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Abstract—This work describes ongoing work for measuring
the performance of an application running on a machine, where
this measurement takes a fraction of the time required to
run the application itself thoroughly. We call it Performance
Software Probe. The objective is to have knowledge of this
machine/application performance previous to the execution, and
without the need to even install this application on the machine to
characterize. Our goal is to enhance efficiency of master/worker
applications on highly heterogeneous multiclusters, where the
available machines - and their respective performance indexes
- are not known until the time we have them available for
execution. 1

I. INTRODUCTION

Performance evaluation and prediction is something be-
tween a science and a form of art. Being both, its possibilities
depend mostly on creativity, and it is useful for a variety of
fields.

However, what must we evaluate? Throughout the years, we
have seen several works on computer performance evaluation.
Units of measurements, such as the old (and not always well
regarded) Whetstone [1], were good for comparing machines
among themselves in their time. This is done even today, with
the Top500’s High-Performance Linpack Benchmark [2].

Although useful for having some idea about a computer’s
performance, it is surely not enough to know how a given
application will perform on a given machine. In fact, it’s
not always possible to characterize a machine’s absolute
performance using benchmarks [3], as computers give different
performance indexes according to the application it is running,
and benchmarks usually reflects a narrow set of applications
at best.

As consequence, it is hard to reflect the behavior of new
programs using old benchmarks [4]. This means the best way
to characterize this engagement among a computer and an
application its to run the application itself, thoroughly.

However, this brings problems of its own. Running a full
program may take too long for evaluation purposes. Setting
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up the system and the program to run together also may
be a problem, especially when the machines are yet being
evaluated, being considered. For instance, when a big system
is going to be bought or rent specifically to run a set of
applications, it is quite obvious that this system must perform
as good as possible when running these specific applications.

Also in changing environments, such as grids and multi-
clusters outside of direct administrator’s control (for instance,
collaboration projects among universities), where the compu-
tational resources are not necessarily known until execution
begins, it is interesting to decide if a machine is good enough
to run our application in a short time.

Our goal is to enhance efficiency of master/worker appli-
cations which runs on highly heterogeneous multiclusters. On
them, available machines come and go, and we don’t know
their performance until they are ready to be used. Considering
that we choose machines on a multicluster according to their
performance [5], if we don’t know their performance prior to
the execution, the selection may be a challenge.

Another problem of taking a whole application to a system
just to evaluate it has to do with time, in different ways:

• Installation: An application may have enough depen-
dencies and system requirements that the simple intent
of install may not be viable for some projects’ time
constraints.

• Measurement: Some applications may take weeks to
finish an execution of a single data set. This evaluation
time again may be excessive.

To overcome these issues, we defined the concept of a
Performance Software Probe in [6]. This work is its ongoing
research.

Quoting the Oxford English Dictionary, the word probe
means:

• a blunt-ended surgical instrument used for exploring a
wound or part of the body.

• a small device, esp. an electrode, used for measuring,
testing, or obtaining information



Being a probe a small device created to explore and gather
information, our analogy to a software Probe is a piece of
code able to explore a machine. In our case, reflecting the
performance characteristics of a specific application.

This work is organized as follows: Section II talks about
the performance model and where this work is located on
it. Section III describes the idea of a Probe, how it is able
to characterize an application for evaluating a machine’s
performance. Section IV demonstrates Probe usage in real
environments and some results. Section V shows where the
current Probe approximation is worthy. Section VI shows some
conclusion and what direction our research is taking.

II. PERFORMANCE MODEL

In the research of Argollo [5], an analytical model of
performance prediction for master/worker application running
in heterogeneous multiclusters was developed. This scheme
consists of a master cluster, with its own nodes, usually the one
closest to the user, and sub-clusters. Communication between a
sub-cluster and the master cluster is done by means of entities
called communication managers. This way, the master cluster
sees the sub-cluster as a very fast node with a very slow
network connection.

In this model, you characterize the whole environment by
means of computation and communication parameters. For
instance, the performance model of a sub-cluster when running
a computation-bounded master/worker application during its
steady time (PerfSte) is given by the equation (1). On it,
CPerfAvail is given by equation (2), Oper is the number
of basic operations of a task, TPutEC is the external cluster
LAN average throughput, SComm is the total communication
of a task, N is the number of the tasks of this execu-
tion, TPutInetIN is the external cluster’s internet incoming
throughput, STaskInter is the size of an inter-cluster task,
TPutInetOUT is the the external cluster’s outgoing through-
put, and SResultInter is the inter-cluster’s task size.

