
Software Probes: towards a quick method for machine characterization and
application performance prediction

Alexandre Strube
alexandre@caos.uab.cat

Dolores Rexachs
dolores.rexachs@uab.es

Emilio Luque
emilio.luque@uab.es

University Autonoma of Barcelona
Computer Architecture and Operating System Department (CAOS)

Barcelona, SPAIN

Abstract

Computers perform different applications in different
ways. To characterize an application performance into a
machine, the usual method is a throughout execution of it.
This work is a step into a synthetic probe able to character-
ize a master-worker application’s performance in a fraction
of the time required to run it entirely. This is specially im-
portant for CPU-intensive scientific applications, who runs
for very long, as it makes sense that it runs as efficiently
(and fast) as possible. To know how, and for how long a
master-worker application is going to run can guide the
decision to use this machine or not. Our software probe
takes into account only the performance-relevant parts of
the application, discovering a program’s relevant phases.
Running solely these significant phases is a powerful way
to quickly characterize the application’s performance on a
machine. It can help to select the best computing nodes
in a grid or in a multi-cluster to run this application, and
even quickly predict the total execution time for this appli-
cation/data set in the machine analyzed. We also present
ongoing work on a fully synthetic probe generated from pro-
grams’ phases.1

1 Introduction

Our objective is to build an application’s probe, to
quickly characterize an application. If the probe is repre-
sentative enough of the whole program, we can determine
the performance of a machine just running it, what will be

1This work has been supported by the MEC-Spain under contracts TIN
2004-03388 and TIN2007-64974

hundreds - or thousands - of times quicker than the applica-
tion’s execution.

Computers give different performance indexes according
to the application it is running. The most precise way to de-
termine the performance of a given application running on
a computer is to run this application itself on the machine,
as hardly a benchmark can give us a precise image of some
machine’s performance that can match the behavior of our
applications. Instead, most of them reflects a narrow set of
applications at best, and it’s hard to reflect the behavior of
new programs using old benchmarks [20].

In changing heterogeneous environments, such as grids
or multi-clusters, where the computational resources are not
necessarily known until the execution begins, it is interest-
ing to decide if a machine is good enough to run our appli-
cation in a short time. To run the application thoroughly can
be too slow, and to run a benchmark is not precise enough.
This work is focused on parallel master/workers applica-
tions, running on multi-clusters.

On those environments, master-worker applications can
benefit from a correct node selection. In one side, by
selecting the fastest nodes by examining its computation
and communication characteristics, and by other side, those
who are able to help with the computation being busy most
of the time, that is, both for brute performance and over-
all cluster efficiency. Argollo [4] proposed a methodology
to select the best number of nodes in a multi-cluster en-
vironment while maintaining the efficiency over a defined
threshold in master/worker applications. According to his
work, efficiency can be achieved through the correct nodes’
selection.

An advantage of a quick probe of an application has to
do with administrative issues. A large application running
for hours long, interrupting a whole cluster of machines just
for testing issues, can be a nuisance to say the least. A spe-

cial case for this administrative issue is when the computers
don’t belong to the users wanting to run the given appli-
cation, but instead are lent for a specific amount of time, or
one rented cluster, where the computing time is paid. In this
case, the rented cluster may or may be not the most adequate
solution, and to be able to quickly know how good (or bad)
this cluster is, is an advantage that cannot be ignored. It
even allows to test competing solutions in a time that could
take for testing only a few with the full executions, a case
probably unfeasible.

A software probe makes this quick performance determi-
nation possible. This work explains the methodology for a
first approach to this concept under the master/worker pro-
gramming paradigm, where the tasks itself are sequential,
and do not communicate among each other. The only com-
munications involved are the master sending the tasks to the
workers, and the workers returning the results. We aim to
quickly characterize the best machines to run a worker ac-
cording to its performance. This work then points out future
directions towards a fully synthetic general probe generated
according to an application’s performance characteristics.

This paper is organized as follows: Section 2 explains
some basic concepts for this work. Section 3 discuss in
more detail our implementation of a software probe. Sec-
tion 4 describes some tools we used for implementation.
Section 5 shows up the results of this work, while section
7 tells about some conclusions, open lines and our ongoing
work on this field.

