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Abstract— Grid and e-science infrastructure interoperability 
is an increasing demand for Grid applications but 
interoperability based on common open standards adopted by 
Grid middle-wares are only starting to emerge on Grid 
infrastructures and are not broadly provided today. In earlier 
work we have shown how open standards can be improved by 
lessons learned from cross-Grid applications that require 
access to both, High Throughput Computing (HTC) resources 
as well as High Performance Computing (HPC) resources. This 
paper provides more insights in several concepts with a 
particular focus on effectively describing Grid job descriptions 
in order to satisfy the demands of e-scientists and their cross-
Grid applications. Based on lessons learned over years gained 
with interoperability setups between production Grids such as 
EGEE, DEISA, and NorduGrid, we illustrate how common 
open Grid standards (i.e. JSDL and GLUE2) can take cross-
Grid application experience into account. 
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I.  INTRODUCTION 
Production Grid and e-science infrastructures such as 

NorduGrid [1], EGEE [2], or DEISA [3] provide a wide 
variety of different Grid resources to end-users (i.e. e-
scientists) on a daily basis today. Nowadays we observe an 
increasing amount of e-science applications that require 
resources in more than one Grid often leveraging both HTC 
and HPC resources in one scientific workflow. But using 
different production Grids represents still a challenge due to 
the absence of a wide adoption of open standards in 
deployed Grid middleware today. Nevertheless, we have 

worked in the OGF Grid Interoperation Now (GIN) 
community group to enable cross-Grid applications between 
different production Grids. Some well-known examples are 
interoperability setups for the WISDOM [4] community, the 
EUFORIA project [5], or the Virtual Physiological Human 
(VPH) [6] community. Thus we identified in earlier work 
[7] a well-defined set of open standards that play an 
important role for production Grids today or are considered 
to be adopted soon in production Grids. These standards are 
OGSA - Basic Execution Service (BES) [8], Job 
Submission Description Language (JSDL) [9], Storage 
Resource Manager (SRM) [10], GridFTP [11], GLUE2 [12], 
and several standards from the security domain (e.g. X.509, 
Security Assertion Markup Language, etc.). Standards like 
Usage Records (UR), Service Level Agreements (SLAs) via 
WS-Agreement [13], WSDAIS, or the Data Moving 
Interface (DMI) are getting more important for production 
Grids as well. 

These common open standards are a good step 
towards the right direction, but we also identified in earlier 
work [14] that many of them can be still improved by 
production Grid experience (e.g. OGSA-BES and JSDL), or 
that missing links between specifications of different areas 
(e.g. JSDL and GLUE2) must be defined. The GIN group 
created a spin-off group named as Production Grid 
Infrastructure (PGI) working group with the particular goal 
to work on these improvements and to provide thus a 
production stable standards-based ecosystem named as the 
infrastructure interoperability reference model (IIRM) [14]. 
Members of the PGI working group represent a significant 
fraction of Grid middleware such as ARC [22], gLite [15], 
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UNICORE [16], or Genesis that all play a major role in 
production Grids today (e.g. NorduGrid, EGEE, DEISA / 
PRACE, etc.).  

While improvements of the OGSA-BES interface 
have been described in earlier work [17], we emphasize in 
this contribution on lessons learned from production Grid 
applications in the context of JSDL-based job descriptions 
and GLUE2-based information model dependencies. 

The remainder of the paper is structured as follows. 
After the introduction, Section 2 provides details about 
rather general Grid application description improvements, 
while Section 3 gives insights into extensions required for 
effective executions on HPC-driven Grids. Section 4 
provides an overview of the concepts related to application 
sequences and this paper ends in Section 5 with concluding 
remarks. 

 

 
Figure 1.  Concepts of Grid application description improvements in a 
broader context including its Grid middleware and Grid resource 
dependencies. The delta JSDL indicates our applied changes. 

