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Abstract

Performance tuning of parallel applications usually in-
volves multiple experiments to compare the effects of differ-
ent optimization strategies. This article describes an alge-
bra that can be used to compare, integrate, and summarize
performance data from multiple sources. The algebra con-
sists of a data model to represent the data in a platform-
independent fashion plus arithmetic operations to merge,
subtract, and average the data from different experiments.
A distinctive feature of this approach is its closure property,
which allows processing and viewing all instances of the
data model in the same way - regardless of whether they
represent original or derived data - in addition to an arbi-
trary and easy composition of operations.

Keywords: performance tool, multiexperiment analysis,
tool interoperability, performance algebra, visualization

1 Introduction

Performance optimization of parallel applications usu-
ally involves multiple experiments to compare the effects
of different code versions, different execution configura-
tions, or different input data. For example, the experiments
may reflect different algorithms, different domain decom-
positions, or different problem sizes. In addition, hardware
characteristics may limit the availability of certain perfor-
mance data, such as performance counters, in a single run,
requiring multiple experiments to obtain a full set of data.
Other than that, a user may wish to combine the results ob-
tained using different monitoring tools that cannot be ap-
plied simultaneously. Also, the influence of system noise
often creates a need to run the same experiment more than
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once in order to smooth the effect of random errors. Finally,
data coming from analytical models or simulations consti-
tute another class of data that need to be compared to those
already mentioned.

The traditional practice of comparing different exper-
iments is to put multiple single-experiment views side
by side or to plot overlay diagrams, which is limited in
its ability to draw a differentiated picture of performance
changes because the hierarchical structures of the perfor-
mance space, as they exist between performance metrics
or program and system entities are typically ignored. A
comprehensive and generic approach to extract important
cross-experiment information along resource hierarchiesis
the framework for multi-execution performance tuning by
Karavanic and Miller [11], which includes an operator to
calculate a list of resources showing a significant discrep-
ancy between different experiments. However, this differ-
ence operator maps from its input space containing entire
experiments into a smaller representation (i.e., a list of re-
sources). A repeated application is not possible, further pro-
cessing would require a logic or a display different from one
suitable for the original input data.

The key idea of our approach is that the output of cross-
experiment analysis can be represented just like its input,
which allows us to use the same set of tools to process and,
in particular, display it. This article describes an algebra
namedCUBE (CUBE Uniform BehavioralEncoding) that can
be used to compare, integrate, and summarize performance
data of message-passing and/or multithreaded applications
from multiple experiments including results obtained from
simulations and analytical modeling.CUBE instantiates and
extends the aforementioned framework by Karavanic and
Miller and consists of a data model to represent the data in
a platform-independent fashion plus arithmetic operations
to subtract, merge, or average the data from multiple ex-
periments. Our main contribution is that all operations are
closed in that their results are mapped into the same space,
yielding an entire “derived” experiment including data and
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metadata. As an important consequence of the closure prop-
erty, we have been able to build an interactive viewer that al-
lows convenient browsing through all elements of this space
- regardless of whether they represent original experiments
or derived experiments obtained by applying operations to
original data. In addition, we can easily define composite
operations, for example, in order to compute the difference
of averaged data.

The article is organized as follows: In Section 2, we dis-
cuss theCUBE data model, followed by a description of the
algebraic operations that can be performed on its instances
in Section 3. After introducing theCUBE display compo-
nent in Section 4, we demonstrate our method’s usefulness
using two practical examples in Section 5. Finally, we con-
sider related work in Section 6 and present our conclusion
plus future work in Section 7.

2 Data Model

Most performance data sets representing experiments,
models, or simulations have a similar structure in that they
are essentially mappings of program and system entities,
such as functions and processes, onto a domain defined by
one or more performance metrics, such as time and floating-
point operations. The purpose of theCUBE data model was
to give those commonalities a formal frame suitable for the
definition of complex arithmetic operations.

