
KOJAK – A Tool Set for
Automatic Performance Analysis of Parallel Programs

Bernd Mohr1 and Felix Wolf2

1 Forschungszentrum Jülich,
Zentralinstitut f̈ur Angewandte Mathematik,

52425 J̈ulich, Germany
b.mohr@fz-juelich.de

2 Innovative Computing Laboratory,
Computer Science Department,

University of Tennessee,
Knoxville, TN 37996

fwolf@cs.utk.edu

Abstract. Today’s parallel computers with SMP nodes provide both multithread-
ing and message passing as their modes of parallel execution. As a consequence,
performance analysis and optimization becomes more difficult and creates a need
for advanced performance tools that are custom made for this class of comput-
ing environments. Current state-of-the-art tools provide valuable assistance in
analyzing the performance ofMPI and OpenMP programs by visualizing the run-
time behavior and calculating statistics over the performance data. However, the
developer of parallel programs is still required to filter out relevant parts from a
huge amount of low-level information shown in numerous displays and map that
information onto program abstractions without tool support.
The KOJAK project (Kit for Objective Judgement and Knowledge-based Detec-
tion of Performance Bottlenecks) is aiming at the development of a generic au-
tomatic performance analysis environment for parallel programs. Performance
problems are specified in terms of execution patterns that represent situations
of inefficient behavior. These patterns are input for an analysis process that rec-
ognizes and quantifies the inefficient behavior in event traces. Mechanisms that
hide the complex relationships within event pattern specifications allow a simple
description of complex inefficient behavior on a high level of abstraction.
The analysis process transforms the event traces into a three-dimensional repre-
sentation of performance behavior. The first dimension is the kind of behavior.
The second dimension describes the behavior’s source-code location and the ex-
ecution phase during which it occurs. Finally, the third dimension gives infor-
mation on the distribution of performance losses across different processes or
threads. The hierarchical organization of each dimension enables the investiga-
tion of performance behavior on varying levels of granularity. Each point of the
representation is uniformly mapped onto the corresponding fraction of execution
time, allowing the convenient correlation of different behavior using only a single
view. In addition, the set of predefined performance problems can be extended to
meet individual (e.g., application-specific) needs.



1 Short Description of the KOJAK Tool Set

Figure1 gives an overview about the architecture of the current prototype and its com-
ponents. TheKOJAK analysis process is composed of two parts: a semi-automatic multi-
level instrumentation of the user application followed by an automatic analysis of the
generated performance data. The first subprocess is called semi-automatic because it
requires the user to slightly modify the makefile and execute the application manually.

Fig. 1.KOJAK tool architecture

To begin the process, the user supplies the application’s source code, written in ei-
ther C, C++, or Fortran, toOPARI (OpenMP Pragma And Region Instrumentor), which
performs automatic instrumentation of OpenMP constructs and redirection of OpenMP-
library calls to instrumented wrapper functions on the source-code level based on the
POMP API [6]. Instrumentation of user functions is done either on the source-code level
using TAU or using a compiler-supplied profiling interface. Instrumentation forMPI

events is accomplished using aPMPI wrapper library, which generatesMPI-specific
events by intercepting calls toMPI functions. All MPI, OpenMP, and user-function in-
strumentation call theEPILOG (Event Processing, Investigating and LOGging) run-time
library, which provides mechanisms for buffering and trace-file creation. At the end of
the instrumentation process the user has a fully instrumented executable.

Running this executable generates a trace file in theEPILOG format. After program
termination, the trace file is fed into theEXPERT (Extensible Performance Tool) ana-
lyzer. The analyzer usesEARL (Event Analysis and Recognition Language) to provide
a high-level view of the raw trace file. We call this view theenhanced event model, and
it is where the actual analysis takes place. The analyzer generates an analysis report,
which serves as input for theEXPERT presenter. Figure2 shows a screendump of the
EXPERTpresenter.



Fig. 2. EXPERT Presenter Example Screendump. Using the color scale shown on the
bottom, the severity of performance problems found (left pane) and their distribution
over the program’s call tree (middle pane) and machine locations (right pane) is dis-
played. By expanding or collapsing nodes n each of the three trees, the analysis can
performed on different levels of ranularity.

In addition, it is possible to convertEPILOG traces intoVTF3 format and analyze
them manually with theVAMPIR event trace analysis tool [8]. We are currently working
on integrating both tools so that the instance with the highest severity of each perfor-
mance problem found can be displayed byVAMPIR on request. This would provide the
ability to analyze the history of inefficient behavior in a time-line diagram or to do
further statistical analysis usingVAMPIR ’s powerful features.

