrumentation and recompilation, whenever a new set of instru-
mentation is required.

In this paper we present CATCH (Call-graph-based Automatic Tool for Cap-
ture of Hardware-performance-metrics), a profiler for Mp1 and OpenMP applica-
tions that provides hardware performance counters information related to each
path used to reach a node in the application’s call graph. CATCH automatically
instruments the binary of the target application, allowing it to track the cur-
rent call-graph node at run time with only constant overhead, independently of
the actual call-graph size. The advantage of this approach lies in its ability to
map a variety of expressive performance metrics provided by hardware counters
not only to the source code but also to the execution context represented by
the complete call path. In addition, since it relies only on the binary, CATCH is
programming language independent.

CATCH is built on top of DPCL [6], an object-based C++ class library and
run-time infrastructure, developed by IBM, which is based on the Paradyn [10]
dynamic instrumentation technology, from the University of Wisconsin. DpCL
flexibly supports the generation of arbitrary instrumentation, without requiring
access to the source code. We refer to [6] for a more detailed description of bPCL
and its functionality. CATCH profiles the execution of MPI, OpenMP, and hybrid
application and integrates the performance data collected for different processes
and threads. In addition, based on the information provided by the native AIX
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Fig. 1. Overall architecture of CATCH.

compiler, CATCH is able to identify the functions the compiler generates from
OpenmP constructs and to link performance data collected from these constructs
back to the source code. To demonstrate the portability of our approach, we
additionally implemented a Linux version, which is built on top of Dyninst [2].

The remainder of this article is organized as follows: Section 2 contains a
description of the different components of CATCH and how they are related to
each other. Section 3 presents a detailed explanation of how CATCH tracks a
call-graph node at run time. Section 4 discusses related work. Finally, Section 5
presents our conclusions and plans for future work.

2 Overall Architecture

As illustrated in Figure 1, CATCH is composed of the CATCH tool, which instru-
ments the target application and controls its execution, and the CATCH probe
module, which is loaded into the target application by CATCH to perform the
actual profiling task. The probe module itself consists of the call-graph man-
ager and the monitoring manager. The former is responsible for calculating the
current call-graph position, while the latter is responsible for monitoring the
hardware performance counters. After the target application finishes its execu-
tion, the monitoring manager writes the collected data into an XML file, whose
contents can be displayed using the visualization manager, a component of the
HPM Toolkit, presented in [5].

When CATCH is invoked, it first creates one or more processes of the target
application in suspended state. Next, it computes the static call graph and per-
forms the necessary instrumentation by inserting calls to probe-module functions
into the memory image of the target application. Finally, CATCH writes the call
graph into a temporary file and starts the target application.

Before entering the main function, the instrumented target application first
initializes the probe-module, which reads in the call-graph file and builds up the
probe module’s internal data structures. Then, the target application resumes
execution and calls the probe module upon every function call and return. The



following sections present a more detailed insight into the two components of
the probe module.

2.1 The Call-Graph Manager

The probes inserted into the target application call the call-graph manager,
which computes the current node of the call graph and notifies the monitoring
manager of the occurrence of the following events:

Initialization The application will start. The call graph and the number of
threads are provided as parameters. The call graph contains all necessary
source-code information on modules, functions, and function-call sites.

Termination The application terminated.

Function Call The application will execute a function call. The current call-
graph node and the thread identifier are provided as parameters.

Function Return The application returned from a function call. The current
call-graph node and the thread identifier are provided as parameters.

OpenMP Fork The application will fork into multi-threaded execution.

OpenMP Join Multi-threaded execution finished.

MPI Init MPI will be initialized. The number of MPI processes and the pro-
cess identifier are provided as parameters. When receiving this event, the
monitoring manager knows that it can execute MPI statements. This event
is useful, for example, to synchronize clocks for event tracing.

MPI Finalize MPI will be finalized. It denotes the last point in time, where
the monitoring manager is able to execute an MPI statement, for example,
to collect the data gathered by different MPI processes.