The CUBE data modeldescribes entity types to which
performance data can refer, relationships between entities,
and constraints that must be satisfied by a valid model in-
stance. It consists of three different dimensions: a metric
dimension, a program dimension, and a system dimension.
Motivated by the need to represent performance behavior
on different levels of granularity as well as to express nat-
ural hierarchical relationships among program and system
resources, each dimension is organized in a hierarchy. A
severity function determines how the different entities are
mapped onto the actual metric values.

The metric dimension is represented as a forest consist-
ing of multiple trees. Each metric has a name and a unit of
measurement, which can either be seconds, bytes, or num-
ber of event occurrences. Within each tree, all metrics must
have the same unit of measurement. To qualify for par-
entship of another metric, a metric must include the child
metric. For example, execution time includes communica-
tion time and cache accesses include cache misses. Making
a tool aware of this inclusion relationship by arranging met-
rics in a tree has the advantage that exclusive metrics can
be computed automatically, for example, cache hits can be
computed by subtracting misses from accesses.

The program dimension describes the static and dynamic
program structure. Entities that can be defined include mod-
ules, regions, call sites, and call-tree nodes (i.e., call paths).

A region is a general code section representing a function,
a loop, or another type of basic block. Regions must be
properly nested. Although a call site is called as such, it is
more general and denotes a source-code location where the
control flow may move from one region into another region.
For example, a loop entry point is a call site according to our
definition. The region that can be reached by executing the
call site is called its callee. The set of all call-tree nodesmay
form a forest with multiple root nodes, but in most cases
there will be a single root node representing the invocation
of the main function. A parallel program with different ex-
ecutables, however, may need more than one root. Every
call-tree node points to the call site from where the node
was entered. Note that there may be multiple nodes point-
ing to the same call site. Recursive programs, whose call
structure is a possibly cyclic graph and not a tree, must be
mapped onto a tree, for example, by collapsing loops in the
graph into a single leaf node.

The system dimension defines hard- and software enti-
ties of the system on which the program is executed. It
is a forest consisting of the levels machine, node, process,
and thread from top to bottom. A machine is a collection
of nodes and can be a cluster or a massively parallel pro-
cessor, such as theCRAY T3E. A node may host multi-
ple processes, which can be split up into multiple threads.
To simplify the merging of system hierarchies, the model
more or less disregards the physical characteristics of ma-
chines and nodes and considers them mainly as a logical
grouping of processes for the purpose of aggregating per-
formance data. Nested thread-level parallelism is currently
not supported. Since the thread level is mandatory, pure
message-passing applications are represented as a collec-
tion of single-threaded processes.

Experiments. A valid instance of this data model is called
a CUBE experimentand consists of two parts: metadata and
data. The metadata part defines a set of metrics plus sets
of program and system resources, as prescribed by the data
model. As the data model allows a hierarchical arrangement
of the different dimensions, ordering relations between their
elements are included as well. The data part includes a
severityfunction that maps tuples (metric� , call path�,
thread

�
) onto the accumulated value of the metric� mea-

sured while the thread
�

was executing in call path�.

The severity function requires that data are mapped onto
the call tree. Many performance tools, however, generate
data referring to regions instead of call paths, that is, they
generate flat profiles. This is not really a restriction, since
every flat profile can be represented using multiple trivial
call trees (one for each region) consisting only of a single
node. Also, the severity of a certain tuple may be negative
if it represents a difference between two experiments.
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Data Format. CUBE experiments can be stored in the
CUBE XML format. The format is specified using the
XMLSchema language. A file representing aCUBE exper-
iment consists of two parts: the metadata and the severity
function values. The severity values are stored as a three-
dimensional array with one dimension for the metric, one
for the call path, and one for the thread. We have imple-
mented a C++API to read experiments from a file and to
create experiments and write them to a file. TheAPI is a
simple class interface with fewer than fifteen methods.

3 Operations

In addition to reading and writing experiments, we allow
experiments to be transformed by applying certain opera-
tors. The domain of all operators is the set of validCUBE

experiments. The range is always a subset of the domain
so that the domain is never left. That is, the output of an
operator can always be used as input for another operator,
enabling the simple specification of complex operations by
creating composite operators. To distinguish original data
that has been collected during a real experiment from data
that is the result of an operator we call the latter experiment
aderivedexperiment as opposed to anoriginal experiment.

