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The KOJAK performance-analysis environment has been designed to identify a large number of
performance problems on parallel computers with sSMP nodes. The current version concentrates on
parallelism-related performance problems that arise from an inefficient usage of the parallel program-
ming interfaces MPI and OpenMP while ignoring individual CPU performance. The article describes an
extended design of KOJAK capable of diagnosing low individual-cPU performance based on hardware-
counter information and of integrating the results with those of the parallelism-centered analysis.

1. Introduction

The performance of parallel applications is determined by a variety of different factors. Performance
of single components frequently influence the overall behavior in unexpected ways. Application pro-
grammers on current parallel machines have to deal with numerous performance-critical aspects:
different modes of parallel execution, such as message passing, multi-threading or even a combination
of the two, and performance on individual CPUs that is determined by the interaction of different
functional units. In particular, as the gap between microprocessor and memory speed increases, the
understanding of processor-memory interaction becomes crucial to many optimization tasks. As a
consequence, advanced performance tools are needed that integrate all these aspects in a single view.

The KOJAK performance-analysis environment has been designed to identify a large number of
performance problems on typical parallel computers with SMP nodes. Performance problems are
specified in terms of execution patterns to be automatically recognized in event traces. The detected
patterns are then classified and quantified by type and severity, respectively. The results are presented
to the user in a single integrated view along three interconnected dimensions: class of performance
behavior, call path, and thread of execution. Each dimension is arranged in a hierarchy, so that the
user can investigate the behavior on varying levels of detail.

While KOJAK provides a well-integrated tool to analyze parallelism-related performance problems
coming from an inefficient usage of the parallel programming interfaces MPI and OpenMP, it still lacks
the ability to investigate CPU and memory performance in more detail. Hardware counters integrated
in modern microprocessors are an essential tool for monitoring this aspect of performance behavior.
These counters exist as a small set of registers that count occurrences of specific signals related to
the processor’s function. Monitoring these counters facilitates correlation between the structure of
source/object code and the efficiency of the mapping of that code to the underlying architecture.
The article describes an extended design and implementation of KOJAK capable of diagnosing low
application performance based on this type of performance data and shows how the extensions are
integrated with the parallelism-centered analysis.
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After presenting related work in Section 2, we will describe KOJAK’s overall architecture and the
underlying approach in Section 3. Section 4 will outline the extensions done to integrate the new
type of performance problems. Finally, Section 5 will discuss limitations of the approach and propose
possible enhancements.

2. Related Work

In the past few years, much research has been done on performance analysis with hardware counters.
Many tool builders use libraries, such as PAPI [1] or PCL [2] which provide a standard application
programming interface for accessing hardware performance counters on most modern microprocessors.
Higher-level instrumentation tools, such as Dynaprof [3], CATCH [4], SCALEA [5], SvPablo [6] and
TAU [7], already provide a mapping of hardware-counter information onto static or dynamic program
entities. Also, the event-trace visualization tools VAMPIR [8] and Paraver [9] provide hardware-counter
information as part of their time-line views.

There are also other automatic end-user tools that use hardware counters to analyze applications.
Paradyn [10] was the first automatic performance tool based on a hierarchical decomposition of
the search space. It searches for performance problems along various program-resource hierarchies
including the call graph. Performance problems are expressed in terms of a threshold and one or more
metrics, such as CPU time or message rates. The latest release uses PAPI to find memory bottlenecks.
Aksum [11] uses hardware counters in its multi-experiment analysis. A distinctive feature of KOJAK in
contrast to Paradyn and Aksum is the uniform mapping of all performance behavior onto execution
time which allows the convenient correlation of different behavior in a single view.

Also, Fiirlinger et al. [12] propose a design for an automatic online-analysis tool targeting clustered
SsMP architectures. On the lowest level, the tool records hardware-counter information in a distributed
fashion, which is passed on to a hierarchy of agents that transform the low-level information stepwise
into higher-level information. However, the design is still too early to draw a qualified comparison.

3. Performance Analysis with KOJAK
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scription of the instrumentation process can be found in [16]. Running the resulting executable after
linking generates a trace file in the EPILOG format. The EPILOG format is suitable to represent the
executions of MPI, OpenMP, or hybrid parallel applications distributed across one or more (possibly
large) coupled sMP systems. In addition to coupled SMPs, target systems also can be meta-computing
environments as well as more traditional non-coupled or non-SMP systems.

