
Event-Based Measurement and Analysis
of One-Sided Communication

Marc-André Hermanns1, Bernd Mohr1, and Felix Wolf2

1 Forschungszentrum Jülich,
Zentralinstitut für Angewandte Mathematik,

52425 Jülich, Germany
{m.a.hermanns,b.mohr}@fz-juelich.de

2 University of Tennessee, ICL
1122 Volunteer Blvd Suite 413

Knoxville, TN 37996-3450, USA
fwolf@cs.utk.edu

Abstract. To analyze the correctness and the performance of a program, infor-
mation about the dynamic behavior of all participating processes is needed. The
dynamic behavior can be modeled as a stream of events required for a later anal-
ysis including appropriate attributes. Based on this idea, KOJAK, a trace-based
toolkit for performance analysis, records and analyzes the activities of MPI-1
point-to-point and collective communication.
To support remote-memory access (RMA) hardware in a portable way, MPI-2 in-
troduced a standardized interface for remote memory access. However, poten-
tial performance gains come at the expense of more complex semantics. From
a programmer’s point of view, an MPI-2 data transfer is only completed after a
sequence of communication and associated synchronization calls.
This paper describes the integration of performance measurement and analysis
methods for RMA communication into the KOJAK toolkit. Special emphasis is put
on the underlying event model used to represent the dynamic behavior of MPI-
2 RMA operations. We show that our model reflects the relationships between
communication and synchronization more accurately than existing models. In
addition, the model is general enough to also cover alternate but simpler RMA

interfaces, such as SHMEM and Co-Array Fortran.

1 Introduction

Remote memory access (RMA) describes the ability of a process to directly access a
part of the memory of a remote process, without explicit participation of the remote
process in the data transfer. As all parameters for the data transfer are determined by one
process, it is also called one-sided or single-sided communication. This distinguishes
the one-sided communication from point-to-point messages, where explicit send and
receive statements are required on both sides. Providing one-sided in addition to two-
sided communication significantly expands the flexibility to chose a communication
scheme most suitable for a given problem on a given hardware.

On platforms with special hardware providing efficient RMA support, one-sided
communication is often made available to the programmer in the form of libraries,

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 156–165, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Event-Based Measurement and Analysis of One-Sided Communication 157

for example SHMEM (Cray), LAPI (IBM), or ELAN (Quadrics). However, these libraries
are typically platform- or at least vendor-specific. The exception is SHMEM, which is
offered by a group of vendors. Since this restricts portable programming, many pro-
grammers do not utilize one-sided communication.

This is one of the reasons why the MPI forum decided to define a portable one-sided
communication interface as part of MPI-2. The Message Passing Interface (MPI) was
defined by a group of vendors, government laboratories and universities in 1994 as a
community standard [1]. This has become known as MPI-1. It is fully supported by all
freely-available and commercial MPI implementations and was quickly adopted by the
scientific computing community as a de-facto standard. As MPI also provides a stan-
dard monitoring interface (PMPI), there is a wide variety of tools for MPI performance
analysis and visualization. In 1997, a second version of the interface (MPI-2) was de-
fined, which added support for parallel I/O, dynamic process creation, and one-sided
communication [2]. However, only now, seven years after its definition, is support for
all MPI-2 features portably available for all major parallel computing platforms.

Until recently there was only rare usage of RMA features in scientific applications
and, therefore, the demand for performance tools in this area was limited. As more and
more programmers adopt the new features to improve the performance of their codes,
this is expected to change. For example, NASA researchers report a 39% improvement
in throughput after replacing MPI-1 non-blocking communication with MPI-2 one-sided
communication in a global atmospheric simulation program [3].

Currently, there are only very few tools which support the measurement and analy-
sis of one-sided communication and synchronization in a portable way on a wider range
of platforms. The well-known Paradyn tool which performs an automatic on-line bot-
tleneck search, was recently extended to support several major features of MPI-2 [4].
For RMA analysis, it collects basic, process-local, statistical data (i.e., transfer counts
and execution time spent in RMA functions). It does not take inter-process relationships
into account nor does it provide detailed trace data. Also, it does not support analysis of
SHMEM programs. The very portable TAU performance analysis tool environment [5]
supports profiling and tracing of MPI-2 and SHMEM one-sided communication. How-
ever, it only monitors the entry and exit of the RMA functions; it does not provide RMA

transfer statistics nor are the transfers recorded in tracing mode. The commercial Intel
Trace Collector tool (formerly known as VampirTrace) [6] records MPI execution traces.
When used with MPI-2, it records enter and exits of only a subset of the RMA functions.
It also traces the actual RMA transfers, but misrepresents their semantics, as defined
in MPI-2. Finally, it does not record the collective nature of MPI-2 window functions.
Besides these there are also some non-portable vendor tools with similar disadvantages.

