Parallel Processing Letters
Vol. 20, No. 4 (2010) 397-414
© World Scientific Publishing Company

LARGE-SCALE PERFORMANCE ANALYSIS OF SWEEP3D
WITH THE SCALASCA TOOLSET

BRIAN J.N. WYLIE, MARKUS GEIMER, BERND MOHR
Jiilich Supercomputing Centre, Forschungszentrum Jilich, 52425 Jilich, Germany

and

DAVID BOHME, ZOLTAN SZEBENYI

Jiilich Supercomputing Centre, Forschungszentrum Jilich, 52425 Jilich, Germany
RWTH Aachen University, 52056 Aachen, Germany

and

FELIX WOLF

German Research School for Simulation Sciences, 52062 Aachen, Germany
Jilich Supercomputing Centre, Forschungszentrum Jilich, 52425 Jilich, Germany
RWTH Aachen University, 52056 Aachen, Germany

Received June 2010
Revised August 2010
Communicated by Guest Editors

ABSTRACT

Cray XT and IBM Blue Gene systems present current alternative approaches to con-
structing leadership computer systems relying on applications being able to exploit very
large configurations of processor cores, and associated analysis tools must also scale com-
mensurately to isolate and quantify performance issues that manifest at the largest scales.
In studying the scalability of the Scalasca performance analysis toolset to several hun-
dred thousand MPI processes on XT5 and BG/P systems, we investigated a progressive
execution performance deterioration of the well-known ASCI Sweep3D compact applica-
tion. Scalasca runtime summarization analysis quantified MPI communication time that
correlated with computational imbalance, and automated trace analysis confirmed grow-
ing amounts of MPI waiting times. Further instrumentation, measurement and analyses
pinpointed a conditional section of highly imbalanced computation which amplified wait-
ing times inherent in the associated wavefront communication that seriously degraded
overall execution efficiency at very large scales. By employing effective data collation,
management and graphical presentation, in a portable and straightforward to use toolset,
Scalasca was thereby able to demonstrate performance measurements and analyses with
294,912 processes.

Keywords: parallel performance measurement & analysis; scalability

397

398 Parallel Processing Letters

1. Introduction

Scalasca is an open-source toolset for scalable performance analysis of large-scale
parallel applications [1, 2, 3]. It integrates runtime summarization with automated
event trace analysis of MPI and OpenMP applications, for a range of current HPC
platforms [4]. Just as the trend for constructing supercomputers from increasing
numbers of multicore and manycore processors requires application scalability to
exploit them effectively, associated application engineering tools must continually
improve their scalability commensurately. To assess the scalability of Scalasca on
two of the largest leadership computers each with more than 200 thousand cores
— the Jaguar Cray XT5 system [5] at Oak Ridge National Laboratory and Jugene
IBM Blue Gene/P system [6] at Jilich Supercomputing Centre — we chose to study
the highly-scalable compact application Sweep3D.

After introducing the Sweep3D test code and the Scalasca toolset, we investigate
the weak-scaling behaviour of Sweep3D on XT5 and BG/P via a series of Scalasca
measurement and analysis experiments on each system. As well as describing how
Scalasca was applied, and comparing execution characteristics, scaling issues are
reviewed and particular attention is given to executions with very large configura-
tions of MPI processes. While much can be learned from experiments at relatively
small and intermediate scales, it is instructive to examine how application execution
behaviour changes with scale, as well as verifying that Scalasca continues to be us-
able. For this purpose, some of the largest experiments performed on both systems
are then inspected in detail. This is followed by a more refined instrumentation and
analysis of Sweep3D execution at more modest scale for additional insight into the
origin of the performance issues that dominate at scale on both platforms.

2. SWEEP3D

The ASCI Sweep3D benchmark code [7, 8] solves a 1-group time-independent dis-
crete ordinates neutron transport problem, calculating the flux of neutrons through
each cell of a three-dimensional grid (i,7,k) along several directions (angles) of
travel. Angles are split into eight octants, corresponding to one of the eight directed
diagonals of the grid. It uses an explicit two-dimensional decomposition (4, j) of the
three-dimensional computation domain, resulting in point-to-point communication
of grid-points between neighbouring processes, and reflective boundary conditions.
A wavefront process is employed in the ¢ and j directions, combined with pipelin-
ing of blocks of k-planes and octants, to expose parallelism. Being the basis for
computations consuming a large fraction of cycles on the most capable comput-
ers, Sweep3D has been comprehensively modeled and executions studied on a wide
range of platforms and scales (e.g., [9, 10, 11, 12, 13, 14]).

The code was built on XT5 and BG/P with the vendor-provided MPI libraries
and Fortran compilers (PGI and IBM XL respectively), using the -03 optimization
flag, and run using all available cores per processor (i.e., 6 for XT5 and 4 for BG/P)
and an MPI process on each core.

Large-scale performance analysis of Sweep3D with the Scalasca toolset 399

To investigate scaling behaviour of Sweep3D for a large range of scales, the
benchmark input was configured with a fixed-size 32 x 32 x 512 subgrid for each
process: i.e., for an NPE_I by NPE_J grid of processes, the total problem grid size
is IT_G=32XNPE_I, JT_G=32xNPE_J and KT=512. Consistent with the benchmark
and published studies, 12 iterations were performed, with flux corrections (referred
to as ‘fixups’) applied after 7 iterations.

Default values of MK=10 and MMI=3 were initially used for the blocking of k-planes
and angles, respectively, which control the multitasking parallelism. These param-
eters significantly change the computation/communication ratio, with a trade-off
between fewer communication steps with larger message sizes and better parallel
efficiency from more rapid succession of wavefronts [9, 11]. From trials varying the
numbers of k-planes in a block of grid points (MK) and angles processed together
(MMI), using single k-planes (MK=1) was found to be optimal on BG/P. (The number
of angles didn’t need to be adjusted.) In contract, no improvement over the default
configuration was found on the XT5.

