
Improving Probe usability

Alexandre Strube∗, Dolores Rexachs†, Emilio Luque‡

Universitat Autònoma de Barcelona
Computer Architecture and Operating System Department (CAOS)

Barcelona, SPAIN
∗alexandre@caos.uab.es
†dolores.rexachs@uab.es
‡emilio.luque@uab.es

Abstract—During our research for characterizing individual
computing nodes using Software Probes, one of the remaining
issues for quickly probing them was that of the checkpoints’
sizes. This article shows the different approaches we used in
order to reduce the Probes’ sizes. We demonstrate that in some
cases it is possible to reduce the set of Probes of an application
up to 95 % of its original size, thus making our approach for
machine characterization useful even through slow networks
such as the Internet.

Keywords-Performance prediction; Software Probes; Multi-
cluster; Scheduler

I. INTRODUCTION

The need to quickly characterize machines is present on
several different use cases. From a multicluster scheduler for
master/worker applications that selects and discards comput-
ing nodes according to its performance for that application to
workflow engines and cloud environments, good and quick
information about execution time can improve the general
state of such environments.

In [1], the method to optimize executions of mas-
ter/worker applications was developed. Its shortcome is that
it needs to know the execution time of the tasks on every
computing node available beforehand. The execution time
to perform this action is not acceptable for scheduling prior
to an execution.

Cloud, grid schedulers and workflow engines, on the other
hand, trust on the results of generic benchmark indexes
to decide where to send processes. Although generic and
readily available, benchmarks tend to lack precision or
relatedness to the program to be run.

The tradeoff between thorough executions, and the lack
of relatedness with real codes from benchmarks, was our
motivation for creating a methodology that can predict
application performance while being as fast as a micro-
benchmark but as precise as running the whole application
itself as possible. This resulted in what we call a software
Probe. When sent to computing elements, the probe is able
to precisely tell how long a worker will take to run on that
given machine, in seconds.

Our probe speeds up both machine and application char-
acterization. This means that out methodology is not only

useful with the master/worker but also for every system
that can benefit from precise information regarding appli-
cation execution time, such as grid schedulers and workflow
engines, as they can be optimized when they have this
information for the next executions.

The novelty of this paper is a series of developments
made in order to reduce probe size. Probes in this research
consisted of the relevant parts of an application’s execution.
For it to be run autonomously, a series of checkpoints must
be created in special moments during the execution, which
means that a probe must carry several checkpoints at the
same time.

The probe is sent to machines in remote locations through
the internet, where bandwidth can be relatively slow and
variable. Some applications can keep a considerable state in
memory, so a complete probe could be in order of dozens of
gigabytes of memory, which in slow and unreliable networks
such as the Internet, could take a long time to be sent. The
fact that the probes were so big was always a difficult point
in our research, so we came up with a series of solutions
that, when used together, are able to reduce the probe size in
around 90%, which in turn makes the Probe usage feasible
on today’s networks.

This makes the act of probing faster, which helps us in
two different fronts: speeding up the process of probing
several different machines, thus being able to better inform
schedulers faster, and improving quality, as Probes for
different workloads or working set sizescan be sent to the
same machine, in the time when only a single regular probe
could be sent, which is already faster than running a task
by itself.

This paper is organized as follows. In section II we list
some work related to ours, and section III describes the
issues about determining the performance of an application
over a machine. Section IV discusses the process of Probe
creation, and in section V, we describe our approach to solve
the issues mentioned at the introduction and the current
implementation and their results are shown in section VI.
Section VII closes the article and suggests future work.



II. RELATED WORK

The work of Sherwood, Sair and Calder [2] is one of
the foundations of this research. They created a method
to find repetitive behavior on applications to reduce run-
time for benchmarking future processors on simulators. They
proposed a profiling technique that identifies different phases
that may repeat, using basic block distribution analysis. Once
an application is profiled, for instance from an execution
trace of an architecture simulator, the basic block profile is
fed into their SimPoint tool. A basic block vector (BBV)
contains the index of basic blocks executed during that
instruction interval and their occurrence.

