
Automatic Performance Analysis of Hybrid MPI/OpenMP
Applications

Felix Wolf Bernd Mohr

Forschungszentrum Jülich
Zentralinstitut für Angewandte Mathematik

52425 Jülich, Germany
{f.wolf, b.mohr}@fz-juelich.de

Abstract

The EXPERT performance-analysis environment
provides a complete tracing-based solution for au-
tomatic performance analysis of MPI, OpenMP, or
hybrid applications running on parallel computers
with SMP nodes. EXPERT describes performance
problems using a high level of abstraction in terms
of execution patterns that result from an inefficient
use of the underlying programming model(s). The
set of supported problems can be extended to meet
application-specific needs. The analysis is carried
out along three interconnected dimensions: class
of performance behavior, call-tree position, and
thread of execution. Each dimension is arranged
in a hierarchy, so that the user can investigate the
behavior on varying levels of detail. All three di-
mensions are interactively accessible using a sin-
gle integrated view.

1 Introduction

Coupling SMP systems combines the packag-
ing efficiencies of shared-memory multiprocessors
with the scaling advantages of distributed-memory
architectures. The result is a computer architecture
that can scale more cost-effectively in size. Unfor-
tunately, these systems come at the price of a more
complex programming environment to deal with
the different modes of parallel execution: shared-
memory multithreading vs. distributed-memory
message passing. As a consequence, performance
optimization becomes more difficult and creates
a need for advanced performance tools that are
custom made for this class of computing environ-
ments.

While performance tools exist for shared-
memory systems and for distributed-memory sys-
tems, solving performance problems on parallel
computers with SMP nodes is not as simple as
combining two tools. When dealing with hybrid
(MPI/OpenMP) parallel executions, performance
problems arise where an integrated view is re-
quired. Current state-of-the-art tools such as VGV

[10] can capture and visualize these integrated
views, but suffer from performance-information
overload, unable to abstract performance problems
from detailed performance data in an integrated hy-
brid framework.

The EXPERT performance-analysis environ-
ment1 is able to automatically detect performance
problems in event traces of MPI [16], OpenMP [19],
or hybrid applications running on parallel comput-
ers with SMP nodes as well as on more traditional
non-SMP or single SMP systems.

Performance problems are specified in terms of
execution patterns that represent situations of inef-
ficient behavior. These patterns are input for an au-
tomatic analysis process that recognizes and quan-
tifies the inefficient behavior in event traces. Mech-
anisms that hide the complex relationships within
compound-event specifications allow a simple de-
scription of complex inefficient behavior on a high
level of abstraction.

The analysis process automatically transforms
the event traces into a three-dimensional represen-
tation of performance behavior. The first dimen-
sion is the kind of behavior. The second dimen-
sion describes the behavior’s source-code location
and the execution phase during which it occurs.

1The work on EXPERT is carried out as a part of the KOJAK

project [8, 14] and is embedded in the IST working group APART

[20].

Proceedings of the Eleventh Euromicro Conference on Parallel,Distributed and Network-Based Processing (Euro-PDP’03)
0-7695-1875-3/03 $17.00 © 2003 IEEE

Finally, the third dimension gives information on
the distribution of performance losses across dif-
ferent processes or threads. The hierarchical or-
ganization of each dimension enables the inves-
tigation of performance behavior on varying lev-
els of granularity. Each point of the representa-
tion is uniformly mapped onto the corresponding
fraction of execution time, allowing the convenient
correlation of different behavior using only a sin-
gle view. In addition, the set of predefined perfor-
mance problems can be extended to meet individ-
ual (e.g., application-specific) needs.

The remainder of this article is organized as fol-
lows: First, we describe the overall architecture
of our analysis environment in the next section.
In Section 3, we present the abstraction mecha-
nisms used to simplify the specification of complex
situations representing inefficient performance be-
havior. After that, we introduce the actual analy-
sis component and how it can be extended to deal
with application specific requirements in Section 4.
Section 5 proves our concept by applying it to two
realistic codes. Finally, we consider related work
and conclude the paper.