II. GRID APPLICATION  IMPROVEMENTS 
In this section we review how Grid application job 

descriptions can be improved, because we want to reveal 
more meaningful description elements in order to enable 
Grid middleware to execute Grid jobs and their described 
applications more effectively. 
 In using Grid middleware with cross-Grid 
applications we learned that Grid middleware can take 
advantage of several more detailed descriptions about the 
Grid job that is currently defined with standards like JSDL 
[9] or its extensions (i.e. JSDL SPMD Extension [18] and 
HPC Profile Application Extensions [19]). Therefore, this 
section describes a number of improvements to JSDL that 
are shown in a broader context in Figure 1 in order to 
understand where these improvements take effect. 
 In addition to the descriptions found in JSDL, the 
concept of (a) application types classification provides 
useful information about the Grid job that affects its 
handling in numerous different ways within Grid 

middlewares (e.g. parsing effectiveness). In short, this 
classification consists of the following enumeration serial, 
collection, metaparallel, parallel, and workflownode. The 
key benefit of all these pieces of information within the JSDL 
is to provide Grid middleware an exact classification that 
can be used to parse and process JSDL documents much 
more effectively. Of course, one Grid application can be 
described by more than one element of this classification. 

The classification element serial stands for an 
individual stand-alone job while the collection element 
refers to a job that is submitted as part of a collection of 
individual jobs that do not communicate among each other. 
This is often used in HTC use cases or parameter sweep 
studies. In contrast the classification metaparallel refers to a 
job that is submitted as part of a collection of individual 
jobs that do communicate with each other via the 
mechanisms of metacomputing (i.e. Meta-MPI). We 
observed that this is rarely used, but some use cases (e.g. 
like in the VPH community [6]) are based on this 
mechanism crossing numerous production Grids. Much 
more often used is the parallel job classification that also 
refers to a job submitted that could be part of a larger 
collection, but the communication is basically performed in 
the job itself using parallel computing mechanisms (i.e. MPI 
or OpenMP). These jobs are often used in the context of 
HPC-driven e-science infrastructures such as DEISA or 
TeraGrid. Finally, jobs that are of the workflownode type are 
typically submitted as part of a larger cross-site workflow 
and handled by a workflow engine technology. 

Especially in Grid interoperability setups, the 
definition of the main Grid application executable within the 
Grid job description represents a challenge since a wide 
variety of inhomogeneous systems are typically used with 
setups that are defined by our reference model. All previous 
concepts of the JSDL specification like its POSIX 
normative extension (i.e. POSIXApplication executable 
definition), which is also used in the JSDL SPMD 
extension, or its HPC Profile Application extension (i.e. 
HPCPAApplication executable definition) have only used 
an Executable element and an Argument element. But the 
lack of having the path information of an executable clearly 
separated from the executable sometimes caused trouble 
while parsing JSDL documents in cross-Grid infrastructure 
setups. 

To overcome these limitation, we thus argue that it 
make sense to use a (b) revised application executable 
definition with the three elements ExecutableName, 
ExecutablePath, and ExecutableArgument while the latter 
element can appear n times in the job description. We 
explored that this concept enables the most flexible support 
in terms of supporting different varieties of job submission 
approaches that are (i) compile and execute applications in 
the job sandbox, (ii) pre-installed applications with a fixed 
and known path, and (iii) pre-installed applications that take 
advantage of complex constructs using environment 
variables (e.g. $PATH variable) and such like. 



 
Figure 2.  Design layout for the functionalities related to the Grid 
application description improvements of the JSDL language. This example 
shows the PEPC plasma physics application that uses the VISIT 
visualization library. 