After program termination, the trace file is fed into the EXPERT analyzer. The analyzer does not read
the raw trace file as generated by the tracing library. Instead, it accesses the events through the EARL
abstraction layer [16]. EARL is a high-level interface to access an event trace. Events are identified
by their relative position and are delivered as a list of key-value pairs. These pairs represent event
attributes, such as time and location. In addition to providing random access to single events, EARL
simplifies analysis by establishing links between related events and identifying events that describe
an application’s execution state. The abstraction layer provides both a Python and a C++ interface
and can be used independently of KOJAK for a large variety of performance-analysis tasks.

The highly integrated view of performance behavior KOJAK offers to the user is achieved by uni-
formly quantifying all behavior in terms of the execution time. The entire performance space is
represented as a mapping of a performance problem, a call path, and a location (i.e., process or
thread) onto the fraction of time spent on the problem by that particular thread in that particular
call path. This time is called the severity of the tuple (problem, call path, thread). Each of the three
dimensions is arranged in a hierarchy: the performance problems in a hierarchy of general and specific
ones, the call tree in its natural hierarchy, and the locations in an aggregation hierarchy consisting of
the levels machine, SMP node, process, and finally thread. After completion, the analyzer generates
an analysis report, which serves as input for the EXPERT presenter (Figure 2). The presenter allows
the user to conveniently navigate through the entire search space along all of its dimensions.

The automatic analysis can be combined with VAMPIR [8], which allows the user to investigate
the patterns identified by KOJAK manually in a time-line display. To do this, the user only needs to
convert the EPILOG trace file into the VTF3 format.

4. Covering Individual CPU Performance

The integration of individual-CPU performance affected all levels of the tool environment. The
following subsections briefly explain the necessary changes and extensions.

4.1. Trace Format and Library

The EPILOG trace format has been extended to accommodate hardware-counter values and other
system metrics, such as memory utilization?, as part of all region-entry or exit records. A metric-
description record can be used to define a system metric. The metric is assigned a name, a description,
and a data type (i.e., float or integer). In addition, the user can specify whether the metric is a
counter or a sample that applies to an interval or a distinct point in time, respectively. If it refers
to an interval, the user can specify whether the interval starts at program start or whether the value
covers only the period from the last measurement or to the next measurement. The number and order
of metric-description records defines the layout of a metric-value array attached to the entry and exit
records. The solution provides a high degree of flexibility, since it is not restricted to a particular
set of metrics. However, to improve tool interoperability, EPILOG defines a list of names for common
hardware counters with well-defined semantics. Each metric value adds eight bytes to each enter and
exit record, which is one half or two thirds of their original length, respectively. Please note that all
other event records remain unchanged.

To implement the new features of the trace format, a module to access hardware counters has
been added to the EPILOG tracing library. The current implementation uses PAPI for the low-level
access. However, the flexible module interface allows to easily integrate other hardware counter
interfaces in future versions of our instrumentation system. The user specifies the desired counters
via an environment variable as a colon-separated list of predefined counter names. The module
achieves thread safety by creating per-thread event sets. The module interface consists mainly of
three functions:
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elg_metric_open();
event_set = elg_metric_create();
elg_metric_accum(event_set, value_array);

To initialize the module and check for availability of the requested event set, EPILOG uses the open
call. After that, the create call is used to create a per-thread event set. The object returned is then
supplied to all accumulate calls to read the counters for a particular thread.

4.2. Abstraction Layer

The counters or system metrics are integrated in the EARL abstraction layer as additional attributes
of enter and exit events and are conveniently accessible using their name as a key. In addition, the
trace-file object provides methods to query the number and kind of hardware metrics available in the
trace file. The following Python code example shows how to access a metric value of an event.

n = trace.get_nmets() # get number of metrics

mobj = trace.get_met (i) # get metric i

mname = mobj[’name’] # get name attribute of metric i

e = trace.event (k) # get k-th event

print e[mname] # print value of metric i for event k

4.3. Analyzer

As pointed out in Section 3, the highly integrated view of performance behavior provided by KOJAK
comes from the fact that all behavior is uniformly mapped onto execution time. However, in view
of highly optimized processor architectures capable of out-of-order execution, it is hard to determine
the time penalty introduced by, for example, cache misses. Even estimates are often inaccurate and
highly platform dependent.

Instead, KOJAK identifies tuples (call path, thread) whose occurrence ratio of a particular hardware
event is below or above a certain threshold. The execution time of these tuples delivers an upper bound
of the problem’s real penalty, allows the user to compare CPU-performance problems to parallelism-
related problems, and narrows attention down to the affected call path and thread. We specified two
experimental performance problems to be used in the analyzer.