2 Overall Architecture

The EXPERT performance-analysis environ-
ment is depicted in Figure 1. The different com-
ponents are represented as boxes with rounded
corners and their inputs and outputs are repre-
sented as paper sheets with the upper-right cor-
ner turned down. The arrows illustrate the whole
performance-analysis process from instrumenta-
tion to result presentation.

The EXPERT analysis process is composed of
two parts: a semi-automatic multi-level instrumen-
tation of the user application followed by an auto-
matic analysis of the generated performance data.
The first subprocess is called semi-automatic be-
cause it requires the user to slightly modify the
makefile. To begin the process, the user sup-
plies the application’s source code, written in ei-
ther C, C++, or Fortran, to OPARI [18], which
performs automatic instrumentation of OpenMP

constructs and redirection of OpenMP-library calls
to instrumented wrapper functions on the source-
code level. Instrumentation of user functions is
done either on the source-code level using TAU

[21] or using a compiler-supplied profiling inter-
face. Instrumentation for MPI events is accom-
plished with the PMPI [15] wrapper library, which
generates MPI-specific events by intercepting calls
to MPI functions. All MPI, OpenMP, and user-

User
Program

Source
Code

OPARI/
TAU

Instr.
Source
Code

Compiler/
Linker

PMPI

Wrapper
Library

EPILOG

Run-Time
Library

Instr.
Executable

EXPERT
Analyzer

EARL

EXPERT
Presenter

Trace File

run

Analysis
Results

Automatic Analysis

Semi-automatic
Instrumentation

POMP
Run-Time

and
Wrapper
Library

Figure 1. EXPERT overall architecture.

function instrumentation call the EPILOG run-time
library, which provides mechanisms for buffering
and trace-file creation. At the end of the instru-
mentation process the user has a fully instrumented
executable.

Running this executable generates a trace file in
the EPILOG format. After program termination, the
trace file is fed into the EXPERT analyzer. The an-
alyzer uses EARL [23] to provide a high-level view
of the raw trace file. We call this view the en-
hanced event model, and it is where the actual anal-
ysis takes place. The analyzer generates an analy-
sis report, which serves as input for the EXPERT

presenter.
Currently, the software necessary to generate

event traces has been successfully installed on two
parallel computers with SMP nodes: the PC-based
ZAMpano [13] and the HITACHI SR8000-F1 [3].
Instrumentation is done using the unpublished pro-
filing interface of the PGI [12] compiler or of
the proprietary HITACHI compiler [9], respectively.
The analysis components run on Linux.

3 Abstraction Mechanisms

EARL maps a raw EPILOG trace of “basic”
events onto the enhanced event model. The en-
hanced event model provides abstractions that al-

2
Proceedings of the Eleventh Euromicro Conference on Parallel,Distributed and Network-Based Processing (Euro-PDP’03)
0-7695-1875-3/03 $17.00 © 2003 IEEE

low compound events representing inefficient be-
havior to be easily described (see [25] for details).
The model considers an event trace as a chrono-
logically sorted sequence of primitive events. De-
pending on the event type, each event is charac-
terized by a set of attributes. The event types are
organized in a hierarchy. There are programming-
model–independent event types representing sim-
ple region enters and exits. Types indicating point-
to-point and collective communication cover the
MPI model. OpenMP event types comprise fork and
join operations, lock synchronization operations,
and - similar to MPI - an event type indicating the
collective execution of parallel constructs.

Additionally, EARL provides two types of ab-
stractions on top of the basic part of the model:

• State sequences

• Pointer attributes

State sequences map individual events onto a set
of events that represent one aspect of the parallel
system’s execution state at the moment when the
event happens. An example is the message queue
containing all events of sending messages currently
being transferred. Pointer attributes connect corre-
sponding events, so that one can define compound
events along a path of corresponding events. An
example is is an attribute pointing from a message-
receipt event to the corresponding send event. An
essential part of the enhanced model is the dynamic
call tree, which is computed from all region-enter
and region-exit events. As an additional pointer at-
tribute, EARL provides a link from each enter event
to the first enter event visiting the same node in the
call tree. This provides a simple means to asso-
ciate a performance-relevant compound event with
the corresponding execution phase of the parallel
program.