Operators. We have defined three algebraic operators
that we deem most useful for performance analysis. Oth-
ers may follow in the future.

� Difference

� Merge

� Mean

The mean operator takes an arbitrary number of argu-
ments, whereas the difference and merge operator are bi-
nary operators. However, since their range is a subset of the
domain, a user can construct composite operators involving
far more than two operands.

The difference operator takes two experiments and com-
putes a derived experiment whose severity function reflects
the difference between the minuend’s severity and the sub-
trahend’s severity. This feature is useful to compare the ef-
fects of code or parameter changes along the different di-
mensions of the data model.

The merge operator’s purpose is the integration of per-
formance data from different sources. Often a certain com-
bination of performance metrics cannot be measured during
a single run. For example, certain combinations of hard-
ware events cannot be counted simultaneously due to hard-
ware resource limits. Or the combination of performance
metrics requires using different monitoring tools that can-
not be deployed during the same run. The merge operator

takes twoCUBE experiments with a different or overlapping
set of metrics and yields a derivedCUBE experiment with a
joint set of metrics.

On parallel systems, unrelated system activities often
perturb performance experiments in a way that lets results
vary across multiple executions. For example, the execu-
tion time of a program can be different for separate runs
even if all user-controlled execution parameters remain sta-
ble. Also, a user might want to combine several execution
parameters in an overall picture in order to make a single
statement about the performance for a range of execution
parameters. The mean operator is intended to smooth the
effects of random errors introduced by unrelated system ac-
tivity during an experiment or to summarize across a range
of execution parameters. To summarize in this manner, the
user can conduct several experiments and create one derived
experiment from the whole series.

Implementation. The actions performed by the operators
can be divided into two subtasks: metadata integration fol-
lowed by the actual arithmetic operation. It is obvious thatif
the metadata of the two operands are equal (i.e., if the struc-
ture of the metric, the program, and the system dimension is
the same) the operation is reduced to a simple arithmetic op-
eration on corresponding elements of the three-dimensional
severity arrays. In the case of the difference operator this
corresponds to an element-wise subtraction and in the case
of the mean operator to an element-wise mean operation.
As the merge operator is intended to join experiments in-
volving different metrics, there is no simple case for this
one.

However, the general case we have to deal with is two
experiments with different metadata. In most cases the op-
erators make sense only if there is at least some similarity
between them. For example, computing the mean of exper-
iments that test entirely different programs is generally not
helpful. On the contrary, the difference between program
runs with slightly different call trees can help in comparing
the performance of alternative program versions. The next
subsection deals with the task of integrating two different
metadata sets.

Metadata Integration. Before executing the actual arith-
metic operation when applying an operator to multiple ex-
periments, we first need to integrate their metadata sets. The
integration of one or more metadata sets consists of three
separate parts: merging the metric dimension, the program
dimension, and the system dimension. Merging metric trees
and call trees can be more or less reduced to the task of
merging arbitrary trees. Except for a different equality re-
lation to compare the nodes in a tree, the procedure is very
similar. To do this, we use the multi-execution framework’s
[11] structural merge operator. While traversing from the
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roots to the leaves, we try to match up the nodes from the
two metadata sets using the equality relation. The equality
relation is based on node attributes, such as name and unit of
measurement for a metric or the callee for a node in the call
tree. Nodes that cannot be matched are separately included
in the new metadata set, whereas nodes that can be success-
fully matched become shared nodes, that is, they appear as
a single node in the new metadata. The matching occurs
in a top-down fashion with the consequence that once two
nodes are considered different, the entire subtrees rootedat
these nodes will both become part of the new metadata set
even if they contain matching child nodes. When matching
nodes in a call tree we have to take into account that certain
call site attributes, such as line numbers, can change across
different code versions but still refer to the “same” call site,
a problem we have not addressed yet and which requires
further consideration.

