
FORSCHUNGSZENTRUM JÜLICH GmbH
Zentralinstitut für Angewandte Mathematik

D-52425 Jülich, Tel. (02461) 61-6402

Technical Report

Holistic Hardware Counter Performance
Analysis of Parallel Programs

Brian J. N. Wylie, Bernd Mohr, Felix Wolf

FZJ-ZAM-IB-2005-14

November 2005

(last change: 10.11.2005)

Preprint: Shortened version to appear in Proc. Parallel Computing
(ParCo, Malaga, Spain, 12-16 Sept., 2005)

Shortened version to appear in Proc. Parallel Computing (ParCo, Málaga, Spain, 12–16 Sept., 2005).

Holistic Hardware Counter Performance Analysis of Parallel Programs

Brian J. N. Wyliea, Bernd Mohra, Felix Wolfa

aJohn von Neumann Institute for Computing, Forschungszentrum Jülich, D-52425 Jülich, Germany

The KOJAK toolkit has been augmented with refined hardware performance counter support, in-
cluding more convenient measurement specification, additional metric derivations and hierarchical
structuring, and an extended algebra for integrating multiple experiments. Comprehensive auto-
mated analysis of a hybrid OpenMP/MPI parallel program, the ASC Purple sPPM benchmark, is
demonstrated with performance experiments on equisized POWER4-II-based IBM Regatta p690+
cluster, Opteron-based Cray XD1 cluster and UltraSPARC-IV-based Sun Fire E25000 systems. Au-
tomatically assessed communication and synchronisation performance properties, combined with a
rich set of measured and derived counter metrics, provide a holistic analysis context and facilitate
multi-platform comparison.

Contents

1 Introduction 1
1.1 Initial KOJAK approach . 2

2 Refined design for hardware counter measurement and analysis 3
2.1 Structured analysis via metric hierarchies . 3
2.2 Flexible metric specification and customisation . 5
2.3 Holistic analysis via integration of multiple experiments 6

3 Results 6
3.1 Analysis presentation . 7
3.2 Comparative experiment analysis . 9

4 Future work 14

5 Conclusion 16

A Definition of counter measurement sets and derived metric hierarchies 18
A.1 Hardware counter measurement sets . 18
A.2 Counter metric hierarchy definition . 23

1. Introduction

Modern microprocessors have integrated event counters which offer low-overhead access to a po-
tential wealth of execution performance information, encompassing the utilisation and efficiency of
various functional units and the memory and cache hierarchy. Although microprocessors from differ-
ent manufacturers, and also within microprocessor families, provide broadly similar functionality,
there are often very significant differences: variation in processor architecture and memory/cache
hierarchy are reflected in corresponding event provision, and when combined with restrictions on

2

which (and how many) events may be measured simultaneously this greatly complicates perfor-
mance measurement and analysis.

Various libraries have addressed the measurement issues, providing a portable application pro-
gramming interface to event counter control and access (e.g., PAPI [7]). Along with interfacing to
system libraries, these offer standardised definitions for the most important and universally available
events, and mappings to the native events provided by each microprocessor. Additional events may
be derived from one or more native events (if the processor supports their simultaneous measure-
ment) and imposed counter time-sharing/multiplexing may provide a means for approximating the
measurement of multiple counters within a single program execution. Although these approaches
address the goal of acquiring a richer set of measurements in a particular experiment, it is notable
that there is corresponding additional complexity which complicates interpretation. There may also
be ambiguities in the definitions of events (such as whether speculative instructions are included in
event counts or not) which must also be taken into account during their analysis.

Interpretation and analysis of performance counters has therefore been hindered, limited to a very
small subset of the potentially usable events, and often specific to particular processor platforms.
One goal of our current work has been to investigate the extent that it is possible to incorporate a
wider range of counter metrics, both universal and platform-specific, and exploiting multiple mea-
surement experiments where necessary, for holistic analysis of execution performance.

The analysis of parallel applications executing in distributed and shared memory computer sys-
tems is of particular interest, due to the additional complexity and opportunities to exploit compre-
hensive execution information for improved performance.

1.1. Initial KOJAK approach
Previous developments of the KOJAK performance measurement and analysis environment for

parallel programs, which supports many current computer systems, offer a suitable vehicle for pur-
suing this investigation [1]. KOJAK provides semi-automatic instrumentation of user applications
and automatic analysis of performance problems arising from inefficient usage of parallel program-
ming interfaces (such as MPI and OpenMP) [2,3]. Performance problems are classified by type
and quantified by severity, for investigation via an interactive browser (CUBE) which presents an
integrated, hierarchical view of performance behaviour, call path and process/thread of execution.

A basic infrastructure also exists in KOJAK for measuring counter events and their incorporation
into hierarchical analyses alongside communication and synchronisation metrics. One approach
extended KOJAK’s portable execution tracing to directly include counter measurements and in-
corporate them in its various analyses [4]. Another incorporates hardware counter analysis from
separate platform-specific profiling tools with KOJAK’s own execution trace analysis [5]. In both
cases, counter measurements/metrics are related to program and system entities (i.e., the call tree,
processes and threads) and quantified. While the second approach has a limited separated hierarchy
of raw counter measurements, the first was an initial attempt to assess corresponding time penalties
and integrate these with KOJAK’s directly-measured time-based performance properties.

Quantifying time-penalties for event counts was promising, however, further investigation with
additional metrics highlit the limitations of the approach. Where KOJAK identified a metric tu-
ple (call-path and thread) with an occurrence rate above or below a certain threshold, it derived a
performance penalty as the entire measured execution time of that tuple; in effect it used an upper
bound on the actual penalty, for want of a better approximation. Comparing the derived performance
penalties with those directly measured from cycles-based stall counters (on platforms which support
them, e.g., UltraSPARC [10]), showed that while they were broadly representative, they were also
significantly exaggerated. In this case, the measured penalties could have been used to adjust the

3

performance penalty derivations to improve their accuracy, though the derivations would inevitably
be platform-specific (and it would generally not be possible to quantify the actual penalties). Fur-
thermore, the performance of a tuple is ultimately due to multiple causes, manifesting in multiple
counter metrics and also non-counter metrics (e.g., communication and synchronisation times), in
complex dynamic relationships, such that it is not possible to accurately determine the time penalty
related to a single count measurement. Although the exaggeration of particular performance aspects
can be broadly in-line with their actual severity, and as such benefit analysis, in practice it was found
to have a detrimental impact on the analysis as a whole, by subtly compromising its integrity.