A work related to ours is that of Sodhi and Subhlok [3].
Their performance skeletons intend to mimic application
behavior in a shorter execution time for evaluating shared
resources. While they focus on shared resources/network
usage, we focus this work on the computation by charac-
terizing the worker. This happens for two reasons: (a) it is
the model most widely used by cloud and grid environments
because of the easy ’elasticity’ of it, and (b) our research
group already have ongoing work on characterizing com-
munication patterns, such as the study conducted by Wong
[4].

The plugins created by Weaver and McKee in [5] runs
under the QEMU emulator or the Valgrind tool as a method
to gather basic block vectors faster than when using func-
tional simulators, but to use them in functional simulators.
Our work instruments applications in real machines, for
characterization on those real environments. Also, a system
called Adaps [6] states that it is possible to use our probe
methodology to create a predictor for their system.

III. APPLICATION PERFORMANCE

In this work we consider performance under two points
of view: how fast a machine runs different programs, and
how fast a program runs on different machines.

The use of traditional benchmarks for determining per-
formance of machines is only useful to have an index
to compare machines between themselves, and only under
some specific circumstances. Benchmarks are hardly able to
represent an application’s performance [7].

It is a known fact that estimating performance of applica-
tions on machines is a hard task. Functional simulators for
future generations of hardware tend to be slower than real
hardware in orders of magnitude, but yet they need to run
real code on those simulated machines in order to estimate
performancem, as stated in the previous paragraph.

On the other hand, full executions of applications for
determining their performance is not desirable in many
different contexts, given the time taken. One example is that
from the aforementioned study of future hardware through
simulation. But there are other cases where a full execution
of an application is not desirable either:

A. Efficiency in multi-clusters

The work in multi-clusters already introduced at section I
and further developed in [8] deals with the issue of efficiency
of Master/Worker applications in those heterogeneous and
distributed environments. For it, efficiency is defined as
the ratio between the best possible execution time and the
estimated execution time, as in equation 1:

Efficiency =
Tbest

Tex
(1)

On [1] and [8], to be able to estimate execution time, a
single worker task was sent to every available node in the
whole system and ran to its completion. This was an issue
even for small worker tasks, as the number of tasks could
eventually be smaller than the number of available nodes.
In the case of exceptionally slow computing nodes, this also
can delay the whole characterization.

B. Grid and Workflow Scheduling Policies

Another field where fast characterization with good pre-
diction quality can help is that of scheduling policies for
workflows, grid and cloud environments. Usually, scheduling
policies base their decisions on benchmarks, execution of
first task or historical data. The absence of good, fast data
about execution time of applications on specific computing
nodes makes experiments on real environments difficult,
therefore, most of them are simulated. For instance, [9]
simulated experiments where individual nodes’ performance
is random around the average node. The work of [10] states
that their performance values are “declared by the service
providers”, but also suggests that they are probably based
on historical executions.

The information obtained by our Probes can be kept by the
scheduling/queuing system as historical data as well, given it
is almost as precise as a real execution of a given application,
thus needing no great changes in schedulers.

IV. PROBE CREATION

Our Probe methodology consists of two steps: application
and machine characterization. This general schema is shown
in figure 1.

A. Application characterization - probe construction

The main goal is to evaluate the performance of a machine
while running an application quickly and precisely. Our
methodology to evaluate an application’s performance on
a machine consists of the following steps:

1) Data collection: The most basic concept of our probe
is the basic block. A basic block is a set of instructions with
only one point of entry and exit - that is, an arbitrary number
of instructions where no jumps in the process counter occurs.

During an execution, it is possible to trace the number
of executions of each basic block during a fixed number
of instructions, thus creating a basic block vector (BBV).



Data collection

Analysis

Probe creation

PROBE

Application Characterization

PROBE

Checkpoint restart

Warmup

Measurement

Application/Machine Characterization

Prediction

Figure 1. Probe creation general scheme. While the left side of the image
is done in a machine under our control, the right side is done on the machine
to be characterized.

