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1.0 Introduction 
 

High performance computing is playing an increasingly critical role in advanced 

scientific research as simulation and computation are becoming widely used to augment and/or 

replace physical experiments.  However, the gap between peak and achieved performance for 

scientific applications running on high-end computing (HEC) systems has grown considerably in 

recent years.  The complex architectures and deep memory hierarchies of HEC systems present 

difficult challenges for performance optimization of scientific applications.  Tools are needed that 

collect and present relevant information on application performance in a scalable manner so as to 

enable developers to easily identify and determine the causes of performance bottlenecks.  

According to the Report of the High-End Computing Revitalization Task Force (HECRTF) [1], 

the single most important metric for high-end system performance is time to solution for the 

scientific applications of interest.  Time to solution includes not only execution time, but also 

development time.  Portable, easy-to-use, effective performance tools aim to reduce both 

development and execution time.   

In order to collect performance data, the application must be instrumented in some 

manner.  To be most useful for performance tuning, the data should be collected at routine or 

even basic block or loop granularity.  For developers of large-scale applications to implement this 

level of instrumentation manually is too time-consuming and thus not feasible.  Automated 

instrumentation techniques are needed that can collect the relevant data with a minimum of effort. 

 Developers of scientific applications for HEC systems are not necessarily experts in high 

performance computing architectures and performance analysis.  For this reason, performance 

data at the level of un-interpreted hardware counter data or communication statistics or traces 
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may not be useful to these developers.  Higher level abstractions that identify various types of 

performance problems, such as inefficient use of the memory hierarchy or excessive 

synchronization delay for example, and that map these problems to the relevant application 

source code, will be much more useful and allow performance tuning to be done with much less 

time and effort. 

The amount of performance data collected for applications running on HEC systems can 

be overwhelming.   While analysis of event tracing has proved to be a superior technique to 

identify performance problems at a high level of abstraction, it usually suffers from scalability 

problems associated with trace-file size.   Even collecting detailed profiling data for large 

numbers of processes can be unwieldy.  Current display tools are limited in their representation of 

large-scale performance data.   

This paper describes our efforts at addressing the above problems as part of the KOJAK 

project [2,3].   

 

2.0 Automated Instrumentation 

Figure 1 gives an overview of KOJAK's architecture and its components. The KOJAK 

analysis process is composed of two parts: a semi-automatic multi-level instrumentation of the 

user application followed by an automatic analysis of the generated performance data.  

Source
code

Semi-automatic multilevel
instrumentation

Execution on
parallel machine

Executable

Event
Trace

Automatic pattern 
analysis

Analysis
Report

CUBE
Graphical Browser

OPARI
Automatic instrumentation of 
OpenMP source constructs 
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Automatic instrumentation 

of user source code 

Compiler
Automatic instrumentation 

of user object code

PAPI Library
Recording of 
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Linker EPILOG
Runtime system and

MPI / OpenMP 
wrapper libraries

DPCL
Automatic instrumentation 

of binary user code

POMP DIRECTIVES
Manual instrumentation 
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to event trace
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Figure 1.  KOJAK Architecture 
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 The event traces generated by EPILOG capture MPI point-to-point and collective 

communication as well as OpenMP parallelism change, parallel constructs, and synchronization.  

In addition, data from hardware counters accessed using the PAPI library [4,5] can be recorded in 

the event traces.  To make measurements with the EPILOG system, the user’s application must be 

instrumented at specific important points, or events, to activate EPILOG library calls.  Events of 

interest include sending and receiving messages, user function entries and exits, entering and 

exiting OpenMP regions, and synchronization operations such as acquiring and releasing locks.  

Automated instrumentation is supported by compiler instrumentation on the following platforms: 

- Linux clusters using the PGI compilers 

- Hitachi SR-8000 

- Sun Solaris (Sun Fortran90 compilers only) 

- NEC SX 

The instrumentation of user function entries and exits on the above systems is based on 

undocumented and unsupported compiler options.  Discussions are underway with additional 

vendors to provide similar instrumentation hooks.  Ideally these compiler instrumentation hooks 

will become fully supported in the future.  On the above systems, all necessary instrumentation of 

user functions, MPI functions, and OpenMP constructs is handled by the “kinst” command.  In 

the commands to build the application (e.g., in a makefile), the user need only precede all compile 

and link commands with “kinst”.  For example, instead of the command 

 % mpif90 myprog1.f90 myprog2.f90 –o myprog 

the command 

 % kinst mpif90 myprog1.f90 myprog2.f90 –o myprog 

would be executed. 