3. Scalasca

The open-source Scalasca toolset supports measurement and analysis of MPI ap-
plications written in C, C4++ and Fortran on a wide range of current HPC plat-
forms [3, 4]. Hybrid codes making use of basic OpenMP features in addition to
message passing are also supported. Figure 1 shows the Scalasca workflow for in-
strumentation, measurement, analysis and presentation.

Before performance data can be collected, the target application must be instru-
mented and linked to the measurement library. The instrumenter for this purpose is
used as a prefix to the usual compile and link commands, offering a variety of man-
ual and automatic instrumentation options. MPI operations are captured simply via
re-linking, whereas a source preprocessor is used to instrument OpenMP parallel
regions. Often compilers can be directed to automatically instrument the entry and
exits of user-level source routines, or the PDToolkit source-code instrumenter can
be used for more selective instrumentation of routines. Finally, programmers can
manually add custom instrumentation annotations into the source code for impor-

Optimized measurement configuration

Measurement
library m

Instrumented™) LHWC ! &J
executable Instr.
target | .
application | Local Parallel I Pattern
_" event traces pattern search report
T |
T

Analysis
report
explorer

Report manipulation

Instrumenter/
compiler/linker

Source L\ bTrace
module II rowser

Fig. 1. Schematic overview of Scalasca instrumentation, measurement, analysis and presentation.

400 Parallel Processing Letters

tant regions via macros or pragmas which are ignored when instrumentation is not
activated.

The Scalasca measurement and analysis nexus configures and manages collec-
tion of execution performance experiments, which is similarly used as a prefix to the
parallel execution launch command of the instrumented application executable (i.e.,
aprun on XT5 and mpirun on BG/P) and results in the generation of a unique ex-
periment archive directory containing measurement and analysis artifacts, including
log files and configuration information.

Users can choose between generating a summary analysis report (‘profile’) with
aggregate performance metrics for each function callpath and/or generating event
traces recording runtime events from which a profile or time-line visualization can
later be produced. Summarization is particularly useful to obtain an overview of the
performance behaviour and for local metrics such as those derived from hardware
counters. Since measurement overheads can be prohibitive for small routines that
are executed often and traces tend to rapidly become very large, optimizing the
instrumentation and measurement configuration based on the summary report is
usually recommended. When tracing is enabled, each process generates a trace con-
taining records for its process-local events: by default separate files are created for
each MPI rank, or SIONIlib can be used to improve file handling by transparently
mapping task-local files into a smaller number of physical files [15]. After program
termination (and with the same partition of processors), the Scalasca nexus au-
tomatically loads the trace files into main memory and analyzes them in parallel
using as many processes as have been used for the target application itself. During
trace analysis, Scalasca searches for wait states and related performance properties,
classifies detected instances by category, and quantifies their significance. The result
is a wait-state report similar in structure to the summary report but enriched with
higher-level communication and synchronization inefficiency metrics.

Both summary and wait-state reports contain performance metrics for every
measured function callpath and process/thread which can be interactively examined
in the provided analysis report explorer. Prior to initial presentation, raw measure-
ment reports are processed to derive additional metrics and structure the resulting
set of metrics in hierarchies. Additional processing to combine reports or extract
sections produces new reports with the same format. Scalasca event traces may also
be examined directly (or after conversion if necessary) by various third-party trace
visualization and analysis tools.

4. Base Analysis of SWEEP3D Executions

Execution times reported for the timed Sweep3D kernel for a range of process counts
are shown in Figure 2 (left column of graphs, bold lines with diamonds). Sweep3D
was run with up to 196,608 processes on the Cray XT5 and 294,912 processes on IBM
BG/P, taking 121 and 505 seconds respectively, both using the default configuration
of 10 k-plane blocks (MK=10). Progressive slowdown with increasing scale is clear

Large-scale performance analysis of Sweep3D with the Scalasca toolset 401

Sweep3D application execution Scalasca trace analysis
a(i) a(ii)
12
1000 —¢ Measured execution| | T ©— Uninstrumented Sweep3D 10
& - Computation Trace analysis (including /O)
o—a - MPI processing o--0 - Timestamp correction
m—a - MPI waiting - Parallel trace replay
10"
2
— 2
@ g
z g
° 3
£ @
E 4
£
10 10
. o
L [| | | el | | | | T)
1024 2048 4096 8192 16384 32,768 65636 131072 262,144 1024 2048 4,096 8192 16,384 32,768 65,636 131,072 262,144
Processes Processes
Cray XT5: MK=10
b(i) b(if)
12
1000 — Measured execution| | T 0—0 Uninstrumented SweepaD 10
o— - Computation Trace analysis (including 1/0)
O—0a - MPI processing - Parallel trace replay
=—a - MPI waiting
100 10t
. 2
— - 2
@ g
z g
P 3
E @
= &
£
10 10
fl— \ *r 1 ? I L — ! ! | ! ! ! ! L
1024 2048 4096 8192 16384 32,768 65636 131072 262,144 1024 2048 4,096 8192 16384 32,768 65,636 131,072 262,144
Processes Processes
IBM BG/P: MK=10
c(i) c(if)
12
1000 —¢ Measured execution| | ©— Uninstrumented Sweep3D 10
e - Computation Trace analysis (including 1/0)
O—0 - MPI processing - Parallel trace replay e
=—a - MPIwaiting
1.
100 - 10"
2
- 2
o g
g
@ 3
E 9
= S
£
10 101
o
Py - | | | I | | | I | | | | | | | | L g
1024 2048 4096 8192 16384 32,768 65,636 131072 262,144 1024 2048 4,096 8192 16,384 32,768 65,636 131,072 262,144

Processes Processes

IBM BG/P: MK=1

Fig. 2. Scaling of Sweep3D execution time and Scalasca trace analysis time on Cray XT5 (top
row) and IBM BG/P (middle and bottom rows, original and improved configurations). Sweep3D
measured execution time (left column) is separated into computation and message-passing costs
from Scalasca summary and trace analyses. Scalasca trace analysis time (right column) includes
a breakdown of times for timestamp correction (not required on BG/P) and parallel event replay.
(Dashed black line is the total number of trace event records with the scale on the right side.)