Basic blocks vectors during execution

Relevant phases as discovered by SimPoint

Machine characterization by phases’ measurement

Execution time prediction from extrapolation

Thorough execution for checkpointing (with warmup)

(a)

(b)

(c)

(d)

(e)

Figure 2. Stages for Probe generation and machine/application character-
ization

One execution will generate a number of these BBVs. The
contents of these BBVs are the number of times each basic
block was executed during that instruction interval. It is
possible to compare the similarity between the BBVs. BBVs
have millions of instructions, so similar BBVs have the
tendency to be executed in similar times. This way, it is
possible to characterize a program execution in phases that
repeat according to this similarity. Similar phases tend to
have similar execution time. By running a phase a small
number of times, it is possible to extrapolate its behavior to
the whole program. Therefore the execution of all the unique
phases makes the extrapolation of the program’s execution
time possible.

To collect basic blocks of real application running in a real
system (in opposition to simulation as in other projects), we
instrument the application with Pin [11]. We used intervals
of 10, 50 and 100 million instructions to characterize phases
(see section VI). We then run the application monitored
thoroughly, to collect the basic block vectors, as in Figure

2, item (a).
About data dependency and problem size: A side effect

of the method used for characterization has to do with the
workload, as our Probe is valid for a given one. However,
in some domains, this is not true. NAS’ Benchmarks, for
instance, present the same behavior over time, where the
dominant behavior repeats itself, and all the phases hold
more or less the same weight, only repeating more. Research
has shown that more than the data itself, performance is
dependent on data patterns characteristic to the underlying
algorithm, as studied by Fritzsche [12].

2) Analysis: The collected basic block vectors are fed
into SimPoint, which discover sprogram phases based on
BBVs’ similarity. These phases are classified and the tool
outputs a single occurrence of it, counted in number of
instructions. SimPoint also outputs each phase’s weight, see
Figure 2, item (b), where each fill pattern represents a
single phase. The bold BBVs means this item is selected for
representing the behavior, where the faded ones are similar
to it, what means they have a similar performance behavior.

3) Probe creation: With the phases now known, we must
create the Probe itself. What the Probe will carry to the
machine to be characterized will be: the set of phases
discovered by SimPoint (saved in the form of special reduced
checkpoints), code to run these phases, instrumentation code
to stop execution after the phase size was reached, measure
its execution time and send these results back. This implies
that we must run the application thoroughly again, with
instrumentation that counts the executed instructions until
it reaches a point right before a phase’s number, and then
the application is checkpointed, as in Figure 2, item (c). We
checkpoint a number of instructions before the exact phase’s
time to ensure the machines to be characterized with this
checkpoint are “warm”, i.e. its components (TLB, caches,
etc) are in a state consistent to that of a throughout execution.
Its worth noting that this offline process to create a probe
must be done only once.

In heterogeneous environments network connections are
an issue, so big checkpoints are problematic. Our experi-
ments have shown that connection droppings and bandwidth
limitations are the norm, not the exception [1]. We created a
method to transport only the required parts of the checkpoint,
without previous knowlege of the source code, in opposition
to [13], for instance. This method can reduce the Probe size
around 90%, as can be seen in section V.

B. Probe use for fast performance prediction

The application/machine performance is determined by
running the Probe phases, measuring phases’ time and
extrapolating them to the whole execution, according to its
weights.

1) Checkpoint restart: A shell script runs every phase
- that is, restarts the program from the checkpoint. Instru-
mentation on the Probe itself interrupts the program on the



end of the phase and measures time. This time is sent back
to the master. The current implementation uses BLCR [14],
because of its wide availability.

2) Measurement: We start the checkpoint before the
phase, to let the architecture warm up - see Figure 2, item
(c) and (d). After the warmup, a timer and an instruction
counter alarm are set. After the number of instructions is
reached, execution is stopped, time is measured and sent
back. The script proceeds to the next phase.