Integrating the system dimension is slightly different.
Here, we have four levels with different meanings: ma-
chine, node, process, and thread. First, processes and
threads are matched based on their application-level iden-
tifiers, for example, their globalMPI rank andOpenMP

thread number. The upper levels of the system hierarchy
are not matched. Instead,CUBE either copies the entire
node and machine hierarchy including the corresponding
process-node mapping of one of the operand experiments
into the result experiment or it collapses the hierarchy to
a single machine and a single node. If not specified oth-
erwise, the latter option is the default if the partitioningof
processes into nodes is not compatible among the operands.

The focus ofCUBE is to provide automatic merging
mechanisms that follow simple rules and create predictable
results without requiring manual intervention. As the de-
fault behavior might not satisfy the user in all possible sit-
uation, switches have been included to change the default
according to a user’s needs.

Arithmetic Operation. After the metadata have been in-
tegrated, a new severity function is computed whose domain
is defined by the integrated metadata. This happens by an
element-wise operation on the two input arrays. To be able
to perform an element-wise operation, the operand’s sever-
ity function needs to be extended with respect to the inte-
grated metadata so that it is defined for every tuple (metric,
call path, thread) of the new metadata. This is done by as-
signing zero to previously undefined tuples. For example, a
call path occurring in one metadata set might not occur in
another. If this happens the resulting value for this call path
will be set to zero in those experiments that didn’t contain
the call path before.

In the case of the difference or the mean operators, the
element-wise operation is just a subtraction or mean oper-
ation, respectively. In the case of the merge operator we

make a simple case distinction. Recall that the purpose
of the merge operator was to integrate performance experi-
ments with different metrics. For example, one experiment
counts floating point operations, and another one counts
cache misses, since we might not be able to count both of
them simultaneously. So, if the metric is provided only by
one experiment we take the data from that experiment. If
it is provided by both experiments we take it from the first
one without loss of generality.

Note that all operators return a complete (albeit derived)
CUBE experiment consisting of an integrated metadata set
and a severity function with the integrated metadata as its
domain.

4 Display Component

A natural application of theCUBE performance algebra
is visual presentation. The closure property allows us to
treat derived experiments just like original ones. For this
purpose, we have implemented theCUBE display, a generic
viewer that provides the ability to interactively browse
through the multidimensional performance space defined by
any validCUBE experiment, whether it is derived or origi-
nal.

As acceptance of performance tools among program de-
velopers is often limited by their complexity [14], our de-
sign emphasizes simplicity by combining a small number
of orthogonal features with a limited set of user actions.
Similar to Paradyn,CUBE displays the different dimensions
of the performance space consistently using tree browsers
(Figure 1). More than that,CUBE allows the user to interac-
tively explore the severity mapping of metric/resource com-
binations onto the corresponding values. Since the space of
all such combinations is large,CUBE provides the ability
to select a view representing only a subset of the mapping
plus flexible aggregation mechanisms to control the level of
detail. In addition, theGUI includes a source-code display
that shows the exact position of a performance problem in
the source code. TheCUBE display is implemented in C++
using the wxWidgetsGUI toolkit and libxml2 to parse the
CUBE XML format. Currently,CUBE supports mostUNIX

platforms and a Windows version is in preparation.

Basic Principles. TheCUBE display consists of three tree
browsers, representing the metric, the program, and the sys-
tem dimension from left to right (Figure 1). The user can
switch between a call tree or a flat-profile view of the pro-
gram dimension. The call-tree view, as shown in the figure,
is the default. The nodes in the metric tree represent perfor-
mance metrics, the nodes in the call tree represent call paths,
and the nodes in the system tree represent machines, nodes,
processes, and threads from top to bottom. The thread level
of single-threaded applications is hidden.
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Figure 1. The CUBE display showing the metric tree, the call t ree, and the system tree from left to
right. The selected node in the metric tree indicates large w aiting times in front of MPI barriers.