2 Program Characterization

Being this work focused on master/worker applications
where most of the work happens on nodes running the
worker tasks, it is enough to analyze a worker’s perfor-
mance. To build a probe, we needed to identify some ba-
sic concepts who characterize an application. According
to [14], “the large scale of programs is cyclic in nature”.
On their paper, they measured under simulation, for the
SPEC95 benchmarks, the hardware statistics in fixed peri-
ods of time, and noted that these statistics (1) repeat from
time to time, or (2) have a repeatable cyclic behavior until
the end of their execution.

Periodic Behavior is defined as a repeatable pattern seen
for a given architecture metric. Figure 1 shows some mea-
surements taken in a long-running application. It is possible
to notice that no matter what the hardware characteristic is
chosen, they change at the same time, i.e., there are distinct
phases, and to discover them, [14] used a metric indepen-
dent of any architectural parameter, but highly correlated
with their performance. Their intuition was that what is exe-
cuted in a given moment determines program behavior, and
it reflects on architectural metrics. This metric is then given
by counting the number of times a piece of code - defined

Billions of instructions
0 20 40 60 80 100 120 140 160 180 200 220 2400 20 40 60 80 100 120 140 160 180 200 220 240

M
em

. R
ef

.

1.2

IP
C

P
o

w
er

 (W
)

0.2

1

0

60

30

Figure 1. Some hardware metrics. The pro-
gram phases are quite noticeable, no matter
what metric is chosen.

here as basic block - is executed under several contiguous
periods of time. They called this metric “basic block distri-
bution analysis”.

Periods, also mentioned in the aforementioned work as
phases, are sets of intervals within a program’s execution
that present similar behavior, regardless of temporal adja-
cency [11].

A key point is that the phase behavior seen in any pro-
gram metric is directly a function of the code being exe-
cuted. Because of this, a metric that is related to the code
can describe phase behavior.

An application’s behavior can be defined as a function of
the segments of code it runs. As compilers can optimize the
program, the source code does not reflect the execution di-
rectly. Therefore, a more basic definition is used to describe
program behavior. Basic blocks are defined as “sections of
code executed from start to finish, with one entry and one
exit” [15, 16], and [9] stated that Basic Blocks has no inter-
nal control flows.

To build a frequency map of an application, we group ba-
sic blocks into arrays called basic block vectors [14]. Basic
block vectors are one-dimensional arrays that represent how
many times each basic block was executed during a given
interval - measured in number of instructions committed.
That is, a basic block vector position is incremented each
time the program runs this basic block. This makes possible
the creation of a fingerprint for each interval of execution,
which tells where in the code the application is spending its
time during each interval.

A basic block vector that stores the values of the whole
program’s execution is called Target basic block vector.
Comparisons among two basic block vectors gives their

2

Execution (in number of instructions)

50B0B 100B

In
st

ru
ct

io
n

ca
ch

e
m

is
se

s

D
at

a
ca

ch
e

m
is

se
s

B
ra

nc
h

m
is

pr
ed

ic
ti
o
n

Pe
rf

o
rm

an
ce

(I

PC
)

Phase 0 Phase 1 Phase 2

Figure 2. Phases in the gzip execution.

similarity. Therefore, all basic block vectors of an execution
can be passed through a clustering algorithm to discover this
execution’s phases. Once we have this phases, we monitor
the application to save program’s phases.

2.1 Context and State Save

To be able to run only the application relevant phases, we
firstly run the application thoroughly, saving the program
context at each phase’s beginning (such as the arrows in fig-
ure 2). The first arrow marks one phase - in fact, this phase
was run previously, as can be seen from the graph. The same
happens with the second one, seen as a thinner stripe occur-
ring timely during the execution. The third phase, seen as
the lightest grey, happens three time, and Simpoint chose
the most centric one. Phases repeat, but we run only one
instance of it, as what matters to us is the performance of
the phases and not the program output. A similar method
was described by [13], who uses checkpoints to save a pro-
gram’s state in a machine to then feed them into a functional
simulator, to shorten simulations in future-generation hard-
ware.

In our case, we developed a tool which monitors the ap-
plication thoroughly to save the basic block vectors, feed it
into Simpoint, collect the results, re-run the application and
save checkpoints previously to each phase’s beginning (due
to warmup, explained below). It is necessary to run the ap-
plication twice, one containing instrumentation for captur-
ing the basic blocks, and the second one, when the phases
are already known, to save checkpoints, as shown in figure 3
The same tool is used on the remote machines as the probe:
it is in charge of loading the checkpoints, run each phase,
measure this phase’s time, stop the execution and step to
the next checkpoint. More information in chapter 3.