4 Analysis Component

The design of the analyzer is based on the spec-
ifications and terminology presented in [6]. The
analyzer attempts to prove performance properties
for one execution of a parallel application and to
quantify them according to their influence on the
performance. A performance property character-
izes a class of performance behavior and is speci-
fied in terms of a compound event, which the ana-
lyzer tries to detect in an event trace. A compound
event is a set of events matching a specific execu-
tion pattern, whose constituents are connected by
relationships and constraints. For each property,

EXPERT calculates a severity measure indicating
the fraction of execution time spent on that prop-
erty and, thus, allows the correlation of different
properties in a single view.

The run-time events of a parallel application oc-
cur on multiple time lines - one for each control
flow (i.e, thread). EXPERT regards all control flows
as being mapped to different CPUs at any time,
that is, processes or threads running on the same
SMP node do not share a CPU. EXPERT describes
the severity of a particular performance property
in terms of wall-clock interval sets that may be dis-
tributed across different time lines. All interval sets
are subsets of the CPU-reservation time, which is
the time from the first to the last event multiplied
by the number of threads. The severity is returned
in percentage of the CPU-reservation time.

The analyzer is implemented in Python using
EARL for trace access. Its architecture is based on
the idea of separating the analysis process from the
specification of the performance properties; that is,
the performance properties are not hard-coded and
specified separately.

4.1 Specification of Performance Proper-
ties

The performance properties are specified in
form of patterns. Patterns are Python classes,
which are responsible for detecting compound
events indicating inefficient behavior. They pro-
vide a common interface making them exchange-
able from the perspective of the tool. The specifi-
cations use the abstractions provided by EARL and,
for this reason, are very simple.

The analysis process follows an event driven ap-
proach. EXPERT walks sequentially through the
event trace and invokes for each single event call-
back methods of the pattern instances and supplies
the event as an argument. A pattern can provide a
different call-back method for each event type. The
call-back method itself then tries to locate a com-
pound event representing an inefficiency, thereby
following links (i.e., pointer attributes) emanating
from the supplied event or investigating state se-
quences. This mechanism allows the simple speci-
fication of very complex performance-relevant sit-
uations and an explanation of inefficiency that
is based on the terminology of the programming
model.

The common interface also provides a method
to launch a configuration dialog for the input of
pattern-specific parameters before the analysis pro-
cess as well as a method to launch a presentation

3
Proceedings of the Eleventh Euromicro Conference on Parallel,Distributed and Network-Based Processing (Euro-PDP’03)
0-7695-1875-3/03 $17.00 © 2003 IEEE

dialog for the display of pattern-specific results
afterward, which allows the treatment of pattern-
specific performance criteria.

EXPERT organizes the performance properties
in a hierarchy. The upper levels of the hierarchy
(i.e., those that are closer to the root) correspond to
more general behavioral aspects such as time spent
in MPI functions. The deeper levels correspond to
more specific situations such as time lost due to
blocking communication.

Figure 2 shows the complete hierarchy of per-
formance properties being currently supported by
EXPERT. We shall briefly discuss some of the most
interesting ones in Section 4.1.1 and 4.1.2.

4.1.1 Examples of MPI Performance Proper-
ties

Late Sender This property refers to the time
wasted, when a call to a blocking receive
operation (e.g, MPI Recv or MPI Wait) is
posted before the corresponding send opera-
tion is executed.

Late Receiver This property refers to the inverse
case. A send operation blocks until the cor-
responding receive operation is called. This
can happen for several reasons. Either the MPI

implementation is working in synchronous
mode by default or the size of the message
to be sent exceeds the available MPI-internal
buffer space and the operation blocks until the
data is transferred to the receiver.

Messages in Wrong Order This property, which
has been motivated by [11], deals with the
problem of passing messages out of order. For
example, the sender may send messages in
a certain order, but the receiver may expect
their arrival in the reverse order. The imple-
mentation locates such situations by querying
the message queue each time a message is re-
ceived and by looking for older messages with
the same target as the current message. This
situation can be a specialization of either Late
Sender or Late Receiver.

Wait at N x N Collective communication opera-
tions that send data from all processes to
all processes exhibit an inherent synchroniza-
tion, that is, no process can finish the opera-
tion until the last process has started. The time
until all processes have entered the operation
is measured and used to compute the sever-
ity. Note that this property requires to identify

all parts of individual collective-operation in-
stances in the event stream.