2. Refined design for hardware counter measurement and analysis

A more robust foundation for incorporating event counts from hardware counters into perfor-
mance experiments is to integrate them in separate metric hierarchies presented alongside that for
measured time metrics. This is particularly the case when larger numbers of counters are measured
for analysis. Since it is rare that processors support simultaneous measurement of all of the coun-
ters of interest, multiple measurements with subsets of counters may be required, with these partial
experiments integrated into a single comprehensive analysis. Assistance can also be provided with
specification of appropriate sets of counters for measurement, and multiple presentation hierarchies
may be valuable during analysis.

These various aspects have been addressed to refine KOJAK support for counter-based analysis
within the existing framework of MPI and OpenMP communication and synchronisation analysis.

2.1. Structured analysis via metric hierarchies
Defining hierarchies of related counter events both provides an improved structure for navigating

and interpreting the relationships between events (such as data references encompassing loads and
stores, or hits and misses at different levels of cache and memory) and assessing their significance
(e.g., cache misses as a proportion of references). In some cases, it can be clear that a single natural
hierarchy of related events can be defined. Generally, however, a set of event data may profitably
be structured in several hierarchies, where it may not be possible to determine in advance which
is most valuable: indeed, the various hierarchies are often complementary rather than redundant.
Furthermore, while part of a hierarchy may be platform/processor-independent, it is desirable to
be able to include available platform/processor-specific events for a more complete and detailed
understanding of execution performance, which itself may well be platform-specific.

For example, consider the hierarchy of caches used to improve the performance of data accesses
from memory. When a program requires data that’s not already in the processors’ registers, then
that data must be loaded from system memory (which is typically orders of magnitude slower than
processor speed) or one of several hierarchical levels of intermediate storage known as cache: caches
closer to the processor (and often actually on the processor itself) are faster, but of necessity smaller
in capacity, than caches further out and closer to memory. An unsatisfied data access is attempted
from each level of cache (perhaps simultaneously), with the cache providing the data registering a
‘hit’ and lower caches registering ‘misses’: along with the required data, accompanying data from
the same cache line or block is also loaded into the lower cache(s) so that subsequent accesses which
are temporally and spatially proximate will also benefit, however, to do so, some (older) data must
be evicted from the lower cache.

A general categorisation of data (and instruction) accesses uniquely associates them with the level
of cache or system memory from which they are provided, i.e., where they hit:

DATA_ACCESS = DATA_HIT_L1$ + DATA_HIT_L2$ + ... + DATA_HIT_MEM

4

It can also be inferred that misses occurred in lower levels of cache. Data accesses to each level can
be reads/loads or writes/stores, offering the next general division:

DATA_HIT_L1$ = DATA_LOAD_FROM_L1$ + DATA_STORE_INTO_L1$

It is worth noting that this general hierarchy, while applying to a variety of processors and systems,
contains elements which will not apply on all: e.g., IBM p690+/POWER4-II [8] has three levels of
cache whereas Opteron [9] and UltraSPARC-III/IV [10] only have two, and while the latter can reg-
ister stores into each level of cache (and memory) the former only registers stores into L1 cache
which write-through to the rest. This is readily handled with the proposed structuring, as the inap-
plicable L3 cache measurements can be treated as zero-valued (i.e., equivalent to a non-functional
L3 cache).

Provision of hardware counters also varies considerably by processor/system. Opteron has a
counter to measure data accesses directly, so an Opteron-specific definition can be used,

DATA_ACCESS = DC_ACCESS # Opteron

however, data accesses must be derived from the composition of other events on UltraSPARC-III/IV
and POWER4-II, and such composed metrics are fundamental to the hierarchical structure. L1
cache read and write hits can not be measured directly by the UltraSPARC or POWER4-II counters,
however, they can be determined by a computation1 with measured counters:

DATA_LOAD_FROM_L1$ = DC_rd - DC_rd_miss # US-3/4
DATA_STORE_INTO_L1$ = DC_wr - DC_wr_miss # US-3/4
DATA_LOAD_FROM_L1$ = PM_LD_REF_L1 - PM_LD_MISS_L1 # POWER4
DATA_STORE_INTO_L1$ = PM_ST_REF_L1 - PM_ST_MISS_L1 # POWER4

Opteron doesn’t provide counters which can distinguish L1 cache read and write hits, or even
allow their combination to be measured directly, however, this can also be computed instead:

DATA_HIT_L1$ = DC_ACCESS - DC_MISS # Opteron

Similarly, data load hits from L2 cache on UltraSPARC-III/IV requires the computation:

DATA_LOAD_FROM_L2$ = DC_rd_miss - EC_rd_miss # US-3/4

While such computed metrics provide a valuable means for completing the general hierarchies,
when compositions are not available, they don’t provide the benefit of extending the hierarchies in
the way that composed metrics naturally do. For example, data load hits from L2 cache are composed
from multiple native events on Opteron and POWER4-II, respectively:

DATA_LOAD_FROM_L2$ = DC_L2_REFILL_O + DC_L2_REFILL_E + DC_L2_REFILL_S # Opt
DATA_LOAD_FROM_L2$ = PM_DATA_FROM_L2

+ PM_DATA_FROM_L25_MOD + PM_DATA_FROM_L25_SHR
+ PM_DATA_FROM_L275_MOD + PM_DATA_FROM_L275_SHR # POWER4

Although these compositions have quite different constituent measured counters, they naturally
extend the general hierarchy with additional platform-specific detail, which can offer further insight
for performance tuning on the respective platforms. While each (dual-core) POWER4-II processor
has its own local L2 cache, it shares this with the other processors on its multi-chip module (MCM,

1The term computation is defined as a general calculation which can include subtractions (and potentially other arith-
metic operations), whereas composition is defined to be strictly additive.

5

L25) and the processors on the other MCMs in its node (L275), all of which are faster than accessing
L3 cache (which is similarly shared), so local versus remote L2 cache accesses impact performance.

This process of deriving hierarchies of new metrics from compositions and computations of avail-
able measurements is able to create quite comprehensive structured relationships for data, instruction
and TLB accesses (and associated hits and misses), with a general structure extended by additional
platform-specific components. Metrics which are not applicable, or can’t be derived from available
measurements can be omitted. When a composition is only partially satisfied by available measure-
ments, it can still be valuable to retain it, but it should be clearly indicated as incomplete, such as
by including ‘˜’ in its label. (Where a particular set of measurements include such partially satisfied
derivations, these may subsequently be completed when experiments are combined.) Partial com-
putations can have negative values or values in excess of their parent, such that it’s generally not
prudent to retain them: in most cases, measurements can be grouped such that those required for
computed metrics are kept in the same group to avoid this.