2.2 Warmup

Resuming a program from disk has a drawback: some
machine’s components contents will not be in the same
state that they would be if running the application from the
beginning. Basically, those are the cache memory, TLBs
and branch predictor. We use the strategy of Calculated
Warmup [9], where the program state is saved somewhat
earlier than the exact point where the phase begins, so the
aforementioned components can warm up before the mea-
surement begins. In figure 2, the context would be saved
previously the arrows who points phases, i.e. a given num-
ber of instructions previous to the phases’ beginnings them-
selves.

2.3 Data Dependency Issues

The phases are obviously data-dependent, that is, a probe
must be used directly only when the application is not data-
dependent, as the checkpoints carry actual data on them.

For data-dependent applications, e.g. the traveling sales-
man problem, [8] proposed a solution, where it discov-
ers patterns on the inputs which leads to similar execution
times. That is, by discovering what pattern on the input
leads to those similar outputs (specific to each application),
it is possible to cluster sets of input data with similar ex-
ecution times. A number of sets of probes, to ranges of
parameters of an application, may be used to overcome the
data dependency issue.

3 Machine Characterization Method

3.1 General Scheme for the Probe Cre-
ation

The software probe creation is done previous to the mea-
surements of the machine we want to characterize. The
probe creation being such a complex operation, can take
quite long. But the advantage is that it is done only once,
and then the probe can be run in as many machines as we
want to.

The probe generation process uses external tools as well
as a program built by us, known as ProbeGen. The Probe-
Gen application is responsible for instrumenting the appli-
cation, saving the basic block vectors, feed them into Sim-
point, getting from Simpoint the phases, and then finally re-
running the application, and saving the checkpoints where
required. This application, along with those saved check-
points, are to sent to the machine to be probed, where the
application loads the checkpoints, measures the phases, in-
terrupts the execution and proceeds to load the next one.

3

Basic block vector gathering

Relevant phase discovery

Phase’s context save

PROBE

Generation

PROBE

Checkpoint restart

Warmup

Measurement

Execution

Figure 3. Probe creation general scheme.
While the left side of the image is done in a
machine under our control, the right side is
done on the machine to be characterized.

The process consists in the following steps: basic block
vector gathering, phase discovery and context saving. Each
of them will be explained in details.

• Basic block gathering. In this step, ProbeGen runs the
application thoroughly, instrumented. The instrumen-
tation collects the basic block vectors.

• Phase discovery. ProbeGen proceeds then to he sec-
ond step of phase discovery. Once the basic block vec-
tors were gathered, to feed them into a clustering al-
gorithm to find the relevant program’s phases. We use
the Simpoint[15] tool for this function.

• Context saving. With the phases in hand, ProbeGen
runs the application thoroughly again to save those
phases in form of checkpoints. Its worth noticing that
the instrumentation is saved with the program. The
reason is that when resuming from the saved contexts,
we have to (1) run the program only up to the phases’
end, as if the program were not instrumented, it would
run normally until its completion, and (2) the instru-
mentation contains the code for measuring the phase’s
execution time.

• Probe execution. The same ProbeGen application also
contains the functionality to run the probe itself and
measure the phases’ times. As soon as the ProbeGen
is in possession of the checkpoints, it can be sent, along
with them and with the application to be measured, to
any machine one wants to measure. A single parameter
makes ProbeGen to switch to this measurement mode,
where it loads the checkpoints, wait for the machine
to warmup, and then measure this checkpoint’s phase
time. Once the phase was run and measured, it stops

the execution, and starts again with the next phase. As
each phase contained on each checkpoint is very small,
this happens in a magnitude of seconds.

4 Tools for Probe Creation and Use

Several concepts used on this work come from the com-
puter architecture simulation field, as is unfeasible for them
to create every piece of equipment to be tested. These sim-
ulations are usually slow, in the magnitude of months. The
engineers of this field developed techniques to reduce their
benchmarking time but maintaining a level of trust on their
results. Their problems in determining performance of sim-
ulated machines - and their solutions - are somewhat simi-
lar to ours, determining the performance of an application
running into an unknown machine, so we can apply some
of their knowledge and tools into our field of study. Fur-
thermore, to be able to interfere into a program’s working
without touching its source code nor having any previous
knowledge of it, we made use of a set of tools, which are
going to be described now.