4.1.2 Examples of OpenMP Performance
Properties

Wait at Barrier The time spent on waiting for
the last participant in implicit (i.e., compiler-
generated) or explicit (i.e., user-specified)
OpenMP barrier synchronization. Note that
this property requires to identify all parts
of individual barrier instances in the event
stream.

Lock Synchronization The time a thread waits
for a lock that is owned by another thread.
This can occur as a result of OpenMP-library
calls or at the entry of critical sections.

Idle Threads Idle times on processors caused
by sequential execution before or after an
OpenMP parallel region.

4.2 Representation of Performance Be-
havior

Each applied pattern instance computes a two-
dimensional severity matrix, which contains the
severity as a function of the node in the dynamic
call tree and the location (i.e., thread). Thus, the
complete performance behavior is represented us-
ing a three-dimensional matrix, where each cell
contains the severity for a specific performance
property, call-tree node, and location.

The first dimension describes the kind of inef-
ficient behavior. The second dimension describes
both its source-code location and the execution
phase during which it occurs. Finally, the third di-
mension gives information on the distribution of
performance losses across different processes or
threads, which allows to draw additional conclu-
sions (e.g., load imbalance, see also [24]).

In addition, each of the dimensions is arranged
in a hierarchy: the performance properties in a hi-
erarchy of general and more specific ones, the call-
tree nodes in their evident hierarchy, and the lo-
cations in a hierarchy consisting of the levels ma-
chine, node, process, and thread. Thus, it is pos-
sible to analyze the behavior on different levels of
granularity.

4.3 Presentation of Performance Behavior

The user can interactively access each of the hi-
erarchies constituting a dimension of performance

4
Proceedings of the Eleventh Euromicro Conference on Parallel,Distributed and Network-Based Processing (Euro-PDP’03)
0-7695-1875-3/03 $17.00 © 2003 IEEE

Total

Execution

Idle Threads

MPI

OpenMP

Communication

Fork

Collective

Point to Point

Late Sender

Late Receiver

Lock Competition

Late Broadcast

Early Reduce

Wait at N x N

Synchronization

Barrier

Messages in Wrong Order

Messages in Wrong Order

Flush

Implicit

Explicit

Critical

API

Sychronization

IO

Wait at Barrier

Wait at Barrier

Wait at Barrier

Figure 2. Hierarchy of performance properties.

behavior using a tree browser that labels each node
with a weight. EXPERT uses as weight a percent-
age of the application’s CPU-reservation time. The
weight that is actually displayed depends on the
state of the node, that is, whether it is expanded or
collapsed. The weight of a collapsed node repre-
sents the whole subtree associated with that node,
whereas the weight of an expanded node represents
only the fraction that is not covered by its descen-
dants because the weights of its descendants are
now displayed separately. This allows the analy-
sis of performance behavior on different levels of
granularity.

For example, the call tree may have a nodemain
with two children foo and bar (Figure 3). In the
collapsed state, this node is labeled with the weight
representing the time spent in the whole program.
In the expanded state it displays only the fraction
that is spent neither in foo nor in bar.

The weight is displayed simultaneously using
both a numerical value as well as a colored icon.
The color is taken from a spectrum representing
the whole range of possible weights (i.e., 0 - 100
percent). To avoid distraction, insignificant val-

 10 main
 30 foo
 60 bar

100 main

Figure 3. Node of the call tree in col-
lapsed and expanded state.

ues below 0.5 percent are displayed in gray. Col-
ors enable the easy identification of nodes of in-
terest even in a large tree, whereas the numerical
values enable the precise comparison of individual
weights.

The trees of the different analysis dimensions
are interconnected, so that the user can display the
call tree with respect to a particular performance
property, and the distribution across the locations
with respect to a particular node in call tree. In Fig-
ure 4, the selections are indicated by framed node
labels. Thus, the user can investigate the perfor-
mance behavior in a scalable but still accurate way
along all its interconnected dimensions using only

5
Proceedings of the Eleventh Euromicro Conference on Parallel,Distributed and Network-Based Processing (Euro-PDP’03)
0-7695-1875-3/03 $17.00 © 2003 IEEE

a single integrated view.
In the default mode, the display represents

the severity as a percentage of the total CPU-
reservation time. However, always referring to the
total CPU-reservation time may limit scalability be-
cause values may become very small (e.g., in the
case of many locations). For this reason, the pre-
senter offers a relative view mode. In this relative
view mode, a percentage shown in a tree always
refers to the selection in the left neighbor tree.