Currently, the measurement components are available for the following platforms:

– Linux IA-32 cluster
– IBM POWER3 AND POWER4 cluster
– SGI MIPScluster (Onyx, Challenge, Origin 2000, Origin 3000)
– SUN SUN FIRE cluster
– CRAY T3E

– HITACHI SR8000-F1

On Linux clusters andHITACHI SR8000-F1 systems the instrumentation of user func-
tions is done automatically using the unpublished profiling interface of thePGI compiler



or of theHITACHI compiler, respectively. For IBM systems, EPILOG provides an auto-
matic binary instrumentor, which has been implemented on top of DPCL. On all other
systems, user function instrumentation must be carried out on the source-code level ei-
ther manually or automatically utilising the TAU instrumententation facilities [4]. The
analysis components are based on Python and run on any workstation or laptop.

2 Additional Information

– TheKOJAK tool suite including the source code can be downloaded from theKOJAK

website. The website also provides a variety of technical papers, presentations, and
screen dumps showing the analysis of example applications.
→ http://www.fz-juelich.de/zam/kojak/

– For more information onEXPERT’s analysis and presentation features, see Felix
Wolf’s Ph.D. thesis [2]. The theoretical aspects can also be found in [3]. A more
detailed overview (than this short description) aboutKOJAK can be found in [1].

– Details on instrumentation of OpenMP applications based on thePOMP interface
are described in [6] and [7].

– More information on the source-code instrumentation of user functions can be
found on the homepages of the TAU [4] and PDT [5] projects.
→ http://www.cs.uoregon.edu/research/paracomp/tau/
→ http://www.cs.uoregon.edu/research/paracomp/pdtoolkit/

– TheKOJAK project is part of the European IST working group APART.
→ http://www.fz-juelich.de/apart/

References

1. F. Wolf, B. Mohr. Automatic Performance Analysis of Hybrid MPI/OpenMP Applications.
11th Euromicro Conference on Parallel, Distributed and Network Based Processing, 2003.

2. F. Wolf. Automatic Performance Analysis on Parallel Computers with SMP Nodes. Disserta-
tion, NIC Series, Vol. 17, Forschunszentrum Jülich, 2002.

3. F. Wolf and B. Mohr. Specifying Performance Properties of Parallel Applications Using Com-
pound Events.Parallel and Distributed Computing Practices (Special Issue on Monitoring
Systems and Tool Interoperability), Vol. 4, No. 3.

4. S. Shende, A. D. Malony, J. Cuny, K. Lindlan, P. Beckman, and S. Karmesin. Portable Profil-
ing and Tracing for Parallel Scientific Applications using C++. InProc. of the SIGMETRICS
Symposium on Parallel and Distributed Tools, pages 134–145. ACM, August 1998.

5. K. A. Lindlan, J. Cuny, A. Malony, S. Shende, B. Mohr, R. Rivenburgh, C. Rasmussen. A Tool
Framework for Static and Dynamic Analysis of Object-Oriented Software with Templates. In
Proc. of Supercomputing 2000, Dallas, TX, 2000.
→ http://www.sc2000.org/techpapr/papers/pap.pap167.pdf

6. B. Mohr, A. Malony, S. Shende, and F. Wolf. Design and Prototype of a Performance Tool
Interface for OpenMP.The Journal of Supercomputing, 23:105–128, 2002.

7. B. Mohr, A. Malony, H.-Ch. Hoppe, F. Schlimbach, G. Haab, J. Hoeflinger, S. Shah. A Per-
formance Monitoring Interface for OpenMP. InProc. of 4th European Workshop on OpenMP
(EWOMP 2002), Rome, Italy, 2002.
→ http://www.caspur.it/ewomp2002/prog.html

8. Pallas GmbH. Visualization and Analysis of MPI Programs
→ http://www.pallas.de/e/products/vampir/

http://www.fz-juelich.de/zam/kojak/
http://www.cs.uoregon.edu/research/paracomp/tau/
http://www.cs.uoregon.edu/research/paracomp/pdtoolkit/
http://www.fz-juelich.de/apart/
http://www.sc2000.org/techpapr/papers/pap.pap167.pdf
http://www.caspur.it/ewomp2002/prog.html
http://www.pallas.de/e/products/vampir/

	KOJAK -- A Tool Set for Automatic Performance Analysis of Parallel Programs
	Bernd Mohr (Forschungszentrum Jülich), Felix Wolf (Innovative Computing Laboratory)