Similar structuring can also be applied to the types of instruction processed by various functional
units and cycles-based counters for related busy/stall and idle periods. In these cases, more of the
measurements are platform-specific and while it’s still possible to have a hierarchical relationship,
there are typically more ‘gaps’ corresponding to unmeasurable/unaccounted events. There can also
be considerable ambiguity regarding particular events and the counters which measure them. For ex-
ample, since storing floating-point data is typically done by the floating-point unit (FPU), this is of-
ten naturally accounted as a floating-point event (e.g., in PM_FPU_FIN or FP_PIPE_COMPLETION):
where this is not desired, the corresponding event measurement (e.g., PM_FPU_STQor FP_ST_PIPE)
can be relocated to another category, such as MEMORY. Often, however, it may not be possible to dis-
tinguish the different kinds of events counted by particular functional units. There may also be
inconsistency between counting instructions issued and those which actually complete.

While a general classification and hierarchy of a variety of processor events can be developed, it
is ultimately necessary to refer to the respective processor manuals (and associated documentation
of native counter events) to assess their significance [8–10].

2.2. Flexible metric specification and customisation
Metric structuring which specifies (presumed) relationships between events provides a mecha-

nism for helping to navigate and understand those relationships. While generic hierarchies such as
those described offer one particular structuring, alternative or complementary structures may also be
defined and preferable in some cases. Measured events which fit no hierarchy must simply be listed
separately (as is the case when no relationships are associated with a metric).

A flexible approach is therefore taken, which provides the specification of metric relationships in
a text file which is read to configure and structure the analysis: specifications shown in the previous
subsection are extracts from such a file. The default specification can then be overridden to pro-
vide alternative analyses when desired. Examples of generic and platform-specific metric hierarchy
specifications are provided in Appendix A.2.

A specification file also offers convenience during measurement collection, providing definitions
of groups of counters which can usefully be collected in the same measurement, i.e., taking into
account restrictions on the number and types of events that can be counted simultaneously. (As
mentioned previously, measuring certain events together is advantageous when they are required to
compute derived metrics.) Examples of counter measurement sets for are provided in Appendix A.1:
HPM/PMAPI [8] and PAT [13] also provide and use similar specifications of groups of counters,
though these can neither be modified nor extended by users. PerfSuite [14] and HPCToolkit [15] also
provide configurable eventlist and derived metric specifications in XML for Intel/Linux platforms,

6

whereas Paraver [16] and ParaProf [17] support interactive specification of derived metrics, with
re-use of such specifications in subsequent analyses.

Although it is possible to use PAPI preset names for counters to create notionally-portable groups,
it is preferable to specify platform-specific groups directly in terms of native events (provided by
PAPI), since many of the relevant native events have no corresponding PAPI preset definition and
combination of presets is still subject to the same platform-specific limitations.

2.3. Holistic analysis via integration of multiple experiments
Analysis of hardware counter measurements, and metric derivations therefrom, can take two broad

approaches. The first sticks strictly to what can be reliably determined from a single measurement
experiment (as is the case for HPM [8] and Apprentice2 [13]), and as such is significantly limited
by the flexibility and capabilities of the actual monitoring hardware provided by the processor. Sev-
eral, separate experiments with different sets of measurements may be considered, with the implicit
understanding that the execution may be quite different in each case. An alternative uses time-
sharing or multiplexing to automatically change the events measured throughout the duration of an
experiment, and extrapolate from these partial measurements to a larger set of approximate measure-
ments. [11,12] Whereas this has the convenience and benefit of handling a single execution, it can
be compromised by variations in behaviour within the execution (though these may be small if the
execution is sufficiently regular and long with respect to the time-sharing period).

Requiring multiple executions is a significant overhead, however, it also provides an opportunity to
consider possible run-to-run variations and incorporate them in the analysis. While past results are no
guarantee of future performance, they can help indicate what range of performance can reasonably be
expected. This is particularly useful for deterministic applications when the hardware configuration
is unchanged and executions occur in a relatively controlled (dedicated) environment.

KOJAK’s CUBE algebra operators [5] allow experiments to be combined to produce the mean
of multiple related experiments or to aggregate experiments containing different hardware counter
metrics. Combining both approaches can be used to reduce run-to-run variations and extend the
metric analyses to the set of experiments. Furthermore, the difference of two experiments can be
calculated to examine variations between them.

The existing merge utility produced an experiment with the union of metrics, call-paths and pro-
cess/thread measurements in input experiments. This was extended to integrate experiments con-
taining identical call-path and process/thread trees, but different sets of measured and derived hard-
ware counter metrics. Measurements replicated in more than one experiment are averaged, however,
measurements contributing to metric compositions which are only partially fulfilled in individual ex-
periments are accumulated to allow the compositions to be completed. Where available, measured
metric values are also retained in preference to partially computed or accumulated values.

3. Results

To demonstrate these new KOJAK capabilities, three comprehensive sets of experiments consist-
ing of complementary groups of hardware counter measurements were collected on an IBM Regatta
p690+ cluster, Cray XD1 cluster and Sun Fire E25000 (SF25k), using the ASC Purple sPPM v1.1
benchmark [18]. This application uses a simplified piecewise parabolic method (PPM) to solve a 3D
gas dynamic problem on a uniform Cartesian mesh. It is written mostly in Fortran 77 (with some C
utility routines) and can simultaneously exploit multithreading for shared-memory parallelism and
domain decomposition with message passing for distributed parallelism: the double-precision (64-
bit) hybrid parallelisation tested used 32 MPI processes each with 2 OpenMP threads. The processes

7

were partitioned 2× 4× 4 in the X×Y ×Z dimensions, a configuration chosen to offer a reasonably
close comparison between the experiments on the different systems, rather than being optimised for
any particular system.

Preparation of the instrumented application executables was done by prepending kinst-pomp to
the commands that invoke the compiler and linker. This runs a source preprocessor to automati-
cally instrument the application’s 12 OpenMP parallel DO loops, 41 explicit barriers and various
additional single and master blocks, and link instrumented PMPI and POMP libraries along with
the PAPI library for hardware counter measurements. To provide additional context for the analysis,
while avoiding overheads associated with automatically instrumenting the entry and exits of every
application routine, the program’s main phases and the key routines using MPI and OpenMP had
also previously been manually annotated with POMP region instrumentation directives [6]. When
the instrumented applications are executed in the usual fashion (and with optional hardware counter
measurements configured through an environment variable), the instrumented events are recorded in
per-thread trace buffers which are subsequently merged into a single trace for each execution.