Note that the parameterized events listed above define a very general profiling
interface, which is not limited to profiling, but is also suitable for a multitude
of alternative performance-analysis tasks (e.g., event tracing). The method of
tracking the current node in the call graph is described in Section 3.

2.2 The Monitoring Manager

The monitoring manager is an extension of the HPM data collection system,
presented in [5]. The manager uses the probes described above to activate the
HPM library. Each node in the call graph corresponds to an application section
that could be instrumented. During the execution of the program, the HPM
library accumulates the performance information for each node, using tables with
unique identifiers for fast access to the data structure that stores the information
during run time. Thus, the unique identification of each node in the call graph,
as described in Section 3, is crucial for the low overhead of the data collection
system. The HPM library supports nested instrumentation and multiple calls to
any node. When the program execution terminates, the HPM library reads and
traverses the call graph to compute exclusive counts and durations for each node.
In addition, it computes a rich set of derived metrics, such as cache hit ratios



and MFLOP/sec rates, that can be used by performance analysts to correlate the
behavior of the application to one or more of the hardware components. Finally,
it generates a set of performance files, one for each parallel task.

3 Call-graph Based Profiling with Constant Overhead

In this section we describe CATCH’S way of instrumenting an application, which
provides the ability to calculate the current node in the call graph at run time
by introducing only constant overhead independently of the actual call-graph
size. Our goal is to be able to collect statistics for each function called in the
program, based on the path that led to the function invocation. For simplicity,
we first discuss serial non-recursive applications and later explain how we treat
recursive and parallel ones.

3.1 Building a Static Call Graph

The basic idea behind our approach is to compute a static call graph of the target
application in advance before executing it. This is accomplished by traversing
the code structure using DPCL. We start from the notion that an application
can be represented by a multigraph with functions represented as nodes and call
sites represented as edges. If, for example, a function f calls function g from
k different call sites, the correspondent transitions are represented with k arcs
from node f to node g in the multigraph. A sequence of edges in the multigraph
corresponds to a path.

The multigraph of non-recursive programs is acyclic. From the application’s
acyclic multigraph, we build a static call tree, which is a variation of the call
graph, where each node is a simple path that start at the root of the multigraph.
For a path m = e, where ¢ is a path and e is an edge in the multigraph, ¢ is the
parent of 7 in the tree. We consider the root of the multigraph to be the function
that calls the application’s main function. This start function is assumed to have
an empty path to itself, which is the root of the call tree.

3.2 Instrumenting the Application

The probe module holds a reference to the call tree, where each node contains an
array of all of its children. Since the call sites within a function can be enumerated
and the children of a node correspond to the call sites within the function that
can be reached by following the path represented by that node, we arrange the
children in a way that child ¢ corresponds to call site . Thus, child ¢ of node n
in the tree can be accessed directly by looking up the ith element of the array
in node n.

In addition, the probe module maintains a pointer to the current node n.,
which is moved to the next node n, upon every function call and return. For a
function call made from a call site i, we assign:

Ny = child;(n.)



That is, the ith call site of the function currently being executed causes the
application to enter the ¢th child node of the current node. For this reason, the
probe module provides a function call(int i), which causes the pointer to the
current node to be moved to child 4. In case of a function return, we assign:

Ny, = parent(n.)

That is, every return just causes the application to re-enter the parent node of
the current node, which can be reached via a reference maintained by CATCH.
For this reason, the probe module provides a function return(), which causes
the pointer to the current node to be moved to its parent.

Since DPCL provides the ability to insert calls to functions of the probe module
before and after a function-call site and to provide arguments to these calls, we
only need for each function f to insert call(i) before a function call at call site
i and to insert return() after it.

Because call(int i) needs only to look up the ith element of the children
array, and return () needs only to follow the reference to the parent, calling these
two functions introduces only constant execution-time overhead independently
of the application’s call-tree size.

3.3 Recursive Applications

Trying to build a call tree for recursive applications would result in a tree of
infinite size. Hence, to be able to support recursive applications, CATCH builds
a call graph that may contain loops instead. Every node in this call graph can
be described by a path 7 that contains not more than one edge representing the
same call site.

