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Introduction 

 Many factors contribute to overall application performance in today’s high-
performance cluster computing environments.  These factors include the memory sub-
system, network hardware and software stack, compilers and libraries, and I/O sub-
system.   The large variability in hardware and software configurations present in 
clusters can cause application performance to also exhibit large variability on differ-
ent platforms or on the same platform over time.  Compute-intensive applications may 
perform well on an architecture with efficient utilization of CPU and single-processor 
memory, such as the Intel Xeon, while memory-intensive applications may perform 
well on an architecture with good scalability of the memory subsystem, such as the 
AMD Opteron node [6].  Even with a fixed hardware configuration, software factors 
can cause large variations in performance.  Compilers that produce acceptable code 
on some platform configurations may produce suboptimal code on other platform 
variants.  Some math libraries require hand tuning of various compiled-in parameters, 
and a library that is hand-tuned for one platform may perform poorly on a different 
variant of the same platform.  Some libraries (e.g., BLAS, LAPACK) have standard-
ized APIs that are shared across different implementations that can have considerable 
variations in performance.  It can be difficult to predict which library variant will per-
form best on a particular platform without testing each variant on that platform.  If an 
application is updated and/or ported to a platform originally not supported, the opti-
mization flags in the application Makefile may be anachronistic or otherwise inappro-
priate and may need to be altered to achieve acceptable performance on new target 
platforms and platform variants. 

                                                        
1 This work is supported by DOE SciDAC under grants CE-FC02-01ER25490 and CE-FG02-

01ER25510 and by NSF PACI under grant NSF-ACI-9619019 subaward #790. 
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     Since the first steps in performance tuning of an application are to use the best 
compiler flags and the best implementations of library code available for that plat-
form, automated collection of performance data for benchmark and application codes 
that test these factors can help system administrators and application developers in 
making the correct default and application-specific selections, respectively. 
     Application developers may have a choice of cluster systems on which to run and 
may need performance data that characterizes their application, for example as com-
pute, memory, or I/O intensive, in order to make the best choice.  If performance data 
for benchmark codes with similar characteristics have already been collected, applica-
tion developers can make an appropriate choice without having to optimize and run 
their code on all the available systems. 

Once a particular system has been selected and the best compile flags and libraries 
determined, further performance improvement will involve hand tuning.  Routine-
level and/or loop-level profile data based on both timing and hardware counter met-
rics, including derived metrics such as instructions per cycle (IPC) and the floating 
point to memory operations ratio (F:M), can help point to areas of the code that will 
benefit from particular hand-tuning techniques (e.g., outer loop unrolling for nested 
loops with low F:M ratio).  Event tracing can help to further pinpoint specific per-
formance problems.  However, the majority of application scientists do not have the 
time or inclination to make extensive changes to their source code in order to collect 
performance data.  Furthermore, analyzing large amounts of performance data can be 
a daunting task, and pinpointing specific performance problems that will benefit most 
from hand tuning can be like looking for a needle in a haystack.  Determining the 
cause of a performance problem and how to fix it often requires specialized knowl-
edge of the architecture and its interaction with the compiler and runtime system.  
Automated analysis of performance data can help reduce the dimensionality of the 
performance metric space, identify points in the space that indicate performance prob-
lems, and map those points onto locations in the source code.    

The remainder of this paper describes the following tools that address the above is-
sues: 
? ? the PerfSuite collection of easy-to-use tools, utilities, and libraries for perform-

ance analysis on Linux clusters 
? ? the Dynaprof tool for inserting performance measurement instrumentation di-

rectly into a running application’s address space at run time, and 
? ? the CUBE display tool for interactive exploration of a multidimensional perform-

ance space based on a processor-node-cluster hierarchy 
 

PerfSuite  
 

     PerfSuite is a collection of tools, utilities, and libraries for software performance 
analysis where the primary design goals are ease of use, comprehensibility, interop-
erability, robustness, and simplicity. PerfSuite development was motivated primarily 
by the lack of available, reliable, low- or no-cost software suitable for use on Linux 
clusters in a production environment with the widest possible variety of application 
software.  The user community of the NSF supercomputer center program conducts 
research across a wide variety of scientific and engineering domains and the produc-
tion codes used on these resources are no longer limited to the traditional Fortran-77 
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style shared-memory-parallel application code.  It is common to see languages such as 
C, C++ and Java as the primary languages used in computationally-intensive simula-
tions, so performance analysis support for applications written in these languages is 
essential for general-purpose use. 
     At the National Center for Supercomputing Applications (NCSA), a transition 
from shared -memory multiprocessors such as the SGI Origin 2000 array, which had 
been the mainstay of production computing resources in the second half of the 1990's, 
to Intel IA32-based and (later) IA64-based Linux clusters equipped with Myrinet in-
terconnects represented a major shift in the computing paradigm.  This shift affected 
not only the way that researchers and application developers designed and imple-
mented their software, but in addition had substantial implications with respect to the 
supporting software available for sophisticated performance analysis.  Like many 
vendors of HPC systems, the IRIX operating system used on the Origin offers a 
wealth of excellent GUI-based performance anal ysis tools to the user provided in the 
SpeedShop package.  Additionally, a simple yet powerful command line utility "pe r-
fex" and a high-level API are provided for users who wish to collect detailed pe r-
formance-related data with minimal effort [28].  In practice, it was noted that a sub-
stantial majority of  users tended to prefer the simpler interfaces to performance 
analysis in  their development efforts and frequently found that the basic yet accurate 
data provided by the simpler tools were sufficient for their analysis needs. 
     With the arrival of the IA32 and IA64 Linux clusters at NCSA in 2002, the lack of 
any similar capabilities was immediately apparent.  Fortunately, the then-current re-
lease of the PAPI library [19] and the underlying performance counter drivers that it 
uses provided the low-level access to the data and functionality required to support 
similar tools on both architectures and so design and development of what became 
PerfSuite began.  It is important to note that the motivation for PerfSuite was and is 
not research-oriented, but rather was to address an immediate need of the general sc i-
entific and engineering communities - as a result, design decisions are heavily influ-
enced by an assessment of the anticipated tradeoff between sophist icated capabilities 
that may be of long-term interest only to the computer science and tool developer 
communities versus simpler capabilities more likely to be of benefit in day-to-day use 
in the field by end users.  We feel that the bias towards simplicity pays off in stability, 
ease-of-use, maintainability, comprehensibility, and learnability for the broadest pos-
sible audience.  Prototype releases of PerfSuite software were made internally in late 
2002 and began to see initial adoption by technical staff working directly with the 
NCSA user community shortly thereafter [11,12].  