The experiments used two p690+ nodes of an IBM Regatta cluster (running AIX 5.2 and con-
nected via HPS) consisting of 4 MCMs with 4 dual-core POWER4-II processors, 32 nodes of a Cray
XD1 cluster (running GNU/Linux 2.6 and connected via RapidArray network) each with two AMD
Opteron 248 processors, and a Sun Fire E25000 (running Solaris 9) with dual-core UltraSPARC-
IV processors. On the IBM system, 6 experiments were collected (with up to 8 counters in each),
whereas 10 experiments (each with 4 counters) on the XD1 and 18 experiments (each with 2 coun-
ters) on the E25000 were required to acquire a comparable level of detail. Several additional exper-
iments were collected to investigate platform-specific performance aspects outside the core analysis
hierarchies. These sets of experiments were subsequently incorporated into a single composite anal-
ysis experiment for each platform.2

3.1. Analysis presentation
KOJAK’s CUBE browser presents its analysis in three linked trees, for performance properties,

call-tree (or code region), and system tree (machines, processes and threads as appropriate), as shown
in Figure 1 which has three views of the analysis of the IBM p690+ composite experiment.

Performance properties calculated from patterns of events identified in the execution traces, are
organised in the leftmost tree as a hierarchy from most general to most specific. The hierarchy of
time-based metrics (Time) includes assessments of MPI and OpenMP overheads, with the remainder
of the execution time property (Execution) considered to be productive user code. Detailed descrip-
tions for metrics are shown in a separate window when requested. Metrics directly measured or
derived from performance counters are shown in additional hierarchies below the timed metrics (or
listed separately if they are not associated with any specified hierarchy).

The middle pane has the application call tree as found in the trace of the execution, consisting
of regions (often routines) containing other called regions, OpenMP parallel regions (and barriers,
etc.), and calls to MPI functions. Alternate views are provided for a flat region/routine profile or
grouping by source module. From a selected call-site or called-region, corresponding source code
can be shown in a separate window.

Finally, the leftmost pane shows the (physical) machines and nodes and (virtual) processes and
threads, similarly hierarchically structured: MPI processes are labelled by their rank, and OpenMP
threads by their OpenMP thread identifier, with usually only the master thread (number 0) in each
process participating in inter-process MPI communication.

2Ultimately, 32 experiments were collected and unified for the SF25k.

8

Figure 1. KOJAK analyses of hybrid OpenMP/MPI sPPM experiment on IBM p690+ cluster:
exclusive Execution Time fairly equally attributed to the six key hydrodynamics routines (upper),
MPI Communication Collective Wait at N×N predominantly in glblmax MPI Allreduce (middle),
and OpenMP Synchronization Explicit Wait at Barrier mostly in final runhyd barrier (lower).

9

The tree-based presentation in each pane allows nodes at any level to be expanded to reveal their
children, or closed to conceal them: the metric values shown with nodes are inclusive when they
include concealed children or exclusive when expanded and their children are visible and have their
own metric values. Selection of a node in the performance metrics tree determines that that metric is
shown in the other trees, and the selected node in the call tree further refines the analysis presented in
the system tree to only that call-path. Percentage values in the performance metrics pane are relative
to the root of their respective hierarchy, whereas the selected metric determines the base value for
the percentages in the middle pane, and the call-path/region selected there determines the base value
for the percentages in the system tree. Details for the current selection are provided in the status area
at the bottom, below the colour scale for the boxes shown with each value.

Selectively opening the nodes in each tree with the most significant values (readily identified by
the colours of their associated boxes) provides a straightforward yet powerful mechanism for as-
sessing and refining performance problems, isolating the call-paths where they occur, and reviewing
their distribution across processes and threads. An additional graphical display using the virtual or
physical topology is available for large-scale applications.

3.2. Comparative experiment analysis
Table 1 summarises the three experiment configurations and execution performance measure-

ments, taken from Figure 1 and similar analyses for the XD1 and SF25k platforms. For this analysis,
execution times (and other absolute measurements) are less important than relationships between
measurements, whether within a set of experiments or between sets.

Wall-clock execution time of 180s (163s in the runhyd computational kernel) on the XD1 com-
pares with 280s (241s in runhyd) on the Regatta and 885s (867s in runhyd) on the SF25k for each
experiment. Parallel initialisation overheads (in the init phase) amount to 1.9% of execution time on
the Regatta and 1.8% on SF25k versus 0.5% on the XD1, with the balance attributed predominantly
to the runhyd computational kernel, within which the six routines responsible for the hydrodynam-
ics each account for roughly equal shares of the total, and have good load balance over the 64 threads
(32 processes) on each platform.

The respective proportions of total execution time attributed to MPI are 1.7% on XD1 and 2.2%
on Regatta and significantly larger with 7.6% on SF25k. Investigating each case further, this corre-
sponds primarily to point-to-point communication, with (the master threads of) every fourth process
responsible for contributing twice as much as the others. The MPI Allreduce in glblmax at the end
of the main computation loop in runhyd is also found to require a significantly higher collective
wait time on the Regatta, totalling 505s (1.0%) on SF25k and 117s (0.71%) on Regatta versus 15s
(0.14%) on the XD1.

OpenMP runtime costs on the XD1 are attributed 3.3% of total execution time, which is notably
higher than the 1.2% on SF25k and 0.9% on Regatta. These are further categorised as explicit barrier
synchronisation wait time in each case. Whereas this is mostly attributed to the six hydrodynamics
routines on the XD1, with only 4% in the barrier at the end of the computational loop, on the SF25k
and Regatta that final barrier is attributed 87% and 82% respectively.

Some potentially important differences in the MPI and OpenMP communication and synchroni-
sation costs can therefore be seen in the three experiments, however, they also demonstrate broadly
similar parallelisation efficiencies.

Proceeding beyond the parallel execution, communication and synchronisation times, additional
performance metrics are provided by and derived from hardware counters measurements. While
subsets of the counter-based metrics are available in individual experiments, in combination they
offer comprehensive insight into the processors’ execution.