Another concept of JSDL that could be improved was the 
definition of the ApplicationName and ApplicationVersion 
information. We improve this concept by using the (c) 
application software statement concept that adds to these 
pieces of information also the ApplicationFamily (e.g. 
LINUX, WIN, Library, etc.). In addition, we re-use this 
concept to define a much clearer formulation of the (d) 
application software requirements concept. It is important to 
understand that one and only one instance of the application 
software statement concept describes the main Grid 
application itself in the Application part of the JSDL 
instance; while n other instances of it are used to describe 
application software requirements in the Resource part of 
the JSDL instance. 
 Figure 2 illustrated the re-use of the concept in a 
broader view using the example of an application that 
requires a dedicated visualization library called VISIT [20] 
during runtime for its execution on a HPC-based system. 
We also encountered many times the need to have a concept 
named as (e) application output joins, which refers to a 
boolean value indicating whether the standard-out and 
standard-error outputs of the main applications should be 
joined in one file or not. In fact, some applications use the 
standard-error for significant output (e.g. AMBER MD 
suite) and thus e-scientists are sometimes interested to have 
only one file for easier analyzing of the application run. 
Finally, we provide a summary of the proposed 
improvements to the JSDL standard in Table 1. 

TABLE I.   
 

Functionality Extensions and  
Improvement Concepts Area Extended 

Standard 
(a) Application types classification Compute JSDL 

(b) Revised application executable Compute JSDL 

(c) Application software statement Compute JSDL 

(d) Application software requirements Compute JSDL 

(e) Application output joins Compute JSDL 

III. HIGH PERFORMANCE COMPUTING EXTENSIONS 
This section explores refinements of the JSDL language 

and GLUE2 in terms of large-scale HPC application 
support, because we want to find out which recent 
production HPC resource features are missing in JSDL and 
GLUE2 so that scientists can use it to submit and execute 
applications more efficiently and to obtain more accurate 
information. 
 Our experience from production Grid 
interoperability use  cases clearly reveal that the support for 
HPC-based job application descriptions can be improved, 
especially when using resources available within HPC-
driven infrastructures such as DEISA / PRACE or TeraGrid. 
Furthermore, we identified that pieces of information about 
resource features (i.e. available network topologies) must be 
exposed by Grid information systems in more detail. This 
was the case in use cases related to the VPH community, or 
more recently, with the members of the EUFORIA project 
as part of the fusion community. 
 Some core building blocks of our IIRM have been 
originally defined several years ago and thus they lack 
support of concepts of recently used Grid resources in 
general and large-scale HPC systems in particular. JSDL 
[9], for instance, was originally defined in 2005 and revised 
in 2008, but still lack the required functionalities to enable 
an efficient HPC oriented Grid job execution. In fact, JSDL 
extensions during 2007 such as the SPMD specification [18] 
or the HPC Profile Application extensions [19] aim at 
delivering some of these required functionalities, but also do 
not cover the essential functionality listed in this section. 
 
 

 
 
Figure 3.  Growing complexity of HPC machines makes it necessary to 
expose more accurate information via GLUE2 and to enable a more precise 
job submission with JSDL. Delta X and delta Y indicate our applied 
changes. 

 One of the most significant extensions to JSDL is 
the support for different types of (a) network topologies. In 
fact, the choice of network connections can have a big 



influence on the performance of applications that make use 
of parallel programming models (i.e. MPI). To provide an 
example, the state-of-the-art BlueGene/P HPC system as 
shown in Figure 3 offers different types of network 
connections: three dimensional torus, mesh, global tree 
(collective network), 10 Gigabit Ethernet (functional 
network). 
 Another extension to JSDL that is necessary to 
efficiently run parallel programming applications on recent 
HPC-based Grid resources is the (b) shape reservation 
functionality as supported by BlueGene/P systems today 
[21]. The optimal shape for an application depends on the 
communication pattern of the MPI-based parallel code and 
thus it is application-specific and in turn should be part of 
the application job description. Typically, a shape is 
indicated with x X y X z where x, y, and z are positive 
integers that indicate the number of partitions in the X-
direction, Y-direction, and Z- direction of the requested job 
shape. 
 The above described extensions to JSDL are 
complementary also added as extensions to the GLUE2 
standard. Although the GLUE2 NetworkInfo t data type [12] 
already described network information, these are limited to 
a few certain values and do not cover some technologies 
that offer torus networks or collective networks (e.g. global 
trees). Therefore we improve with some (c) network 
information enhancements the GLUE2 standard. In addition, 
we expose information about Grid resources more 
accurately and thus propose to add (d) available shape 
characteristics as extensions to the GLUE2 standard. 
 