     Figure 1 is a block diagram that shows the organization of a subset of Per fSuite 
software that addresses hardware performance event data.  PerfSuite also provides 
additional support for other common tasks in performance analysis such as MPI 
communication statistics and compiler optimization interpretation that are not ad-
dressed in this paper. The software is designed to be independent of the underlying 
mechanism for accessing pe rformance data and this is reflected in the insulation of the 
user-accessible components (the command-line utility psrun and supporting libraries) 
from external software support.  While the current release supports PAPI (versions 2 
and 3) software releases , it is possible to use an entirely different supporting library to 
access performance data and indeed an instance of this type of replacement already 
exists for access to statistical profiling support using the standard profil() routine in 
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the GNU C (and similar) libraries.  The existence of this alternate interface allows the 
installation and use of PerfSuite on platforms where PAPI is not available and/or sup-
ported, albeit with a restricted set of functionality.              

 
Fig. 1.  PerfSuite structure 

PerfSuite includes the following command-line utilities: 
? ? psinv: a utility that provides access to information about the characteristics of a 

machine (e.g., processor type, cache information, available performance coun t-
ers) 

? ? psprocess: a utility that assists with a number of common tasks related to pre - 
and post-processing of performance measuremenets  

? ? psrun: a utility for hardware performance event counting and profiling of sin-
gle-threaded, POSIX threads -based, and MPI applications.  Performance 
counter multiplexing is supported.  psrun requires no source code changes or 
relinking of the application.   

       psrun operates in one of two modes: "counting" mode or "profiling" mode. In 
counting mode, psrun reports overall performance informatio n for the monitored 
program, while in profiling mode, psrun relates hardware performance event occu r-
rences to the program's source code in much the same way as time -based profilers 
like gprof. Optionally, psrun can also monitor other resource usage of an a pplica-
tion (e.g, maximum memory usage, faults, swaps, user/system time, exit inform a-
tion, etc). psrun makes use of the XML standa rd for data representation to enhance 
the flexibility and cross-platform compatibility of the data collected.  By default, 
psrun uses the PAPI library for access to hardware performance counters [1]. After 
psrun has generated performance co unter measurement file(s), the psprocess co m-
mand-line utility can be used to convert the data into a text-based format that lists 
the hardware performance data as well as a number of metrics that can be d erived 
from the raw counter values.  The events that psrun monitors are specified by pr o-
viding an event configuration file in the form of an XML document.  Default con-
figuration files are provided which select appropriate hardware events depending 
on the architecture. 
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In keeping with the philosophy of favoring simplicity over full -featured environ-
ments, each component of PerfSuite addresses one simple, well -defined task.  For ex-
ample, the psrun tool is the gateway to the most essential aspect of the performance 
analysis process: it is responsible for configuring the performance experiment as d i-
rected by the user, acquiring performance data for the application, and deposi ting the 
raw data in XML format to an output stream.  It does not attempt to further process 
the data nor to present it in a form more suitable for human consumption.  The 
psprocess tool's responsibility is to transform the raw performance data gene rated by 
psrun into a report that can be used by the performance analyst or application deve l-
oper.  The user need not explicitly specify the precise type of performance data co n-
tained in the XML documents presented to psprocess - the tool adapts itself based on 
the XML document type encountered.  Currently supported XML document types in-
clude: 

? ? single process hardware performance counting measurements  
? ? multiple hardware performance counting measurements combined into a single 
? ? "multi-experiment" XML document  
? ? single-process stat istical profiling measurements using either hardware 
? ? performance based data or time -based data through profil()  
 

      psprocess limits itself to directly generating text -based output, as we have 
found in practice that this is sufficient for the day-to-day needs of most users incorpo-
rating performance analysis in their development cycle.  Another important influence 
on the choice of maintaining simplicity by limiting psprocess output to text-based re-
ports is that there have been substantial advances in the development of easily acce s-
sible GUI libraries over the past decade.  While in the past, the development of a 
graphical user interface may have required a sustained effort by experienced pr o-
grammers fluent in toolkits such as Motif or Swing, today it is possible to rapidly de-
velop a prototype GUI that is tailored precisely to the user's needs.  Indeed, many 
production-quality GUIs are now developed entirely within the context of high-level 
scripting languages such as Perl, Python, and Tcl/Tk (psprocess itself is written in 
Tcl).  We believe that by providing essential data collection functionality presented in 
a standard format (XML) for which a wide variety of parsers are readily available that 
we "open up" the data for the broadest possible audience of pot ential users and do not 
limit the use or presentation of the data in any pre-determined format or style. This 
approach also allows us to leverage existing work in GUI development; for e xample, 
psprocess can be directed through a command -line option to deposit the transformed 
XML statistical profiling data generated by psrun in a format compatible with the 
VProf toolkit developed by Curtis Janssen of Sandia National Labs [9]. VProf's 
graphical interface (based on the Trolltech Qt library) has shown itself to  be a conven-
ient and accessible tool for exploring performance data within communities such as 
those using NCSA resources.   Figure 2 shows a screenshot of a VProf display of pr o-
filing data collected using psrun. 
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Fig. 2. Vprof display of profile data collected using psrun 

 
 Here are the steps required for a user to conduct a performance experiment  

of an MPI-based application using PerfSuite.  If the goal is to perform  
aggregate performance measurement from application start to comple tion,  
it's sufficient to enter at the command-line or in a batch script: 
 