3) Execution time prediction: Prediction can be achieved
both by extrapolating from the phase time to the full
execution and by comparison of the same phases’ time in
another machine, in order to remove residual noise from in-
strumentation, such as in equation 2. Given instrumentation
doesn’t change among machines, its proportion in execution
may be calculated. This equation gives is the proportion
of overhead in execution. It may be counted in terms of
both time (and by that TInstrumented and TUninstrumented

refer to execution time) or instructions executed. In our
experiments they perform similarly.

Noise =
TInstrumented

TUninstrumented
(2)

The estimation of execution time is given by equation 3,
which is a summation of each phase measured parameters,
where TFullApp is the execution time during our offline
characterization of the whole worker, WPhase is the phase’s
weight, TOff is the elapsed time the probe took to run during
the offline characterization, and TNew is the time that phase
took to run on the machine to be characterized.

∑
Phases

(
TFullApp ∗WPhase

Toff
∗ TNew

)
(3)

For instance, an application that during its characterization
ran for one hour, and we found that it had three phases:
one which weight was 60%, another with 30% weight and
another with 10% weight. During the offline characteriza-
tion, we measured that the first phase took 2 seconds to
run (representing 60% of one hour, that is, 36 minutes),
the second on took 2 seconds (the one with 30% weight,
representing 18 minutes) , and that the less important took
1 second (representing 6 minutes of execution).

On the machine to be characterized, the probe for the 60%
phase took 1 second to run, the 30% took 1.5s and the 10%
took 0.5s.

If we use our formula,(
60m ∗ 60%

2
∗ 1

)
+

(
60m ∗ 30%

2
∗ 1.5

)
+

(
60m ∗ 10%

1
∗ 0.5

)
(4)

That translates as (18)+(13.5)+(3) = 34.5, which means that
this worker would take 34.5 minutes to run in this machine.

V. REDUCTION

One issue with our methodology is that by generating a
number of checkpoints in order to characterize an application
means that the Probes themselves can be pretty large. In pre-
vious experiments, we found Probes in order of gigabytes.
In section VI, one of the Probes is around 1.3 gigabyte. This
means a transmission time of around three hours in a 1mbps
connection, something not entirely unusual on the Internet.
A strategy to reduce probe size was essential.

The way we achieve reduction of the probe is done by
three different methods. They are

• Removal of less-important phases,
• Compression, and
• Touched set approach.
They will be detailed on the following sections.

A. Removal of less-important phases

This approach is straightforward - it consists of selectively
not carrying the checkpoints of the less relevant phases. The
tradeoff here lies between a possibly dramatic reduction
of the Probe’s size with little complexity and the loss of
precision.

This method is particularly useful in programs whose
behavior is dominated by a small number of functions. This
seem to be the case in several scientific applications, which
perform transformations in data in very specific patterns.
Extreme cases are those of workflow applications, where
the individual tasks that transform the data were already
separated in the workflow’s nodes. As current implementa-
tions of workflows’ nodes create separate executable files for
each node, so we must create separate probes for each of
them, and experiments shown us that these nodes are mostly
dominated by one or two single phases.

In all our experiments, we set Simpoint to output a
maximum of 30 phases. This is a number high enough to
represent the whole application’s behavior in practically ev-
ery application we tested, even those with varying behavior
during execution. The disadvantage is that it is also possible
to come with a high number of phases, meaning big amounts
of checkpoints.

In these cases, the Simpoint algorithm can output a
number of phases that are little to no relevant to the
overall execution, such as initialization and end phases, and
during changes from important parts of the overall execution.
Several of these phases can be discarded with little loss of
prediction.

The experiments of removing these phases can be seen
in figure 3. On it, we show the overall prediction quality
and how this quality degrades while reducing the number
of phases. It can also be seen how the Probe’s size is also
reduced.