KOJAK, our toolkit for automatic performance analysis [10], is jointly developed
by the Central Institute for Applied Mathematics of the Research Centre Jülich and by
the Innovative Computing Laboratory of the University of Tennessee. It is able to in-
strument and analyze OpenMP constructs and MPI-1 calls. In this paper we report on
the integration of performance analysis methods for one-sided communication into the
existing toolkit. We put special emphasis on the development of a new event model
that realistically represents the dynamic behavior of MPI-2 RMA operations in the event
stream. We show that our model reflects the relationships between communication and



158 Marc-André Hermanns, Bernd Mohr, and Felix Wolf

synchronization more accurately than existing models. In addition, the model is general
enough to also cover alternate, but simpler RMA interfaces. In our new prototype imple-
mentation, we added support for measurement and analysis of parallel programs using
MPI-2 and SHMEM one-sided communication and synchronization. In addition, we are
also able to handle Co-Array Fortran programs [9], a small extension to Fortran 95 that
provides a simple, explicit notation for one-sided communication and synchronization,
expressed in a natural Fortran-like syntax. Details of this work can be found in [11].

The remainder of the paper is organized as follows: In Section 2 we give a short de-
scription of the MPI-2 RMA communication and synchronization functions. In Section 3,
we present our event model, which allows the realistic representation of the dynamic
behavior of vendor-specific and MPI-2 RMA operations. The extensions to KOJAK com-
ponents allowing the instrumentation, measurement, analysis, and visualization of par-
allel programs based on one-sided communication are described in Section 4. Finally,
we present conclusions and future work in Section 5.

2 MPI-2 One-Sided Communication

The interface for RMA operations defined by MPI-2 differs from the vendor-specific
APIs in many respects. This is to ensure that it can be efficiently implemented on a wide
variety of computing platforms even if a platform does not provide any direct hardware
support for RMA. The design behind the MPI-2 RMA API specification is similar to that
of weakly coherent memory systems: correct ordering of memory accesses has to be
specified by the user with explicit synchronization calls; for efficiency, the implemen-
tation can delay communication operations until the synchronization calls occur.

MPI does not allow access to arbitrary memory locations with RMA operations,
but only to designated parts of a process’s memory, the so-called windows. Windows
must be explicitly initialized (with a call to MPI Win create) and released (with
MPI Win free) by all processes that either provide memory or want to access this
memory. These calls are collective between all participating partners and include an in-
ternal barrier operation. MPI denotes by origin the process that performs an RMA read
or write operation, and by target the process in which the memory is accessed.

There are three RMA communication calls in MPI: MPI Put transfers data from
the caller’s memory to the target memory (remote write); MPI Get transfers data from
the target to the origin (remote read); and MPI Accumulate updates locations in the
target memory, for example, by replacing them with sums or products of the local and
remote data values (remote update). These operations are nonblocking: the call initiates
the transfer, but the transfer may continue after the call returns. The transfer is com-
pleted, both at the origin and the target, only when a subsequent synchronization call is
issued by the caller on the involved window object. Only then are the transferred values
(and the associated communication buffers) available to the user code. RMA communi-
cation falls in two categories: active target and passive target communication. In both
modes, the parameters of the data transfer are specified only at the origin, however in
active mode, both origin and target processes have to participate in the synchronization
of the RMA accesses. Only in passive mode is the communication and synchronization
completely one-sided.



Event-Based Measurement and Analysis of One-Sided Communication 159

RMA accesses to locations inside a specific window must occur only within an ac-
cess epoch for this window. Such an access epoch starts with an RMA synchronization
call, proceeds with any number of remote read, write, or update operations on this win-
dow, and finally completes with another (matching) synchronization call. Additionally,
in active target communication, a target window can only be accessed within an expo-
sure epoch. There is a one-to-one mapping between access epochs on origin processes
and exposure epochs on target processes. Distinct epochs for a window at the same pro-
cess must be disjoint. However, epochs pertaining to different windows may overlap.