• Simpoint. It was described in [15] a technique to find
the relevant phases of a program, based into the ba-
sic block vectors gathered in a execution. Based on
it, they developed Simpoint. Its an offline tool, based
on the k-means clustering algorithm. It also returns
the weight of each phase. Besides their own experi-
ments, [6] found that the basic block vectors analysis
and phase detection is accurate.

• Pin. It is a dynamic instrumentation toolkit developed
by Intel [12]. With it, we are able to instrument an ap-
plication to gather its basic blocks. Pin does not need
to recompile code or change any application file.

• Atom. It is an acronym from Analysis Tools for Object
Modification - is a static instrumentation toolkit from
intel. It is necessary to statically instrument the ap-
plication’s phases when the context is saved to disk.
This is because a dynamic instrumentation toolkit can-
not instrument an application restored from it’s disk
saved context.

• Blcr. To save the program context, we use a check-
pointing library, i.e. we use checkpoints only to be
able to run the program from each phase’s begin for
the phase’s duration. Checkpoints can be defined as
“the process of saving the entire state of a job to disk,
than later restore it” [7]. He also proposed and imple-
mented a checkpointing library for Linux, the Berkeley
Linux Checkpoint Restart.

4

Mac 2gz (Reference machine) Mac 2.16gz

0

100.000

200.000

300.000

400.000

1 3
10

76
21

96
31

87
33

98
72

97
80

84
96

39

11
69

3

12
93

3

E
x

e
c

u
ti

o
n

 t
im

e
 f

o
r

1
0

0
M

 i
n

s
t

p
e

ri
o

d
 i

n
 !

s
e

c
s

Phase"s Initial Instruction (x100M)

Figure 4. Phases’ execution time of sweep3d
on the macintoshes.

4.1 ProbeGen

As previously stated, ProbeGen is the tool we built to
use Pin to instrument the application, feed the basic
block vectors into Simpoint, get the phases from it, and
run the application in order to save the checkpoints.
That is, it generates our probe.

ProbeGen also serves as the probe itself, running on
the machine to be probed, running the phases from the
checkpoints and measuring them.

Our tool was built in C, using the Pin and Atom instu-
mentation libraries, and runs under Linux. The Linux
is not a requirement on the probe itself nor the con-
cept, it was just that the Pin, Atom and Blcr libraries
are only available on this operating system. Besides,
Linux clusters are today the mainstream, it is more and
more hard to find clusters running other OSses.

5 Experiments and Results Analysis

To prove the concept of the probe, we did some exper-
iments. They were conducted in the following way: Two
machines were probed, one we call the Reference one, and
one that would be the machine to be characterized. The
phases’ time were compared, and weights were applied to
each of those phases. The weights are given to us by Sim-
point, and they mean the number of executions of that phase
over the number of executions of all phases, i.e. it describes
how important a phase is. This comparison made possible
to extrapolate the execution time on the probed machine.

The first experiment was done with a double-nested loop
matrix multiplication. Being a program with a well known

behavior, we could verify if the method and our tool worked
as expected. Being so simple and with a known memory
access pattern (stride), Simpoint correctly found only one
phase, which validates the phase method.

A more complex experiment was to create a probe of the
BlueGene’s Sweep3D [10] kernel. It is a time-independent,
Cartesian-grid, “discrete ordinates” deterministic particle
transport code taken from the DOE Accelerated Strategic
Computing Initiative (ASCI) workload. Sweep3D repre-
sents “the core of a widely utilized method of solving the
Boltzmann transport equation. Estimates are that determin-
istic particle transport accounts for 50-80% of the execu-
tion time of many realistic simulations on current DOE sys-
tems”. Its relevance in real systems and the configurability
were crucial to make the decision of using it to prove our
probe. This experiment was conducted on the single pro-
cessor worker of the Sweep3D’s master/worker version.