Suppose we have a path 7 = gdpd that contains two edges representing the
same call site, which is typical for recursive applications. CATCH builds up its
graph structure in a way, such that od = odpd, that is, both paths are considered
to be the same node. That means, we now have a node that can be reached
using different paths. Note that each path has still a unique parent, which can
be obtained by collapsing potential loops in the path.

However, in case of loops in the call graph we can no longer assume that
a node was entered from its parent. Instead, CATCH pushes every new node
it enters upon a function call onto a stack and retrieves it from there upon a
function return:

push(ny,) (call)
ny :=pop() (return)

Since the stack operations again introduce not more than constant overhead
in execution time, the costs are still independent of the call-graph size.

3.4 Parallel Applications

OpenMP: OpenMP applications follow a fork-join model. They start as a single
thread, fork into a team of multiple threads at some point, and join together



after the parallel execution has been finished. CATCH maintains for each thread
a separate stack and a separate pointer to the current node, since each thread
may call different functions at different points in time. When forking, each slave
thread inherits the current node of the master.

The application developer marks code regions that should be executed in
parallel by enclosing them with compiler directives or pragmas. The native AIX
compiler creates functions for each of these regions. These functions are indirectly
called by another function of the OpenMP run-time library (i.e., by passing a
pointer to this function as an argument to the library function). Unfortunately,
DPCL is not able to identify indirect call sites, so we cannot build the entire call
graph only relying on the information provided by DPcCL. However, the scheme
applied by the native A1X compiler to name the functions representing OpenMp
constructs enables CATCH to locate these indirect call sites and to build the
complete call graph in spite of their indirect nature.

MPI: CATCH maintains for each MPI process a separate call graph, which is
stored in a separate instance of the probe module. Since there is no interference
between these call graphs, there is nothing extra that we need to pay specific
attention to.

3.5 Profiling Subsets of the Call-Graph

If the user is only interested in analyzing a subset of the application, it would be
reasonable to restrict instrumentation to the corresponding part of the program
in order to minimize intrusion and the number of instrumentation points. Hence,
CATCH offers two complementary mechanisms to identify an interesting subset
of the call graph. The first one allows users to identify subtrees of interest, while
the second is used to filter out subtrees that are not of interest.

— Selecting allows the user to select subtrees associated with the execution of
certain functions and profile these functions only. The user supplies a list
of functions as an argument, which results in profiling being switched off
as soon as a subtree of the call graph is entered that neither contains call
sites to one of the functions in the list nor has been called from one of the
functions in the list.

— Filtering allows the user to exclude subtrees associated with the execution
of certain functions from profiling. The user specifies these subtrees by sup-
plying a list of functions as an argument, which results in profiling being
switched off as soon as one of the function in the list is called.

Both mechanisms have in common that they require switching off profiling
when entering and switching it on again when leaving certain subtrees of the call
graph. Since the number of call sites that can be instrumented by DPCL may be
limited, CATCH recognizes when a call no longer needs to be instrumented due
to a subtree being switched off and does not insert any probes there. By default,
CATCH instruments only function-call sites to user functions and OpenMP and
MPTI library functions.



3.6 Limitations

The main limitations of CATCH result from the limitations of the underlying
instrumentation libraries. Since DPCL identifies a function called from a function-
call site only by name, CATCH is not able to cope with applications defining a
function name twice for different functions. In addition, the Linux version, which
is based on Dyninst, does not support MPI or OpenMP applications. Support for
parallel applications on Linux will be available when the DPCL port to Linux is
completed.

CATCH is not able to statically identify indirect calls made via a function
pointer passed at run-time. Hence, CATCH cannot profile applications making
use of those calls, which limits its usability in particular for C++ applications.
However, CATCH still provides full support for the indirect calls made by the
OpenMP run-time system of the native AIX compiler as described in Section 3.4.