MPI provides three RMA synchronization mechanisms:

Fences: The MPI Win fence collective synchronization call is used for active target
communication. An access epoch on an origin process or an exposure epoch on a
target process are started and completed by such a call. All processes who partic-
ipated in the creation of the window synchronize, which in most cases includes a
barrier. The data transfered is only accessible to user code after the fence.

General Active Target Synchronization: Here, synchronization is minimized: only
pairs of communicating processes synchronize, and they do so only when needed to
correctly order accesses to a window with respect to local accesses to that window.
An access epoch is started at an origin process by MPI Win start and is termi-
nated by a call to MPI Win complete. The start call specifies the group of targets
for that epoch. An exposure epoch is started at a target process by MPI Win post
and is completed by MPI Win wait or MPI Win test. Again, the post call
specifies the group of origin processes for that epoch. Data written is only accessi-
ble after the wait call, however data can only be read after the complete operation.

Locks: Finally, shared and exclusive locks are provided through the MPI Lock and
MPI Unlock calls. They are used for passive target communication. In addition,
they also define the access epoch for this window at the origin. Data read or written
is only accessible from user code after the unlock operation has completed.

It is implementation-defined whether some of the described calls are blocking or
nonblocking; for example, in contrast to other shared memory programming paradigms,
the lock call must not be blocking. For a complete description of MPI-2 RMA commu-
nication see [2].

3 An Event Model for One-Sided Communication

Many performance analysis tools use an event-based approach, that is, they instrument
user applications only at specific points to collect the performance data they need for
their analysis. These points, called events, are chosen in a way that they represent impor-
tant aspects in the dynamic behavior of the application on a level of abstraction suitable
for the tools’ task. Trace-based tools record the occurrence of events as a stream or trace
of event records for later analysis.

For the analysis of parallel scientific applications, events that capture the most im-
portant aspects of the parallel programming paradigm used (e.g., MPI or OpenMP) are
defined. Often, to provide a context for events representing specific actions related to
a parallel programming interface, the entering and leaving of surrounding user regions
(e.g., functions, loops or basic blocks) are also captured.



160 Marc-André Hermanns, Bernd Mohr, and Felix Wolf

Table 1. KOJAK’s Event Types

Abstraction Event type Type specific Attributes
Entering / leaving a region (a function) ENTER region id

EXIT region id
Leaving a collective MPI MPICEXIT region id, comm id, root loc, sent, revd

or OpenMP region OMPCEXIT region id
Sending / receiving a message SEND dest loc, tag, comm id, length

RECV src loc, tag, comm id, length
Start / end of OpenMP parallel region FORK

JOIN

Acquiring / releasing an OpenMP lock ALOCK lock id
RLOCK lock id

Start / end / origin of RMA PUT 1TS window id, rma id, length, dest loc
one-sided transfers PUT 1TE window id, rma id, length, src loc

GET 1TO window id, rma id
GET 1TS window id, rma id, length, dest loc
GET 1TE window id, rma id, length, src loc

Leaving MPI GATS function MPIWEXIT window id, region id, group id
Leaving MPI collective RMA function MPIWCEXIT window id, region id, comm id
Locking / unlocking a MPI window WLOCK window id, lock loc, type

WUNLOCK window id, lock loc

Table 1 lists all event types used by the KOJAK performance analysis toolset. In the
upper half, the already existing events for modeling MPI-1 and OpenMP behavior are
shown. in addition to type-specific attributes for each event we also collect the times-
tamp and location which describe when and where the event occurred. For user regions,
MPI functions, and OpenMP constructs and runtime functions, we record which region
was entered or left. In the case of collective MPI functions and OpenMP constructs,
instead of “normal” EXIT events, special collective events are used to capture the at-
tributes of the collective operation. For MPI this is the communicator, the root process,
and the amounts of data sent and received during this operation. MPI-1 point-to-point
messages are modeled as pairs of SEND and RECV events with the source or destina-
tion of the message, the tag and communicator used, and the amount of data transferred
being attributes. In OpenMP applications, FORK and JOIN events mark the start and end
of parallel regions and ALOCK and RLOCK events the acquisition and release of locks.
For a complete, more detailed description of KOJAK’s event types and of its analysis
features see [7, 10]. A similar event model is also used by most other event-based tools
(e.g., by TAU).