$ mpirun -np 8 psrun pcg 
$ psprocess psrun.PID.xml  
 
This example uses an application named "pcg" using 8 MPI tasks.  Each of the tasks 
will write out an XML document named (by default) "psrun.PID.xml", where PID is 
replaced by the process ID  of the application instance.  For an 8-processor run, this 
will result in eight separate XML files.  The user may then examine each of these files 
individually by post-processing with psprocess a s shown above.  In this case, per-
formance information will be displayed as shown in Figure 3: 
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Fig. 3. Text-based performance output from a single process (counting mode)  

 
 

PerfSuite Hardware Performance Summary Report  
 
Version                                       :  1.0 
Created                                       :  Thu Apr 01 10:43:50 AM CST 2004 
Generator                                   :  psprocess 0.2 
XML Source                              :  pcg-8p-2ppn.20035.xml 
 
Execution Information 
================================================================ 
Date                                           :  Wed Mar 31 18:28:52 2004 
Host                                           :  cn003 
User                                           :  rkufrin 
 
Processor and System Information  
================================================================ 
Node CPUs                               :  2 
Vendor                                       :  Intel 
Family                                       :  Pentium Pro (P6) 
CPU Revision                           :  6 
Clock (MHz)                            :  997.001 
Memory (MB)                          :  1510.82 
Pagesize (KB)                           :  4 
 
Cache Information 
================================================================  
Cache levels                              :  2 
--------------------------------  
Level 1 
Type                                          :  instruction 
Size (KB)                                  :  16 
Linesize (B)                              :  32 
Assoc                                        :  4 
Type                                          :  data 
Size (KB)                                  :  16 
Linesize (B)                               :  32 
Assoc                                         :  4 
--------------------------------  
Level 2 
Type                                          :  unified 
Size (KB)                                  :  256 
Linesize (B)                              :  32 
Assoc                                        :  8 
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Fig. 3. (cont.) 

 
 

Index Description                                                                                                         Counter Value 
======================================================================  
    1 Conditional branch instructions..................................                                            17353508735 
    2 Branch instructions..............................................                                                   17344906363 
    3 Conditional branch instructions mispredicted.....................                                       322161562 
    4 Conditional branch instructions taken............................                                        12481985055 
    5 Branch target address cache misses...............................                                             888816252 
    6 Requests for exclusive access to clean cache line................                                         25498507 
    7 Requests for cache line invalidation.............................                                                28142160 
    8 Requests for cache line intervention.............................                                                17579637 
    9 Requests for exclusive access to shared cache line...............                                        30047790 
   10 Floating point multiply instructions.............................                                              284143164 
   11 Floating point divide instructions...............................                                                    9123114 
   12 Floating point instructions......................................                                                    573805313 
   13 Hardware interrupts..............................................                                                              71188 
   14 Total cycles.....................................................                                                     136942513622 
   15 Instructions issued..............................................                                                  114255067874 
   16 Instructions completed...........................................                                              102258408172 
   17 Vector/SIMD instructions.........................................                                                                 0 
   18 Level 1 data cache accesses......... .............................                                             78079180353 
   19 Level 1 data cache misses........................................                                                  510888983 
   20 Level 1 instruction cache accesses...............................                                        134868207990 
   21 Level 1 instruction cache misses.................................                                                 45070810 
   22 Level 1 instruction cache reads..................................                                          134809529833 
   23 Level 1 load misses..............................................                                                      422414635 
   24 Level 1 store misses........... ..................................                                                        28906112 
   25 Level 1 cache misses.............................................                                                    503221275 
   26 Level 2 data cache  reads.........................................                                                   424398044 
   27 Level 2 data cache writes........................................                                                    28811783 
   28 Level 2 instruction cache accesses...............................                                               47087108 
   29 Level 2 instruction cache reads..................................                                                 44898190 
   30 Level 2 cache misses.............................................                                                    358556969 
   31 Cycles stalled on any resource...................................                                          62025866772 
   32 Instruction translation lookaside buffer misses..................                                           2311907 
 
Event Index 
======================================================================  
    1: PAPI_BR_CN          2: PAPI_BR_INS         3: PAPI_BR_MSP         4: PAPI_BR_TKN 
    5: PAPI_BTAC_M       6: PAPI_CA_CLN       7: PAPI_CA_INV          8: PAPI_CA_ITV 
    9: PAPI_CA_SHR      10: PAPI_FML_INS     11: PAPI_FDV_INS      12: PAPI_FP_INS 
   13: PAPI_HW_INT     14: PAPI_TOT_CY      15: PAPI_TOT_IIS        16: PAPI_TOT_INS 
   17: PAPI_VEC_INS    18: PAPI_L1_DCA       19: PAPI_L1_DCM       20: PAPI_L1_ICA  
   21: PAPI_L1_ICM       22: PAPI_L1_ICR        23: PAPI_L1_LDM       24: PAPI_L1_STM  
   25: PAPI_L1_TCM      26: PAPI_L2_DCR       27: PAPI_L2_DCW      28: PAPI_L2_ICA 
   29: PAPI_L2_ICR        30: PAPI_L2_TCM       31: PAPI_RES_STL     32: PAPI_TLB_IM  
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Fig. 3.  (cont.) 