10

Platform IBM p690+ cluster Cray XD1 Sun Fire E25000
Processor POWER4-II Opteron-248 UltraSPARC-IV
Core dual 1700 MHz single 2200 MHz dual 900 MHz
Counter registers 8 (restricted) 4 (unrestricted) 2 (restricted)
Cluster network High Perf. Switch RapidArray Fire Link (unused)
Operating System IBM AIX 5.2 GNU/Linux 2.6 Sun Solaris 9
Compiler IBM XL 9.1 Portland Group 6.0 Sun Studio 10
MPI POE 4.2 Cray MPICH 1.2.6 HPC ClusterTools 5
SMP nodes 2 (full, dedicated) 32 (full, dedicated) 1 (partial, shared)
MPI processes 4x4/node 1/node 32/node
OpenMP threads 2/process 2/process 2/process

Time [sec.]
Wall 280 180 885
> init (inclusive) 5 (1.9%) 1 (0.5%) 14 (1.8%)
> runhyd (inclusive) 241 (97.8%) 163 (99.2%) 867 (97.7%)
Total 16455 10856 49769
> Execution (exclusive) 15240 (92.6%) 9956 (91.7%) 44742 (81.1%)
> MPI 364 (2.2%) 182 (1.7%) 3772 (7.6%)
> > Comm P2P 218 153 3118
> > Comm Coll Wait at NxN 127 17 527
> > > glblmax MPI Allreduce 117 (92.2%) 15 (89.3%) 505 (95.7%)
> OpenMP 142 (0.9%) 354 (3.3%) 588 (1.2%)
> > Synch Expl Wait at Barrier 142 354 580
> > > last barrier in runhyd 117 (82.2%) 15 (4.2%) 505 (87.1%)

Counter metrics [109]
CYCLES 25911 22090 38789
> STALL 15499 (70.2%) 24581 (63.4%)
INSTRUCTION 15377 17678 21197
> FLOATING POINT 7208 (46.9%) 11704 (66.2%) 8649 (40.8%)
> BRANCH 1287 (8.4%) 967 (5.5%) 923 (4.3%)
> > BRANCH MISP 90 (0.6%) 14 (0.1%) 29 (0.1%)
INST ACCESS 4202 6575 8793
> INST HIT L1$ 4201 (100%) 6575 (100%) 8789 (100%)
INST TLB MISS 0.008 0.002 0.004
DATA TLB MISS 5.014 5.753 2.991
DATA ACCESS 5235 7456 6887
> DATA HIT L1$ 5092 (97.3%) 7230 (97.0%) 5594 (81.2%)
> DATA HIT L2$ 129 (2.5%) 194 (2.6%) 1255 (18.2%)
> DATA HIT L3$ 7 (0.1%)
> DATA HIT MEM 7 (0.1%) 32 (0.4%) 37 (0.5%)
> > DATA LOAD FROM MEM 7 20 11
L2 cache locality 99% of loads 56% of misses
L2 cache store mix 90% of accesses 78% of accesses,

7% of which RTO

Table 1. Hybrid OpenMP/MPI sPPM experiment configurations & execution statistics summary.

11

Figure 2. KOJAK analysis of 6 combined hybrid sPPM executions on POWER4-II-based IBM
Regatta investigating mispredicted branches BRANCH MISP in the parallel loop of one key routine.

12

Figure 3. KOJAK analysis of 10 combined hybrid sPPM executions on Opteron-based Cray XD1
investigating mispredicted branches BRANCH MISP in the parallel loop of one key routine.

13

Figure 4. KOJAK analysis of combined hybrid sPPM executions on UltraSPARC-IV-based Sun
SF25k investigating mispredicted branches BRANCH MISP in the parallel loop of one key routine.

14

Figures 2, 3 and 4 show partially expanded integrated metric hierarchies derived from hardware
counter measurements for each platform, focussing on the proportion of mispredicted branches
(BRANCH_MISP). While relatively small in each case, at 0.58% of all instructions (7.0% of branches)
it is considerably larger for POWER4-II3 than the 0.08% (1.5%) of Opteron and 0.14% (3.1%) of
UltraSPARC-IV. Depending on the selected call-path, it is also seen to vary considerably by thread,
with some threads notably more affected than the others. The distribution is most readily seen from
the virtual process topology display: Opteron has a particularly pronounced distribution. Examining
the respective counters which measure branch stall cycles allows this to be investigated further.

Figure 5 shows that both POWER4-II and Opteron processors have 97% of data accesses hit L1
cache versus only 81% for UltraSPARC-IV, however, it is the increasingly costly accesses that miss
L1 cache and must be satisfied from higher caches and memory that are most significant and warrant
further investigation. On Regatta p690+ loads which miss L1 cache are seen to come predominantly
from local L2 cache (PM_DATA_FROM_L2), which combined with its large L3 cache means that
only 0.14% require to come from memory. UltraSPARC-IV and Opteron have smaller, two-level
caches, however, and whereas only 0.16% of UltraSPARC-IV data accesses are loads from mem-
ory, at 0.27% for Opteron it is almost twice as high as POWER4. Furthermore, only 56% of the
UltraSPARC-IV L2 data access misses are found to be local (EC_miss_local), with the remainder
satisfied from remote processor boards in the SF25k (EC_miss_remote).

This integration of platform-specific measurements, within hierarchies of generic metrics derived
from the available hardware counters, supports ready identification of performance-critical aspects
of parallel execution which can be refined in their detail.

4. Future work

The existing hardware counter metric measurement sets and presentation hierarchies defined for
Opteron, POWER4 and UltraSPARC-III/IV should be complemented with similar specifications for
other platforms supported by KOJAK and PAPI: e.g., IBM BlueGene/L (PowerPC), Cray X1, MIPS,
Alpha, Intel Pentium and Itanium. In each case, the available counters and their relationships need
to be carefully investigated to guide the drafting of appropriate specifications.

The current specifications can also be augmented with additional measurement sets and hierar-
chies, and alternatives compared. These have the potential to provide extra value and insight, though
too many could become awkward and confusing. Where appropriate, modification or replacement
of those currently provided should be considered.

Cycles-based metrics could be readily converted to times in seconds using the processor clock
frequency, if this were recorded in the traces collected. Additional recording of the type of processor
would also assist with selection of appropriate measurement sets and hierarchies.