A user can perform two types of actions: selecting a node
or expanding/collapsing a node. At any time, there are two
nodes selected, one in the metric tree and another one in the
call tree. Currently, it is not possible to select a node in the
system tree. Each node is labeled with a severity value (i.e.,
a metric value). A value shown in the metric tree represents
the sum of a particular metric for the entire program, that is,
across all call paths and the entire system. A value shown in
the call tree represents the sum of the selected metric across
the entire system for a particular call path. A value shown
in the system tree represents the selected metric for the se-
lected call path and a particular system entity. All numbers
can be displayed either as absolute values or as percent-
ages of a maximum value. Percentages can be normalized
with respect to other experiments to simplify the compari-
son. To help identify metric/resources combinations with a
high severity more quickly, all values are ranked using col-
ors. While the color indicates the severity’s absolute value,
its sign is indicated by giving the square a relief: a raised
relief for positive values and a sunken relief for negative
values. Depending on the severity representation, a color
legend shows a numeric scale mapping colors onto values.

Note that all hierarchies inCUBE are inclusion hierar-
chies, meaning that a child node represents a subset of
the parent node. For instance, in Figure 1 Wait-at-Barrier,
which denotes the waiting time in front of barriers, is a sub-
set of Synchronization. The severity displayed inCUBE fol-
lows the principle ofsingle representation, that is, within a

tree each fraction of the severity is displayed only once. The
purpose of this display strategy is to have a particular per-
formance problem to appear only once in the tree and, thus,
help identify it more quickly. In Figure 1, the value at Syn-
chronization refers only to those synchronization times that
are not covered by descendant nodes, that is, those that are
neither waiting times in front or completion times after the
barrier. After collapsing the Synchronization node, the la-
bel would show the entire time spent in MPI barriers. Thus,
the display provides two aggregation mechanisms: aggrega-
tion across dimensions by selecting a node, and aggregation
within a dimension by collapsing a node.

The emphasis ofCUBE was not the invention of a new
display in a technical sense. After all, the use of tree
browsers is not revolutionary and even the coloring of nodes
in the tree to symbolize a numeric value has been previ-
ously applied, for example, in the xlcb [15] corefile browser.
However,CUBE demonstrates that the simplicity of the data
model can be transferred into an interactive display with
flexible view-selection capabilities by restricting the design
to a very small number of orthogonal mechanisms.

5 Examples

This section demonstrates the advantages of our ap-
proach using two realistic examples. We illustrate how to
conduct a before-after comparison by browsing through the
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difference of two experiments in the same way a user would
browse through original data. We also show howCUBE can
create a very comprehensive picture of performance behav-
ior by combining data sets with different performance met-
rics recorded by different tools and using different modes of
the same tool into one highly-integrated view.

CUBE is currently used by two performance tools:CONE

[21] andEXPERT[22, 23]. AsCUBE provides a genericAPI,
every tool producing performance data matching the very
generalCUBE data model can take advantage of theCUBE

algebra and display.

CONE. CONE is a call-graph profiler forMPI applica-
tions onIBM AIX Power4 platforms which maps hardware-
counter data onto the full call graph including line numbers.
CONE is based on a run-time call-graph tracking technique
[7] developed atIBM . CONE automatically traverses and
instruments the executable in binary form usingDPCL [6]
and causes the target application to make calls to a probe
module responsible for performance monitoring. The per-
formance data collected include wall-clock time as well as
different hardware counters accessible via thePAPI library
[4]. CONE supports several event sets that can be selected
for measurement. Each of them forms a hierarchy of more
general and more specific events, such as cache accesses
and cache misses or instructions and floating-point instruc-
tions, respectively.

EXPERT. EXPERT is a post-mortem performance analy-
sis tool for automatic analysis ofMPI and/orOpenMP traces.
Time-stamped events, such as entering a function or send-
ing a message, are recorded as the target application runs
and are later written to a trace file in theEPILOG format.
After program termination, the trace is searched for exe-
cution patterns that indicate inefficient behavior. The per-
formance problems addressed include inefficient use of the
parallel programming model and lowCPUand memory per-
formance. EXPERT transforms event traces into a com-
pact representation of performance behavior, which is es-
sentially a mapping of tuples (performance problem, call
path, location) onto the time spent on a particular perfor-
mance problem while the program was executing in a par-
ticular call path at a particular location. Depending on the
programming model, a location can be either a process or a
thread. The performance problems are organized in a spe-
cialization hierarchy that contains general problems, such
as large communication overhead, and very specific prob-
lems, such as a receiver waiting for a message as a result of
an inefficient acceptance order. After the analysis has been
finished, the mapping is stored in theCUBE format.