The user may extend the scope of the report to include aggregrate information co l-
lected from all MPI tasks by first combining the individual XML documents into a 
single "multi-document" using psprocess, and then repeating the post-processing step 
with the new multi-document, as follows: 
 
$ psprocess -c psrun.*.xml > combined.xml 
$ psprocess combined.xml  
 
 
 

Statistics 
============================================================== 
Counting domain........................................................                                                 user 
Multiplexed............................................................                                                       yes
Graduated floating point instructions per cycle........................                                0.004 
Vector instructions per cycle..........................................                                          0.000 
Floating point instructions per graduated instruction..................                             0.006 
Vector instructions per graduated instruction..........................                                 0.000 
Floating point instructions per level 1 data cache access..............                           0.007 
Graduated instructions per cycle.......................................                                       0.747 
Issued instructions per cycle..........................................                                           0.834 
Graduated instructions per issued instruction..........................                                 0.895 
Issued instructions per level 1 instruction cache miss.................                       2535.013 
Graduated instructions per level 1 instruction cache miss..............                    2268.839 
Level 1 instruction cache miss ratio...................................                               0.000 
Level 1 data cache accesses per graduated instruction..................                           0.764 
% floating point instructions of all graduated instructions............                           0.561 
% cycles stalled on any resource.......................................                                     45.293 
Level 1 instruction cache misses per issued instruction................                           0.000 
Level 1 cache read miss ratio (instruction)............................                                   0.000 
Level 1 cache miss ratio (data)........................................                                         0.007 
Level 1 cache miss ratio (instruction).................................                                      0.000 
Bandwidth used to level 1 cache (MB/s).................................                             117.237 
Bandwidth used to level 2 cache (MB/s).................................                               83.534 
MFLIPS (cycles)........................................................                                               4.178 
MFLIPS (wall clock)....................................................                                            3.943 
MVOPS (cycles).........................................................                                              0.000 
MVOPS (wall clock).....................................................                                           0.000 
MIPS (cycles)..........................................................                                             744.486 
MIPS (wall clock)......................................................                                           702.628 
CPU time (seconds).....................................................                                         137.354 
Wall clock time (seconds)..............................................                                       145.537
% CPU utilization......................................................                                             94.378 
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Fig. 4.   Text-based performance output from a parallel run (counting mode) 

 

PerfSuite Hardware Performance Summary Report  
 
Version                                        :  1.0 
Created                                        :  Thu Apr 01 10:54:05 AM CST 2004 
Generator                                     :  psprocess 0.2 
XML Source                                :  combined.xml 
 
Execution Information 
===================================================================== 
Date                                             :  Wed Mar 31 06:28:52 PM CST 2004 
Hosts                                           :  cn003 cn004 cn005 cn006 
Users                                           :  rkufrin 
 
Aggregate St atistics                                           Min       Max    Median      Mean    StdDev      Sum 
===================================================================== 
% CPU utilization...............                              92.68     94.86      94.24       94.00      0.72     751.99
% cycles stalled on any resour                            7.10     75.42      58.03       53.86     21.70   430.90 
% floating point instructions of all graduated instructions 
                                                                             0.00        1.26       0.81        0.77       0.39        6.14 
Bandwidth used to level 1 cache (MB/s) 
                                                                             0.75    161.66    136.20    122.36     51.00   978.89 
Bandwidth used to level 2 cache (MB/s) 
                                                                             0.38    140.33    112.68    100.70     44.18   805.62 
CPU time (seconds)..............                           136.21    137.40    137.23    136.92      0.53  1095.40
Floating point instructions per graduated instruction 
                                                                              0.00         0.01        0.01        0.01      0.00      0.06 
Floating point instructions per level 1 data cache access  
                                                                              0.00         0.01        0.01        0.01      0.00      0.08 
Graduated floating point instructions per cycle 
                                                                              0.00         0.01        0.01        0.00      0.00      0.04 
Graduated instructions                                          0.50         1.11        0.63        0.69      0.20      5.54
Graduated instructions per issued instruction       0.43         0.90        0.66        0.67      0.18     5.38 
Graduated instructions per level 1 instruction cache miss 
                                                             1331.06  71290.13   1995.55  10647.95  24506.02 85183.61 
Issued instructions per cycle...                              0.79        1.28        1.03        1.05      0.20      8.39 
Issued instructions per level 1 instruction cache miss 
                                                           2437.11  82205.88   3131.90  13081.17  27941.92 104649.37 
Level 1 cache miss ratio (data).                             0.00        0.01        0.01        0.01      0.00      0.06
Level 1 cache miss ratio (instruction)                    0.00      0.00      0.00      0.00      0.00      0.00 
Level 1 cache read miss ratio (instruction)            0.00      0.00      0.00      0.00      0.00      0.00 
Level 1 data cache accesses per graduated instruction  
                                                                                0.69      0.85      0.79      0.79      0.05      6.31 
Level 1 instruction cache miss                               0.00      0.00      0.00      0.00      0.00      0.00 
Level 1 instruction cache misses per issued instruction    
                                                                                0.00      0.00      0.00      0.00      0.00      0.00 
MFLIPS (cycles).................                                    0.00      6.31      5.14      4.65      2.00     37.21 
MFLIPS (wall clock).............                                  0.00      5.85      4.83      4.37      1.87     34.93 
MIPS (cycles)...................                           498.73   1107.23    632.90    690.91    194.84   5527.31 
MIPS (wall clock)............                           462.20   1044.74    594.26    650.07    185.79   5200.53 
MVOPS (cycles).........                                              0.00      0.00      0.00      0.00      0.00      0.00 
MVOPS (wall clock)..............                                   0.00      0.00      0.00      0.00      0.00      0.00 
Vector instructions per cycle...                                  0.00      0.00      0.00      0.00      0.00      0.00 
Vector instructions per graduated insdtruction         0.00      0.00      0.00      0.00      0.00      0.00 
Wall clock time (seconds).......                              144.72   147.05 145.46    145.67    0.89 1165.38 
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Figure 4 shows an example of this type of performance reporting.  To allow for 
more scalable handling of potentially large processor -count runs, information is dis-
played using standard descriptive statistics (e.g., mean/max/min, deviation).  The in-
tent is to allow the user to quickly isolate outliers with respect to performance that can 
be then examined more closely to determine specific causes for performance degrad a-
tion.   In the case of this particular example (pcg), the algorithm dedicates one proce s-
sor to handling I/O activities and therefore there is a single task that displays signifi-
cantly different behavior than the remainder.  By isolating and removing this 
extraneous task f rom the aggregate report (by simply not including it in the combining 
step above), the user can focus on those tasks that are performing the bulk of the 
computational work. 