402 Parallel Processing Letters

which is consistent with that measured previously [13] and not uncommon when
weak-scaling applications over such a large range. A further series of measurements
taken on the IBM BG/P is also shown, using single k-plane blocks (MK=1) which
were found to substantially improve performance at larger scale, reducing execution
time to 129 seconds with 294,912 processes: while this is a dramatic 3.9 times faster,
there is also a 20% improvement with only 1,024 processes.

With the default MK=10 configurations, execution time grows by a factor of 5.4
for 256 times as many processes on the XT5, and a factor of 4.0 for 288 times as
many processes on BG/P. Scalability on BG/P is therefore somewhat superior with
comparable execution configurations, though the base performance is considerably
poorer, and with the MK=1 configuration both basic performance and scalability are
notably improved.

To understand the execution performance behaviour, the Scalasca toolset was
employed on both XT5 and BG/P. Sweep3D source routines were automatically
instrumented using a common capability of the PGI and IBM XL compilers, and
the resulting objects linked with the Scalasca measurement library, such that events
generated when entering and leaving user-program routines and operations in the
MPIT library could be captured and processed by the measurement library. Elapsed
times reported for the benchmark kernel of the uninstrumented version were within
5% of those when Scalasca measurements were made, suggesting that instrumenta-
tion and measurement dilation were acceptable (and refinement was not needed).

4.1. Runtime Summarization

An initial series of experiments were made using Scalasca runtime summarization to
construct a callpath profile for each process during measurement, consisting of call-
path visit count, execution time, and associated MPI statistics for the number and
aggregate size of messages transferred. During measurement finalization, callpaths
are unified and measurements collated into an XML report, that is subsequently
post-processed into an analysis report consisting of 7 generic, 12 OpenMP-specific
and 45 MPI-specific hierarchically organised metrics. Both report size and genera-
tion time increase linearly with the number of processes.

From the runtime summary profiles, it was found that the computation time
(i.e., execution time excluding time in MPI operations) was independent of scale,
but the MPI communication time in the sweep kernel rapidly grows to dominate
total execution time. (MPI communication time is not shown in Figure 2, however,
subsequent analysis will show that it is indistinguishable from MPI waiting time on
the logarithmic scale.) The 18 seconds of computation time on XT5 is exceeded by
MPI communication time for 12,288 processes, and the 100 seconds of computation
time on BG/P exceeded by MPI communication time for 16,384 processes for MK=10.
With MK=1 on BG/P, computation time is only 80 seconds and MPI communication
time is greatly reduced, though still growing with scale.

Variation of time between ranks of around 10% was also evident in marked pat-

Large-scale performance analysis of Sweep3D with the Scalasca toolset 403

terns, where processes that had less computation time had an equivalently increased
amount of communication time, due to the blocking point-to-point communication
within each sweep and synchronizing MPI_Allreduce operations at the end of each
sweep iteration. (Collective communication time itself was concentrated on processes
at the origin of the application grid, and collective synchronization time is negligible
since a MPI_Barrier is only employed at the very end of the timed computation
and immediately following the synchronizing collective communication.)

4.2. Trace Collection and Analysis

Even with all user routines instrumented and events for all MPI operations, scoring
of the MK=10 summary profile analysis reports determined that the size of trace
buffer required for each process was only 2.75 MB. Since this is less than the Scalasca
default value of 10 MB, and the majority of this space was for MPI events, trace
collection and analysis required no special configuration of trace buffers or filters. As
the MK=1 configuration results in ten times as many messages, trace buffers of 30 MB
per process were specified via the appropriate experiment configuration variable for
those experiments.

Storing trace event data in a separate file for each process, Scalasca trace analysis
proceeds automatically after measurement is complete using the same configuration
of processes to replay the traced events in a scalable fashion. The right column of
Figure 2 shows that trace analysis times (squares) remain modest, even though
total sizes of traces increase linearly with the number of processes (dashed line).
59e9 traced events for the BG/P MK=10 execution occupied 790 GB, while the MK=1
configuration produced a total of 510e9 events and a trace of 7.6 TB.

Characteristics of the largest Scalasca trace measurements and analyses of
Sweep3D on Cray XT and IBM BG/P are summarized in the following table.

Table 1. Scalasca Sweep3D trace experiment statistics.

Jaguar Jugene
Architecture Cray XT5 IBM Blue Gene/P
Processes 196,608 294,912 294,912
Sweep3D size of k-blocks (MK) 10 10 1
Sweep3D elapsed execution time [s] 121 505 129
Sweep3D measurement dilation [%) 1 5 3
Measurement unification time [mins] 2.5 43 0.2
Trace event records [G] 39 59 510
Trace buffer content (max) [MB] 2.75 2.75 27
Total trace size (uncompressed) [TB] 0.51 0.79 7.6
Trace (physical) files [#] 196,608 294,912 576
Trace open/create time [mins] 5 86 10
Trace flush rate (GB/s] 12.7 3.7 19.1
Trace analysis time (total) [s] 236 368 546
Trace timestamp correction [s] 25 — —
Trace analysis replay [s] 93 11 74

Trace analysis collation [s] 30 162 91

404 Parallel Processing Letters

Note that these measurements were taken during production on non-dedicated
systems, where run-to-run variations (particularly with respect to I/O) can be con-
siderable. The largests runs are one-off measurements taken at different times, where
system (OS and I/0O) configurations are continually upgraded and adjusted.

In the table, the Cray XT and initial BG/P measurement use the same Sweep3D
application configuration (albeit with somewhat different numbers of processes) and
comparable versions of Scalasca. Both Sweep3D and Scalasca are found to perform
considerably better on the Cray XT5. The rightmost column used the improved
Sweep3D configuration for BG/P and an enhanced Scalasca prototype for measure-
ment. While the modified communication behaviour notably improves Sweep3D ex-
ecution performance (bringing it largely into line with that on Cray XT5), with ten
times the number of messages being traced, time for trace I/O increases commensu-
rately. Scalasca measurement operations, however, for the unification of definition
identifiers, opening (creating) the trace files, and writing the analysis report are not
related to the number of messages and would take the same time in both configura-
tions. Since these were prohibitively expensive with the original version of Scalasca,
each of these aspects has been addressed in a new improved version of Scalasca.

