
Improvements of Common Open Grid Standards to Increase
High Throughput and High Performance Computing Effectiveness on

Large-scale Grid and e-Science Infrastructures

M. Riedel, M.S. Memon, A.S. Memon,
A. Streit, F. Wolf, Th. Lippert

Jülich Supercomputing Centre
Forschungszentrum Jülich

Jülich, Germany
m.riedel@fz-juelich.de

A. Konstaninov
Vilnius University
Vilnius, Lithuania

M. Marzolla
University of Bologna

Bologna, Italy

B. Konya, O. Smirnova
Lund University
Lund, Sweden

L. Zangrando
INFN

Padova, Italy

J. Watzl, D.Kranzlmüller
Ludwig Maximillians University Munich

Munich, Germany

Abstract— Grid and e-science infrastructure interoperability
is an increasing demand for Grid applications but
interoperability based on common open standards adopted by
Grid middle-wares are only starting to emerge on Grid
infrastructures and are not broadly provided today. In earlier
work we have shown how open standards can be improved by
lessons learned from cross-Grid applications that require
access to both, High Throughput Computing (HTC) resources
as well as High Performance Computing (HPC) resources. This
paper provides more insights in several concepts with a
particular focus on effectively describing Grid job descriptions
in order to satisfy the demands of e-scientists and their cross-
Grid applications. Based on lessons learned over years gained
with interoperability setups between production Grids such as
EGEE, DEISA, and NorduGrid, we illustrate how common
open Grid standards (i.e. JSDL and GLUE2) can take cross-
Grid application experience into account.

Keywords: HPC; HTC; Interoperability, Open Standards

I. INTRODUCTION
Production Grid and e-science infrastructures such as

NorduGrid [1], EGEE [2], or DEISA [3] provide a wide
variety of different Grid resources to end-users (i.e. e-
scientists) on a daily basis today. Nowadays we observe an
increasing amount of e-science applications that require
resources in more than one Grid often leveraging both HTC
and HPC resources in one scientific workflow. But using
different production Grids represents still a challenge due to
the absence of a wide adoption of open standards in
deployed Grid middleware today. Nevertheless, we have

worked in the OGF Grid Interoperation Now (GIN)
community group to enable cross-Grid applications between
different production Grids. Some well-known examples are
interoperability setups for the WISDOM [4] community, the
EUFORIA project [5], or the Virtual Physiological Human
(VPH) [6] community. Thus we identified in earlier work
[7] a well-defined set of open standards that play an
important role for production Grids today or are considered
to be adopted soon in production Grids. These standards are
OGSA - Basic Execution Service (BES) [8], Job
Submission Description Language (JSDL) [9], Storage
Resource Manager (SRM) [10], GridFTP [11], GLUE2 [12],
and several standards from the security domain (e.g. X.509,
Security Assertion Markup Language, etc.). Standards like
Usage Records (UR), Service Level Agreements (SLAs) via
WS-Agreement [13], WSDAIS, or the Data Moving
Interface (DMI) are getting more important for production
Grids as well.

These common open standards are a good step
towards the right direction, but we also identified in earlier
work [14] that many of them can be still improved by
production Grid experience (e.g. OGSA-BES and JSDL), or
that missing links between specifications of different areas
(e.g. JSDL and GLUE2) must be defined. The GIN group
created a spin-off group named as Production Grid
Infrastructure (PGI) working group with the particular goal
to work on these improvements and to provide thus a
production stable standards-based ecosystem named as the
infrastructure interoperability reference model (IIRM) [14].
Members of the PGI working group represent a significant
fraction of Grid middleware such as ARC [22], gLite [15],

978-1-4244-6534-7/10/$26.00 ©2010 IEEE

UNICORE [16], or Genesis that all play a major role in
production Grids today (e.g. NorduGrid, EGEE, DEISA /
PRACE, etc.).

While improvements of the OGSA-BES interface
have been described in earlier work [17], we emphasize in
this contribution on lessons learned from production Grid
applications in the context of JSDL-based job descriptions
and GLUE2-based information model dependencies.

The remainder of the paper is structured as follows.
After the introduction, Section 2 provides details about
rather general Grid application description improvements,
while Section 3 gives insights into extensions required for
effective executions on HPC-driven Grids. Section 4
provides an overview of the concepts related to application
sequences and this paper ends in Section 5 with concluding
remarks.

Figure 1. Concepts of Grid application description improvements in a
broader context including its Grid middleware and Grid resource
dependencies. The delta JSDL indicates our applied changes.