With minimal effort, the performance analysis with PerfSuite can be adjusted to 
work in profiling mode.  There is no need for the user to modify their build process 
for their application in any way, with the exception of retaining symbol table informa-
tion to allow for mapping of program addresses to specific source code locations.  U s-
ing PerfSuite in profiling mode is accomplished by specifying an alternate XML con-
figuration document, as follows: 
 
$ mpirun -np 8 psrun -c /usr/share/perfsuite/xml/pshwpc/papi_profile_cycles.xml pcg  
$ psprocess -e pcg psrun.PID.xml  
 

This minor change to the command-line used to invoke psrun results in an XML 
document being created that records the results of a statistical profiling experiment 
using any PAPI event as a trigger (this is similar to functionality provided in SGI's 
SpeedShop toolset).  An example of the output of psprocess (edited to reduce space 
requirements) when applied to such an experiment is shown in Figure 5. 

As previously mentioned, the primary motivation for PerfSuite development was to 
enable easy-to-use and general techniques for performance analysis on IA-32 and IA-
64 Linux clusters at NCSA.  However, the software was soon adopted for center -wide 
use with the express purpose of automating the performance analysis of the entire 
workload of jobs running on NCSA's large-scale Pentium and Itanium clusters.  Be-
cause user intervention is not required and measurements can be obtained with arbi-
trary existing applications, PerfSuite was incorporated within the software stack at 
NCSA to be used on all parallel applications submitted to these clusters. Within the 
span of eight months, nearly five million records of performance data were gathered 
this way and stored in a relational database for use in later workload characterization 
analysis.  This automatic collection continues (now expanded to include the largest 
single cluster deployed to date at NCSA, a 2500+ processor Intel Xeon cluster, cu r-
rently #4 on the Top500 supercomputer list). 
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Fig. 5.  Abbreviated psprocess output from a profiling experiment 

 

PerfSuite Hardware Performance Summary Report  
 
Profile Information 
====================================================================== 
Class                                           :  PAPI 
Event                                          :   PAPI_TOT_CYC (Total cycles) 
Period                                         :  10000000 
Samples                                      :  10422 
Domain                                       :  user 
Run Time                                    :  126.26 (seconds) 
Min Self %                                 :  (all) 
 
Module Summary 
------------------------------ --------------------------------------------------  
Samples   Self %  Total %  Module  
    10030   96.24%   96.24%  /u/ncsa/rkufrin/apps/pcg/pcg 
       374    3.59%   99.83%  /lib/libc-2.2.4.so 
         17    0.16%   99.99%  /lib/libpthread-0.9.so 

1 0.01%  100.00%  /lib/libm-2.2.4.so 
 
File Summary 
--------------------------------------------------------------------------------  
Samples   Self %  Total %  File 
     8177   78.46%   78.46%  /u/ncsa/rkufrin/apps/pcg/matvect.c  
     980    9.40%   87.86%  /u/ncsa/rkufrin/apps/pcg/main.c 
     624    5.99%   93.85% 
/usr/src/build/85131-i386/BUILD/glibc-2.2.4/csu/init.c 
     244    2.34%   96.19%  /u/ncsa/rkufrin/apps/pcg/vector.c  
     230    2.21%   98.40% 
/usr/src/build/85131-i386/BUILD/glibc-2.2.4/string/../sysdeps/generic/memcpy.c  
      72    0.69%   99.09% 
/usr/src/build/85131-i386/BUILD/glibc-2.2.4/malloc/malloc.c 
      28    0.27%   99.36% 
/usr/src/build/85131-i386/BUILD/glibc-2.2.4/stdlib/strtod.c 
      11    0.11%   99.46% 
/usr/src/build/85131-i386/BUILD/glibc-2.2.4/stdio-common/vfscanf.c  
       8    0.08%   99.54% 
/usr/src/build/85131-i386/BUILD/glibc-2.2.4/linuxthreads/mutex.c 
       7    0.07%   99.61% 
/usr/src/build/85131-i386/BUILD/glibc-2.2.4/libio/../sysdeps/i386/bits/string.h 
       7    0.07%   99.67% 
/usr/src/build/85131-i386/BUILD/glibc-2.2.4/string/../sysdeps/generic/strncpy.c 
       4    0.04%   99.71%  /u/ncsa/rkufrin/apps/pcg/dmio.c 
Function Summary 
--------------------------------------------------------------------------------  
Samples   Self %  Tota l %  Function 
    8177   78.46%   78.46%  dvec_mult_dspmat 
       980    9.40%   87.86%  preconditioning 
       624    5.99%   93.85%  ? 
       230    2.21%   96.06%  memcpy  
       125    1.20%   97.26%  dvec_all_dotprod 
       105    1.01%   98.26%  saxpy 
        67    0.64%   98.91%  chunk_free 
      29    0.28%   99.18%  __strtod_internal 
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The initial performance collection yielded extremely interesting and useful results 
and provided concrete information regarding the effective utilization of Linux-based 
clusters for state -of-the-art high-performance computing resource s.  For example, it 
was learned that the fraction of user applications achieving ten percent of the peak 
theoretical floating point performance was approximately 12% on NCSA's Pentium 
III cluster and approximately 7% on first -generation Itanium hardware.  High-level 
performance characterizations such as enabled by these studies make it possible for 
center management to easily assess the effectiveness of the resources delivered to the 
user community and also provides awareness of specific applications that m ight be 
good candidates for more focused efforts in optimization by the developers and exte r-
nal performance experts.  Figure 6 shows an example of a graphical breakdown of the 
NCSA workload characteriz ation obtained using PerfSuite during a portion of 2003. 

 

 
Fig. 6.   Workload characterization of IA -64 applications on NCSA clusters 

DynaProf 

DynaProf is a performance analysis tool designed to insert performance measur e-
ment instrumentation directly into a running application’s address space at run time 
[5]. The instrumentation included with the current release of DynaProf can measure 
real-time as well as any hardware performance metrics available through the PAPI 
hardware performance counter library. Run-time instrumentation of the object code 
has numerous advantages over traditional source-based performance profiling sy s-
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tems, most significant of which is the elimination of the interference of calls to the in-
strumentation with the compiler's optimization passes. For aggressive ly scheduled 
processors, significant code reorganization and subroutine inlining are often required 
for maximal utilization of the processors functional units and can interfere with 
source-code based performance instrumentation.  An additional benefit is the removal 
of the instrumentation’s dependency on the compilation process. The type and format 
of the instrumentation can be changed without recompiling the application, and in-
strumentation can be both inserted and removed dynamically while the application is 
running.  On Linux systems, DynaProf is based on the freely available Dyninst dy-
namic instrumentation library from University of Maryland [2]. 