4.4 Extension Mechanism

EXPERT provides a large set of built-in perfor-
mance properties, which cover the most frequent
inefficiency situations. But sometimes the user
may wish to consider application-specific metrics
such as iterations or updates per second. In this
case, the user can simply write another pattern
class that implements an own application-specific
performance property according to the common in-
terface of all pattern classes, and place it into a
plug-in module.

At startup time, EXPERT dynamically queries
the module’s name space and looks for newly in-
serted patterns from which it is now able to build
instances. The new patterns are integrated into the
graphical user interface and can be used like the
predefined ones.

5 Examples

We tested our environment for two realistic
code examples, REMO and SWEEP3D, on ZAMpano
[13]. Both applications are hybrid MPI/OpenMP

applications. CPU reservation was done such that
there was one CPU per computational thread or
single-threaded process. We consider one event
trace per application.

REMO SWEEP3D

CPUs 16 16

Size (MB) 170 72

Execution time (sec) 37.2 16.5

Overhead (%) 9.7 6.0

Analysis time (h:m) 9 : 48 3 : 22

Table 1. Trace-file size and overhead.

Table 5 summarizes trace-file size and over-
head. The first row contains the program name,
the second row shows the number of CPUs used,
the third row lists the trace-file size, and the fourth

row gives the execution time. To estimate the run-
time overhead introduced by the instrumentation,
the minimum execution time of a series of ten unin-
strumented runs was compared to the minimum ex-
ecution time of a series of ten instrumented runs.
The result is listed in the fifth row. Finally, the last
row shows the duration of the analysis process car-
ried out on the test platform.

5.1 REMO

REMO [4] is a weather forecast application
of the DKRZ (Deutsches Klima Rechenzentrum).
It implements a hydrostatic limited area model,
which is based on theDeutschland/Europaweather
forecast model of the German Meteorological Ser-
vices (Deutscher Wetterdienst (DWD)). We con-
sider an early experimental MPI/OpenMP version
of the production code. The application was exe-
cuted on four nodes with one process per node and
four threads per process (4 processes × 4 threads).

Figure 4 shows the result display of REMO in the
default mode, that is, all values and colors repre-
sent percentages of the total CPU-reservation time.
The property view indicates that one half (i.e., 51.8
percent) of the total CPU-reservation time is idle
time (i.e., Idle Threads) resulting from OpenMP se-
quential execution outside of parallel regions. Al-
though during this period the idle threads actually
do not execute any code, the time is mapped onto
the call paths that have been executed by the mas-
ter thread during this time. That is to say, for analy-
sis and presentation purposes EXPERT assumes that
outside parallel regions the slave threads “execute”
the same code as their master thread. This method
of call-path mapping helps to identify parts of the
call tree that might be optimized in order to reduce
the amount of sequential execution.

In the case of REMO, the EXPERT display (Fig-
ure 4, middle) allows the easy identification of two
call paths as major sources of idle times. The lo-
cation view (Figure 4, right) shows the distribution
of the idle time across the slave threads.

5.2 SWEEP3D

The benchmark code SWEEP3D [2] represents
the core of a real ASCI application. It solves a
1-group time-independent discrete ordinates (Sn)
3D Cartesian (XYZ) geometry neutron transport
problem. We consider an early experimental
MPI/OpenMP version of the original MPI version.
While MPI is responsible for parallelism by domain
decomposition, OpenMP is responsible for paral-
lelism by multitasking.

6
Proceedings of the Eleventh Euromicro Conference on Parallel,Distributed and Network-Based Processing (Euro-PDP’03)
0-7695-1875-3/03 $17.00 © 2003 IEEE

Figure 4. Display of performance behavior in EXPERT for REMO.