The integration of separate hardware counter measurement analyses into combined analyses could
be made more robust by only reading base counter measurements from each input experiment and
doing the calculations of derived metrics (according to the default or provided specification) during
the merge. Determination of the completeness of computed metrics, and whether incomplete deriva-
tions should be retained, is best undertaken with all measurements available. Potential inconsisten-
cies between the preliminary analyses with Expert using different metric hierarchy specifications
would also be avoided. These benefits come at the cost of duplicating this analysis in the initial
analysis and ultimate integration steps.

3A partial explanation for the larger absolute number of mispredictions reported for POWER4 is that the provided
counters record issued (rather than completed) branches: the impact on the branch misprediction rate is unclear.

15

Figure 5. KOJAK analyses of hybrid OpenMP/MPI sPPM experiments’ L2 data cache accesses,
with platform-specific details: IBM p690+ L2 loads from local MCM cache PM DATA FROM L2
(upper), Cray XD1 L2 load hits in exclusive coherency state DC L2 REFILL E (middle), and Sun
Fire 25k L2 store hits with read-to-own bus transaction EC write hit RTO (lower).

16

It is highly desirable to include metrics calculated as ratios of counter measurements, e.g., for
cache miss rates, instructions per cycle (or cycles per instruction), and floating-point operations
per second (FLOPS). These cannot be calculated incrementally as each metric measurement is pro-
cessed, as currently, and would require instead to be calculated in a second phase after the base
measurements are complete (which would be natural if metric derivation is done during integration).

Significantly more awkward is the fact that ratio calculations do not provide a containment prop-
erty that would allow them to be presented in the CUBE hierarchical display. Furthermore, calcula-
tions derived from short intervals and having small denominator values may be unboundedly large,
and these will be more likely to be located in the deepest sections of the metric, call-tree and pro-
cessor/thread hierarchies.4 This complicates the choice of colour scale used to guide the eye and
navigate to the most significant metrics, as these become ‘hidden’ by lesser values nearer the root.

In addition to ratio metrics, it is worth investigating higher level performance properties based on
hardware counter measurements (perhaps in combination with non-counter measurements). For ex-
ample, a property for “poor cache utilisation” might be ascertained from observations of particularly
low cache hit rates, and perhaps further categorised by type according to the predominance of cold,
conflict or capacity misses.

This improved understanding of the performance impact of counter-based metrics, might lead to
a reliable and accurate determination of their time severity which would allow their integration with
the primary hierarchy of time-measured metrics. Severity determination would still need to respect
inter-relationships between metrics, such that times represented by hardware counter metrics (such
as stalls on cache misses) which occur during communication or synchronisation are not multiply
accounted.

Finally, convenience would be provided by a utility which automatically ran a subject application
on a target platform with each of the appropriate sets of measurements, performed the preliminary
analysis on each measurement and ultimately integrated the results into a comprehensive unified
analysis report.

5. Conclusion

Refinement of KOJAK’s hardware-counter-based analysis retained much of the existing measure-
ment, recording and analysis infrastructure, with the incorporation of functionality for more conve-
nient counter-metric measurement specification, additional metrics derivable from measured metrics,
and customisable structured metric hierarchies. Furthermore, the algebra for integrating multiple
experiments was extended to consolidate experiments containing (sub)sets of counter-based metrics
and produce unified experiments with all of the available measured and derivable metrics.

Unified experiments, containing communication and synchronisation metrics combined with a
rich set of counter metrics, support comprehensive holistic analysis of parallel programs: execu-
tion inefficiencies may be isolated to particular processors (or threads) and their various functional
units, or found to relate to the use of shared and distributed caches and memory within modern
computer systems. The portable CUBE format of analyses also allow fuller comparison between
platforms, where architectural differences may be significant. These capabilities contrast those of
existing tools which can also offer detailed platform-specific analysis when appropriately directed
by knowledgable users, but without a holistic overview and context, or multi-platform comparison.

4Zero-valued measurements clearly require special treatment as denominators, however, arbitrarily small measurements
can also appear at any level of the hierarchies.

17

Acknowledgements: Use of the Sun Fire E25000 kindly provided by the Rheinisch-Westfälische
Technische Hochschule (RWTH) Aachen Rechen- und Kommunikationszentrum (RZ).

References

[1] Forschungszentrum Jülich GmbH ZAM and University of Tennessee Innovative Computing Laboratory:
“KOJAK: Kit for Objective Judgement and Knowledge-based Detection of Performance Bottlenecks,”
//www.fz-juelich.de/zam/kojak/

[2] Felix Wolf and Bernd Mohr: “Automatic Performance Analysis of Hybrid MPI/OpenMP Applications,”
J. Systems Architecture, 49(10–11):421–439, Elsevier, Nov. 2003.

[3] Felix Wolf: “Automatic Performance Analysis on Parallel Computers with SMP Nodes,” PhD disserta-
tion (RWTH Aachen, Germany), NIC Series, Vol. 17, Forschungszentrum Jülich, 2003.

[4] Felix Wolf and Bernd Mohr: “Hardware-Counter based Automatic Performance Analysis of Parallel
Programs,” Proc. Conf. on Parallel Computing (ParCo’03, Dresden, Germany), Parallel Computing:
Software Technology, Algorithms, Architectures & Applications, pp. 753–760, Elsevier, 2004.

[5] Fengguang Song, Felix Wolf, Nikhil Bhatia, Jack Dongarra, and Shirley Moore: “An Algebra for
Cross-Experiment Performance Analysis,” Proc. Int’l Conf. on Parallel Processing (ICPP’04, Montreal,
Canada), pp. 63–72, Aug. 2004.

[6] Bernd Mohr, Allen D. Malony, Hans-Christian Hoppe, Frank Schlimbach, Grant Haab, Jay Hoeflinger,
and Sanjiv Shah: “A Performance Monitoring Interface for OpenMP,” Proc. 4th European Workshop on
OpenMP (EWOMP 2002, Roma, Italy), Sept. 2002.

[7] Shirley Browne, Jack Dongarra, Nathan Garner, George Ho, and Philip Mucci: “A Portable Program-
ming Interface for Performance Evaluation on Modern Processors,” Int’l J. High Performance Comput-
ing Applications, 14(3):189–204, 2000.

[8] Luis A. DeRose: “The Hardware Performance Monitor Toolkit,” Proc. 7th Int’l Euro-Par Conf. (Manch-
ester, UK), Lecture Notes in Computer Science, Vol. 2150, pp. 122–131, Springer-Verlag, Aug. 2001.

[9] Advanced Micro Devices, Inc.: “BIOS and Kernel Developer’s Guide for AMD Athlon 64 and AMD
Opteron Processors,” Pub.#26094, Rev. 3.14, Apr. 2004.