 

 
 
Figure 4.  Design layout for the functionalities related to high performance 
computing extension concepts of JSDL and GLUE2 including their inter-
dependencies. 

 
In the context of the GLUE2-based description of 

Grid resources, we also identified the need to add so called 

important messages of the day (i.e. high messages) as 
extension to the GLUE2 standard. Here, GLUE2 provides 
attributes about DownTime information (i.e. endpoint 
entity) or a more general possibility pointing to certain 
information in the Web via the StatusInfo attribute (i.e. 
service entity), or another complete general OtherInfo 
attribute. Nevertheless, because of its general applicability 
and major importance, we add the (e) high message support 
to the GLUE2 standard. Some examples of these messages 
include temporary important information about file system 
usage (e.g. directory movements within PGFS) or about 
certain changes in complex compiler and application 
executions. Furthermore, high messages also cover pieces of 
information about local storage situation change (i.e. local 
storage cluster access) or other administrative pieces of 
information such as the transition period from one HPC-
driven Grid resource to another. Hence, not always it is 
related to system downtime. 

In order to take the baseline reference model 
design into account, we clearly identify that major parts of 
this functionality are part of a missing link between the 
specifications JSDL and GLUE2. We therefore define the 
following relationships between the above described 
functionalities: 

 
concept (c) in GLUE2 ComputingManager Entity 
implies 
concept (a) in JSDL Resource Description 
 
concept (d) in GLUE2 ComputingManager Entity 
implies 
concept (b) in JSDL Resource Description 
 
 In words, (c) implies (a) and (b) is a logical 
consequence of (d). The relationship is an implication since 
the antecedents (c) and (d) might be extended to a far deeper 
level of information than useful in JSDL elements for pure 
job description. In terms of our design model layout, we can 
thus define XML renderings of (c) and (d) within GLUE2 
and re-use them within JSDL as shown in Figure 4. Finally, 
we provide a summary of the proposed improvements to the 
JSDL and GLUE2 standard in Figure 4 and in Table 2. 
Other more complex concepts such as the ‘precise task/core 
mapping’ descriptions also significantly improve the 
execution efficiency of the corresponding application. This 
concept and a few others more complex ones have been kept 
out due to readability of the paper and the page restriction. 

TABLE II.   

Functionality Extensions and  
Improvement Concepts Area Extended 

Standard 
(a) Network topology (torus, global tree, etc.) Compute JSDL 

(b) Shape reservation (x X y X z ) Compute JSDL 

(c) Network information enhancements Info GLUE2 

(d) Available shape characteristics Info GLUE2 

(e) High message support Info GLUE2 



IV. SEQUENCE SUPPORT FOR COMPUTATIONAL JOBS 
In this section we study the difference between Grid 

workflows and resource-oriented application sequences, 
because we want to find out how we can jointly support 
different types of application execution modes (i.e. serial, 
parallel) for one Grid application so that e-scientists can 
conveniently use reference model implementations that fit 
their needs in terms of remote compilation and pre- and 
post-processing functionalities. 
 
 

 
 
Figure 5.  Support for application sequence executions within one Grid 
sandbox supporting multiple types of application execution modes (i.e. 
serial, parallel). 

 
 One specific missing feature encountered during 
production Grid interoperability is the support of pre- and 
post-processing functionalities within JSDL using different 
application execution modes. As shown in Figure 5, the HPC 
elements within the WIDOM workflow works with the 
molecular dynamics package AMBER that consists of a set 
of applications and some of them are used to transform 
input data in a suitable format for production runs. Of 
course, these transformation and short running pre-
processing steps are typically executed in a serial mode, 
while the actual corresponding molecular dynamic 
simulation is executed in a parallel mode using many CPUs 
/ cores.  