DynaProf provides a simple easy -to-use command line interface.  Commands are 
provided for loading or attaching to an executable, listing the modules and functions 
and instrumentation points, and inserting instrumentation in the form of probes.  For 
threaded codes, DynaProf detects a threaded executable and loads a special version of 
the probe library that detects thread creation and termination and instruments all 
threads.  For MPI programs, DynaProf provides a special load command that e nables 
instrumentation of all the MPI processes. 

The current release of Dynaprof includes several measurement p robes.  The fol-
lowing three probes provide the ability to instrument specific regions of code:  

? ? papiprobe for measuring PAPI preset and native events 
? ? papiclock for measuring PAPI real -time and virtual-time cycles 
? ? wallclock for measuring real-time 

These probes generate inclusive, exclusive, and 1-level call tree profile data for each 
instrumented function.  Post-processing scripts are provided that display the  profile 
data in human readable form.   
      papiprobe gathers measurements using PAPI [1,19].  PAPI  uses the processor's 
hardware performance counters to measure specific hardware events like cache 
misses, branch mis-predictions and floating point instructions. By default, if no argu-
ment is specified, papiprobe defaults to counting with PAPI_FP_INS, or floating 
point instructions.  Currently, Dynaprof uses PAPI in the user domain. This means 
that only events that occur in user context will be counted. Other activity on the sys-
tem will not appreciably affect the counts of most operations except resources that 
must be flushed and reloaded upon context switches, like caches and TLBs. Note that 
the papiprobe also supports multiplexing of counters. That is, if you pass more events 
than your processor can count at any one given time, papiprobe will timeshare the 
counting hardware to give the illusion that there are far more counters available than 
actually exist on the hardware. 

The wallclock probe takes no arguments. It very simply measures elapsed real -time 
which is sometimes referred to as wallclock time. It does this using the highest resolu-
tion and lowest latency real time clock available on the host architecture. The output 
units are in microseconds.  

DynaProf inserts instrumentation directly into the application's address space. This 
is accomplished through a run-time code generation and patching mechanism based 
upon either Dyninst or DPCL, IBM's derivative effort. Whenever a function is in-
strumented, all its children are instrumented as well. This is to enable the probe to 
generate both inclusive and exclusive metrics.  
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Dynaprof does not enforce the manner in which each probe is to generate its out-
put. By not placing these restrictions on the probe modules, the probe designer is free 
to determine whatever output format is most appropriate, be that a real ti me binary 
data feed to a visualization engine or a static data file dumped to disk at the end of the 
run. The probes included with Dynaprof write the collected data to disk either when 
the application finishes or the user explicitly sends the application a SIGHUP signal. 
This signal causes the probe module to flush the data to disk. Note that this data will 
be overwritten at the end of the run, so it is recommended that the user copy this data 
to a new file as soon as the flush has been performed. Currently , both the PAPI probe 
and the Wallclock probe produce a compact file consisting of encoded ASCII data. 
The data files are created in the directory where the application exists. Each probe 
prints a message to this effect when the probe is first initialized.  The files are named 
<executable.pid>, where pid is the process identifier. For multithreaded applications, 
each thread generates a data file of the form <executable.pid.tid> where tid is the 
thread identifier. 

Figure 7 shows an example of loading the swim application (a popular shallow water 
benchmark), enabling use of papiprobe, instrumenting selected functions, running the applica-
tion, and generating a report.  The instrumentation measures Level 1 Instruction and 
Level 1 Data Cache Misses.  
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Fig. 7.  Using DynaProf to instrument the swim application and display performance data 

 

(dynaprof) load tests/swim  
(dynaprof) use probes/papiprobe PAPI_L1_DCM, PAPI_L1_ICM   
(dynaprof) instr function swim.F calc*  
swim.F, inserted 8 instrumentation points  
(dynaprof) run 
papiprobe: output goes to /home/mucci/work/dynaprof/tests/swim.7366  
 SPEC benchmark 102.swim 
   
 NUMBER OF POINTS IN THE X DIRECTION      512 
 NUMBER OF POINTS IN T HE Y DIRECTION      512 
 GRID SPACING IN THE X DIRECTION       25000. 
 GRID SPACING IN THE Y DIRECTION       25000. 
 TIME STEP                               20. 
 TIME FILTER PARAMETER                  0.001 
 NUMBER OF ITERATIONS                     120 
 
 CYCLE NUMBER   60 MODEL TIME IN   HOURS  0.33 
 
 Pcheck =   0.1314E+11 
 Ucheck =   0.5215E+05 
 Vcheck =   0.5215E+05 
 
 
 CYCLE NUMBER   120 MODEL TIME IN   HOURS  0.67 
 
Pcheck =   0.1314E+11 
 Ucheck =   0.5215E+05 
 Vcheck =   0.5215E+05 
 
Program exited normally.  
Now let's display the data. 
 
[mucci@nebula]$ probes/papiproberpt /home/mucci/work/dynaprof/tests/swim.7366 > out  
Output file             : /home/mucci/work/dynaprof/tests/swim.7366  
Option string           : PAPI_L1_DCM,PAPI_L1_ICM  
Processor                : 1198 Mhz GenuineIntel Intel Pentium III rev 0x1 (1-way) 
Total metrics measured  : 2 
Metric 1:               : PAPI_L1_DCM, Level 1 data cache misses (Native 0x45,0x45)  
Metric 2:               : PAPI_L1_ICM, Level 1 instruction cache misses (Native 0xf28,0xf28 ) 
Total functions         : 4 
 
Exclusive Profile of Metric PAPI_L1_DCM.  
 