[10] Sun Microsystems, Inc.: “UltraSPARC Processors,” //www.sun.com/processors/manuals/
[11] John M. May: “MPX: Software for Multiplexing Hardware Performance Counters in Multithreaded

Programs,” Proc. 15th Int’l Parallel & Distributed Processing Symp. (IPDPS’01, San Francisco, USA),
IEEE Computer Society, Apr. 2001.

[12] Frédéric Parienté: “Performance Analysis and Monitoring using Hardware Counters,”
//developers.sun.com/solaris/articles/hardware_counters.html, Dec. 2001.

[13] Cray, Inc.: “Cray Performance Analysis Tool-set (PAT & Apprentice2),” /opt/xd-tools, Feb. 2005.
[14] Rick Kufrin: “PerfSuite: An Accessible, Open Source Performance Analysis Environment for Linux,”

Proc. 6th Int’l Conf. on Linux Clusters (LCI-05, Chapel Hill, USA), Apr. 2005.
[15] John Mellor-Crummey, Robert Fowler, Gabriel Marin, and Nathan Tallent: “HPCView: A Tool for Top-

down Analysis of Node Performance,” Journal of Supercomputing, 23(1):81–101, 2002
[16] Jordi Caubet, Judit Gimenez, Jesús Labarta, Luiz DeRose, and Jeffrey Vetter: “A Dynanmic Tracing

Mechanism for Performance Analysis of OpenMP Applications,” Proc. Workshop on OpenMP Applica-
tions and Tools (WOMPAT’01, Purdue, USA), July 2001.

[17] Robert Bell, Allen D. Malony, and Sameer Shende: “ParaProf: A Portable, Extensible, and Scalable
Tool for Parallel Performance Profile Analysis,” Proc. 9th Int’l Euro-Par Conf. (Klagenfurt, Austria),
Lecture Notes in Computer Science, Vol. 2790, pp. 17–26, Springer-Verlag, Aug. 2003.

[18] John Engle: “The ASC Purple sPPM Benchmark Code,” Lawrence Livermore National Laboratory, USA
//www.llnl.gov/asc/purple/benchmarks/limited/sppm/, Feb. 2002.

[19] PAPI Group: “PAPI Standard Events by Architecture,” University of Tennessee at Knoxville, Innovative
Computing Laboratory, USA, //icl.cs.utk.edu/projects/papi/presets.html, Oct. 2004.

18

A. Definition of counter measurement sets and derived metric hierarchies

KOJAK provides specifications of convenient measurement sets which account for hardware re-
strictions and intended derivation of metrics and structuring hierarchies. Both can be readily modi-
fied and extended.

A.1. Hardware counter measurement sets
The following tables present sets of native counters (named according to PAPI v3.0) grouped

together for convenient measurement on Opteron, UltraSPARC-III/IV and POWER4-II platforms.
Sets are selected to maximise the ability to derive further metrics, with particular emphasis on being
able to complete compositions and especially computations: this also naturally groups related coun-
ters, either as peers or hierarchically. A further aim is to minimise the total number of sets required
to complete the core metric hierarchy and complement those with additional optional metrics.

In the tables, derived metrics measured directly with a native counter are shown bold (and related
with the ‘=’ operator), and when a native counter contributes to a composed metric and provides
a platform-specific extension to the hierarchy it is also shown bold (related with the ‘+’ operator).
Computed metrics (and the associated computation) with native counters are shown below in slanted
font (and distinguished with the ‘ .

=’ operator). Each group of derived metrics is preceded by the root
metric of the hierarchy to which they contribute to via composition, unless the root metric is mea-
sured directly. (For brevity, intermediates in these hierarchies are omitted.) Where derived metrics
cannot be fully completed by the native counters in the set, they are distinguished by prepending ‘˜’
to their names: these metrics may be completed when several sets of measurements are accumulated.

Table 2. Opteron counter sets (maximum of 4 in group, unrestricted assignment)
Set Name Derived Metrics op. Native Counters / Computations
OPTERON TLB TLB ACCESS

DATA TLB MISS = DC L1 DTLB MISS AND L2 DTLB MISS
DATA TLB HIT = DC L1 DTLB MISS AND L2 DTLB HIT
INST TLB MISS = IC L1ITLB MISS AND L2ITLB MISS
INST TLB HIT = IC L1ITLB MISS AND L2ITLB HIT

OPTERON IC INST ACCESS = IC FETCH
IC MISS

INST HIT L2$ = IC L2 REFILL
INST HIT MEM = IC SYS REFILL
INST HIT L1$.= IC FETCH – IC MISS

OPTERON DC1 DATA ACCESS = DC ACCESS
DC MISS
DC L2 REFILL I
DC SYS REFILL I

DATA HIT L1$.= DC ACCESS – DC MISS
OPTERON DC2 ˜ DATA ACCESS

DATA STORE INTO L2$ = DC L2 REFILL M
DATA LOAD FROM L2$ + DC L2 REFILL O
DATA LOAD FROM L2$ + DC L2 REFILL E
DATA LOAD FROM L2$ + DC L2 REFILL S

OPTERON DC3 ˜ DATA ACCESS
DATA STORE INTO MEM = DC SYS REFILL M
DATA LOAD FROM MEM + DC SYS REFILL O
DATA LOAD FROM MEM + DC SYS REFILL E
DATA LOAD FROM MEM + DC SYS REFILL S

19

Set Name Derived Metrics op. Native Counters / Computations
OPTERON ETC INSTRUCTION = FR X86 INS

CYCLES = CPU CLK UNHALTED
FR HW INTS

OPTERON BR ˜ INSTRUCTION
BRANCH = FR BR
BRANCH MISP = FR BR MIS

FR BR TAKEN
BRANCH MISP TAKEN = FR BR TAKEN MIS
BRANCH MISP UNTAKEN .= FR BR MIS – FR BR TAKEN MIS
BRANCH PRED .= FR BR – FR BR MIS
BRANCH PRED TAKEN .= FR BR TAKEN – FR BR TAKEN MIS
BRANCH PRED UNTAKEN .= FR BR – FR BR MIS –

FR BR TAKEN + FR BR TAKEN MIS
OPTERON FP ˜ INSTRUCTION

˜ FLOATING POINT + FP ADD PIPE
˜ FLOATING POINT + FP MULT PIPE
˜ FLOATING POINT + FP ST PIPE
˜ FLOATING POINT + FP FAST FLAG