We ran it into two different architectures: a pair of Apple
Macintoshes. The reference one used the Merom Core 2
Duo CPU, running at 2gz and with the i950 chipset, and the
probed one with an 2.2gz Penryn Core 2 Duo CPU using the
Santa Rosa chipset, and in a pc cluster, where the reference
one was a 2.6gz Prescott Pentium IV CPU with 256kb of
cache memory using the i865 chipset and the probed one
with a 2.8gz Northwod Pentium 4 CPU, with 512k of cache
and the i810 chipset. On the cluster, we are going to report
the results of only two machines, as identical machines led
to similar results.

On the mac reference machine, the 5-times average of
the the full execution with the problem size of 50-cubed
spatial grid points took 502,512 seconds (8 minutes). The
probe took about 3 seconds. On the pc reference one, exe-
cution’s average time with the 150-cubed problem size took
32193 seconds (almost 9 hours) and the probe, 310 seconds.
In both cases, the probe took approximately 1/100th of the
full execution. The bigger the problem sizes, the bigger
the gain, as the number of phases tends to remain constant.
Most of this time is related to load from the disk into mem-
ory the context, that is, the phases. The computing time was
about 5 seconds in the worst case.

Figures 4 and 5 show each phase’s execution time in the
reference and probed machines. They show the difference
in execution time of the reference and probed machines.
By applying the weights given by Simpoint and comparing
them, it is possible to extrapolate the execution time on the
probed machine. All phases have the same number of in-
structions - in this case, 100 million instructions. As all the
phases have the same number of instructions, the difference
between the phases’ time is given by the way each phase
exercises the code. It may be caused by different phases’ in-
struction sets, cache/tlb misses or memory access patterns.

5

0

1750000

3500000

5250000

7000000

5 6 4452 5278 5408 7381 8475 9687 10095 10830 11374 12890

P4, 2,8gz, 1gb ram, 512kb cache

P4, 2,6gz, 512mb ram, 256k cache (reference)

E
x

e
c

u
ti

o
n

 t
im

e
 f

o
r

1
0

0
M

 i
n

s
t

p
e

ri
o

d
 i

n
 !

s
e

c
s

Phase"s Initial Instruction (x100M)

Figure 5. Phases’ execution time in sweep3d
in PCs.

5.1 Execution time prediction

It is possible to extrapolate the execution time for the
full execution from the probe. Being t(i) the time (in this
case, in seconds) of each phase and w(i) the phase weight,
its sum (formula 1) gives us the weighed factor P which
makes possible to create a proportion between execution
times on the reference machine and the probed one. If we
use this formula for the macintoshes’ data shown at figure
4, the weighed proportion among the 2,0gz machine and
the 2,16gz one is 91,9928%, and this means that the pro-
gram will run at 91,9928% of the time it took to run on the
reference one.

Pmachine =
T∑

i=1

[t(i) · w(i)] (1)

It is possible to extrapolate the execution time without a
reference machine, just by using formula 1. However, the
comparison with a reference machine improves the predic-
tion ratio by more than 10% while reduces the probing time,
as phases may be smaller.

Being the execution time on the reference machine
T (ref) and the weighed proportion among the machines
P , we can calculate the execution time on probed machine
with the formula 2, being Tpred the predicted time on the
probed machine:

Tpred = Tref ·
P

100
(2)

Using the formula to our data, we have the following
results on the macs:

Tpred =
502, 519 seconds · 91, 9928

100
= 462, 281

Which means that the faster macintosh would run the ap-
plication in 462,281 seconds. When we ran the application
thoroughly on it, the observed time was of 465,166 seconds,
a 99,37% precise prediction. On the PCs, the results were
the following:

Tpred =
32193 seconds · 89, 6673

100
= 28866, 594

The full execution took 24415,365 seconds on the pc, a
84,58% precise prediction. Although the probed machine
had a higher clock, its bus was slower, and as memory
access dominates this algorithm’s execution time, it took
longer than the slower but more efficient processor. This
lower accuracy is related to lack of memory who caused the
system to do swap, and noise on the pcs caused by other
users, but we still can tell how good and how efficient a
machine is for an execution.

6 Next steps

The next step is to define what we must characterize. In
[13], it is stated that memory is the most relevant aspect
of a machine performance, and uses this characteristic for
their simulation purposes, and [17] says that memory la-
tency usually dominates the performance behavior of sci-
entific applications. In [5], it is proven that in some simu-
lations, the increment in memory performance is more de-
terminant to the overall performance of applications than
any other factors analyzed. Therefore, the initial step of our
studies is the analysis of memory access patterns of appli-
cation’s phases, and the subsequent creation of a synthetic
tunable probe that could mimic this memory pattern. Both
[18] and [20] are different approaches of the development of
a synthetic probe that can represent memory access. We aim
to create a probe who is able to represent not only the mem-
ory access precisely, but as well to mimic another factors
important to represent the performance of an application.