5.1 Subtracting Performance Data

Changing a program can alter its performance behav-
ior. Altering the performance behavior means that differ-
ent results are achieved for different metrics. Some might
increase while others might decrease. Some might rise in
certain parts of the program only, while they drop off in
other parts. Finding the reason for a gain or loss in over-
all performance often requires considering the performance
change as a multidimensional structure. WithCUBE’s dif-
ference operator, a user can view this structure by comput-
ing the difference between two experiments and rendering
the derived result experiment like an original one.

As an example, we show how theCUBE difference oper-
ator can help track the effects of an optimization applied to
PESCAN[5], a nano-structure simulation computing interior
eigenvalues nearest to a given point of a (large) Hermitian
matrix. The core of the application consists of an iterative
eigensolver based on the preconditioned conjugate gradient
method applied to the folded spectrum. The type of compu-
tation performed is a matrix-vector products done viaFFT.

We conducted the experiments on a Intel Pentium III
Xeon 550 MHz cluster with eight 4-waySMP nodes con-
nected through Myrinet. We ran the application with 16
processes on four of the nodes to compute a medium-sized
particle model. Figure 1 shows theCUBE display with a
data set obtained from the unoptimized code version. The
numbers reflect percentages of the overall execution time.
The selected metric in the left tree represents a major per-
formance problem: A large fraction of the execution time is
spent waiting in front of barriers (13.2 %).

Wait-at-Barrier denotes the time a process waits inside
the barrier function for another process to reach it as op-
posed to the time spent in the barrier function after the first
process has left it (i.e., Barrier-Completion) or to collec-
tively execute it (i.e., everything in between). Note that the
distinction between these aspects of barrier synchronization
requires measuring temporal displacements within individ-
ual barrier instances as they are recorded in trace files. Since
Wait-at-Barrier is selected, the call tree shows the locations
of barriers with excessive waiting times highlighted by col-
ors.

The barriers have originally been introduced to avoid
buffer overflow related to the asynchronous point-to-
point communication when computing with large processor
counts on anIBM platform. However, since they are not
needed on a Linux cluster with smaller processor counts,
such as those used in this experiment, we were able to speed
up the application by removing them.

Waiting time at a barrier is caused by reaching the bar-
rier at different points in time, for example as a result of
load or communication imbalance or other delays. Some of
the factors introducing temporal displacements are antipo-
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Figure 2. A difference experiment shows the disappearance a nd migration of waiting times for appli-
cation PESCAN.

dal and cancel each other out if they are not materialized at
a barrier or another synchronizing event. If they are materi-
alized, the time that a process reaches the barrier earlier is
turned into waiting time, which is effectively lost because
after the synchronizing event the processes have caught up
with each other. Worse than that, the contrary displacement
might be materialized as well instead of neutralizing the
previous one. So removing the barriers can save the actual
barrier overhead needed to perform the synchronization as
well as allow contrary displacements to cancel each other
out. Those delays or imbalances that do not have an antipo-
dal counterpart are usually materialized at the next synchro-
nization point following the removed barrier, which can be
a message exchange or a collective operation.

Figure 2 shows a difference experiment obtained by sub-
tracting the optimized version from the original one. Perfor-
mance gains are represented by raised reliefs, performance
losses by sunken reliefs. The numbers are normalized with
respect to the old version and show improvements in per-
cent of the previous execution time. Whereas nearly all
the negative performance effects of barrier synchronization
have been eliminated including waiting time, barrier execu-
tion, and barrier completion, point-to-point communication
(i.e., P2P) and inherent synchronization of collective all-to-
all operations (i.e., Wait-at-NxN) have been increased, pre-
sumably as a result of waiting-time migration.