II. GRID APPLICATION IMPROVEMENTS
In this section we review how Grid application job

descriptions can be improved, because we want to reveal
more meaningful description elements in order to enable
Grid middleware to execute Grid jobs and their described
applications more effectively.
 In using Grid middleware with cross-Grid
applications we learned that Grid middleware can take
advantage of several more detailed descriptions about the
Grid job that is currently defined with standards like JSDL
[9] or its extensions (i.e. JSDL SPMD Extension [18] and
HPC Profile Application Extensions [19]). Therefore, this
section describes a number of improvements to JSDL that
are shown in a broader context in Figure 1 in order to
understand where these improvements take effect.
 In addition to the descriptions found in JSDL, the
concept of (a) application types classification provides
useful information about the Grid job that affects its
handling in numerous different ways within Grid

middlewares (e.g. parsing effectiveness). In short, this
classification consists of the following enumeration serial,
collection, metaparallel, parallel, and workflownode. The
key benefit of all these pieces of information within the JSDL
is to provide Grid middleware an exact classification that
can be used to parse and process JSDL documents much
more effectively. Of course, one Grid application can be
described by more than one element of this classification.

The classification element serial stands for an
individual stand-alone job while the collection element
refers to a job that is submitted as part of a collection of
individual jobs that do not communicate among each other.
This is often used in HTC use cases or parameter sweep
studies. In contrast the classification metaparallel refers to a
job that is submitted as part of a collection of individual
jobs that do communicate with each other via the
mechanisms of metacomputing (i.e. Meta-MPI). We
observed that this is rarely used, but some use cases (e.g.
like in the VPH community [6]) are based on this
mechanism crossing numerous production Grids. Much
more often used is the parallel job classification that also
refers to a job submitted that could be part of a larger
collection, but the communication is basically performed in
the job itself using parallel computing mechanisms (i.e. MPI
or OpenMP). These jobs are often used in the context of
HPC-driven e-science infrastructures such as DEISA or
TeraGrid. Finally, jobs that are of the workflownode type are
typically submitted as part of a larger cross-site workflow
and handled by a workflow engine technology.

Especially in Grid interoperability setups, the
definition of the main Grid application executable within the
Grid job description represents a challenge since a wide
variety of inhomogeneous systems are typically used with
setups that are defined by our reference model. All previous
concepts of the JSDL specification like its POSIX
normative extension (i.e. POSIXApplication executable
definition), which is also used in the JSDL SPMD
extension, or its HPC Profile Application extension (i.e.
HPCPAApplication executable definition) have only used
an Executable element and an Argument element. But the
lack of having the path information of an executable clearly
separated from the executable sometimes caused trouble
while parsing JSDL documents in cross-Grid infrastructure
setups.

To overcome these limitation, we thus argue that it
make sense to use a (b) revised application executable
definition with the three elements ExecutableName,
ExecutablePath, and ExecutableArgument while the latter
element can appear n times in the job description. We
explored that this concept enables the most flexible support
in terms of supporting different varieties of job submission
approaches that are (i) compile and execute applications in
the job sandbox, (ii) pre-installed applications with a fixed
and known path, and (iii) pre-installed applications that take
advantage of complex constructs using environment
variables (e.g. $PATH variable) and such like.

Figure 2. Design layout for the functionalities related to the Grid
application description improvements of the JSDL language. This example
shows the PEPC plasma physics application that uses the VISIT
visualization library.

Another concept of JSDL that could be improved was the
definition of the ApplicationName and ApplicationVersion
information. We improve this concept by using the (c)
application software statement concept that adds to these
pieces of information also the ApplicationFamily (e.g.
LINUX, WIN, Library, etc.). In addition, we re-use this
concept to define a much clearer formulation of the (d)
application software requirements concept. It is important to
understand that one and only one instance of the application
software statement concept describes the main Grid
application itself in the Application part of the JSDL
instance; while n other instances of it are used to describe
application software requirements in the Resource part of
the JSDL instance.
 Figure 2 illustrated the re-use of the concept in a
broader view using the example of an application that
requires a dedicated visualization library called VISIT [20]
during runtime for its execution on a HPC-based system.
We also encountered many times the need to have a concept
named as (e) application output joins, which refers to a
boolean value indicating whether the standard-out and
standard-error outputs of the main applications should be
joined in one file or not. In fact, some applications use the
standard-error for significant output (e.g. AMBER MD
suite) and thus e-scientists are sometimes interested to have
only one file for easier analyzing of the application run.
Finally, we provide a summary of the proposed
improvements to the JSDL standard in Table 1.