The removal of little-relevant phases is valid, and in fact
is necessary, as it can greatly increase the total Probe size



402MB

680MB

959MB

1.372MB

1.785MB

2.195MB

2.608MB

25%

50%

75%

100%

7 6 5 4 3 2 1

99,7% 99,6% 99,3% 98,8% 97,6%
93,7%

51,9%

Number of remaining phases

Sweep3d.150

Probe size

Figure 3. Prediction Quality x Probe Size.

with little gain in quality. However, how much of prediction
quality must be kept is up to the user.

B. Compression

Compression itself is a widely studied subject in computer
science and alien to the scope of this work, so it used only
as a tool, as is. We use the gzip compression tool, given
its fast compression/decompression times, and its ubiquitous
presence in UNIX systems.

Compressing checkpoints as they were yielded different
results according to the workload and application, ranging
from 20% to 35% of size reduction. So it helps us achieve
our goal of reducing the total Probe size, and it can - and
is - used altogether with other approaches.

C. Touched set approach

The touched set approach is based on two simple ideas:
• A Probe’s phase runs for a very limited amount of time,

and is improbable that in this time the program will
access all its memory contents, and

• Every compression algorithm can benefit of large se-
quences of repeated characters, as all of them possess
some form of run-length encoding [15].

A program’s phase basically consists in the application’s
checkpoint in a specific moment of time, that will have its
execution time measured after a given number of instructions
is ran. In our experiments, this number is whether 10, 50 or
100 million instructions. In that amount of time - also known
as tracking window, it is probable that only a subset of the
application’s memory contents its accessed. If a considerable
amount of memory is not going to be used during a phase’s
execution, this memory contents does not need to exist in
the checkpoint. That is what we call touched set approach.

Touched set, as defined by Yawei and Zhiling [16] is the
memory contents accessed during the tracking window -
in our case, during a phase’s execution. All memory not
accessed during the tracking window does not need to be
present in the checkpoint.

We implemented the touched set approach in our probe
system by intersecting information by modifying the code

both for generating our Probes and that of the checkpointing
library kernel module, in the following way:

1) Probe generator: During the Probe generation phase,
the last step was to run the application to the end in our
characterization machine in order to save the instrumented
checkpoints. Now, after saving a checkpoint, a trace of every
memory page accessed during a phase execution is recorded.
We do this by changing the instrumentation code to be
performed only when it is saving a checkpoint, to avoid
the creation of a trace (and its massive overhead) when in
checkpoint restore mode. This is made because restore mode
in our system means that this phase is being characterized,
and therefore a memory trace in instrumentation will change
the results in orders of magnitude.

2) Checkpointing library kernel module: BLCR’s check-
point file structure is not documented, and the headers are
of variable size. In order to know the offset where a given
memory page is recorded on this file, we had to modify the
kernel module to also create a trace of the tuple [memory
page address / file offset].

With the touched set and the information given by the
kernel module in hands, the only data required to stay in
the checkpoint file is:

• File header,
• Process information required for restoring (pid, uid, gid,

etc.),
• Part of the code segment (the one being used in this

phase),
• The touched set.
The touched set ξ in the checkpoint file is given by the

set definition 5:

ξ = (θ ∩ ϕ) (5)

And the set of pages ζ to be removed from the checkpoint
file is in definition 6:

ζ = (θ ∪ ϕ)− ξ (6)

Where θ is the touched set as recorded when running the
phase, and ϕ is the offset of those pages in the checkpoint
file. Everything else can then be removed from the check-
point file, thus reducing its size drastically.

Our first approach was to simply trim ζ from the check-
point file, and change the headers accordingly, in order
to denote where each memory page part of ξ is, directly
reducing checkpoint’s file size, as the non-used portions
were not recorded at all, making it a densely-populated file.
This presented some major drawbacks:

• Implementation cost: the checkpointing library needed
to be extensively changed in the restart code, in order
to accommodate the “jumps” we created on the pages’
sequence, and



• Binary compatibility: as the checkpoint restart code was
changed, we had a checkpointing library kernel module
that needed to be installed in every system we would
test our probe, which would break with the premise
for the election of BLCR as the checkpointing library
of choice given its availability in several different
clusters, and we would not be able to restore “regular”
checkpoint files on that, either, breaking functionality
for other users.