Measurement unification refers to the processing of definitions (and correspond-
ing identifiers) which were produced locally by each process, to create a unified
set of global definitions and mappings for each rank. These allow the event traces
from each process generated using local definitions to be correctly interpreted for
an integrated analysis and avoids needing to re-write the trace files. A compara-
ble unification is similarly required when collating an integrated analysis from the
callpath profiles generated by each process with runtime summarization. Offline ap-
proaches to definition unification, processing files of definition records written by
each process, were identified as the critical performance and scalability bottleneck
for early Scalasca measurements, and replaced with online unification using MPI
communication at the end of measurement collection. Although the performance
was greatly improved, unification was still essentially sequential, unifying the defi-
nitions for each process rank in turn, and as a result the time was still substantial for
very large-scale (and complex) measurements. With the introduction of a hierarchi-
cal unification scheme [16] in the latest development version of Scalasca, unification
time for Sweep3D trace experiments with 294,912 processes on BG/P has been im-
proved 200-fold from over 40 minutes down to under 13 seconds (and 60-fold for
196,608 processes on XT5 from 2.5 minutes down to less than 2.5 seconds).

The global high-resolution clock available on Blue Gene systems allows direct
comparison of event timestamps on different processors, however, such a clock is
not available on XT systems. In that case, Scalasca measurement uses sequences of
message exchanges to determine clock offsets during MPI initialization and final-
ization and subsequently applies interpolation to adjust recorded timestamps prior
to analysis. Since clock drifts are not constant, remaining logical clock violations

Large-scale performance analysis of Sweep3D with the Scalasca toolset 405

identified during trace analysis necessitate additional corrections. The time required
to correct timestamps varies considerably according to the types and frequencies
of violations encountered, such that for the series of measurements shown in Fig-
ure 2:a(ii) the trace from 24,576 processes which had many violations required much
more processing than that from 49,152 processes which was fortunate to have none
at all.

Although trace files are read and analyzed in parallel, the linearly increasing
time for generation of the final analysis report (identical to the summary report
augmented with 20 trace-specific MPI metrics) dominates at larger scales. Using
a Scalasca prototype implementation, analysis report writing time was improved
8-fold for the BG/P MK=1 experiment by dumping gathered metric severity values
in binary format, while retaining XML for the metadata header [16].

The most significant hindrance to the scalability of such trace-based analysis
— and also applications which use similar techniques for intermediate checkpoints
and final results — is the creation of one file per process, which grew to take over
86 minutes for 294,912 files, apparently due to GPFS filesystem metadata-server
contention. (The Lustre filesystem on the XT5 apparently had no problem creating
196,608 files in only 5 minutes.) Employing the SIONlib library, such that one
multi-file was created by each BG/P I/O node (i.e., 576 files at full scale) for the
traces from 512 processes, reduced the time for creation of the experiment archive
directory and trace files down to 10 minutes.

From Scalasca automated trace analysis examining event patterns and quan-
tifying their corresponding cost, MPI communication time can be split into basic
message processing and a variety of performance properties indicating waiting time
when message-passing operations are blocked from proceeding (as will be seen in
following examples). The graphs in the left column of Figure 2 show that while basic
message processing time (open squares) remains negligible and fairly constant at
around one second, MPI communication time is dominated by increasingly onerous
waiting time (filled squares) that governs the performance of Sweep3D at larger
scales. Due to the ten-fold increase in the number of messages in the MK=1 config-
uration, rather longer is required for processing MPI message sends and receives,
however, waiting times are much less. In each case, most waiting time is found to be
“Late Sender” situations, where a blocking receive is initiated earlier than the asso-
ciated send as illustrated in Figure 5, with further waiting time for “Wait at N x N”
in the MPI_Allreduce operations for processes that initiate the collective operation
in advance of the last participant.

4.3. Scalasca Analysis Report Examination

Figures 3 and 4 present Sweep3D execution analysis reports from the tracing ex-
periments performed with Scalasca on Jaguar Cray XT5 and Jugene IBM BG/P
with 196,608 and 294,912 MPI processes respectively.

In Figure 3, exclusive “Execution” time is selected from the tree-structured

406 Parallel Processing Letters

X © Cube 3.3 Qt: epik_sweep3d_196608_

cube.gz

File Display Topology Help
Absolute

v Absolute

©6 ®

v Peer distri

Metric tree

Calltree Flat view

Systemtree Topology 0 Topology 1 | Topology2

€+] 1.35 MPI

[0.00 Synchronization

£+ (142 44 Collective

[1.26e4 Wait at Barrier
[22.28 Barrier Completion

[10.00 Communication

i (1 1.98e5 Point-to-point

] 1.40e7 Late Sender
(] 1.68e6 Late Receiver
[3121.35 Collective
[0.00 Early Reduce
[0.00 Early Scan
[14600.19 Late Broadcast
[14.60e6 Wait at Nx N
(1 385.98 N x N Completion
] 0.00 File 10
& [5.62e6 Init/Exit
- [7.34e7 Overhead
- I 1.57e10 Visits
(B 5.90e5 Synchronizations
7.84e9 Communications
[7.64e13 Bytes transferred
8.93e5 Computational imbalance

Peer distribution

2.13e6 driver

[74.16 task_init

(1 3.27 read_input

- 0.15 decomp

[7381.24 inner_auto

£ [1829.37 inner

(1 7610.47 initialize
[1.38 barrier_sync
L[] 0.00 MPI_Barrier
[0.00 timers_

L D 1.47¢5 source

oclam
D 1787.94 rcv_real
L[] 0.00 MPI_Recv

[3236.83 snd_real

L1 9.65 global_real_max

L [0.00 MPI_Allreduce
[1.47 global_real_sum
L [0.00 MPI_Alireduce
[0.87 task_end

‘Systemtree | Topology 0 Topology 1 | Topology 2

0.00 |
15.15 16.35 +/- 0.49 18.48
T
Fig. 3. Scalasca analysis report explorer presentations of a Sweep3D trace experiment with

196,608 processes on the Jaguar Cray XT5 system. Exclusive “Execution” time corresponding
to local computation in the sweep routine and its distribution by process shown with part of the
machine physical topology (where unallocated nodes in XT cabinets are shown grey), and below
it an additional view of the imbalance using the application’s 512 x 384 virtual topology.