Every parameter of this equation is either a factor of the
network throughputs, which are straightforward to discover
and problem size, which is know beforehand, and that sub-
cluster available performance, described in equation (2. On
it, PerfAvail is the relative computation performance of a
machine while running a given application. While every other
parameter of these equations is discoverable or already know,
this one is not. In [5], to discover it, a whole long-running task
was sent to every available node on the whole multicluster.
That took a long time.

This work is about a way to accelerate the discovery of
PerfAvail.

III. THE SOFTWARE PROBE

Given our bigger constraint in evaluating performance char-
acteristics of a machine is its execution time, our objective with
the software Probe is to reduce this evaluation time as much
as we can.

A work related to ours is that of Sodhi and Subhlok [7],
where their performance skeletons intend to mimic application
behavior in a shorter execution time for evaluating shared
resources. While they focus on shared resources and network
usage, we focus this work on computation for master/worker
applications by characterizing the worker, as our research
group already have ongoing work on characterizing communi-
cation patterns, such as the study conducted by Wong [8]. The
work of [7] claims that no monitoring is necessary, although
later it’s stated that the execution trace is taken. For our
method, focused on the computation part of the applications,
instrumentation to reach instruction-level precision is adamant.
The work of [9] developed a tool that runs under the QEMU
emulator or the Valgrind as a method to gather multi-platform
basic block vectors faster than when using functional simula-
tors, but to use them inside those functional simulators.

Our Probe methodology consists of two steps: Acquiring
knowledge of an application to generate a Probe with perfor-
mance indexes related to this application it’s based on, and
then characterize a machine with this Probe. This general
schema is in figure 1.

A. Application characterization

As previously stated, we want to evaluate the performance
of a machine while running an application, although without
the hassle involved in running this application to its comple-
tion. The dominant factor that drives us to create a Probe
instead of running an application thoroughly is its execution
time. That means our first goal is to reduce it without loosing
the performance relevant aspects of a thorough execution.

In Master/Worker applications, the master is ours - that
means, it is usually a machine under direct control, which
will always be used, while some of the workers may or may
not be used. The decision of which of those workers is to be
used is what drives our research, as the master will always be
present.

Sherwood and Calder [10] stated that “the large scale of
the programs is cyclic in nature”. Further, Sherwood, Sair and
Calder [11] proposed a profiling technique able to understand
an execution as a series of different phases that may repeat.
They use the basic block distribution analysis technique de-
scribed by Sherwood, Perelman and Calder in [12]. Once an
application is profiled, for instance from an execution trace of
an architecture simulator such as simpleScalar [13], the basic
block profile is then fed into their SimPoint tool. A basic block
vector contains the index of basic blocks executed during that
instruction interval and their occurrence. Each basic block is
uniquely labelled during a program’s execution. Every basic
block in that interval also has a counter of how many times it
ran.

Our methodology to evaluate an application’s performance
on a machine consists of the following steps:

1) Data collection: To collect basic blocks of real applica-
tion running in a real system (in opposition to the simulated
architectures used by the SimPoint team), we instrument the
application to be characterized, as we do not have cpu traces.



PerfSte = min

(
CPerfAvail, Oper ∗ TPutEC

SComm
, Oper ∗ N ∗ TPutInetIN

STaskInter
, Oper ∗ N ∗ TPutInetOUT

SResultInter

)
(1)

CPerfavail =
∑

workers

PerfAvail (2)

Data collection

Analysis

Probe creation

PROBE

Application Characterization

PROBE

Checkpoint restart

Warmup

Measurement

Application/Machine Characterization

Prediction

Fig. 1. Probe creation general scheme. While the left side of the image is
done in a machine under our control, the right side is done on the machine
to be characterized.
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Fig. 2. Stages for Probe generation and machine/application characterization

This is done with the Pin instrumentation toolkit [14]. This
toolkit is able to instrument an application at basic block level,
which makes straightforward to collect them. We define a fixed
instruction interval where the basic blocks are collected, and
each of these intervals is a basic block vector. We then run
the application monitored thoroughly, to collect basic block
vectors, as can be seen in Figure 2, item (a).

As we instrument applications at basic block level, we save
the occurrences of each of them in a basic block vector, for a

fixed instruction interval. In this work’s experiments in section
IV, we used an interval of 1.000.000.000 instructions. For each
of those intervals a basic block vector is generated.