For that reason, we created a simpler approach: the
memory pages present in the set ζ, that, for our purposes,
are useless, are filled with zeros, so the file can be now
considered sparse. This has the advantages of keeping binary
compatibility with standard BLCR; which means we can run
these Probe phases on machines running standard versions
of BLCR it is easily compressed, as all sequences of zeros
we introduced are multiples of a memory page size.

So, after the program was characterized, its phases discov-
ered, the phases saved, a special program gathers the data
coming from the kernel and that from the memory trace for
each phase. Then it creates the set ζ and zeroes it from
that checkpoint’s phase and compresses this now sparse file.
Then it proceeds to the next phase, up to when there are no
more phases to reduce.

The final output is a set of gzipped files, which can be
sent through the network and uncompressed on the fly, with a
pipe from the process receiving the byte stream to the gunzip
utility. The resulting file on the other end is a checkpoint file
containing only the memory contents required for running
the original application’s phase from the warmup to the
phase’s size plus a very light instrumentation required to
measure phase execution time. After the phase reaches its
designated number of instructions, time is registered and the
execution is interrupted, allowing the execution of the next
phase.

The combination of the aforementioned methods: removal
of little-relevant phases, touched set approach and compres-
sion is what allows us to achieve great reductions in probe
size, up to 95% smaller when compared to the original set
of checkpoints, as we will show in the next section.

Several characteristics that can be seen in our method are
not from the method per se, but instead it reflects those from
the tools used to build this prototype. Some of them are:

• The application’s binary and its open files must be
present in the same locations on the machine to be
characterized: This is a characteristic of BLCR, not of
the method.

• Instrumentation library’s .so files must be present on
the machine to be characterized, on the same location:
same as again, a requirement from BLCR. As BLCR
does not “see” the instrumentation library, but instead
thinks that it is part of the application itself, it requires
them to be on the same location on the file system.

• Sockets are not restored by default: special support
from, for instance, MPI libraries, must be present for
restoring network connections. As we are characteriz-
ing the worker during its steady state, this is not really
important at this moment.

VI. EXPERIMENTAL RESULTS

Now we proceed to show some results regarding probe
size reduction. We hereby focus solely on reduction as
precision quality is not affected by the methods described
in this work.

In table I, we can see the Probe’s sizes unchanged,
with the number of phases as given by Simpoint for a
99.5% quality - which means a preliminary reduction was
already made, and a maximum number of 30 phases. The
reduced column is the value with the following reductions
applied: touched-sed approach, compression and removal
of the less-relevant phases, keeping a minimum prediction
quality of 75%. The amount of warm-up was of 10,000
instructions, and the basic block vector size was of 100
million instructions.

Table I
PROBE SIZE REDUCTION WITH 100M INSTRUCTIONS

Application Original Reduced % Reduction
Sweep3d.150 1362456308 121029068 91.11%
Sweep3d.50 168158756 23472358 86.04%

BT.A 373487077 72353660 80.82%

VII. CONCLUSION

Probes are a very useful tool for predicting execution
time in remote machines, for several different programming
models with significant serial parts. It is able to precisely
predict the execution time of applications in a matter of
seconds.

The usefulness of the probes were limited by its size,
given by the checkpoints. In this paper, we have shown the
methods we now use for reducing probe size. The different
techniques together are able to reduce the size of the Probe
to be sent in one order of magnitude. This turns Probes
into a viable solution for performance prediction in today’s
network speeds.

Future work in this research is required with the multi-
threaded, multi-core machines of today. How well will
the Probe be able to represent applications in processors
with some duplicated functional units (such as the Intel’s
Hyperthreading ones) or with shared caches where different
parts of the code or even different processors can be running
is a question that still needs to be answered.