Another example encountered in production Grids 
is the demand for remote compilation of source-code thus 
avoiding the need to login manually with SSH. In the 
context of EUFORIA, we encountered that most 
applications have to be installed beforehand on execution 
sites using SSH since a suitable support for remote 
compilation is missing in JSDL. This approach is feasible 

when the source-code of the application is rather stable, but 
the lack of remote compilation becomes even more a 
problem when source-code of Grid applications are subject 
to change as encountered in many different applications that 
make use of HPC-driven Grid infrastructures. For instance, 
we experience in the VPH community this problem with the 
source code Hemelb that must be re-compiled on each of the 
different Grid resources due to different hardware 
architectures. 

 

 
 
Figure 6.  Design Layout for the functionalities related to the pre-job and 
post-job sequences. 

 
 In the context of the above described obstacles, we 
have to study what the difference between Grid workflows 
and sequences really are. In this context, it seems to make 
sense that compilation and execution are performed in one 
sandbox, otherwise the application might be installed 
beforehand. There is no exact boundary and you can realize 
it with both workflows and sequences, but when using 
sequences you can often circumvent data-transfers into the 
job sandbox. In addition, often the codes are specific for 
some types of architectures, which is in terms of many-core 
even more and more evolving thus requiring re-compilation 
anyway.  

As a consequence, we extend JSDL with the 
capabilities to execute pre-job sequences (a) in order to 
enable the definition of n pre-processing applications that 
are serially executed before the main Grid job application. 
This also satisfies the demand for remote compilation since 
one or many of these pre-processing applications defined in 
the pre-job sequence can be represented by a compiler. In 
turn, this compilation sequence step is serially executed 
before the main compiled Grid job application is started. 

In analogy to the pre-job sequences, our 
functionality extensions also cover post-job sequences (b) in 
order to support n post-processing applications. This 
sequence is only started when the main (often in parallel 
executed) Grid job application is finished. 



Finally, we provide a summary of the proposed 
improvements to the JSDL standard in Figure 6 and Table 3. 

 

TABLE III.   

Functionality Extensions and  
Improvement Concepts Area Extended 

Standard 
(a) Pre-job sequences (pre-processing) Compute JSDL 

(b) Post-job sequences (post-processing) Compute JSDL 

 

V. EXECUTION ADJACENCIES CONCEPT 
The fundamental idea of execution adjacencies concept is 

to have a Grid middleware-independent common execution 
environment (CEE) that can be used by Grid applications 
during run-time. The realization of this concept includes two 
major aspects that are ‘common environment variables’ and 
a ‘common execution module concept’.  Although this 
sounds trivial, we observed that not a few applications 
actually fail on having different execution environments on 
different Grid resources, especially in cross-Grid use cases. 
Hence, we define a common execution environment that a 
Grid job can find on every Grid resource. As there is no 
particular standard in this field, we propose this additional 
standard in the context of the larger computational-driven 
standard ecosystem that consists of OGSA-BES and JSDL 
(including its numerous extensions). 
 In more detail, the first aspects of the execution 
adjacencies are simply realizable using (a) common 
environment variables across different middleware 
distributions. In several applications, we observed that the 
actually running source-code makes use of environment 
variables such as number of cores, available memory and 
such like. So far, every Grid middleware such as gLite, 
ARC, or UNICORE provided such pieces of information via 
environment variables in rather proprietary execution 
environments (i.e. no common syntax or semantics). 
Therefore, we propose a standardized list of environment 
variables by not only defining their precise syntax, but also 
the corresponding semantics that lead to a significant 
advantage in interoperability setups. 

TABLE IV.   

Environment Variable Syntax Environment Variable Semantics 

GLUE2: MainMemorySize The total amount of physical RAM 

GLUE2: PhysicalCPUs The number of physical CPUs 

ExtensionGLUE2: PhysicalCores The number of physical cores 

… Others from the GLUE2 Execution 
Environment attribute specification 

 
As an example, a few of the environment variables 

can be found in Table 4, which content is self-explaining 
and not repeated within the text. Many of these variables 
provide information that must be consistent with 
information provided by a Grid information system for each 