 For platforms on which compiler instrumentation using kinst is not supported, the users 

may manually instrument the desired functions and regions of their application by inserting 

POMP instrumentation directives and then using the “kinst-pomp” command in the same way as 

described above for “kinst”.  POMP instrumentation directives are supported for Fortran and 

C/C++ and are replaced by the necessary instrumentation calls by our source-to-source 

transformation tool OPARI [6].  In the case of OpenMP programs, OPARI also automatically 

instruments all OpenMP constructs and OpenMP run-time library calls by inserting calls to the 

POMP monitoring API [7].   An advantage of using POMP instrumentation directives is that the 

instrumentation is ignored during normal compilation.  An INST BEGIN/INST END pair can be 

used to mark any user-defined sequence of statements, again with a single argument giving a 
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name for the code region.  At least the main program function must be instrumented in this way, 

and in addition, an INST INIT directive must be inserted as the first executable statement of the 

main program.     

 While fairly straightforward, such manual instrumentation of a large program is time-

consuming and has an adverse effect on time to solution.  In addition, the manual instrumentation 

must be redone with every new version of the program   Fortunately, the TAU performance 

analysis system [8] provides an automated source code instrumentation mechanism that can be 

used with the EPILOG library.  TAU is a cross-platform tool that supports a wide variety of HEC 

platforms.  To use TAU’s automated source code instrumentation, the user should first configure 

and build TAU with the desired options.  To use EPILOG, TAU should be configured with the –

TRACE and –epilog options.  Then only two changes need to be made to the application 

makefile.  First, a makefile stub with the necessary TAU definitions, which was created when the 

appropriate library was built, should be included.  Then the user need only precede all compile 

and link commands with $(TAU_COMPILER).   All MPI functions, user functions, and OpenMP 

constructs will then be instrumented with EPILOG library calls.   TAU also uses KOJAK’s 

OPARI system [6] to automatically instrument OpenMP constructs.  Although TAU currently 

supported automated source code instrumentation only down to the routine level for non-OpenMP 

codes, there are plans to extend the automated instrumentation capability to the basic block and 

loop level. 

 An alternative to source code instrumentation is to use automatic binary instrumentation.  

KOJAK support binary instrumentation on IBM systems where the optional DPCL (Dynamic 

Probe Class Library) package [9] has been installed.  The user need only precede compile and 

link commands with “kinst-dpcl” and launch the resulting program using the “elg-dpcl” 

command.  TAU supports binary instrumentation using the Dyninst[10,11] library.  The tau_run 

tool dynamically loads the specified TAU instrumentation library and instruments the application 

at runtime.  All user and MPI functions are instrumented.   

If EPILOG has been built with hardware counter support enabled, then hardware counter 

data can be recorded as part of the event records.  To request the measurement of certain 

counters, the user must set the environment variable ELG_METRICS to a colon-separated list of 

counter names.  EPILOG uses the PAPI library [4,5] to access the hardware counters.  All of the 

PAPI standard metrics are supported for data collection although not all are currently supported 

for automated analysis. 

  Any of the instrumentation methods described above will cause an EPILOG trace file to 

be produced when the application is run.  The per-process trace files generated during the 
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execution will be automatically merged into a single trace file when execution ends.  The 

resulting trace file can be analyzed using KOJAK’s automated performance analysis as explained 

below. 

 

3.0 Automated Performance Analysis 

Large-scale applications running on HEC systems can produce extremely large trace 

files.  Visualization tools such as Vampir and Intel Trace Analyzer [12], Jumpshot [13], and 

Paraver [14] can provide a graphical view of the state changes and message passing activity 

represented in the trace file, as well as provide statistical summaries of communication behavior.  

However, it is difficult and time-consuming for even expert users to identify performance 

problems from such a view or from large amounts of statistical data.  Spending large amounts of 

time analyzing performance data manually has a negative effect on time to solution.  KOJAK’s 

EXPERT tool is an automatic trace analyzer that attempts to identify specific performance 

problems.  Internally, EXPERT represents performance problems in the form of execution 

patterns that model inefficient behavior.    These patterns are used during the analysis process to 

recognize and quantify inefficient behavior in the application.   

The performance problems addressed by EXPERT include inefficient use of the parallel 

programming model and low CPU and memory performance.  Internally patterns are specificed 

as C++ classes that provide callback methods to be called upon occurrence of specific event types 

in the event stream.  The pattern classes are organized in a specialization hierarchy, as shown in 

Figure 2.  There are two types of patterns: 1) simple profiling patterns based on how much time 

or some other metric (e.g., cache misses) is spent in certain MPI calls or code regions, and 2) 

patterns describing complex inefficiency situations usually described by multiple events – e.g., 

late sender in point-to-point communication or synchronization delay before all-to-all operations.   