The application was executed on four nodes
with one process per node and four threads per pro-
cess (4 processes × 4 threads). The performance
behavior of SWEEP3D exhibits a weak point of hy-
brid programming, that is, a performance prob-
lem resulting from the combination of MPI and
OpenMP. MPI calls made outside a parallel region
prolong sequential execution and prevent available
CPUs from being used by multiple threads. The
results are shown in Table 5.2. The call path (a)
shown in the table is responsible for most of the
losses occurring due to the property Idle Threads.
However, at the same time this call path exhibits
a significant loss due to the property Late Sender.
Note that Late Sender counts the times of the mas-
ter threads, whereas Idle Threads counts the times
of the slave threads (3 slaves per master). Tak-
ing this into account, reducing Late Sender by one
percent would speed up the application by four
percent because speeding up the master also re-
duces idle times of the slaves. Obviously, one rea-

son for the Late Sender problem at call path (a)
is receiving messages in the reverse sending order
(Messages in Wrong Order). Moreover, a signifi-
cant amount of time is spent on the implicit (i.e.,
compiler-generated) OpenMP barrier at the end of
call path (b). Expanding the node of the property
Implicit Barrier (Figure 5, left) reveals that most of
that time is lost due to the propertyWait at Barrier.

6 Related Work

Miller and associates [17] developed automatic
on-line performance analysis according to the W 3

Search Model in the well-known Paradyn project.
In contrast to our approach, the W 3 model de-
scribes performance behavior along the dimen-
sions performance problem, program resource, and
time. Performance problems are expressed in
terms of a threshold and one or more metrics such
as CPU time, blocking time, message rates, I/O
rates, or number of active processors. The main

7
Proceedings of the Eleventh Euromicro Conference on Parallel,Distributed and Network-Based Processing (Euro-PDP’03)
0-7695-1875-3/03 $17.00 © 2003 IEEE

Call Paths

(a) seep3d → inner auto → inner → sweep → recv real → MPI Recv

(b) driver → inner auto → inner/sweep → !$omp parallel → !$omp do → !$omp ibarrier

Performance Property Whole Program (a) (b)

Idle Threads 37.5 17.5

Communication 6.5 5.8

Late Sender 3.2 3.2

Implicit Barrier (OpenMP) 4.3 3.3

Wait at Barrier (OpenMP, implicit) 2.8 2.6

Table 2. Performance problems found in SWEEP3D in percentage of the total CPU-
reservation time.

accomplishments of EXPERT in contrast to Para-
dyn is the description of performance problems in
terms of complex event patterns that go beyond
counter-based metrics. Also, the uniform mapping
of arbitrary performance behavior onto the CPU-
reservation time allows the correlation of different
behavior in a single view.

Espinosa [5] implemented an automatic trace
analysis tool KAPPA-PI for evaluating the perfor-
mance behavior of MPI and PVM message-passing
programs. Here, behavior classification is carried
out in two steps. At first, a list of idle times is
generated from the raw trace file using a simple
metrics. Then, based on this list, a recursive in-
ference process continuously deduces new facts on
an increasing level of abstraction. Finally, recom-
mendations on possible sources of inefficiencies
are built from the facts being proved on the one
hand and from the results of source-code analysis
on the other hand.

Vetter [22] performs automatic performance
analysis of MPI point-to-point communication
based on machine learning techniques. He traces
individual message-passing operations and then,
classifies each individual communication event us-
ing a decision tree. The decision tree has been pre-
viously trained by microbenchmarks that demon-
strate both efficient as well as inefficient perfor-
mance behavior. As opposed to this approach,
EXPERT draws conclusions from the temporal re-
lationships of individual events in a platform-
independent way, which does not require any train-
ing prior to analysis.

JavaPSL [7] has been designed by Fahringer and
associates to specify performance properties based
on the Java programming language. Whereas EX-
PERT uses Python to provide a uniform interface
to performance properties, JavaPSL exploits simi-

lar mechanisms of the Java language, such as poly-
morphism, abstract classes, and reflection. In con-
trast to EXPERT, which concentrates on compound-
event analysis, JavaPSL puts emphasis on the defi-
nition of performance properties based on existing
ones (e.g., by defining metaproperties).