Large-scale performance analysis of Sweep3D with the Scalasca toolset 407

Eile Display Topology Help

Absolute [+] [Absolute [+ [Peer distribution [+
Metric tree | Calltree | Flat view | Systemtree | Topology 0 | Topology 1
[J 0.00 Time 2] "2 [J 0.00 driver n
[O 2.41e7 Execution &+ (] 0.00 task_init
& []0.00 MPI &[] 0.00 read_input
5 [] 0.00 Synchronization [O 0.00 decomp
& [8.23 Collective £+ [0.00 inner_auto
(] 558.83 Wait at Barrier £+ 0] 0.00 inner
[11.76 Barrier Completion £ [0.00 initialize

3] 0.00 Communication : £ [J 0.00 barrier_sync
56e6 Point-to-point f = [J 0.00 MPI_Barrier
-1 0.00 timers

ate Receiver 1 0.00 source
&1 [0.00 sweep

[0.00 Early Reduce E [0.00 octant

[0.00 Early Scan H] 0.00 rev_real
[1332.69 Late Broadcast

(11.85e6 Wait at N x N H [0.00 snd_real
(1 26.62 N x N Completion | | L[] 0.00 MPI_Send
3 [0.00 File 10 £+ []0.00 global_int_sum
L [0 1.56e7 InitExit L [0.00 MPI_Allreduce
- [1.84e8 Overhead £+ 0.00 flux_err
- B 2.32e11 Visits [0.00 global_real_max
(B 884736 Synchronizations £+ (] 0.00 global_real_sum
(B 1.16e11 Communications L[] 0.00 MPI_Allreduce

M 1.25¢14 Bytes transferred

[437556.03 Computational imbalance =
| T —————— 1 | 0 <5

’En 1.07e7 (19.90%) 5.40e7] [0.00 1.07¢7 (100.00%) 107¢7) o9
Systemtree | Topology 0 | Topology 1

&[] 0.00 task_end

g

(D]
0.00 0.00 100.00|
2750 36.40 +/-3.03 45.31

Fig. 4. Scalasca analysis report explorer presentation of Sweep3D execution performance with
294,912 MPI processes on Jugene IBM BG/P. The distribution of “Late Sender” waiting time met-
ric values for the MPI_Recv callpath for each process are shown with the physical three-dimensional
torus topology (top) and 576 x 512 application virtual topology (below).

408 Parallel Processing Letters

performance metric hierarchy in the left panel, annotating the program call-tree
in the middle panel with the local computation time for each callpath. With the
callpath to the primary sweep routine selected, the distribution of metric values
for each process are shown with the physical machine topology in the right panel.
Additionally, the application’s 512x384 virtual topology has been used for the lower
display. Processes in the topology displays and the boxes next to nodes in the trees
are colour-coded by metric value according to the scale at the bottom of the window.

17.5% of the total CPU time in the XT5 experiment is exclusive “Execution”
time (with the remainder being broken down into various forms of MPI commu-
nication and synchronization time). 58% of this is computation in the key sweep
routine itself (and not in paths called from it). Variation by process is found to
be from 15.15 to 18.48 seconds (16.35+0.49), and while there is no obvious cor-
relation to the physical topology, a clear pattern emerges when the application’s
two-dimensional grid is used to present the computation time that is both regular
and complex. The interior rectangular block has uniformly low computation time,
with higher times in the surrounding border region and particularly on numerous
oblique lines of processes radiating from the interior to the edges of the grid.

By comparison, Figure 4 is showing the “Late Sender” waiting time for point-
to-point MPI communication on BG/P, which is 20% of the total CPU time in this
case, where the improved MK=1 configuration has been used. (In Figure 3, “Late
Sender” time is 44%.) Values range from 27.50 to 46.31 seconds (36.40 £3.03) in a
pronounced pattern similar to an inverse of that seen for the computation time. The
central rectangular block has notably higher waiting time and the same intricate
pattern of sharp oblique lines radiate from the central block to the edges, together

W src/sweep.f?ﬁ 7 “. Online description
[fixup i,3, & k if negative B Late Sender Time =
ifixed = 0
111 continue Description:

if (ti .lt. 0.0d+0) then

dl = dl - ei Refers to the time lost waiting caused by a blocking receive

ti=1.0/ dl operation (e.9.,MPT_Recv OrMPI Wait)thatis posted earlier than
ql = gl - 0.5d+0*ci*phiir the corresponding send operation.