The is ongoing work on synthetic probes in [18], [19]
and [20]. Their approach is statistical, i.e. they map mem-
ory accesses in terms of miss probability when using a ran-
dom access pattern.

The works of [1, 2, 3] try to map statistically the cache
behavior, thus recognizing its pattern. In one of their experi-
ments, they considered a multi-level cache hierarchy, where
memory was seen as another cache level. They based their
work on probabilistic miss equations.

Our approach is somewhat different. The proposal is to
be able to reproduce the memory access, not probabilisti-
cally, but the access itself. The thesis is that the memory
access can be represented as waves, where the frequency is
the amount of accesses during a given period. Treating the
memory access pattern as a analog wave permits us to de-
compose this wave into its components, who can generate

6

Full execution of the application, monitored (phase
discovery)

O
n

th
e

re
fe

re
nc

e
m

ac
hi

ne

Phases’ execution, monitored (memory access pattern log)

Memory access pattern discovery and decomposition

Synthetic MIDI-Like file generation

Figure 6. Synthetic Probe Generation
Scheme.

equations. This equations will then be used to recompose
the waves - that is, the memory access pattern of a pro-
gram’s phases - allowing us to “play” these patterns on a
probed machine.

The idea is similar to converting a song recording file
into a synthetic format, such as MIDI, and playing it back.
This MIDI-like file is way smaller than an address trace
could ever be, as it contains the equations responsible to
generate the patterns, not the pattern themselves. This re-
solves the issue of the probe being the cause of noise on the
pattern because of its own inner working, a problem faced
by the other proposals. Figure 6 outlines the probe genera-
tion scheme.

Such a probe must achieve an interesting prediction, as
each program’s relevant phases will be analyzed. Current
approaches use whether the entire program memory trace
or just the program kernels, that is, some benchmark’s main
loops, and the rest of the computation is discarded. The
fact that the whole relevant behavior is represented is a plus
when compared to the other alternatives, turning it into a
useful way to represent program behavior.

The representation of the memory access into a synthetic
wave instead of access probability must result into a more
precise mimic of the application’s behavior.

7 Conclusion and Future Work

With this work, we proposed a first step into a scheme to
characterize a parallel Master/Worker application/data set
pair performance into a machine in a fraction of time re-
quired to run the application thoroughly on this machine by
using a software probe. The context saving tool gave us the
capability of resuming the application’s execution, and the
instrumentation gave us the ability to choose exactly when

do this, as well as to measure the phases and stop the ex-
ecution when we needed to. The formulas predicted the
execution time on the probed machines with good results
and quickly. However, the context-saving approach is not
our final goal, as there are some issues with it that make
it not suitable for practical everyday use, such as phases’
context size, the need of tools installed on the machines to
probe and the deterministic nature of the phases. A very
promising technique is that of [8], who uses data mining
techniques to recognize similar patterns to be able to pre-
dict nondeterministic behavior.

To overcome these difficulties, a radically different ap-
proach is needed. Our group is studying the creation of
a generic synthetic parametric probe, able to represent the
behavior of a program when fed with the correct input pa-
rameters obtained from the specific program to be charac-
terized. The phases’ approach on the subject fits well this
future direction, as it narrows the amount of data to analyze
in several orders of magnitude.

References

[1] D. Andrade, M. Arenaz, B. Fraguela, and J. Tourino.
Automated and accurate cache behavior analysis for
codes with irregular access patterns. In Proceed-
ings of Workshop on Compilers for Parallel Computers
(CPC2006), pages 2407-2424, Jan 2006.

[2] D. Andrade, B. Fraguela, and R. Doallo. Analytical
modeling of codes with arbitrary data-dependent condi-
tional structures. Journal of Systems Architecture, 52(7),
Jan 2006.

[3] D. Andrade, B. Fraguela, and R. Doallo. Precise au-
tomatable analytical modeling of the cache behavior of
codes with indirections. ACM Transactions on Architec-
ture and Code Optimization, 4(3) Jan 2007.