However, the gross performance balance is clearly pos-
itive. We measured the performance gain for the central

solver routine only without any trace instrumentation. We
created two series of ten experiments for either configura-
tion and took the minimum of each series as a representa-
tive. The speedup obtained for the solver by removing the
barriers was about 16 %.

The waiting time still present in the application reflects
to some extent a computational load imbalance as can be
seen when viewing how execution time without MPI calls is
distributed across the different processes (not shown here).

5.2 Integrating Performance Data

An integration of trace-based analysis to target parallel
performance with counter-based analysis to target memory
performance has proved to be a useful strategy [24] in order
to define bounds for the runtime penalty of cache misses.
An above average cache miss rate was found inMPI calls
of theSWEEP3D benchmark code [2] usingEXPERT. At the
same time, thoseMPI call were identified as the source of
Late-Sender problems with the result that most of the time
spent in those calls was waiting time anyway, rendering the
cache-miss problem insignificant. The monitoring method
applied was recording the number of cache misses as part
of individual trace records. However, recording one or more
hardware-counter values as part of nearly every event record
can increase trace-file size dramatically, a side-effect that
severely limits the scalability of this approach. In this par-
ticular case, the timestamped storage of hardware-counter
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data was even unnecessary, sinceEXPERTdid nothing other
than accumulating the counters for every call path.

Taking advantage of theCUBE merge operator, it is now
possible to record hardware-counter and trace data sepa-
rately. In this way, counter data can be collected as a less
space-intensive call-graph profile from the very beginning
using CONE, thereby avoiding the undesired trace file en-
largement in addition to dividing the overall measurement
overhead between two program runs. Since bothCONE and
EXPERT produceCUBE-compliant output, we can use the
merge operator to obtain a single derivedCUBE experiment
integrating the output from two different sources.

Figure 3. Merge of outputs from CONE and
EXPERT.

If we want to consider multiple counters in our analysis,
we might have to deal with a hardware restriction limiting
the number and type of counters to be monitored in paral-
lel. POWER4, for example, does not permit the combination
of floating-point instructions with level 1 data-cache misses
in the same run. The solution above can, of course, be ap-
plied to different outputs from the same tool as well. In this
case, we can perform different measurements withCONE

using different event sets and merge the results into a single
experiment. To alleviate the effects of random errors, we
can summarize multiple outputs from every single tool by
applying the mean operator before we perform the merge
operation.

Figure 3 shows a derived experiment obtained by merg-
ing oneEXPERT output with twoCONE outputs referring
to different event sets. It includes metrics from two tools
for the same application. The first tree from the top is
the root of EXPERT’s metric hierarchy. It is expanded
and shows different trace-based metrics. Below are the

counter-based metrics fromCONE including level 1 data
cache misses (L1 D MISS) and floating-point instructions
(FP INS), which have been collected during two different
runs. The numbers represent percentages of their corre-
sponding root metric’s total amount. The call tree shows
the percentage distribution of cache misses with a high con-
centration at MPIRecv calls which are at the same time
sources of Late-Sender problems (not shown).

6 Related Work

This work builds upon the framework for multi-
execution performance tuning by Karavanic et al. [11],
which was used in the Paradyn project [13] for an op-
timization strategy based on using historical performance
data to guide the search for performance bottlenecks. Sim-
ilar to CUBE, the framework defines operations on perfor-
mance data stored in accordance with a specific data model.
Whereas the framework’s data model defines experimental
data in terms of arbitrary resource hierarchies,CUBE favors
interoperability over flexibility by adding more semantics
and exactly specifying the type of program and system re-
sources that can be described. Also, the framework does
not consider any relationships between performance met-
rics, whereasCUBE models specialization relationships be-
tween metrics in the style of dependence relationships be-
tween the search hypotheses in Paradyn. The most signif-
icant difference betweenCUBE and the framework is that
all operations inCUBE are closed in that an operator always
maps its operands back into its domain. The framework
includes a structural merge and a structural difference oper-
ator which, however, is defined only for experiment meta-
data as opposed to the actual performance numbers. In con-
trast, the performance difference operator, which computes
the discrepancy between the actual performance data of two
experiments, returns a list of foci (i.e., combination of re-
sources from different hierarchies) where this discrepancy
is significant.CUBE’s difference operator and all other op-
erators are defined for entire experiments and return entire
(albeit derived) experiments including actual performance
numbers that can be processed and displayed like original
ones. For example, mechanisms aimed at finding hotspots
can be applied to the original and the difference data like-
wise. Also, the framework does not include a mean opera-
tor. Another difference is thatCUBE offers anAPI to transfer
data from arbitrary sources into its specific input represen-
tation.