TABLE I.

Functionality Extensions and
Improvement Concepts Area Extended

Standard
(a) Application types classification Compute JSDL

(b) Revised application executable Compute JSDL

(c) Application software statement Compute JSDL

(d) Application software requirements Compute JSDL

(e) Application output joins Compute JSDL

III. HIGH PERFORMANCE COMPUTING EXTENSIONS
This section explores refinements of the JSDL language

and GLUE2 in terms of large-scale HPC application
support, because we want to find out which recent
production HPC resource features are missing in JSDL and
GLUE2 so that scientists can use it to submit and execute
applications more efficiently and to obtain more accurate
information.
 Our experience from production Grid
interoperability use cases clearly reveal that the support for
HPC-based job application descriptions can be improved,
especially when using resources available within HPC-
driven infrastructures such as DEISA / PRACE or TeraGrid.
Furthermore, we identified that pieces of information about
resource features (i.e. available network topologies) must be
exposed by Grid information systems in more detail. This
was the case in use cases related to the VPH community, or
more recently, with the members of the EUFORIA project
as part of the fusion community.
 Some core building blocks of our IIRM have been
originally defined several years ago and thus they lack
support of concepts of recently used Grid resources in
general and large-scale HPC systems in particular. JSDL
[9], for instance, was originally defined in 2005 and revised
in 2008, but still lack the required functionalities to enable
an efficient HPC oriented Grid job execution. In fact, JSDL
extensions during 2007 such as the SPMD specification [18]
or the HPC Profile Application extensions [19] aim at
delivering some of these required functionalities, but also do
not cover the essential functionality listed in this section.

Figure 3. Growing complexity of HPC machines makes it necessary to
expose more accurate information via GLUE2 and to enable a more precise
job submission with JSDL. Delta X and delta Y indicate our applied
changes.

 One of the most significant extensions to JSDL is
the support for different types of (a) network topologies. In
fact, the choice of network connections can have a big

influence on the performance of applications that make use
of parallel programming models (i.e. MPI). To provide an
example, the state-of-the-art BlueGene/P HPC system as
shown in Figure 3 offers different types of network
connections: three dimensional torus, mesh, global tree
(collective network), 10 Gigabit Ethernet (functional
network).
 Another extension to JSDL that is necessary to
efficiently run parallel programming applications on recent
HPC-based Grid resources is the (b) shape reservation
functionality as supported by BlueGene/P systems today
[21]. The optimal shape for an application depends on the
communication pattern of the MPI-based parallel code and
thus it is application-specific and in turn should be part of
the application job description. Typically, a shape is
indicated with x X y X z where x, y, and z are positive
integers that indicate the number of partitions in the X-
direction, Y-direction, and Z- direction of the requested job
shape.
 The above described extensions to JSDL are
complementary also added as extensions to the GLUE2
standard. Although the GLUE2 NetworkInfo t data type [12]
already described network information, these are limited to
a few certain values and do not cover some technologies
that offer torus networks or collective networks (e.g. global
trees). Therefore we improve with some (c) network
information enhancements the GLUE2 standard. In addition,
we expose information about Grid resources more
accurately and thus propose to add (d) available shape
characteristics as extensions to the GLUE2 standard.

Figure 4. Design layout for the functionalities related to high performance
computing extension concepts of JSDL and GLUE2 including their inter-
dependencies.

In the context of the GLUE2-based description of

Grid resources, we also identified the need to add so called

important messages of the day (i.e. high messages) as
extension to the GLUE2 standard. Here, GLUE2 provides
attributes about DownTime information (i.e. endpoint
entity) or a more general possibility pointing to certain
information in the Web via the StatusInfo attribute (i.e.
service entity), or another complete general OtherInfo
attribute. Nevertheless, because of its general applicability
and major importance, we add the (e) high message support
to the GLUE2 standard. Some examples of these messages
include temporary important information about file system
usage (e.g. directory movements within PGFS) or about
certain changes in complex compiler and application
executions. Furthermore, high messages also cover pieces of
information about local storage situation change (i.e. local
storage cluster access) or other administrative pieces of
information such as the transition period from one HPC-
driven Grid resource to another. Hence, not always it is
related to system downtime.