ACKNOWLEDGMENT

This research has been supported by the MICINN-Spain
under contract TIN2007-64974.



REFERENCES

[1] E. Argollo, A. Gaudiani, D. Rexachs, and E. Luque, “Tuning
application in a multi-cluster environment,” Proceedings of
the Euro-Par 2006, pp. 78–98, Jan 2006.

[2] T. Sherwood, S. Sair, and B. Calder, “Phase tracking and
prediction,” Proceedings of the 30th Annual International
Symposium on Computer Architecture, 2003, pp. 336 – 347,
2003.

[3] S. Sodhi and J. Subhlok, “Automatic construction and evalua-
tion of performance skeletons,” Proceedings of the 19th IEEE
International Parallel and Distributed Processing Symposium
(IPDPS’05), pp. 88–98, Apr 2005.

[4] A. Wong, D. Rexachs, and E. Luque, “Parallel applica-
tion signature,” in Cluster Computing and Workshops, 2009.
CLUSTER’09. IEEE International Conference on. IEEE,
2009, pp. 1–4.

[5] V. Weaver and S. McKee, “Using dynamic binary instrumen-
tation to generate multi-platform simpoints: Methodology and
accuracy,” Proceedings of the 3rd international conference
on High performance embedded architectures and compilers,
vol. 4917, pp. 305–309, 2008.

[6] C. Glasner and J. Volkert, “Adaps-a three-phase adaptive
prediction system for the run-time of jobs based on user
behaviour,” CISIS ’09. International Conference on Complex,
Intelligent and Software Intensive Systems, 2009., Jan 2010.

[7] J. McCalpin and C. Oakland, “An industry perspective on
performance characterization: Applications vs benchmarks,”
Proceedings of the Third Annual IEEE Workshop Workload
Characterization, keynote address, Sept, 2000.

[8] E. Argollo, D. Rexachs, F. Tinetti, and E. Luque, “Efficient
execution of scientific computation on geographically dis-
tributed clusters,” in Applied Parallel Computing. Springer,
2006, pp. 691–698.

[9] J. Kim, J. Rho, J.-O. Lee, and M.-C. Ko, “Cpoc: Effective
static task scheduling for grid computing,” High Perfor-
mance Computing and Communcations, pp. 477–486, 2005:
Springer.

[10] H. Wanek, E. Schikuta, and I. U. Haq, “Grid workflow
optimization regarding dynamically changing resources and
conditions,” in GCC ’07: Proceedings of the Sixth Inter-
national Conference on Grid and Cooperative Computing.
Washington, DC, USA: IEEE Computer Society, 2007, pp.
757–763.

[11] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun,
and A. Karunanidhi, “Pinpointing representative portions of
large intel itanium programs with dynamic instrumentation,”
MICRO-37 2004. 37th International Symposium on Microar-
chitecture, pp. 81– 92, 2004.

[12] P. Fritzsche, D. Rexachs, and E. Luque, “A computational
approach to tsp performance prediction using data mining,”
in Advanced Information Networking and Applications Work-
shops, 2007, AINAW’07. 21st International Conference on,
vol. 1. IEEE, 2007, pp. 252–259.

[13] G. Rodriguez, M. Martin, P. Gonzalez, and J. Tourino,
“Portable checkpointing of mpi applications,” 12th Workshop
on Compilers for Parallel Computers, pp. 396–410, Jan 2006.

[14] P. Hargrove and J. Duell, “Berkeley lab checkpoint/restart
(blcr) for linux clusters,” Journal of Physics: Conference
Series, vol. 46, no. 1, pp. 494–499, 2006.

[15] S. Golomb, “Run-length encodings (corresp.),” Information
Theory, IEEE Transactions on, vol. 12, no. 3, pp. 399 – 401,
1966.

[16] Y. Li and Z. Lan, “Frem: A fast restart mechanism for
general checkpoint/restart,” Computers, IEEE Transactions
on, vol. PP, no. 99, pp. 1 – 1, 2010.