plu(l) =ql * ti

ti = 0.0d+0

if (tj .ne. 0.0d+0) tj = 2.0d+0*phi(i) - phijb(i,lk,mi}

if {th .ne. 0.0d+0} tk = 2.0d+0*phi{i) - phikb{i,j,mi}
ifixed = 1 [o [
endif b
if {tj .1t. 0.0d+0) then g '
dl'= dl - cj
H 2o/ h z e |
ql = gl - 0.5d+0%c*phijb(1,lk,mi)
phi{i) = ql * tj
tj = 0.0d+0 time
if (tk .ne. 0.) tk = 2.0d+0*phi(i) - phikb(i,j,mi)
if (ti .ne. 0.) ti = 2.0d+0*phi(i) - phiir
ifixed = 1 Ifthe receiving process is waiting for multiple messages to arrive
gORECRTTE (e.g-, inan call toMPT_Waitall), the maximum waiting time is
endi D ; B
if (tk .lt. 0.0d+0) then accounted, i.e., the waiting time due to the latest sender.
dl =dl - ck Unit:
tk =1.0/dl Seconds
al = al - 0.5d+0%lkc*philth (1,3, mi) Diagnosis:
RN oon S Try to post sends earlier, such that they are available when receivers
if (ti .me. 0.0d+0) ti = 2.0d+0*phi(i) - phiir need them. Note that outstanding messages (i.e., sent before the
if (tj .nme. 0.0d+0} tj = 2.0d+0*phi(i) - phijb{i,lk,mi) receiver is ready) will occupy internal message buffers.
ifixed = 1 Parent:
g0 to 111 @ MPI Point-to-point Communication Time
endif . E
<]]) Children:
Late Sender, Wrong Order Time E
® Read only [Save J[Save=s][Font. | Close M Ko

Fig. 5. Scalasca auxiliary windows showing the section of Sweep3D routine sweep source code for
the flux correction ‘fixups’ (left) and explaining the “Late Sender” time metric (right).

Large-scale performance analysis of Sweep3D with the Scalasca toolset 409

with a background progressively increasing from the NW to SE corners. The compu-
tational imbalance has been superimposed with the progressive background pattern
characteristic of the wavefront sweep communication. The computational imbal-
ance has the same pattern and magnitude in both MK=10 and MK=1 configurations
(though the total cost of the sweep routine is somewhat less in the latter), which
subsequent analysis refined to the flux correction code shown in Figure 5. Whereas
the communication waiting time dominates in the default MK=10 configuration, due
to insufficient parallelism in the wavefront sweeps, in the MK=1 configuration waiting
time is substantially reduced overall, yet notably amplified by the interaction with
the computational imbalance to become a much larger proportion of the reduced
computation time.

Since similar (though less extreme) behaviour was observed with smaller pro-
cess configurations, experiments were repeated specifying alternative mappings of
processes onto the BG /P physical torus hardware. The default XYZT mapping was
found to be statistically as good as permutations of XYZ, while TXYZ (and permu-
tations) which map consecutive ranks onto the same processor cores degraded per-
formance by some 2%. In comparison, optimal mappings have been reported to be
able to improve Sweep3D performance by 4% on Blue Gene/L [13]. These Scalasca
experiments on IBM BG/P and others on Cray XT indicate that the communi-
cation network and mapping of processes are not pertinent to the communication
overhead and imbalance.

5. Refined Instrumentation and Analyses of SWEEP3D Execution

To isolate the origin of the imbalance, the Sweep3D source code was manually
annotated with Scalasca instrumentation macros. Since the load imbalance was
found not to differ in its characteristics on each platform or with larger scale, new
experiments were done at the modest scale of 16,384 processes on BG/P.

Starting with the key 625-line sweep flow routine, the loop over the eight octants
was annotated to define a distinct region in the callpath when processing each
octant. It was found that computation times didn’t vary much by octant, however,
there was a sizable variation in communication time between octants (which will be
re-examined later in more detail).

With further annotation of the execution phases within octant processing, the
imbalance was isolated to the i-line section where corrective ‘fixups’ for negative
fluxes are recursively applied in the 4,7,k directions (shown in Scalasca source
browser window in Figure 5), as typically identified as a hotspot by sampling-
based profilers (e.g., [14]). Finer annotation of the conditional fixup block for each
direction determined that ¢ and j corrections are applied with roughly the same
frequency, and somewhat more often than k corrections. In each case, there is a
pronounced distribution pattern, varying from a relatively small number of fixes in
an interior rectangular block with much higher numbers on oblique lines reaching to
the border of the domain (matching that visible in Figure 3). The aggregate compu-

410 Parallel Processing Letters

tation time for applying these fixes is directly proportional to the number applied.
Since this computation is done between receiving inflows and sending outflows for
each block of k-planes, delays sending outflows on processes applying more flux
corrections result in additional waiting time in receives for inflows on neighbours.

Since the input configuration for Sweep3D specifies that flux fixups are only
applied after the seventh iteration, the major solver iteration ‘loop’ in the inner
routine was annotated: this ‘loop’ with increasing values of its is implicitly defined
by a continue statement and a guarded goto statement, within which region entry
and exit annotations were incorporated, each time defining a new region labeled with
the corresponding value of its. Each of the 12 executions of this region was then
distinguished in the resulting callpath analysis, visible in the middle panel of the
screenshot at the top of Figure 6. Charts of the execution time for each iteration can
also be produced, with a breakdown of the MPI processing and waiting times, such
as shown in Figure 7. While the initial seven iterations have very similar performance
characteristics, including minimal imbalance in computation or communication, the
eighth iteration is markedly more expensive with significant imbalance. Subsequent
iterations are not quite so bad, however, they still have significant imbalance and
waiting times, with a pattern that spreads from the central rectangular block along
oblique angles out to the edges visible in the sequence of views of the process
computation time distribution in Figure 6. (A colour scale for times from 5 to 10
seconds is used to enhance contrast: the initial 6 iterations are indistinguishable
from iteration 7, and the final 2 iterations are very similar to iteration 10.)

Separating the analysis of the computationally-balanced non-fixup iterations
from that of the iterations with computationally-imbalanced fixup calculations,
helps distinguish the general efficiency of the communication sweeps from addi-
tional inefficiencies arising from the computational imbalance. In this case, octant
instrumentation is combined with instrumentation that selects between fixup and
non-fixup iterations, producing a profile as shown in Figure 8. Here the distribution
of “Late Sender” waiting time is a complement to the distribution of pure computa-
tion time arising from the fixup calculations seen in Figure 6. Communication time
for even-numbered octants is negligible for the non-fixup iterations (which are also
well balanced), and while octants 1, 3, and 7 have comparable communication times,
octant 5 generally requires twice as long: this octant is where the sweep pipeline
must drain before the reverse sweep can be initiated, with corresponding waiting
time. The distribution of “Late Sender” waiting time in non-fixup iterations for
pairs of octants shown in Figure 8 illustrates the impact of the sweeps. In octants
142, waiting times are greatest in the NW and progressively diminish towards the
SE. For octants 546, the waiting times are larger due to the sweep reversal, and the
progression is from NE to SW. Octants 34+4 and 748 combine sweeps from both SW
to NE and SE to NW resulting in progressively decreasing amounts of waiting time
from south to north. Each octant in fixup iterations has more than twice as much
aggregate “Late Sender” waiting time, with a distribution that clearly superimposes
the underlying sweep with the additional computational imbalance.