Recent work has taken advantage of the specialization relationships to obtain a significant speed 

improvement for EXPERT and to allow more compact pattern specifications [15].  Each pattern 

calculates a (call path, location) matrix containing the time spent on a specific behavior in a 

particular (call path, location) pair, where a location is a process or thread.  Thus, EXPERT maps 

the (performance problem, call path, location) space onto the time spent on a particular 

performance problem while the program was executing in a particular call path at a particular 

location. After the analysis has been finished, the mapping is written to a file and can be viewed 

using the CUBE display tool. 
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Figure 2.  EXPERT pattern specialization hierarchy 

 
The CUBE display for a crystal growth simulation [16] run on eight processors of a 

Linux cluster is shown in Figure 3.  The display consists of three coupled tree browsers, 

representing the metric, the program, and the location dimensions from left to right.  The user can 

switch between a call tree and a flat profile view of the program dimension, with the default being 

the call-tree view.  The nodes in the metric tree represent performance metrics, the nodes in the 

call tree represent call paths, and the nodes in the system tree represent machines, nodes, 

processes, and threads.  A user can perform two types of actions: selecting a node or 

expanding/collapsing a node.   At any given time, there are two nodes selected, one in the metric 

tree and one in the call tree.  Each node is labeled with a severity value.  A value shown in the 

metric tree represents the sum of a particular metric for the entire program, that is, across all call 

paths and all locations.  A value shown in the call tree represents the sum of the selected metric 

across all locations for a particular call path.  A value shown in the location tree represents the 

selected metric for the selected call path and a particular location.  All numbers may be displayed 

either as absolute values or as percentages.  To help identify metric/resource combinations with a 

high severity, values are ranked using colors.   The color legend shows a numeric scale mapping 

values to colors.  Note that all hierarchies in CUBE are inclusion hierarchies, meaning that a child 
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node represents a subset of a parent node.  The severity value in CUBE follows the principle of 

single representation – that is, within a tree each fraction of the severity is displayed only once.  

The purpose of this strategy is to have a particular problem appear only once in the tree and thus 

help identify it more quickly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.   CUBE display showing metric, call tree, and location dimensions 
 

 Performance optimization of parallel applications usually involves multiple experiments 

to compare the effects of different code versions, different execution configurations, or different 

input data.  In addition, hardware characteristics may limit the availability of certain performance 

data, such as hardware counter data, in a single run, requiring multiple experiments to obtain a 

full set of data.  A user may also wish to combine the results obtained using different monitoring 

tools that cannot be applied simultaneously.  Finally, results of analytical modeling or simulation 

may need to be compared with experimental data.  The traditional method of comparing different 

experiments is to put multiple single-experiment views side by side or to plot overlay diagrams.   

Previous research on multi-experiment analysis described in [17] uses an operator to calculate a 

list of resources showing significant discrepancies between different experiments.  However, this 

difference operator maps from its input space containing entire experiments into a smaller 

representation consisting of a list of resources.  A repeated application is not possible, and further 

processing would require a logic or display different from the one suitable for the original input 

data.  With our approach the output of multi-experiment analysis can be represented just like its 

input, allowing us to use the same set of tools to process and display it.  The CUBE performance 
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algebra can be used to compare, integrate, and summarize performance data of message-passing 

and/or multithreaded applications from multiple experiments including results obtained from 

simulations and analytical modeling.  The algebra consists of a data model to represent the data in 

a platform-independent fashion plus arithmetic operations to subtract, merge, and average the 

data from multiple experiments.,  All operations are closed in that their results are mapped into 

the same space, yielding an entire “derived” experiment including data and metadata.  Figure 4 

shows the differences between two versions of a nano-particle simulation, with raised reliefs 

indicating performance improvements and sunken reliefs indicating performance degradations.  

The differences are broken down along the various dimensions.  The CUBE performance algebra 

is described in further detail in [18]. 

 

 
Figure 4.  Intuitive display of differences between two code versions 

 

4.0 Scalability Issues 

While analysis of event tracing has proved to be a superior technique to identify 

performance problems at a high level of abstraction, it usually suffers from scalability problems 

associated with trace-file size.  If the automated instrumentation techniques described in section 2 

are applied non-discriminately, they can instrument all user and MPI functions and OpenMP 

constructs with trace library calls, resulting in a large amount of trace data being collected.  