About data dependency and problem size: A side effect of
the method used for characterization has to do with problem
size and data dependency. Our Probe is valid for a given
problem size. However, in some domains, this not holds true.
NAS’ Benchmarks, for instance, present the same behavior
over time, where the dominant behavior repeats itself, and all
the phases hold more or less the same weight, only repeating
more. Research has shown that more than the data itself,
performance is dependent on some data patterns which are
characteristic to the type of program being executed and its
underlying algorithm, as studied by Fritzsche [15].

About the set of probes required for data-dependent appli-
cations One obvious advantage of our Probe for characterizing
multiple machines against data-dependent applications is that
after defining a space of data patterns relevant for character-
ization using the aforementioned work of Fritzsche, several
Probes can be created, being each of them representative of
that specific data pattern. As our Probes run in orders of
magnitude less time than applications themselves, we are able
to explore much wider areas of data patterns in less time than a
single execution of an application may take for characterizing
one single data set.

2) Analysis: The collected basic block vectors are fed
into SimPoint, which can discover program phases based
on these vectors’ similarity. It uses clustering techniques to
find repetitive patterns [16]. These repetitive patterns, called
phases, are classified and the tool outputs a single occurrence
of it, counted in number of instructions. SimPoint also outputs
each phase’s weight, which is the phase’s percentile on the
whole execution, i.e. a phase with a weight of 0.8 dominated
the application’s execution during 80% of its run. See Figure
2, item (b), where each color represents a single phase. The
item where the color is stronger means this item is selected
for representing the behavior, where the faded ones are similar
to it, what means they have a similar performance behavior.

There are several applications, especially in the scientific
field, where a small set of phases dominate the execution. The
worker of a master/worker application typically consists of
a single dominating phase, and some smaller phases, usually
initialization and finalization, packing of data for send back
to the master, etc. They are not necessarily relevant. In our
research, we noticed that 1% of the execution is comprised of
a lot of irrelevant phases. Ergo, to reduce characterization time,
we discard the 1% less relevant phases. In our experiments,
this was enough to maintain a good prediction level while



greatly reducing Probe size, as much less checkpoints are
necessary. We can reduce Probe size even further, as after
this 1% threshold we still may have a number of phases of
little relevance in the overall execution. Results of these further
reductions are discussed in detail in section IV-C.

3) Probe creation: With the phases now known, we must
create the Probe itself. What the Probe will carry to the ma-
chine to be characterized will be: the set of phases discovered
by SimPoint (saved in the form of checkpoints), code to run
these phases, instrumentation code to stop execution after the
phase size was reached, measure its execution time and send
these results back.

This implies that we must run the application thoroughly a
second time, with a specific monitoring tool. It counts the
application’s executed instructions until it reaches a point
right before a phase’s number, and then the application is
checkpointed to disk, as in Figure 2, item (c). We checkpoint
a number of instructions before the exact phase’s time to
ensure the machines to be characterized with this checkpoint
are “warm”, i.e. its components (TLB, caches, etc) are in a
state consistent to that of a throughout execution [17]. This
operation is inexpensive, and greatly improves precision. Its
worth noting that this offline process to create a probe must
be done only once.

The saved checkpoints are, as of today, an important part
of our Probe. Nevertheless, given that our field of research is
heterogeneous multiclusters, where network connections are
a strong issue, big checkpoints may be a constraint on those
environments. We have set of clusters scattered around the
world that form multiclusters, and connected through internet,
and connection droppings and bandwidth limitations are the
norm, not the exception [18]. There are works specialized in
reducing checkpoint’s size, by saving only state necessary for
the future, such as that of Rodriguez [19] but for it to succeed,
applications must be recompiled. Our technique doesn’t need
any source code at all. As we know the relevance of each
phase, we can discard the less important ones, knowing the
degree of precision lost by this action.

Regarding Characterization Time: All these executions take
time. Instrumented executions may take orders of magnitude
longer than “clean” ones. Given the two executions, the first
to find phases and the second for probe creation are both
instrumented, the time for one characterization is way longer
than the execution itself. However this is done offline, and
only one time for a problem size, and once the Probe is built,
there’s no need to repeat this procedure again, and the Probe
may be used as many times as necessary.