4 Related Work

The most common instrumentation approach augments source code with calls to
specific instrumentation libraries. Examples of these static instrumentation sys-
tems include the Pablo performance environment toolkit [12] and the Automated
Instrumentation Monitoring System (A1MS) [14]. The main drawbacks of static
instrumentation systems are the possible inhibition of compiler optimization and
the lack of flexibility, since it requires application re-instrumentation, recompi-
lation, and a new execution, whenever new instrumentation is needed. CATCH,
on the other hand, is based on binary instrumentation, which does not require
recompilation of programs and does not affect optimization. Binary instrumen-
tation can be considered as a subset of the dynamic instrumentation technology,
which uses binary instrumentation to install and remove probes during execu-
tion, allowing users to interactively change instrumentation points during run
time, focusing measurements on code regions where performance problems have
been detected. Paradyn [10] is the exemplar of such dynamic instrumentation
systems. Since Paradyn uses probes for code instrumentation, any probe built
for CATCH could be easily ported to Paradyn. However, the main contributions
of cATCH, which are not yet provided in Paradyn, are the OpenMP support,
the precise distinction between different call paths leading to the same program
location when assessing performance behavior, the flexibility of allowing users
to select different sets of performance counters, and the presentation of a rich
set of derived metrics for program analysis.

oMPTrace [4] is a DPCL based tool that combines traditional tracing with
binary instrumentation and access to hardware performance counters for the
performance analysis and optimization of OpenMP applications. Performance
data collected with oMPTrace is used as input to the Paraver visualization tool [8]
for detailed analysis of the parallel behavior of the application. Both oOMPTrace
and CATCH use a similar approach to exploit the information provided by the
native AIX compiler to identify and instrument functions the compiler generates
from OpenMP constructs. However, oMpPTrace and CATCH differ completely in



their data collection techniques, since the former collects traces, while CATCH is
a profiler.

GNU gprof [9] creates execution-time profiles for serial applications. In con-
trast to our approach, gprof uses sampling to determine the time fraction spent
in different functions of the program. Besides plain execution times gprof esti-
mates the execution time of a function when called from a distinct caller only.
However, since the estimation is based on the number of calls from this caller it
can introduce significant inaccuracies in cases where the execution time highly
depends on the caller. In contrast, CATCH creates a profile for the full call graph
based on measurement instead of estimation.

Finally, pAPI [1] and pPcL [13] are application programming interfaces that
provide a common set of interfaces to access hardware performance counters
across different platforms. Their main contribution is in providing a portable
interface. However, as opposed to CATCH, they still require static instrumentation
and do not provide a visualization tool for presentation.

5 Conclusion

CATCH is a profiler for parallel applications that collects hardware performance
counters information for each function called in the program, based on the path
that led to the function invocation. It supports MpI, OpenMmP, and hybrid appli-
cations and integrates the performance data collected for different processes and
threads. Functions representing the bodies of OpenMP constructs, which have
been generated by the compiler, are also monitored and mapped back to the
source code. The user can view the data using a GUI that displays the perfor-
mance data simultaneously with the source code sections they refer to.

The information provided by hardware performance counters provide more
expressive performance metrics than mere execution times and thus enable more
precise statements about the performance behavior of the applications being
investigated. In conjunction with CATCH’s ability not only to map these data
back to the source code but also to the full call path, CATCH provides valuable
assistance in locating hidden performance problems in both the source code and
the control flow. Since CATCH works on the unmodified binary, its usage is very
easy and independent of the programming language.

In the future, we plan to use the very general design of CATCH’s profiling
interface to develop a performance-controlled event tracing system that tries
to identify interesting subtrees at run time using profiling techniques and to
record the performance behavior at those places using event tracing, because
tracing allows a more detailed insight into the performance behavior. Since now
individual event records can carry the corresponding call-graph node in one of
their data fields, they are aware of the execution state of the program even
when event tracing starts in the middle of the program. Thus, we are still able
to map the observed performance behavior to the full call path. The benefit of
selective tracing would be a reduced trace-file size and less program perturbation
by trace-record generation and storage in the main memory.
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