Large-scale performance analysis of Sweep3D with the Scalasca toolset 411

Cube 3.3 Qt: epik_sweep3d_its_vn16384_trace/trace.cube
Eile Display Topology Help

Absolute H ‘Absolut: H [Pe:r distribution H
Metric tree I Call tree [Flat view \ System tree | Topology0 | Topology 1 I
— [10.00 Time </ | 2 1 3226.47 driver = =
-] (] 2.48 task_init
=[] 0.00 MPI (] 0.36 read_input

[0.05 decomp

&+ [0.43 inner_auto
£} [8982.98 inner

[237.60 initialize

[0.17 barrier_sync
[0.00 timers

&t [J 0.00 Synchronization
[25.84 Collective
[0.00 Remote Memory
& [J 0.00 Communication
&t [61777.25 Point-to-poin
[197059.11 Late Sen
[11897.17 Late Recei
[15.19 Collective
[] 0.00 Early Reduce
[] 0.00 Early Scan
[78.88 Late Broadca;
(1 26978.53 Wait at N
[11.21 N x N Complet
[0.00 Remote Memory
[0.00 File IO
[57795.96 InitExit
- (1 298764.37 Overhead
(- [1.28e10 Visits

£
) S g

[+ [l 49152 Synchronizations
& [l 6.39e9 Communications
=+ [l 5.02e12 Bytes transferred = -
G [l 24633.85 Computational imbalanc -] =
| £) < BB [«
10.00 .33e6 (67.39%) 1.98e6| 0.00(u) 1.32e6 (899.68%) 1.47e5(u)([0.00 0.00 100.00|
76.83 80.52 +/-1.49 83.82]

its=T7 its=8 its=9 its=10

Fig. 6. Sweep3D computation Execution time variation by iteration (top) and 16,384-process
distribution evolution for iterations 7 to 10 (bottom).

B MPI waiting B MPI waiting
20 B MPI processing 20 W MPI processing
m Computation m Computation
15 15
@ @
£ £
=10 £ 10
5 5
0 0
1 2 83 4 5 6 7 8 9 10 11 12 1 2 83 4 5 6 7 8 9 10 11 12
Iteration (its) Iteration (its)

Fig. 7. Sweep3D iteration execution time breakdown with 16,384 processes on BG/P for MK=10
(left) and MK=1 (right) k-plane blocking factors.

412 Parallel Processing Letters

Eil

Cube 3.3 Qt: epik_sweep3d_octits_vn16384_trace/trace_inner.cube.gz

le Display Topology Help

E

=

£+ [1322581.88 Execution
&[] 0.00 MPI
[42.87 synchronization
& [10.00 Communication
&1 [66611.03 Point-to-point

&+ [8.60 Collective

[0.00 File O
[J 0.00 Init/Exit
-1 0.00 Overhead
- [1.28e10 Visits
i+ [l 32768 Synchronizations

[0 Communications
£+ [0 Point-to-peint
3.20e9 Sends
= 2.00e9 Receives
[1.19€9 Late Senders
Bt [524288 Collective

] 2280.59 Late Receiver

[J 0.00 Early Reduce

[0.00 Early Scan

[] 0.00 Late Broadcast
[26268.11 Wait at N x N
[1.32 N x N Completion

] 0.00 source
F (] 0.00 sweep

[1 0.00 flux_err
7 0.00 <its=8..12>
[] 0.00 source
+ (7 0.00 sweep

] 6.67 <octant=1>
O 0.74 <octant=2>
[0 5.31 <octant=3>
[0.59 <octant=4>
[110.05 <octant=5>
] 0.82 <octant=6>
[J 5.78 <octant=7>
[1.41 <octant=8>
[0.00 global_int_sum

Absolute H Metric selection percent H [Pe:r percent H
Metric tree I Calltree | Flat view \ System tree | Topology0 | Topology 1 I
£+] 0.00 Time [£ [0.00 <its=1..7> - -

0 1.96€5 (12.15%)

100.00
8.21+/-1.49

Fig. 8.

octant=1+42

octant=3+4

Sweep3D MPI communication “Late Sender” time variation by sweep octant for initial

7 non-fixup and subsequent 5 fixup iterations (top) and 16,384-process waiting time distributions
for the computationally balanced non-fixup and imbalanced fixup octant pairs 142, 3+4, 546,
7+8 (bottom).

Large-scale performance analysis of Sweep3D with the Scalasca toolset 413

6. Conclusion

The ubiquitous Sweep3D benchmark code has good scalability to very high numbers
of processes, however, careful evaluation of coupled input parameters is required to
ensure that waiting times for MPI communication do not grow to dominate ex-
ecution performance. Although Sweep3D has been comprehensively studied and
modeled, providing valuable insight into expected performance, actual execution at
extreme scales can differ appreciably due to easily overlooked factors that introduce
substantial imbalance and additional waiting times. While flux corrections are nec-
essary for a physically realistic solution, their computational expense and imbalance
which disrupts communication in the wavefront sweeps, suggests that they should
be used sparingly.