The problem of multiexperiment analysis has been ad-
dressed by many other groups as well. Projects such as
ILAB [25], NIMROD [1], Tuner’s Workbench [10], andZEN-
TURIO [17] provide an infrastructure for planning and con-
ducting a series of experiments with different parameters.
ZENTURIO can be combined with theAKSUM [19] perfor-
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mance tool to automatically analyze the evolution of higher-
level performance problems across multiple experiments.
Scalability-analysis features can also be found in the latest
release of SvPablo [18].

There are a multitude of interactive browsers, such as
AKSUM [19], HPCView [12], and SvPablo [18], that corre-
late the program structure with different performance met-
rics. TheCUBE display’s distinctive feature is the combi-
nation of a genericAPI that makes it available for third-
party tools with a set of operations that can be performed
on the data. In addition,CUBE’s presentation logic achieves
simplicity by relying on a single type of widget (i.e, a tree
browser) regardless of the performance-space dimension
displayed. Historically,CUBE emerged from theKOJAK

[23] project, where a similar browser was used to present
the results of event-trace analysis.

TheCUBE algebra is based on a generic model of perfor-
mance data providing a foundation for many postprocess-
ing tools. TheASL [9] specification language, which pro-
vides language constructs to specify potential performance
problems in parallel applications, is based on a similar data
model with emphasis on automatic problem detection.

As CUBE focuses on automatic postprocessing of a wide
range of performance data, it is also closely related to
performance database projects, such as PerfDBF [8] and
PPerfDB [16]. In fact, implementing theCUBE algebra on
top of a database management system in addition to a pure
XML file representation would be a natural extension, and
interfacing to an existing performance database might open
a large amount of performance data to our approach. On the
other hand,CUBE - by relying onXML files only - provides
cross-experiment capabilities without the burden of main-
taining a whole database-management system.

7 Conclusion

The CUBE performance algebra addresses the problem
of analyzing multiple performance data sets by defining a
data model to represent a wide range of performance experi-
ments plus operations to compare, integrate, and summarize
them. The closure property of the algebra enables a new
level of tool interoperability by combining the views pro-
vided by different experiments and performance tools into
a single one and making this integrated view available to
visualization and other postprocessing tools.

We have implemented a library to read and write experi-
ments and to perform arithmetic operations on them, which
is currently used byCONE and EXPERT. A generic dis-
play component illustrates the enriched view provided by
derived experiments. Browsing through a difference exper-
iment allows us to analyze the effects of optimizations in
a very differentiated manner. Also, merging tracing output
with profiling output can help reduce trace-file size signifi-

cantly. Finally, hardware restrictions limiting the number of
hardware counters measured simultaneously can now be cir-
cumvented by merging the outputs of separate experiments.

We believe that our approach is especially well suited to
support performance analysis on large-scale systems. As
parallel machines grow larger, monitoring becomes much
more complicated. Given the enormous amount of data
generated even for a single metric during a single run, the
ability to automatically integrate data from different runs
becomes more and more important. New operators which
perform data reduction, for example, based on multivariate
statistical techniques [3], might further help manage size
when applied to the integrated data. Also, the integration
of topology information, for example obtained from instru-
mentedMPI topology routines, into our data model could
open the way for new automatic analysis and visualization
tools. Finally, as the processing logic ofCUBE relies en-
tirely on anXML -centric data model,CUBE can be easily
integrated with an Grid environment by exposing its func-
tionality as anOGSI-compliant Grid service [20].
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