[4] E. Argollo. Performance prediction and tuning in a
multi-cluster environment. Ph.D. dissertation, Com-
puter Architecture and Operating Systems Department,
Universitat Autonoma de Barcelona, Barcelona, Spain,
2006.

[5] L. Carrington, A. Snavely, and N. Wolter. A perfor-
mance prediction framework for scientific applications.
Future Generation Computer Systems, 22(3):336–346,
2006.

[6] A. Dhodapkar and J. Smith. Comparing program phase
detection techniques. In Proceedings of the 36th Annual
IEEE/ACM International Symposium on Microarchitec-
ture, pages 217– 227, 2003.

7

[7] J. Duell. The design and implementation of berke-
ley labs linux checkpoint/restart. Lawrence Berkeley
National Laboratory, Berkeley, CA, USA, Tech. Rep.
LBNL-54941, 2003.

[8] P. Fritzsche. Podemos Predecir en Algoritmos Paralelos
no Deterministas? Ph.D. dissertation, Computer Archi-
tecture and Operating Systems Department, Universitat
Autonoma de Barcelona, Barcelona, Spain, 2007.

[9] G. Hamerly, E. Perelman, and B. Calder. How to use
Simpoint to pick simulation points. ACM SIGMETRICS
Performance Evaluation Review, 31(4):25–30, 2004.

[10] A. Hoisie, O. Lubeck, and H. Wasserman. Scalabil-
ity analysis of multidimensional wavefront algorithms on
large-scale smp clusters. In Proceedings of the 9th Sym-
posium on the Frontiers of Massively Parallel Computa-
tion, pages 4-16 Jan 1999.

[11] J. Lau, J. Sampson, E. Perelman, G. Hamerly, and
B. Calder. The strong correlation between code signa-
tures and performance. in Proceedings of the IEEE In-
ternational Symposium on Performance Analysis of Sys-
tems and Software, pages 236-247, 2005.

[12] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and
A. Karunanidhi. Pinpointing representative portions of
large intel itanium programs with dynamic instrumenta-
tion. in Proceedings of the 37th International Symposium
on Microarchitecture, pages 81-92, 2004.

[13] I. Sharapov, R. Kroeger, G. Delamarter, and
R. Cheveresan. A case study in top-down performance
estimation for a large-scale parallel application. in Pro-
ceedings of the 11th ACM SIGPLAN symposium on Prin-
ciples and practice of parallel programming, pages 81-
89, Jan 2006.

[14] T. Sherwood, E. Perelman, and B. Calder. Basic block
distribution analysis to find periodic behavior and simu-
lation points in applications. in Proceedings of the Inter-
national Conference on Parallel Architectures and Com-
pilation Techinques, pages 3-14, Jan 2001.

[15] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder.
Automatically characterizing large scale program behav-
ior. SIGPLAN Not., 37(10):45–57, 2002.

[16] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and
B. Calder. Discovering and exploiting program phases.
IEEE micro, pages 84-93, Jan 2004.

[17] A. Snavely, L. Carrington, N. Wolter, J. Labarta,
R. Badia, and A. Purkayastha. A framework for perfor-
mance modeling and prediction. in Proceedings of the
ACM/IEEE 2002 Conference on Supercomputing, page
21, 2002.

[18] E. Strohmaier and H. Shan. Apex-map: a parameter-
ized scalable memory access probe for high-performance
computing systems: Research articles. Concurrency and
Computation: Practice and Experience. John Wiley and
Sons Ltd. 19(17):2185-2205, 2007.

[19] E. Strohmaier and H. Shan. Apex-map: A synthetic
scalable benchmark probe to explore data access perfor-
mance on highly parallel systems. in Proceedings of the
ACM/IEEE Conference on Supercomputing, pages 113-
123, 2005.

[20] E. Strohmaier and H. Shan. Architecture independent
performance characterization and benchmarking for sci-
entific applications. in Proceedings of the IEEE Com-
puter Society’s 12th Annual International Symposium on
Modeling, Analysis, and Simulation of Computer and
Telecommunications Systems, 2004.(MASCOTS 2004),
pages 467-474, 2004.

[21] A. Strube. Performance determination using software
probes. Master Thesis, Computer Architecture and Op-
erating Systems Department, Universitat Autonoma de
Barcelona, Barcelona, Spain, 2007.

8