In order to take the baseline reference model
design into account, we clearly identify that major parts of
this functionality are part of a missing link between the
specifications JSDL and GLUE2. We therefore define the
following relationships between the above described
functionalities:

concept (c) in GLUE2 ComputingManager Entity
implies
concept (a) in JSDL Resource Description

concept (d) in GLUE2 ComputingManager Entity
implies
concept (b) in JSDL Resource Description

 In words, (c) implies (a) and (b) is a logical
consequence of (d). The relationship is an implication since
the antecedents (c) and (d) might be extended to a far deeper
level of information than useful in JSDL elements for pure
job description. In terms of our design model layout, we can
thus define XML renderings of (c) and (d) within GLUE2
and re-use them within JSDL as shown in Figure 4. Finally,
we provide a summary of the proposed improvements to the
JSDL and GLUE2 standard in Figure 4 and in Table 2.
Other more complex concepts such as the ‘precise task/core
mapping’ descriptions also significantly improve the
execution efficiency of the corresponding application. This
concept and a few others more complex ones have been kept
out due to readability of the paper and the page restriction.

TABLE II.

Functionality Extensions and
Improvement Concepts Area Extended

Standard
(a) Network topology (torus, global tree, etc.) Compute JSDL

(b) Shape reservation (x X y X z) Compute JSDL

(c) Network information enhancements Info GLUE2

(d) Available shape characteristics Info GLUE2

(e) High message support Info GLUE2

IV. SEQUENCE SUPPORT FOR COMPUTATIONAL JOBS
In this section we study the difference between Grid

workflows and resource-oriented application sequences,
because we want to find out how we can jointly support
different types of application execution modes (i.e. serial,
parallel) for one Grid application so that e-scientists can
conveniently use reference model implementations that fit
their needs in terms of remote compilation and pre- and
post-processing functionalities.

Figure 5. Support for application sequence executions within one Grid
sandbox supporting multiple types of application execution modes (i.e.
serial, parallel).

 One specific missing feature encountered during
production Grid interoperability is the support of pre- and
post-processing functionalities within JSDL using different
application execution modes. As shown in Figure 5, the HPC
elements within the WIDOM workflow works with the
molecular dynamics package AMBER that consists of a set
of applications and some of them are used to transform
input data in a suitable format for production runs. Of
course, these transformation and short running pre-
processing steps are typically executed in a serial mode,
while the actual corresponding molecular dynamic
simulation is executed in a parallel mode using many CPUs
/ cores.

Another example encountered in production Grids
is the demand for remote compilation of source-code thus
avoiding the need to login manually with SSH. In the
context of EUFORIA, we encountered that most
applications have to be installed beforehand on execution
sites using SSH since a suitable support for remote
compilation is missing in JSDL. This approach is feasible

when the source-code of the application is rather stable, but
the lack of remote compilation becomes even more a
problem when source-code of Grid applications are subject
to change as encountered in many different applications that
make use of HPC-driven Grid infrastructures. For instance,
we experience in the VPH community this problem with the
source code Hemelb that must be re-compiled on each of the
different Grid resources due to different hardware
architectures.

Figure 6. Design Layout for the functionalities related to the pre-job and
post-job sequences.

 In the context of the above described obstacles, we
have to study what the difference between Grid workflows
and sequences really are. In this context, it seems to make
sense that compilation and execution are performed in one
sandbox, otherwise the application might be installed
beforehand. There is no exact boundary and you can realize
it with both workflows and sequences, but when using
sequences you can often circumvent data-transfers into the
job sandbox. In addition, often the codes are specific for
some types of architectures, which is in terms of many-core
even more and more evolving thus requiring re-compilation
anyway.

As a consequence, we extend JSDL with the
capabilities to execute pre-job sequences (a) in order to
enable the definition of n pre-processing applications that
are serially executed before the main Grid job application.
This also satisfies the demand for remote compilation since
one or many of these pre-processing applications defined in
the pre-job sequence can be represented by a compiler. In
turn, this compilation sequence step is serially executed
before the main compiled Grid job application is started.

In analogy to the pre-job sequences, our
functionality extensions also cover post-job sequences (b) in
order to support n post-processing applications. This
sequence is only started when the main (often in parallel
executed) Grid job application is finished.

Finally, we provide a summary of the proposed
improvements to the JSDL standard in Figure 6 and Table 3.

TABLE III.