B. Application/Machine characterization

A machine’s performance while running an application can
be predicted without running it in its entirety, but alternatively
by running only its relevant portions and extrapolating from
them. As we know which of them they are and have them
saved in form of checkpoints, running them in succession is
enough to predict how it would run entirely, as essentially what
we do is remove application’s execution repeated behavior.

“Clean” execution - i.e. No instrumentation

(1)

“Noisy” (instrumented) execution

(2)

Fig. 3. Instrumentation noise in execution time.

In our case, the gross of the time is spent estimating the
performance of the workers, to decide which one are going
to be selected for this execution, so we focus on quickly
characterizing the performance of the workers while running
a given application.

1) Checkpoint restart: A shell script is responsible for
running every phase in succession. When finished, it may send
measurement results back. The script itself doesn’t need to do
much else, as the “intelligence” is embedded into the instru-
mentation code. For checkpointing, as of today, we are using
the Berkeley Checkpoint/Restart (blcr) [20] library embedded
in our instrumentation. This library checkpoints to system
level, which may be in itself a disadvantage; However, this
library was chosen in the first place because of its popularity
among fault-tolerance solutions in parallel applications such as
MPICH-V [21], fault-tolerant OpenMPI [22] and the Lam/Mpi
Checkpoint/Restart framework [23] for instance which make
this specific library easily available in academic clusters.

For the Probe, as it is today, to work correctly on the
machines to be characterized, we need that at least the
checkpointing library to be installed. Other dependencies may
be carried along with the probe. Another solution is a virtual
environment where all dependencies are provided.

Those issues are already known, and this paper is meant to
demonstrate the quality of prediction in real hardware based
on the concept of phases. They are all being handled in our
ongoing research, mentioned in section VI.

2) Measurement: When checkpoints are restarted, the ap-
plication is not exactly in the point that measurement must
start, but instead a number of instructions before it, to ensure
warmup - see Figure 2, item (c) and (d), where there’s a
period previous to the phases, the warmup. When the execution
reaches the point where this specific phase starts, our instru-
mentation code sets a timer. When the phase size is reached
- that is, when we run the program after the same number of
instructions we used to classify our basic blocks, this time is
counted, and instrumentation code writes it to an output file
and interrupts the program execution. The machine’s command
returns to the shell script, which proceeds to run the next phase
or send the results back to the user measuring the machine,
when passed the last phase.

3) Execution time prediction: The measurement is then
compared to the machine used to characterize the application



in the first time. Every phase given by SimPoint also contains
its weight on the overall program, e.g. a phase with a weight of
50% means that it ran for half the time of the whole program’s
execution. Although only the phases’ times and their weights
would be enough to characterize a machine, this would not
take into account the noise generated by instrumentation,
which extends execution time, as illustrated in Figure 3.

To ensure a prediction where instrumentation noise is
removed, we compare a “clean” execution, that is, without
instrumentation, to that instrumented. The difference among
them is instrumentation noise, such as in equation 3. Given in-
strumentation doesn’t change among machines, its proportion
in execution may be calculated. This equation gives is the pro-
portion of overhead in execution. It may be counted in terms
of both time (and by that TInstrumented and TUninstrumented

refer to execution time) or instructions executed. In our
experiments they perform similarly.

Noise =
TInstrumented

TUninstrumented
(3)

The estimation of execution time is given by equation 4,
which is a summation of each phase measured parameters,
where TFullApp is the execution time during our offline
characterization of the whole worker, WPhase is the phase’s
weight, TOff is the elapsed time the probe took to run during
the offline characterization, and TNew is the time that phase
took to run on the machine to be characterized.∑

Phases

(
TFullApp ∗ WPhase

Toff
∗ TNew

)
(4)

Let’s exemplify the prediction. If an hypothetical application
that during its characterization ran for one hour, and we found
that it had three phases: one which weight was 60%, another
with 30% weight and another with 10% weight. During the
offline characterization, we measured that the first phase took
2 seconds to run (representing 60% of one hour, that is, 36
minutes), the second on took 2 seconds (the one with 30%
weight, representing 18 minutes) , and that the less important
took 1 second (representing 6 minutes of execution).

On the machine to be characterized, the probe for the 60%
phase took 1 second to run, the 30% took 1.5s and the 10%
took 0.5s.