Name            Percent         Total           Calls    
-------------    -------         -----           --------  
TOTAL           100             5.155e+08       1        
calc3_          52.73           2.718e+08       118      
calc2_          38.52           1.986e+08       120      
calc1_          8.086           4.168e+07       120      
unknown         0.3937          2.03e+06        1        
calc3z_         0.2722          1.403e+06       1        
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Fig. 7. (cont.) 

 
 
Inclusive Profile of Metric PAPI_L1_DCM.  
 
Name            Percent         Total           SubCalls 
-------------   -------         -----           -------- 
TOTAL           100             5.155e+08       0        
calc3_          52.73           2.718e+08       0        
calc2_          38.52           1.986e+08       0        
calc1_          8.086           4.168e+07       0        
calc3z_         0.2722          1.403e+06       0        
 
1-Level Inclusive Call Tree of Metric PAPI_L1_DCM.  
 
Parent/-Child   Percent         Total           Calls    
-------------   -------         -----           -------- 
TOTAL           100             5.155e+08       1        
calc1_          100             4.168e+07       120      
calc2_          100             1.986e+08       120      
calc3z_         100             1.403e+06       1        
calc3_          100             2.718e+08       118      
 
Exclusive Profile of Metric PAPI_L1_ICM.  
 
Name            Percent         Total           Calls    
-------------   -------         -----           -------- 
TOTAL           100             9.916e+04       1        
unknown         29.52           2.927e+04       1        
calc2_          24.01           2.381e+04       120      
calc1_          23.5            2.331e+04       120      
calc3_          22.87           2.268e+04       118      
calc3z_         0.09378         93              1        
 
Inclusive Profile of Metric PAPI_L1_ICM.  
 
Name            Percent         Total           SubCalls 
-------------   -------         -----           -------- 
TOTAL           100             9.916e+04       0        
calc2_          24.01           2.381e+04       0        
calc1_          23.5            2.331e+04       0        
calc3_          22.87           2.268e+04       0        
calc3z_         0.09378         93              0        
 
1-Level Inclusive Call Tree of Metric PAPI_L1_ICM.  
 
Parent/-Child   Percent         Total           Calls    
-------------   -------         -----           -------- 
TOTAL           100             9.916e+04       1        
calc1_          100             2.331e+04       120      
calc2_          100             2.381e+04       120      
calc3z_         100             93              1        
calc3_          100             2.268e+04       118 
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CUBE 

Acceptance of performance tools among program developers is often limited by 
their complexity [18], which is usually perceived through a tool's user interface. Un-
fortunately, the development of user interfaces is a costly issue, so we designed and 
implemented a generic GUI named CUBE [24] explicitly emphasizing simplicity by 
combining only a small number of orthogonal features. 

CUBE (CUBE Uniform Behavioral Encoding) is a generic viewer that provides the 
ability to interactively browse through a multidimensional performance space. The 
performance space is essentially a mapping of metrics onto pro gram resources, such 
as the call tree, and system resources, such as nodes and processes. The input of 
CUBE is a performance experiment stored in an XML -based file format. Similar to 
Paradyn [16], CUBE displays the different dimensions of the performance s pace con-
sistently using tree browsers. However, since we are interested in interactively explor-
ing a mapping of all metric/resources combinations onto numbers as opposed to high-
lighting a limited set of resource foci, we provide a flexible mechanism to sel ect a 
particular section of the performance space that contains a subset of the values pr o-
vided by the data set and offer functionality to aggregate values within and across the 
different dimensions. The display is divided into three parts. The left pane contains 
various metrics organized in a specialization hierarchy (i.e., the metric tree), while the 
middle pane shows the call tree with its nodes representing call paths and the left pane 
shows the system hierarchy consisting of nodes and processes or thre ads running on 
them. Alternatively, the user can switch from the call-tree view to a flat -profile repre-
sentation giving the performance for functions as opposed to call paths. Figure 7 
shows various metrics calculated from event traces for the SWEEP3D benc hmark 
running on a Linux cluster. 

Every tree -node in the display is labeled with a metric value, which is displayed 
simultaneously using a number as well as a colored icon. Colors enable the easy iden-
tification of nodes of interest even in a large tree, whereas the numerical values enable 
the precise comparison of individual values. The color is taken from a typical spe c-
trum, as it is usually used for temperature scales. The idea is to assign small values a 
``cold'' color and big values a ``hot'' color.  A value shown in the metric tree repre-
sents the sum of a particular metric for the entire program, that is, across all call paths 
and the entire system.  A value shown in the call tree represents the sum of the se-
lected metric across the entire system for a particular call path. A value shown in the 
system tree represents the selected metric for the selected call path and a particular 
system entity. Briefly, a tree is always an aggregation of all of its neighbor trees to the 
right.  For example, the user can click on a particular metric and see its distribution 
across the call tree. Other than that, the user can specify a certain level of detail by 
collapsing and expanding nodes. In collapsed state, a node aggregates across the e n-
tire subtree rooted at itself, in expanded state it represents only itself without any child 
nodes. The user can switch between absolute values and percentages relative to the 
overall execution time. To facilitate the comparison between different e xperiments the 
user can select another experiment as the basis for computing the pe rcentages. Also, 
the GUI includes a source-code display that shows the position of a function or call 
site when clicking on it in the call tree. CUBE is implemented in C++ using the 
wxWidgets GUI toolkit [26] and libxml2 [14] to parse the XML format.  
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Fig. 8.  CUBE display of performance data for SWEED3D benchmark  

 
CUBE is generic in that the underlying data model is independent of specific met-

rics. It includes an API to write data files and can be used by any tool mapping met-
rics onto program and system resources in a profile -like fashion. Since flat profiles 
can be represented as a single-level call tree, it is not limited to tree profiles. A dis-
tinct feature of CUBE is its ability to support cr oss-experiment analysis by allowing 
the user to compute difference experiments from two experiments with different ex e-
cution parameters or different code versions. The difference experiment is displayed 
just like an ordinary one only with the metric values replaced by difference values, so 
that the user can browse through all the program and system resources and see where 
and how much the performance differs. Since difference values happen to be negative 
and positive for different program or system resource s, we graphically represent 
mathematical sign by giving the color icon a relief. A raised relief symbolizes a pos i-
tive sign, whereas a sunken relief symbolizes a negative sign (Figure 8).  