Grid resource (i.e. by using GLUE2 schema elements). 
Also, it is important to agree that all this information must 
be provided. When some environment variables will have 
no information then it is not worth using them at all since 
applications will expect to get the information from that 
variable at a point in time. A closer look within GLUE2, for 
instance, reveals the definition of attributes in the so-called 
‘ExecutionEnvironment’. We argue that it make sense to 
basically ‘render’ those attributes as environment variables 
within the Grid middleware. Also, in this context we require 
to add a few attributes to the execution environment that are 
useful for applications during run-time. To provide an 
example, although GLUE2 defines the amount of physical 
CPUs we also argue that it make sense to provide the 
amount of physical cores to address the different core setups 
(single-core, dual-core, quad-core, upcoming n-core, etc.) 
on computing resources nowadays. 
 Closely related to this first aspect is also the second 
aspect of that we call the (b) ‘common execution module’ 
concept that originates from our work with applications that 
require a pre-defined setup of not only environment 
variables, but also path settings and such like. Hence, it is 
not about pieces of information about a pre-installed 
application setup (cf. Table I) and instead works on a far 
deeper level that of the application itself. To provide an 
example, in the DEISA infrastructure, we defined a so-
called ‘AMBER module’ that includes the setup of all 
necessary pieces of information to run the AMBER 
scientific package including roughly 50-80 executables and 
programs. To avoid that scientists always have to setup the 
required details like (PATH and execution locations, 
AMBER environment variables, versioning, etc.), they 
simply use ‘module load AMBER’ before any production 
run with AMBER. We argue that this concept is very 
beneficial and thus seek to integrate it smoothly in the 
context with GLUE2 and JSDL and propose a new small 
standard for this. Nevertheless, partly parts of the GLUE2 
specification in the context of so-called 
‘ApplicationEnvironments’ are re-used as well. 

Finally, we provide a summary of the proposed 
functionality and concepts to improve the execution 
adjacencies of scientific application runs in Table 5. 
  

TABLE V.   

Functionality and  
Proposed Concepts Area New 

Standard 
(a) Common Environment Variables Compute CEE 

(b) Common Execution Modules Compute CEE 

 

VI. RELATED WORK 
Related work in the field of standardization is clearly 

found among the members of the JSDL and GLUE2 OGF 
working groups. Several other ideas and concepts arise also 



from the work of these members and we have discussed and 
will discuss in future of how we can align our work in order 
to have new set of specifications that not fundamentally 
change the existing specifications and thus just improving 
them without break their emerging stability. 

Related Work in the field of reference models 
typically leads to the Open Grid Services Architecture 
(OGSA), which has in comparison to our approach a much 
bigger scope. Hence, our approach only represent a subset 
of this scope but more focused and thus more detailed. We 
deliver with our reference model a much more detailed 
approach of how open standards can be improved and used 
in scientific applications that require interoperability of e-
science production Grids today. Neither this contribution 
nor the reference model in the bigger context aim at 
replacing OGSA and thus rather represent a medium-term 
milestone towards a full OGSA compliance of Grid 
middlewares in future. In comparison with the former 
commercially-driven Enterprise Grid Alliance Reference 
model, our model is clearly oriented to support rather 
scientific-based use cases. 

 

VII. CONCLUSIONS 
We have shown how the common open Grid standards 

JSDL and GLUE2 can be significantly improved to 
integrate lessons learned gained by an academic analysis of 
the production Grid interoperability experience over years. 
Because of the page restriction for this focused workshop, 
we only present a few focused concepts of our infrastructure 
interoperability reference model and kept many important 
aspects of it (e.g. security aspects) out and refer to other 
publications mentioned in the introduction. In having the 
chair position in the OGF Grid Interoperation Now (GIN) 
community group and Production Grid Infrastructure (PGI) 
working group we are driving the standardization of the 
concepts described in this very focused contribution as best 
as possible being still open for other required concepts that 
arise from other production Grid applications. 

Finally, we will demonstrate our UNICORE-based 
reference implementation of the above described concepts 
and other concepts at the interoperability day at the next 
OGF28 in Munich. 
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