Key execution performance characteristics of Sweep3D were revealed by Scalasca
runtime summarization and automated event trace analyses, and refined employing
source code annotations inserted for major iteration loops and code sections to direct
instrumentation and analysis. In on-going research we are investigating automatic
determination and combining of iterations with similar performance profiles [17],
and analyzing traces for the root causes of wait states to improve attribution of
performance problems [18]. Tools for measuring and analyzing application execu-
tion performance also need to be highly scalable themself [19], as demonstrated by
the Scalasca toolset with several hundred thousand Sweep3D processes on Cray XT5
and IBM BG/P, where multiple techniques for effective data reduction and man-
agement are employed and application-oriented graphical presentation facilitated
insight into load-balance problems that only become critical at larger scales.

Acknowledgements

This research was supported by allocations of advanced computing resources on the
Jugene IBM Blue Gene/P of Jilich Supercomputing Centre at Forschungszentrum
Jilich and the Jaguar Cray XT5 of the National Center for Computational Sciences
at Oak Ridge National Laboratory, which is supported by the Office of Science of
the US Department of Energy under contract DE-AC05-000R22725.

References

[1] Jillich Supercomputing Centre, Jiilich, Germany, “Scalasca toolset for scalable per-
formance analysis of large-scale parallel applications,” http://www.scalasca.org/.

[2] M. Geimer, F. Wolf, B. J. N. Wylie, E. Abrahdm, D. Becker, and B. Mohr, “The
Scalasca performance toolset architecture,” Concurrency and Computation: Practice
and Experience, vol. 22, no. 6, pp. 702-719, 2010.

[3] F. Wolf, B. J. N. Wylie, E. Abrahdm, D. Becker, W. Frings, K. Fiirlinger, M. Geimer,
M.-A. Hermanns, B. Mohr, S. Moore, M. Pfeifer, and Z. Szebenyi, “Usage of the
SCALASCA toolset for scalable performance analysis of large-scale parallel applica-
tions,” in Proc. 2nd HLRS Parallel Tools Workshop (Stuttgart, Germany). Springer,
Jul. 2008, pp. 157-167, ISBN 978-3-540-68561-6.

414

[4]

(12]

(13]

(14]

(15]

(18]

(19]

Parallel Processing Letters

B. J. N. Wylie, M. Geimer, and F. Wolf, “Performance measurement and analy-
sis of large-scale parallel applications on leadership computing systems,” Journal of
Scientific Programming, vol. 16, no. 2-3, pp. 167-181, 2008.

Cray Inc., “Cray XT,” http://www.cray.com/Products/XT/Systems.

IBM Blue Gene team, “Overview of the IBM Blue Gene/P project,” IBM Journal of
Research and Development, vol. 52, no. 1/2, pp. 199-220, Jan. 2008.

Los Alamos National Laboratory, Los Alamos, NM, USA, “ASCI SWEEP3D
v2.2b: Three-dimensional discrete ordinates neutron transport benchmark,”
http://wwwc3.lanl.gov/pal/software /sweep3d/, 1995.

A. Hoisie, O. M. Lubeck, and H. J. Wasserman, “Performance analysis of wavefront
algorithms on very-large scale distributed systems,” in Proc. Workshop on Wide Area
Networks and High Performance Computing, ser. Lecture Notes in Control and In-
formation Sciences, vol. 249. Springer, 1999, pp. 171-187.

A. Hoisie, O. Lubeck, and H. Wasserman, “Performance and scalability analysis of
Teraflop-scale parallel architectures using multidimensional wavefront applications,”
Int’l J. of High Performance Computing Applications, vol. 14, pp. 330-346, 2000.

D. H. Ahn and J. S. Vetter, “Scalable analysis techniques for microprocessor perfor-
mance counter metrics,” in Proc. ACM/IEEE SC 2002 conference (Baltimore, MD,
USA). IEEE Computer Society Press, Nov. 2002.

K. Davis, A. Hoisie, G. Johnson, D. J. Kerbyson, M. Lang, S. Pakin, and F. Petrini,
“A performance and scalability analysis of the Blue Gene/L architecture,” in Proc.
ACM/IEEE SC 2004 conference (Pittsburgh, PA, USA). IEEE Computer Society
Press, Nov. 2004.

M. M. Mathis and D. J. Kerbyson, “A general performance model of structured
and unstructured mesh particle transport computations,” Journal of Supercomputing,
vol. 34, no. 2, pp. 181-199, Nov. 2005.

A. Hoisie, G. Johnson, D. J. Kerbyson, M. Lang, and S. Pakin, “A performance
comparison through benchmarking and modeling of three leading supercomputers:
Blue Gene/L, Red Storm, and Purple,” in Proc. ACM/IEEE SC 2006 conference
(Tampa, FL, USA). IEEE Computer Society Press, Nov. 2006.

A. Bordelon, “Developing a scalable, extensible parallel performance analysis toolkit,”
Master’s thesis, Rice University, Houston, TX, USA, Apr. 2007.

W. Frings, F. Wolf, and V. Petkov, “Scalable massively parallel 1/O to task-local
files,” in Proc. 21st ACM/IEEE SC 2009 conference (Portland, OR, USA). IEEE
Computer Society Press, Nov. 2009.

M. Geimer, P. Saviankou, A. Strube, Z. Szebenyi, F. Wolf, and B. J. N. Wylie,
“Further improving the scalability of the Scalasca toolset,” in Proc. PARA 2010
(Reykjavik, Iceland), (to appear).

Z. Szebenyi, F. Wolf, and B. J. N. Wylie, “Space-efficient time-series call-path profil-
ing of parallel applications,” in Proc. 21st ACM/IEEE SC 2009 conference (Portland,
OR, USA). IEEE Computer Society Press, Nov. 2009.

D. Béhme, M. Geimer, F. Wolf, and L. Arnold, “Identifying the root causes of wait
states in large-scale parallel applications,” in Proc. 39th Int’l Conf. on Parallel Pro-
cessing (ICPP, San Diego, CA, USA), Sep. 2010, (to appear).

B. Mohr, B. J. N. Wylie, and F. Wolf, “Performance measurement and analysis tools
for extremely scalable systems,” Concurrency and Computation: Practice and Expe-
rience, vol. 22, Jun. 2010, (International Supercomputing Conference 2008 Award).