In order to be able to also analyze RMA operations, we defined new event types
to realistically model the behavior of MPI-2 as well as Co-Array Fortran and vendor-
specific RMA operations. These new event types are shown in the bottom compartment
of Table 1. Start and end of RMA one-sided transfers are marked with PUT 1TS and
PUT 1TE (for remote writes and updates) or with GET 1TS and GET 1TE (for remote
reads). For these events, we collect the source and destination and the amount of data
transferred, as well as a unique RMA operation identifier which allows an easier map-



Event-Based Measurement and Analysis of One-Sided Communication 161

ping of # 1TE to the corresponding # 1TS events in the analysis stage later on. For all
MPI RMA communication and synchronization operations we also collect an identifica-
tion for the window on which the operation was performed. Exits of MPI-2 functions
related to general active target synchronization (GATS) are marked with a MPIWEXIT

event which also captures the groups of origin or target processors. For collective MPI-2
RMA functions we use a MPIWCEXIT event and record the communicator which de-
fines the group of processes which participate in the collective operation. Finally, MPI

window lock and unlock operations are marked with WLOCK and WUNLOCK events.
Based on these event types and their attributes, we now introduce two event models

for describing the dynamic behavior of RMA operations. For each model, we describe
its basic features and analyze its strengths and weaknesses. To illustrate the location of
events and relationships between them, we use simple time-line diagrams. In these dia-
grams, time progresses from left to right. Event instances are shown as colored circles
on different “time lines”, one for each process involved in the execution. Invocations of
functions are shown as gray boxes with the name of the function executed. Finally, re-
lationships between events are displayed as arrows with different line styles. Following
KOJAK conventions [7], relationships are always named with a suffix ptr (for pointer)
and always point from a later event back to an earlier event related to the later one. This
allows for an efficient analysis process with a single pass through the event trace.

3.1 Basic Model

In the first and simpler model, it is assumed that the RMA communication functions
have a blocking behavior, that is, the data transfer is completed before the function is
finished. Also, RMA synchronization functions are treated as if they were independent
of the communication functions.

The invocations of RMA communication and synchronization functions are mod-
eled with ENTER and EXIT events. To model the actual RMA transfer, the transfer-start
event is associated with the source process immediately after the begin of the corre-
sponding communication function. Accordingly, the end event is associated with the
destination process shortly before the exit of the function. Finally, we define a relation-
ship startptr which allows analysis tools to easily locate the matching start event from
the transfer end event. Figure 1 shows the model for typical usage patterns of one-sided
communication. A sequence of get and put operations is guarded by fences, barriers, or
lock/unlock operations. The message line shown in the picture is not part of the model
and only shown for clarity.

The advantage of this model is a straight-forward implementation because events
and their attributes can be recorded at exactly the place and time where they are sup-
posed to appear in the model. We use this model for analyzing SHMEM and Co-Array
Fortran programs. However, for MPI-2 this model is not sufficient because it ignores the
necessary synchronization, as described in Section 2. Since the end-of-transfer event is
placed before the end of the communication function, the transfers are recorded as com-
pleted even when, for example, in the case of a nonblocking implementation, this is not
true. Even if the implementation is blocking, it still does not reflect the user-visible be-
havior. Therefore, in case of MPI-2, we use an extended model, which is described in
the next subsection.