To demonstrate CUBE's usefulness in practice, we have combined it w ith KOJAK 
[25,8], an integrated performance evaluation environment for OpenMP and/or MPI 
applications, which is available for a large number of UNIX platforms including 
Linux clusters. KOJAK generates event traces from running applications and auto-
matically searches them offline for execution patterns indicating inefficient perform-
ance behavior. In this way, KOJAK transforms the huge amount of low -level data into 
a compact representation of performance behavior to be co nsumed by the end user. 

KOJAK includes both tools for event-trace generation and post-mortem event -trace 
analysis. Recording of events related to OpenMP parallel execution is supported 



  Mucci, Dongarra, Moore, Song, Wolf, and Kufrin   20

through the POMP [17] profiling interface for OpenMP. The OPARI preprocessor i n-
cluded in KOJAK allows users to automatically instrument the OpenMP constructs in 
their codes. On Linux systems, automatic instrumentations of user functions can be 
accomplished using third-party software, such as TAU [23] or the PGI compiler [20]. 
The PGI compiler provides a profiling  interface that notifies the tracing library of 
function entry and exit events when the function was compiled using a specific com-
pile flag. Besides analyzing inefficient use of the parallel programming model, 
KOJAK provides the ability to assess CPU and m emory performance by analyzing 
counts of low-level hardware events collected with PAPI [1], such as cache misses or 
floating point instructions. 

Changing execution parameters for a program can alter its performance behavior. 
Altering the performance behavior means that different results are achieved for diffe r-
ent metrics. Some might increase while others might decrease. Some might rise in 
certain parts of the program only, while they drop off in other parts. Finding the rea-
son for a gain or loss in overall performance often requires considering the perfor m-
ance change as a multidimensional structure. With CUBE's difference operator, a user 
can view this structure by computing the difference between two experiments and 
rendering the virtual result experiment like a real one. 

We demonstrate this feature by comparing two different domain -decomposition 
strategies for CX3D [15]. CX3D is an MPI application used to simulate Czochralski 
crystal growth, a method applied in the silicon-wafer production.  The simulation 
covers the convection processes occurring in a rotating cylindrical crucible filled with 
liquid melt. The convection, which strongly influences the chemical and physical 
properties of the growing crystal, is described by a system of partial differential eq ua-
tions.  The crucible is modeled as a three-dimensional cubic mesh with its round 
shape expressed by cyclic border conditions. The mesh is distributed across the avai l-
able processes using a two-dimensional spatial decomposition. The application was 
executed on an Intel Pentium III Xeon 550 MHz cluster with eight 4-way SMP nodes 
connected through Myrinet. We ran the application with a total of 16 processes on 
four nodes. 

We used a 16 x 1 decomposition for the first and a 4 x 4 decomposition for the 
second experiment. The application was compiled and instrumented using the PGI 
compiler. We generated an event trace for each configuration and processed both of 
them using KOJAK, obtaining one CUBE experiment per trace. After that, we applied 
the difference opera tor to the two experiments (i.e., we computed (4 x 4) - (16 x 1)) 
yielding a virtual difference experiment, which is shown in Figures 9 and 10. 

The left pane with label ``Metrics'' provides the aggregated difference for all met-
rics. In Figure 9, the root metric is collapsed and shows the difference in total execu-
tion time. The difference is negative, as indicated by a minus sign and a sunken relief 
of the color square, so the 4 x 4 version performed better. Expanding the metric tree, 
as in Figure 10, reveals that in spite of the better overall performance, the late -sender 
problem (i.e., a receiver waiting for a message that has not been sent yet) became 
more severe, as indicated by a missing minus sign and a raised relief of the color 
square. The middle pane contains the distribution of this waiting time across the call 
tree. It turns out that the aggravated late -sender problem came from a call path that 
was not taken in the 16 x 1 version. The conclusion is that the positive effect of the 4 
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x 4 configuration is to some extent overridden by the increased late -sender problem, 
which points to an opportunity for further improvement.  

 

 
 

Fig. 9.   CUBE analysis of CX3D executions showing difference in total execution 
time 
 

 
 
Fig. 10. CUBE analysis of CX3D executions showing differences in more specialized 
performance me trics 

Related Work 

There are a multitude of interactive browsers, such as AKSUM [22], HPCview 
[13], and SvPablo [4] that correlate the program structure with differen t performance 
metrics. From a technical viewpoint, also the coloring of nodes in the tree to symbol-
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ize a numeric value has been previously applied, for example, in the xlcb corefile [27] 
browser. The CUBE display's distinctive feature is the combination of  a generic API 
that makes it available for third-party tools together with its ability to calculate and 
display difference experiments. Historically, CUBE emerged from the KOJAK [25] 
project, where a similar browser was used to present the results of event -trace analy-
sis. 

The logic used to calculate difference experiments extends the framework for 
multi-execution performance tuning by Karavanic et al. [7], which was used in the 
Paradyn project [16] for an optimization strategy based on using historical perf orm-
ance data to guide the search for performance bottlenecks. The most significant di f-
ference between CUBE and their framework is that the difference experiment can be 
processed and viewed like an ordinary one, that is, the difference operation is closed. 

 The concept of combining multiple experiments in a single (albeit virtual) experi-
ment can be of great benefit when used together with experiment generators, such as 
ZENTURIO [21]. Likewise, the CUBE difference operation could as well work on 
data stored in a performance database, such as PerfDBF [3].  

 

Conclusions and Future Work 

Used collectively at different stages of the application development, testing, and 
tuning cycle, the above suite of tools can help reduce the time and effort involved in 
achieving good application performance on Linux clusters.   

Further work is needed to integrate these tools.  For example, we plan to write 
DynaProf probes to produce XML formatted data for PerfSuite and CUBE.  
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