7 Conclusion

The EXPERT tool environment provides a com-
plete but still extensible solution for automatic per-
formance analysis of MPI, OpenMP, or hybrid ap-
plications running on parallel computers with SMP

nodes. EXPERT represents performance proper-
ties on a very high level of abstraction that goes
beyond simple metrics and provides the ability
to explain performance problems in terms of the
underlying programming model(s). The set of
performance-property specifications is embedded
in a flexible architecture and can be extended to
meet application-specific needs.

The performance behavior is presented along
three interconnected dimensions: class of perfor-
mance behavior, position within the call tree and
thread of execution. The last dimensions allows
even the effects of different communication pat-
terns among subdomains to be investigated. Each
dimension is arranged in a hierarchy, so that the
user can view the behavior on varying levels of de-
tail. In particular, the hierarchical structure of hy-
brid applications and SMP-cluster hardware is re-
flected this way. Each point of the representation
is uniformly mapped onto the corresponding frac-
tion of CPU-reservation time, allowing the conve-
nient correlation of different behavior in a single
integrated view. The user can access all three di-
mensions interactively using a scalable but still ac-
curate tree display. Colors make it easy to identify

8
Proceedings of the Eleventh Euromicro Conference on Parallel,Distributed and Network-Based Processing (Euro-PDP’03)
0-7695-1875-3/03 $17.00 © 2003 IEEE

Figure 5. Display of performance behavior in EXPERT for SWEEP3D in the relative
view mode.

interesting nodes even in case of large trees.

EXPERT is well suited to analyze a single trace
file. But the development process of parallel appli-
cations often demands for comparison of trace files
representing different execution configurations or
development versions. For the future, we intend
to integrate mechanisms for comparative perfor-
mance analysis. In addition, we plan to improve
our result presentation by integrating it with an
event-trace browser such as VAMPIR [1] to visual-
ize instances of performance problems using time-
line diagrams and by adding source-code displays.
Finally, we will work on further improving and
completing our performance-property catalog.

8 Acknowledgements

We would like to thank all our partners in the
IST working group APART for their contributions to
this topic. We also would like to thank Arpad Kiss
for providing the basic tree browser implementa-
tion, DKRZ for giving us access to their application,
and Reiner Vogelsang for helping us in conducting
our experiments. Finally, we would like to thank
Allen Malony and Craig Soules for their helpful
comments and suggestions on the language.

References

[1] A. Arnold, U. Detert, and W.E. Nagel.
Performance Optimization of Parallel Pro-
grams: Tracing, Zooming, Understanding. In
R. Winget and K. Winget, editors, Proc. of
Cray User Group Meeting, pages 252–258,
Denver, CO, March 1995.

[2] Accelerated Strategic Computing Initiative
[ASCI]. The ASCI sweep3d Benchmark
Code. http://www.llnl.gov/asci benchmarks/.

[3] Leibnitz Rechenzentrum der Bayerischen
Akademie der Wissenschaften. HITACHI SR
8000-F1. http://www.lrz-muenchen.de/.

[4] T. Diehl and V. Gülzow. Performance of the
Parallelized Regional Climate Model REMO.
In Proc. of the Eighth ECMWF Workshop on
the Use of Parallel Processors in Meterology,
pages 181–191, Reading, UK, November
1998. European Centre for Medium-Range
Weather Forecasts.

[5] A. Espinosa. Automatic Performance Anal-
ysis of Parallel Programs. PhD thesis, Uni-
versitat Autonoma de Barcelona, September
2000.

9
Proceedings of the Eleventh Euromicro Conference on Parallel,Distributed and Network-Based Processing (Euro-PDP’03)
0-7695-1875-3/03 $17.00 © 2003 IEEE

[6] T. Fahringer, M. Gerndt, B. Mohr, F. Wolf,
G. Riley, and J. L. Träff. Knowledge Spec-
ification for Automatic Performance Analy-
sis. Technical Report FZJ-ZAM-IB-2001-
08, ESPRIT IV Working Group APART,
Forschungszentrum Jülich, August 2001. Re-
vised version.

[7] T. Fahringer and C. Seragiotto Junior. Mod-
elling and Detecting Performance Problems
for Distributed and Parallel Programs with
JavaPSL. In Proc. of the Conference on Su-
percomputers (SC2001), Denver, Colorado,
November 2001.