162 Marc-André Hermanns, Bernd Mohr, and Felix Wolf

time

lo
ca

ti
o

n
s

Fence/Barrier
Enter

Exit

Get_1TS

enterptr

Fence/Barrier

Fence/Barrier

Fence/Barrier

Fence/Barrier

Fence/Barrier

Put

Get

startptr

Message

Put_1TS

Put_1TE

Get_1TE

(a) Get and Put Operations enclosed in Fences or Barriers

time

lo
ca

ti
o

n
s

Unlock

Enter

Exit

WLock

enterptr

Lock Put

Get

startptr

Put_1TS

Put_1TE

UnlockLock

Message

WUnlock

Get_1TS

Get_1TE

(b) Get and Put Operations with Locks

Fig. 1. Examples for Basic Event Model

3.2 Extended Model

The extended model observes the MPI-2 synchronization semantics and, therefore, better
reflects the user-visible behavior of MPI-2 RMA operations. Figure 2 shows the model
for the three different synchronization methods defined by MPI-2. The end of fences and
GATS calls is now modeled with MPIWEXIT or MPIWCEXIT respectively in order
to capture their collective nature. The transfer-start event is still located at the source
process immediately after the begin of the corresponding communication function (as it
is in the basic model). However, the transfer-end event is now placed at the destination
process shortly before the exit of the RMA synchronization function which completes
the transfer according to the MPI-2 standard rules. Unfortunately, this has an undesired
side effect. As one can see in the figure, this results in a separation of the data transfer
for remote reads from the corresponding MPI Get function. In order to rectify this
situation, we introduced a new event GET 1TO, which marks the origin’s location and
time, as well as a new relationship originptr associating this new event with the start of
the transfer (GET 1TS). This allows us in the analysis phase to locate all events related
to RMA transfers. The extended model removes all disadvantages of the basic model,
and for most MPI-2 implementations (which have a non-blocking behavior), it is even
closer to reality. However, the model is more complex and the events can no longer be
recorded at the location where they appear in the model. Therefore, a post-processing
of the collected event trace becomes necessary.



Event-Based Measurement and Analysis of One-Sided Communication 163

time

lo
ca

ti
o

n
s

MPI_Win_fence

Enter

Exit

MPIWCExit

enterptrMPI_Win_fence

MPI_Win_fence

MPI_Win_fence

MPI_Win_fence

MPI_Win_fence

MPI_Put

MPI_Get

startptr

Message

Get_1TS

Get_1TE

Put_1TS

Put_1TE

Get_1TO

originptr

(a) MPI-2 Get and Put Operations enclosed in Fences

time

lo
ca

ti
o

n
s

MPI_Win_complete

MPI_Win_wait

MPI_Win_start

MPI_Win_post

MPI_Win_start

MPI_Put

MPI_Win_completeMPI_Get

Enter

Exit

MPIWExit

enterptr

startptr

Message

Get_1TS

Get_1TE

Put_1TS

Put_1TE

Get_1TO

originptr

(b) MPI-2 Get and Put Operations with General Active Target Synchronization

time

lo
ca

ti
o

n
s

MPI_Win_unlock

Enter

Exit

WLock

enterptr

MPI_Win_lock MPI_Put

MPI_Get

startptr

Put_1TS

Put_1TE

MPI_Win_unlockMPI_Win_lock

Message

WUnlock

Get_1TS

Get_1TE

Get_1TO

originptr

(c) MPI-2 Get and Put Operations with Locks

Fig. 2. Examples for Extended Event Model

4 Analysis and Visualization

In this section, we outline the changes to KOJAK components that were necessary to
implement support for the event models introduced in the last section. For a detailed
description of the implementation see [13].

To record the new RMA related events, we implemented a set of wrapper functions
for all SHMEM and MPI-2 communication and synchronization functions for C/C++ and
Fortran. As MPI uses opaque types for representing windows and groups, we also had
to add code for tracking these objects to the PMPI wrappers. Since the code for tracking
the communication is only executed by the origin process, but the events for marking
the start of a remote read (GET 1TS) and for the end of a remote write (PUT 1TE) are
associated with the target process in our model, we cannot directly place the events in
the correct trace buffer, which resides in the target process, during measurement. We
solve this problem by writing temporary REMOTE PUT 1TE and REMOTE GET 1TS



164 Marc-André Hermanns, Bernd Mohr, and Felix Wolf

events to the local trace buffer and later, during the merge phase, which generates a
global trace, replace these with the correct events. This is done by manipulating their
location and destination/source attributes. For MPI-2 remote read operations, we also
generate the additional GET 1TO event. Moreover, we adjust the timestamp of transfer-
end events in compliance with the extended event model. To do this, the merge process
places # 1TE first into queues (which we keep for each location and window), then uses
the recorded attributes of MPI RMA operations to locate the positions in the event stream
when RMA transfers are complete, and finally at that point ejects the corresponding
queued events into the stream with corrected timestamps. Performing these operations
during the merge has also the advantage of lowering the measurement overhead.

Finally, we extended our tool which converts our internal EPILOG event trace format
to VTF3 to handle the new RMA event types. This allows us to use the well-known
VAMPIR tool [8] to analyze and visualize traces of RMA applications. RMA transfers
are mapped to message lines but with special unique MPI tag values which enables us
to get VAMPIR to use different visual attributes (color and/or line style) so they can be
distinguished from normal point-to-point messages.