L1 data cache misses per time above average: It computes for every tuple (call path, thread)
the cache misses per time. It also computes the total number of misses and divides it by the
total execution time to obtain the average miss rate. Then, the analyzer assigns to all tuples
whose miss rate is above the average a severity value that is equal to the entire execution time
associated with the tuple. The severity of the remaining ones is set to zero.

Floating-point operations per time below 25 % peak: This property computes for every tuple
(call path, thread) the number of floating point operations per time. Since there is no way of
automatically determining the peak flop rate, it must be set at installation time. Then, the
analyzer assigns to all tuples whose flop rate is 25 % below the peak a severity value that is
equal to the entire execution time associated with the tuple. The severity of the remaining ones
is again set to zero.

The way how data is displayed by KOJAK requires siblings in the problem hierarchy to be non-
overlapping. That means that a thread cannot contribute to two sibling problems during overlapping
wall-clock intervals. However, inefficient cache behavior can easily coexist with weak floating-point
performance or parallelism-related problems. Since the severity assigned by KOJAK to a tuple (call
path, thread) with respect to a counter-related performance problem is always zero or equal to the
entire execution time of the tuple, the above requirement could be relaxed to accommodate cache
performance on the same level as floating-point performance.

On some platforms, not all counters needed to analyze these performance problems can be recorded
simultaneously. Also, to limit the trace-file size the user might not want to record all of them in the
same run. For this reason, the analyzer automatically checks for availability of certain metrics and
ignores the corresponding performance problems if the data are not available.
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Figure 2. KOJAK’s display of cache behavior for the ASCI benchmark SWEEP3D.

Figure 2 shows the cache behavior of the SWEEP3D AscI benchmark [17] on a Power4 platform.
Since PAPI cannot measure floating-point instructions and L1 data cache misses simultaneously on
Power4, the analysis was restricted to L1 data cache misses only. The left pane represents the problem
(i.e., property) hierarchy, the middle pane represents the call tree, and the right pane represents the
location hierarchy, consisting of the levels machine, SMP node, and process. Since SWEEP3D is a pure
MPI application, the thread level is hidden.

Each node in the display carries a severity value, which is a percentages of the total execution time.
The value appears twice as a number and as a colored icon left to it allowing the easy identification
of hot spots. The translation of colors to numbers is defined in the color scale at the bottom. By
expanding or collapsing nodes in each of the three trees, the analysis can performed on different
levels of granularity. A collapsed node always represents the entire subtree, an expanded node only
represents itself not including its children.

The left tree shows how much time was spent on a particular performance problem by the entire
program, that is across all tuples (call path, thread). In the example, the execution-time fraction of all
tuples with above-average L1 Data Cache miss rate is 15.3 %. Selecting this performance problem, as
shown in the figure, causes the middle pane to display its distribution across the call tree, whose nodes
are labeled with a function name together with the line number from which it was called. Apparently,
some of the MPI calls exhibit a miss rate above the average, whereas the computational parts seem to
be without major findings. Finally, the right tree shows the severity of the selected call path broken
down to different processes.

Interesting is that among the identified call paths the two with the highest execution time (i.e.,
the selected one with 5.8 % and another one with 4,7 %) have also been identified to be the source
of a non-negligible Late Sender problem, that is, nearly all of the execution time was actually spent
waiting on a message to be received (not shown in the figure). Therefore, the question arises whether
a more cache-friendly receive function would be able to significantly speed up the application, since
it wouldn’t necessarily speed up the delivery of the message it was waiting for most of the time.

5. Conclusion

As the previous example suggests, KOJAK’s ability to analyze parallelism and individual-cPU perfor-
mance problems simultaneously can provide useful insights into the performance behavior of a parallel
application and help avoid hastily conclusions that might occur based on lesser integrated data.

However, while the way KOJAK defines the severity of counter-based performance problems allows
a high level of integration with parallelism-related behavior, it does not give much information on the
actual run-time penalty. Also, the classification ’above or below a certain threshold’ does not even



say how far above or below. Therefore, we believe that the time-based view should be combined with
additional views that provide the actual occurrence numbers and rates of the hardware events. Also,
the current set of counter-based problems (i.e., cache and floating point) needs to be extended to
cover additional aspects of individual-CPU performance, such as, for example, TLB misses. Since often
not all desired counters can be recorded simultaneously, methods are needed to combine the data
obtained from multiple experiments offline - thereby taking into account the limited reproducibility
of a single experiment.
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