[8] M. Gerndt, B. Mohr, M. Pantano, and
F. Wolf. Performance Analysis for CRAY
T3E. In Proc. of the 7th Euromicro Work-
shop on Parallel and Disributed Pocessing
(PDP’99), pages 241–248, 1999.

[9] HITACHI. HITACHI SR 8000 Compiler.
Technical Manual.

[10] J. Hoeflinger, B. Kuhn, W. Nagel, P. Petersen,
H. Rajic, S. Shah, J. Vetter, M. Voss, and
R. Woo. An Integrated Performance Visu-
alizer for MPI/OpenMP Programs. In Proc.
of the 3rd European Workshop on OpenMP
(EWOMP 2001), Barcelona, Spain, Septem-
ber 2001.

[11] J. K. Hollingsworth and M. Steele. Grind-
stone: A Test Suite for Parallel Performance
Tools. Computer Science Technical Report
CS-TR-3703, University of Maryland, Octo-
ber 1996.

[12] Portland Group Inc. Product documentation.
http://www.pgroup.com/docs.htm.

[13] Forschungszentrum Jülich. ZAMpano (ZAM
Parallel Nodes). http://zampano.zam.kfa-
juelich.de/.

[14] Research Centre Jülich. KOJAK (Kit
for Objective Judgement and Knowledge-
based Detection of Performance Bottle-
necks). http://www.fz-juelich.de/zam/kojak/.

[15] Message Passing Interface Forum. MPI:
A Message Passing Interface Standard, Juni
1995. http://www.mpi-forum.org.

[16] Message Passing Interface Forum. MPI-2:
Extensions to the Message-Passing Interface,
Juli 1997. http://www.mpi-forum.org.

[17] B. P. Miller, M. D. Callaghan, J. M. Cargille,
J. K. Hollingsworth, R. B. Irvine, K. L. Kar-
avanic, K. Kunchithapadam, and T. Newhall.
The Paradyn Parallel Performance Measure-
ment Tool. IEEE Computer, 28(11):37–46,
1995.

[18] B. Mohr, A. Malony, S. Shende, and F. Wolf.
Design and Prototype of a Performance Tool
Interface for OpenMP. The Journal of Super-
computing, 23:105–128, 2002.

[19] OpenMP Architecture Review Board.
OpenMP Fortran Application Program
Interface - Version 2.0, November 2000.
http://www.openmp.org.

[20] IST Working Group APART (Automatic Per-
formance Analysis: Real and Tools). Home-
page. http://www.fz-juelich.de/apart/.

[21] S. Shende, A. D. Malony, J. Cuny, K. Lind-
lan, P. Beckman, and S. Karmesin. Portable
Profiling and Tracing for Parallel Scientific
Applications using C++. In Proc. of the SIG-
METRICS Symposium on Parallel and Dis-
tributed Tools, pages 134–145. ACM, August
1998.

[22] J. Vetter. Performance Analysis of Dis-
tributed Applications using Automatic Clas-
sification of Communication Inefficencies. In
Proc. of the 14th International Conference on
Supercomputing, pages 245–254, Santa Fe,
New Mexico, May 2000.

[23] F. Wolf. EARL - Eine programmier-
bare Umgebung zur Bewertung par-
alleler Prozesse auf Message-Passing-
Systemen. Master’s thesis, RWTH Aachen,
Forschungszentrum Jülich, Jül-Bericht 3551,
June 1998.

[24] F. Wolf and B. Mohr. Automatic Perfor-
mance Analysis of MPI Applications Based
on Event Traces. In Proc. of the European
Conference on Parallel Computing (Euro-
Par), pages 123–132, Munich (Germany),
August 2000.

[25] F. Wolf and B. Mohr. Specifying Perfor-
mance Properties of Parallel Applications Us-
ing Compund Events. Parallel and Dis-
tributed Computing Practices (Special Issue
on Monitoring Systems and Tool Interoper-
ability), In press.

10
Proceedings of the Eleventh Euromicro Conference on Parallel,Distributed and Network-Based Processing (Euro-PDP’03)
0-7695-1875-3/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