As a result, Figure 3 presents two time-line displays of the same simple exam-
ple program, which uses MPI Put together with general active target synchronization.
The first one shows trace recorded with the Intel Trace Collector and the second one a
trace recorded with our new prototype measurement system. The Intel library does not
measure the routines of the general active target synchronization, creating the wrong
impression that useful user calculations are done instead. Also, the message lines show
the RMA transfer as completed by the end of the put operation which does not reflect
the user-visible behavior, as specified by the MPI-2 standard.

5 Conclusion and Future Work

We defined two event models describing the dynamic behavior of parallel applica-
tions involving RMA transfers. The basic model can be used for RMA implementations

(a) Recorded with Intel Trace Collector

(b) Recorded with KOJAK

Fig. 3. Time-line of MPI-2 Put Operation and General Active Target Synchronization



Event-Based Measurement and Analysis of One-Sided Communication 165

with blocking behavior, that is, vendor-specific one-sided communication libraries like
SHMEM or language extension like Co-Array Fortran and Unified Parallel C (UPC). For
MPI, we defined an extended event model that reflects the user-visible behavior as spec-
ified by the MPI-2 standard. We implemented an extension to the KOJAK performance
analysis toolset to instrument and trace applications based on one-sided communica-
tion and synchronization and to analyze the collected traces using the VAMPIR event
trace visualizer. The next step will be to extend EXPERT [12], the automatic trace anal-
ysis component of KOJAK, to handle one-sided communication. This will include the
definition of RMA-related performance properties (i.e., event patterns which represent
inefficient behavior of RMA communication and synchronization).

Acknowledgments

We would like to thank Rolf Rabenseifner for helping us better understand MPI-2 one-
sided communication and synchronization and for many helpful suggestions to improve
our event models.

References

1. M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI - the Complete Refer-
ence, Volume 1, The MPI Core. 2nd ed., MIT Press, 1998.

2. W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, B. Nitzberg, W. Saphir, and M. Snir.
MPI - the Complete Reference, Volume 2, The MPI Extensions. MIT Press, 1998.

3. A. Mirin and W. Sawyer. A scalable implementation of a finite volume dynamical core in
the Community Atmosphere Model. Accepted for publication in the International Journal of
High-Performance Computing Applications.

4. K. Mohror and K.L. Karavanic. Performance Tool Support for MPI-2 on Linux. In Proceed-
ings of SC’04, Pittsburgh, PA, November 2004.

5. S. Shende, A. D. Malony, J. Cuny, K. Lindlan, P. Beckman, and S. Karmesin. Portable
Profiling and Tracing for Parallel Scientific Applications using C++. In Proceedings of the
SIGMETRICS Symposium on Parallel and Distributed Tools, pp. 134–145. ACM, August
1998.

6. Pallas/Intel. The Intel Trace Collector. 2004.
→ http://www.intel.com/software/products/cluster/tcollector/

7. F. Wolf. Automatic Performance Analysis on Parallel Computers with SMP Nodes. Disser-
tation, NIC Series, Vol. 17, Forschungszentrum Jülich, 2002.

8. W. Nagel, A. Arnold, M. Weber, H.-C. Hoppe, and K. Solchenbach. Vampir: Visualization
and Analysis of MPI Resources. Supercomputer, 12:69–80, January 1996.

9. R. W. Numrich and J. K. Reid. Co-Array Fortran for Parallel Programming. ACM Fortran
Forum, 17(2), 1998.

10. F. Wolf and B. Mohr. Automatic Performance Analysis of Hybrid MPI/OpenMP Applica-
tions. Journal of Systems Architecture, 49(10–11):421–439, November 2003.

11. B. Mohr, L. DeRose, and J. Vetter. A Performance Measurement Infrastructure for Co-Array
Fortran. In Proceddings of of Euro-Par 2005, Springer, Lisboa, Portugal, September 2005.

12. F. Wolf, B. Mohr, J. Dongarra, and S. Moore. Efficient Pattern Search in Large Traces
through Successive Refinement. In Proceddings of Euro-Par 2004, Springer, LNCS 3149,
pp. 47–54, Pisa, Italy, September 2004.

13. M. -A. Hermanns. Event-based Performance Analysis of Remote Memory Access Operations
(In German). Diploma Thesis, Forschungszentrum Jülich, 2004.


	Event-Based Measurement and Analysis of One-Sided Communication
	1 Introduction
	2 MPI-2 One-Sided Communication
	3 An Event Model for One-Sided Communication
	3.1 Basic Model
	3.2 Extended Model

	4 Analysis and Visualization
	5 Conclusion and Future Work
	References