Functionality Extensions and
Improvement Concepts Area Extended

Standard
(a) Pre-job sequences (pre-processing) Compute JSDL

(b) Post-job sequences (post-processing) Compute JSDL

V. EXECUTION ADJACENCIES CONCEPT
The fundamental idea of execution adjacencies concept is

to have a Grid middleware-independent common execution
environment (CEE) that can be used by Grid applications
during run-time. The realization of this concept includes two
major aspects that are ‘common environment variables’ and
a ‘common execution module concept’. Although this
sounds trivial, we observed that not a few applications
actually fail on having different execution environments on
different Grid resources, especially in cross-Grid use cases.
Hence, we define a common execution environment that a
Grid job can find on every Grid resource. As there is no
particular standard in this field, we propose this additional
standard in the context of the larger computational-driven
standard ecosystem that consists of OGSA-BES and JSDL
(including its numerous extensions).
 In more detail, the first aspects of the execution
adjacencies are simply realizable using (a) common
environment variables across different middleware
distributions. In several applications, we observed that the
actually running source-code makes use of environment
variables such as number of cores, available memory and
such like. So far, every Grid middleware such as gLite,
ARC, or UNICORE provided such pieces of information via
environment variables in rather proprietary execution
environments (i.e. no common syntax or semantics).
Therefore, we propose a standardized list of environment
variables by not only defining their precise syntax, but also
the corresponding semantics that lead to a significant
advantage in interoperability setups.

TABLE IV.

Environment Variable Syntax Environment Variable Semantics

GLUE2: MainMemorySize The total amount of physical RAM

GLUE2: PhysicalCPUs The number of physical CPUs

ExtensionGLUE2: PhysicalCores The number of physical cores

… Others from the GLUE2 Execution
Environment attribute specification

As an example, a few of the environment variables

can be found in Table 4, which content is self-explaining
and not repeated within the text. Many of these variables
provide information that must be consistent with
information provided by a Grid information system for each

Grid resource (i.e. by using GLUE2 schema elements).
Also, it is important to agree that all this information must
be provided. When some environment variables will have
no information then it is not worth using them at all since
applications will expect to get the information from that
variable at a point in time. A closer look within GLUE2, for
instance, reveals the definition of attributes in the so-called
‘ExecutionEnvironment’. We argue that it make sense to
basically ‘render’ those attributes as environment variables
within the Grid middleware. Also, in this context we require
to add a few attributes to the execution environment that are
useful for applications during run-time. To provide an
example, although GLUE2 defines the amount of physical
CPUs we also argue that it make sense to provide the
amount of physical cores to address the different core setups
(single-core, dual-core, quad-core, upcoming n-core, etc.)
on computing resources nowadays.
 Closely related to this first aspect is also the second
aspect of that we call the (b) ‘common execution module’
concept that originates from our work with applications that
require a pre-defined setup of not only environment
variables, but also path settings and such like. Hence, it is
not about pieces of information about a pre-installed
application setup (cf. Table I) and instead works on a far
deeper level that of the application itself. To provide an
example, in the DEISA infrastructure, we defined a so-
called ‘AMBER module’ that includes the setup of all
necessary pieces of information to run the AMBER
scientific package including roughly 50-80 executables and
programs. To avoid that scientists always have to setup the
required details like (PATH and execution locations,
AMBER environment variables, versioning, etc.), they
simply use ‘module load AMBER’ before any production
run with AMBER. We argue that this concept is very
beneficial and thus seek to integrate it smoothly in the
context with GLUE2 and JSDL and propose a new small
standard for this. Nevertheless, partly parts of the GLUE2
specification in the context of so-called
‘ApplicationEnvironments’ are re-used as well.

Finally, we provide a summary of the proposed
functionality and concepts to improve the execution
adjacencies of scientific application runs in Table 5.

TABLE V.

Functionality and
Proposed Concepts Area New

Standard
(a) Common Environment Variables Compute CEE

(b) Common Execution Modules Compute CEE

VI. RELATED WORK
Related work in the field of standardization is clearly

found among the members of the JSDL and GLUE2 OGF
working groups. Several other ideas and concepts arise also

from the work of these members and we have discussed and
will discuss in future of how we can align our work in order
to have new set of specifications that not fundamentally
change the existing specifications and thus just improving
them without break their emerging stability.

Related Work in the field of reference models
typically leads to the Open Grid Services Architecture
(OGSA), which has in comparison to our approach a much
bigger scope. Hence, our approach only represent a subset
of this scope but more focused and thus more detailed. We
deliver with our reference model a much more detailed
approach of how open standards can be improved and used
in scientific applications that require interoperability of e-
science production Grids today. Neither this contribution
nor the reference model in the bigger context aim at
replacing OGSA and thus rather represent a medium-term
milestone towards a full OGSA compliance of Grid
middlewares in future. In comparison with the former
commercially-driven Enterprise Grid Alliance Reference
model, our model is clearly oriented to support rather
scientific-based use cases.