Although KOJAK’s approach of reducing the trace data to a higher-level, more compact 

representation using EXPERT results in a much smaller data file, the initial very large raw trace 

file can be problematic.  Fortunately TAU provides a filtering mechanism available to reduce the 

instrumentation.  An initial profiling run can be conducted to identify routines that are called a 
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very large number of times and for which trace data do not contribute much useful information.  

These routines can then be excluded from the automated instrumentation by specifying them in an 

exclude list.  The tau_reduce tool can be used to generate the exclusion list automatically, and 

work is underway to add this capability to KOJAK’s module that handles automatic user function 

instrumentation via compiler switches. 

Even with careful filtering, large-scale applications can still produce very large trace 

files.  In view of present and future architectures consisting of thousands of processors and in 

view of applications running on all or at least a major fraction of the available CPUs, KOJAK’s 

current approach will become increasingly constrained by the potentially enormous size of the 

resulting event traces.   The current approach of collecting a large trace file for an entire parallel 

program execution in a centralized location and then processing and reducing this single trace 

file, such as the approach used by the EXPERT trace analysis tool in KOJAK, will not scale to 

thousands of processors.  Although recent improvements have made an order of magnitude 

improvement in EXPERT’s efficiency [15], our future research in this area will focus on applying 

parallel and distributed processing approaches to the processing, reduction, and filtering of large-

scale trace data.    

KOJAK’s current CUBE display will be unwieldy for representing HEC systems with 

thousands of processors.  We plan to develop a highly optimized version of the CUBE display 

that replaces the current tree representation of processes and threads with a much more scalable 

multi-dimensional topology display reflecting the virtual topology of the application and/or the 

physical topology of the machine. As an integral part of parallel programming deals with 

choosing the right virtual topology, that is, the mapping of processes and threads onto the 

problem domain, a topology display will not only be much more scalable but can also provide 

more intuitive guidance in analyzing the influence of physical or logical communication 

structures. 

 

5.0 Conclusions and Future Work 

Automated approaches to performance instrumentation and analysis promise to increase 

programmer productivity and reduce time to solution by reducing both development time and 

execution time.  Performance tuning is often a neglected part of application development because 

the amount of effort invested does not yield an adequate return in reduction of execution time.  

By automatically and accurately pinpointing the most severe performance problems, the amount 

of effort can be reduced while achieving greater performance gains.   



 10

Although some significant results have been obtained already, the pattern analysis used 

by EXPERT could be considerably improved.  We have only begun to scratch the surface on the 

specification of patterns based on hardware counter data and on correlating these data with other 

events and with program data structures.   The pattern search could also be made more accurate 

by applying it at the loop level.  Scientific applications frequently contain computationally 

intensive nested loop structures, the tuning of which is critical to achieving good performance.  

We expect the combination of automated instrumentation at the loop level and the specification of 

patterns for analyzing nested loop performance to provide a powerful mechanism for achieving 

substantial performance gains with a minimum of effort. 

To be most useful to a developer in tuning an application, information about cache and 

memory behavior should be presented in a way that relates it to program data structures at the 

source code level.  KOJAK’s EXPERT analyzer and CUBE display tool support post-mortem 

analysis of trace and/or profile data with a display that allows the user to interactively explore a 

similar three-dimensional performance space with the metric, call tree, and location dimensions 

displayed by coupled tree browsers.  In order to enable performance analysis to focus specifically 

on memory hierarchy performance as it relates to data structures used by an application, we plan 

to extend the search space to include an explicit data structure dimension.  This dimension will 

include various levels of data structures that may be distributed across multiple memories in a 

parallel system.  Explicit representation of this dimension will better specification of patterns that 

represent inefficient memory system performance, as well as hyper-linking detected memory 

performance problems to entities in the other dimensions of the performance search space, such 

as the specific call path that is generating the particular memory performance problem. 

Future HEC systems may require the use of new parallel programming paradigms.  We 

have prototyped an extension of the KOJAK toolset that is able to instrument, record, and analyze 

MPI-2 one-sided communication and synchronization features.  This work can be extended easily 

to handle vendor-specific one-sided communication such as SHMEM or LAPI.  Work is also 

underway to analyze Co-Array Fortran [19] applications using KOJAK. 

In Section 4, we have already mentioned planned future work on improving the 

scalability of trace-based automated performance analysis. 

Our claim that automated performance analysis can improve time to solution of scientific 

applications on HEC systems needs to be verified with experimental evidence.  The amount of 

effort actually involved in using the tools needs to be measured and the performance gains 

obtained quantified under controlled conditions.  We plan to investigate programmer productivity 

metrics and apply them to measure the effectiveness of the KOJAK approach. 
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