If we use our formula,(
60m ∗ 60%

2
∗ 1
)

+
(

60m ∗ 30%
2

∗ 1.5
)

+
(

60m ∗ 10%
1

∗ 0.5
)

(5)
That translates as

(18) + (13.5) + (3) = 34.5 (6)

Which means that this worker would take 34.5 minutes to
run in this machine. This hypothetical probe would take only
3 seconds to predict an execution time of more than 2000
seconds. Our experiments shows that we are able to reduce
in this order of magnitude the characterization time while
keeping a good prediction ratio.
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Fig. 4. Execution time, prediction and probing time in log scale.

IV. EXPERIMENTAL RESULTS

We realized a series experiments to verify the quality of our
prediction.

We ran and characterized the worker in Master/Worker
versions of the ASC’s Sweep3d [24], a Matrix Multiplication,
a n-Body problem, the NAS Benchmarks [25] BT and DC.
We show these specific experiments because they provided
us roughly similar execution times, although providing very
distinct phase behavior. These are average results for the
execution of a single worker. This probing would be done
on each and every node available for execution in the parallel
environment.

The testbed consisted of one Intel Pentium4
2.6ghz“Northwood” with 1 gigabyte of RAM where the
Probes were built, and the Probes were sent to a cluster of
seven Intel Pentium4 “Prescott” 2.88ghz machines with 512
megabytes of RAM, and a cluster of Intel Pentium4 “Cedar
Mill” 3.0ghz machines with 1024 megabytes of RAM, all
in a switched Fast Ethernet network. Although they share
the brand name, they are different processors, with different
manufacturing methods and transistor sizes. It is worth noting
that the comparisons is not only among CPUs, but instead
the whole computer - a small amount of memory may affect
an application’s performance as much (or more, in extreme
cases) than the pipeline or cache sizes.

In this work’s experiments, each cluster was homogeneous,
although they were heterogeneous among themselves. It means
that we would be able to further speed characterization time
by running different phases in different machines in parallel.
If the clusters were heterogeneous, we also would gain time,
as the Probe would be sent just once for the whole cluster,
and each machine would be able to run it without having to
download it again from our location.

A. Precision

The average of execution times for real runs and predicted,
as well as the time required for probing, are shown in Figure



4, in logarithmic scale. As stated in [3], benchmarks hardly
represent the overall behavior of an application, so there would
be little point in comparing them with this method.

We chose problem sizes who took similar execution times
for the sake of presentation. For the tested applications, the
precision always stood above 92%, while the probing time was
always 0.2% of the original application’s execution time for
this set of experiments. Longer applications in general yields
even better reductions, consequence of more phases’ repeti-
tions. This probing time doesn’t take into account checkpoint
transmission and checkpoint loading, instead focus on its phase
execution time.

B. Probe Transmission Time

As different programs have distinct number of phases, the
number of checkpoints is evidently different. For the sake
of illustration, we ran the Sweep3d application with a small
problem size. The first group used a 50-unit cube, which took
about 40 seconds to run. Our characterization method found 19
distinct phases in this execution, and the Probe comprised the
application and these 19 checkpoints. The sum of checkpoints’
sizes was more than 372 megabytes. Consequently, a set of
files this big would take a little bit over an hour to transmit over
a 1 mbps network link, in the case the transmission is perfect.
In this specific case, our Probe would not worth the effort, but
this is just an example of a very short execution. However,
in a local multicluster, such as we possess in our university,
scattered throughout departments with heterogeneous sets of
machines but a one gigabit connection for all nodes, this is
not an issue.

However, when looking at the n-Body example, its state was
kept constant around 4.2 megabytes, and the whole Probe had
approximately 35 megabytes. This program took more than
one hour to run, but the Probe’s transmission time would be
of only 5 minutes in the same hypothetic 1mbps network link.
The time in our multicluster, with a 1gbps network throughout
the university, is negligible.

When Sweep 3d used the 150-unit cube, the probe was
around 2.7 gigabytes, while bt.b was around 1.8 gigabytes.
Both of themwould be overkill, so now we experiment with
reduced probes while trying to maintain prediction quality.

C. Reducing Probe size

Are those checkpoints really necessary? We set our charac-
terization to reflect 99% of the execution, because we noted
that this extra one percent gave us nothing in prediction quality
while increasing enormously the number of checkpoints. But
can we go even further? Can we discard phases on purpose,
while maintaining quality on our precision?

To answer to this question, we selectively verified our
prediction quality with less and less phases. Figure 5 shows
some of those results. We now proceed to discuss them
individually.

1) n-Body: : as seen in figure 5, item (a), execution
dominated about 40% of its time by a single phase, while
the other ones are not that important.