VII. CONCLUSIONS
We have shown how the common open Grid standards

JSDL and GLUE2 can be significantly improved to
integrate lessons learned gained by an academic analysis of
the production Grid interoperability experience over years.
Because of the page restriction for this focused workshop,
we only present a few focused concepts of our infrastructure
interoperability reference model and kept many important
aspects of it (e.g. security aspects) out and refer to other
publications mentioned in the introduction. In having the
chair position in the OGF Grid Interoperation Now (GIN)
community group and Production Grid Infrastructure (PGI)
working group we are driving the standardization of the
concepts described in this very focused contribution as best
as possible being still open for other required concepts that
arise from other production Grid applications.

Finally, we will demonstrate our UNICORE-based
reference implementation of the above described concepts
and other concepts at the interoperability day at the next
OGF28 in Munich.

ACKNOWLEDGMENT
We thank the OGF GIN and PGI groups for fruitful
discussions in the context of this work. This work is partly
funded via the DEISA-II project funded by the EC in FP7
under grant agreement RI-222919.

REFERENCES

[1] P. Eerola et al., "Building a Production Grid in Scandinavia", in IEEE
Internet Computing, 2003, vol.7, issue 4, pp.27-35

[2] EGEE. [Online]. Available: http://public.eu-egee.org/

[3] DEISA. [Online]. Available: http://www.deisa.org

[4] M. Riedel et al., “Improving e-Science with Interoperability
of the e-Infrastructures EGEE and DEISA,” in Proceedings
of the MIPRO, 2007.

[5] EUFORIA. [Online]. Available: www.euforia-project.eu/

[6] Website, “Virtual Physiological Human (VPH),”
http://www.europhysiome.org.

[7] M. Riedel, E. Laure, et al., “Interoperation of World-Wide
Production e-Science Infrastructures,” in Journal on Concurrency
and Comp.: Practice and Experience, 2008.

[8] I. Foster et al., OGSA Basic Execution Service Version 1.0.
Open Grid Forum Grid Final Document Nr. 108, 2007.

[9] A. Anjomshoaa et al., Job Submission Description Language
Specification V.1.0. OGF (GFD56), 2005.

[10] A. Sim et al., The Storage Resource Manager Interface
Specification Version 2.2. OGF Grid Final Document Nr.
129, 2008.

[11] I. Mandrichenko et al., GridFTP v2 Protocol Description.
OGF Grid Final Document Nr. 47, 2005.

[12] S. Andreozzi et al., GLUE Specification 2.0. OGF Grid Final
Document Nr. 147, 2009.

[13] A. Andrieux et al., Web Services Agreement Specification
(WS-Agreement). OGF Grid Final Document Nr. 107, 2007.

[14] M. Riedel et al., “Research Advances by using Interoperable
e-Science Infrastructures - The Infrastructure Interoperability
Reference Model applied in e-Science,” in Journal of Cluster
Computing, SI Recent Research Advances in e-Science, 2009.

[15] E. Laure et al., “Programming the Grid with gLite,” in
Computational Methods in Science and Technology, 2006, pp.
33–46.

[16] A. Streit et al., “UNICORE - From Project Results to Production
Grids.” in Grid Computing: The New Frontiers of High
Performance Processing, Advances in Parallel Computing 14,
L. Grandinetti, Ed. Elsevier, pp. 357–376.

[17] M.Riedel et al., “Concepts and Design of an Interoperability
Reference Model for Scientific- and Grid Computing Infrastructures,”
in Proceedings of the Applied Computing Conference, in Mathematical
Methods and Applied Computing, Athens, Volume II, WSEAS Press 2009,
ISBN 978-960-474-124-3, Pages 691 - 698, 2009.

[18] A. Savva, SPMD JSDL Extension. OGF Grid Final Document
Nr. 115, 2007.

[19] M. Humphrey et al., HPC Basic Profile JSDL Extension.
OGF Grid Final Document Nr. 111, 2007.

[20] T. Eickermann et al., “Steering UNICORE Applications with
VISIT,” vol. 363, pp. 1855–1865, 2005.

[21] I. Website, “IBM BlueGene/P Technology,”
http://www.ibm.org/.

[22] M. Ellert et al., Advanced Resource Connector middleware for
lightweight computational Grids", Future Generation Computer Systems 23
(2007) 219-240.