2) Sweep3d.50: : in figure 5, item (b) is a short execution,
therefore there’s no dominant behavior, so every phase is
important, and the curve is smooth. Although this makes easier
to choose the prediction precision, it makes bigger Probe
size reductions more difficult. Removing the five less relevant
phases would cut Probe size by half, while keeping prediction
around 78% of prediction quality. The tradeoff between probe
size and prediction quality must be decided by the user.

3) BT.B: : the case shown in figure 5, item (c) tells a
different story. Although the execution is dominated only by
three phases, the big number of phases and their relative
importance makes it difficult to trim our Probe while not
affecting considerably our prediction.

4) Sweep3d.150: : however, figure 5, item (d) shows diverse
behavior. Its execution is highly dominated by two phases,
being others of little relevance. With this data in hand, we can
selectively remove the less important phases while maintaining
the desired prediction quality.

While this method can reduce substantially Probe size and
yet do a good prediction, sometimes even this would be
overkill. The Probe for the case c, even after trimmed down to
43% of its original size, is still a benemoth of 890 megabytes,
which would take about 2h20m to be transferred in a 1mbps
network link, which may not be realistic in multi-clusters
scattered across the internet. However, fast networks among
universities are quite common, and that issue was not found
in real environments we had access so far.

The last experiment tells a different story. As can be noted in
Figure 6, execution is dominated by two phases, in more than
93% of the time. However, the remaining phases takes the most
space on the probe. If we remove those less relevant phases
from our probe, we can yet achieve this 93% of prediction with
only a fraction of the required space for the original probe. In
this case, we reduce our probe size in 75%.

With these experiments, we were able to show that our
prediction method works. It can reduce the time required to
characterize an application immensely, while maintaining a
good degree of confidence on the results. Our worst result was
still below 8%, which we consider enough, given we reduced
our characterization time in three orders of magnitude.

V. WHERE DOES IT FIT?

Machine characterization by means of checkpoints have
a variety of uses. It’s a very precise way of characterizing
an application, as it’s the application itself being run, but
only when it’s relevant in terms of performance. This is very
important in our field of study, with a high degree of machine
heterogeneity, with lesser degree of software heterogeneity.

Given the checkpoints’ size, it is a very useful way of char-
acterizing a multitude of machines where network bandwidth
is not an issue, and machines have relatively similar operating
systems and libraries’ versions, such across university depart-
ments, or high-bandwidth grid projects, where you can specify
your requirements in terms of operating systems and libraries.
On the latter, the machines able to be characterized would
comprise only a subset of the available ones, but anyway they
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can be more precisely characterized and quicker than with
other methods.

• When network bandwidth is not a problem: Companies
and universities networks, where fast networks are avail-
able, so the Probes’ sizes are not a problem, so the
characterization will not be dominated by transmission
time.

• Where machines’ softwares are relatively similar: it’s
common policy to keep stable software versions as long
as possible. In the scientific field, this is especially true,
where researchers may need very specific versions of
libraries for their experiments. This is an usual (and quite
logical) requirement for running an application anyway.
That is, we must have the environment set to run a given
application.

• Virtualized environments: On those environments, the set
of dependencies an application or a tool may need are
all provided in a single virtual image, which is instanced
throughout the environment.

In the aforementioned environments, our Probe is especially
useful when we need to characterize a lot of different machines
in different clusters of our multicluster systems, previous to
each execution, thus discarding worthless machines.

VI. CONCLUSION AND FUTURE WORK

This work presented a way to characterize the performance
of a given application when running on a machine, in a
fraction of the time required to run the same application on
this machine, which we call software Probe, with the objective
of selecting machines in multi-clusters for executions over an
efficiency threshold. We use techniques from the simulation



world in real-life environments, which supposes the need
for instrumentation and checkpointing, something that is not
necessary in simulators, given the simulators themselves may
give the data and abilities required to perform the “jump” to
specifics points of a program.

Although the use of SimPoint in itself is not new for
simulating new architectures, we use it in a novel way, to
describe and characterize real machines way faster than it
was possible before, with a precision usually found in way
slower methods of characterizing application/machine pairs.
This method for quickly characterizing performance of the
worker greatly improves our general method for performance
prediction of master/worker applications in heterogeneous
multiclusters.

All our Probes ran for less than 0.2% of the time of the
application they represented, and we were able to predict the
full execution’s time with more than 92% precision in all cases
tested.
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