OPTERON ST1 ˜ CYCLES
˜ CYCLES + FP NONE RET
˜ CYCLES + IC FETCH STALL
˜ IC FETCH STALL + FR DECODER EMPTY
˜ FR DISPATCH STALLS + FR DISPATCH STALLS QUIET

OPTERON ST2 ˜ CYCLES
˜ FR DISPATCH STALLS + FR DISPATCH STALLS FULL FPU
˜ FR DISPATCH STALLS + FR DISPATCH STALLS FULL LS
˜ FR DISPATCH STALLS + FR DISPATCH STALLS FULL REORDER
˜ FR DISPATCH STALLS + FR DISPATCH STALLS FULL RESERVATION

OPTERON ST3 ˜ CYCLES
˜ FR DISPATCH STALLS + FR DISPATCH STALLS BR
˜ FR DISPATCH STALLS + FR DISPATCH STALLS SER
˜ FR DISPATCH STALLS + FR DISPATCH STALLS SEG
˜ FR DISPATCH STALLS + FR DISPATCH STALLS FAR

OPTERON FPU FR FPU X87
SIMD + FR FPU MMX 3D
SIMD + FR FPU SSE SSE2 PACKED
SIMD + FR FPU SSE SSE2 SCALAR

OPTERON MMX HT MEM XFER + HT LL MEM XFR
HT MEM XFER + HT LR MEM XFR
HT MEM XFER + HT RL MEM XFR

OPTERON IOX HT I/O XFER + HT LL IO XFR
HT I/O XFER + HT LR IO XFR
HT I/O XFER + HT RL IO XFR

20

Table 3. UltraSPARC-III/IV counter sets (maximum of 2 in group, restricted assignment)
Set Name Derived Metrics op. Native Counters / Computations
US3 CPI CYCLES = Cycle cnt

INSTRUCTION = Instr cnt

US3 SCD CYCLES = Cycle cnt
˜ RECIRCULATE + Re DC miss

US3 SCO ˜ CYCLES
˜ DISPATCH + Dispatch0 br target
˜ Re DC miss + Re DC missovhd

US3 SCE ˜ CYCLES
˜ DISPATCH + Dispatch0 2nd br
˜ Re DC miss + Re EC miss

US3 SCP ˜ CYCLES
˜ DISPATCH + Dispatch0 IC miss
˜ RECIRCULATE + Re PC miss

US3 SMP ˜ CYCLES
˜ DISPATCH + Dispatch rs mispred
˜ DISPATCH + Dispatch0 mispred

US3 SUS ˜ CYCLES
˜ UNIT USE + Rstall IU use
˜ UNIT USE + Rstall FP use

US3 SST ˜ CYCLES
˜ UNIT USE + Rstall storeQ
˜ RECIRCULATE + Re RAW miss

US3 SCX ˜ CYCLES
SI ciq flow

˜ RECIRCULATE + Re FPU bypass

US3 DCR ˜ DATA ACCESS
DC rd
DC rd miss

DATA LOAD FROM L1$.= DC rd – DC rd miss
US3 DCW ˜ DATA ACCESS

DC wr
DATA STORE INTO L2$ = DC wr miss
DATA STORE INTO L1$.= DC wr – DC wr miss

US3 ECM ˜ DATA ACCESS
DATA LOAD FROM MEM = EC rd miss

EC misses
US3 ECI ˜ DATA ACCESS

˜ DATA STORE INTO L2$ + EC write hit RTO
˜ INST ACCESS

INST HIT MEM = EC ic miss
US3 ICH INST ACCESS = IC ref

IC miss
INST HIT L1$.= IC ref – IC miss

˜ INST ACCESS
˜ INST HIT L2$.= IC miss – EC ic miss

˜ DATA ACCESS
˜ DATA LOAD FROM L2$.= DC rd miss – EC rd miss
˜ DATA STORE INTO MEM .= EC misses – EC rd miss – EC ic miss

21

Set Name Derived Metrics op. Native Counters / Computations
US3 FPU ˜ INSTRUCTION

FLOATING POINT + FA pipe completion
FLOATING POINT + FM pipe completion

US3 BMS ˜ INSTRUCTION
BRANCH MISP TAKEN = IU Stat Br miss taken
BRANCH MISP UNTAKEN = IU Stat Br miss untaken

US3 BCS ˜ INSTRUCTION
IU Stat Br count taken
IU Stat Br count untaken

˜ BRANCH PRED TAKEN .= IU Stat Br count taken – IU Stat Br miss taken
˜ BRANCH PRED UNTAKEN .= IU Stat Br count untaken – IU Stat Br miss untaken

US3 ITL INSTRUCTION = Instr cnt
˜ TLB ACCESS

INST TLB MISS = ITLB miss
US3 DTL CYCLES = Cycle cnt

˜ TLB ACCESS
DATA TLB MISS = DTLB miss

US3 ECW
EC ref

˜ SSM LOCALITY + EC wb
US3 ECL ˜ SSM LOCALITY

EC MISSES + EC miss local
EC MISSES + EC miss remote

US3 ECX ˜ SSM LOCALITY
˜ EC wb + EC wb remote
˜ EC miss local + EC miss mtag remote

US3 PCR P$ READS + PC port0 rd
+ PC port1 rd

US3 ETC SI snoop
P$ READS

˜ PC port0 rd + PC MS misses
US3 ECS EC snoop inv

EC snoop cb
US3 WCM SI owned

WC miss
US3 SM1 ˜ MC STALLS + MC stalls 0

+ MC stalls 1
US3 SM2 ˜ MC STALLS + MC stalls 2

+ MC stalls 3
US3 MC0 ˜ MC READS + MC reads 0

˜ MC WRITES + MC writes 0
US3 MC1 ˜ MC READS + MC reads 1

˜ MC WRITES + MC writes 1
US3 MC2 ˜ MC READS + MC reads 2

˜ MC WRITES + MC writes 2
US3 MC3 ˜ MC READS + MC reads 3

˜ MC WRITES + MC writes 3

22

Table 4. POWER4-II counter sets (maximum of 8 in group, restricted assignment)
Set Name Derived Metrics op. Native Counters / Computations
POWER4 LX ˜ TLB ACCESS

INST TLB MISS = PM ITLB MISS
DATA TLB MISS = PM DTLB MISS

PM LD REF L1
PM LD MISS L1
PM ST REF L1
PM ST MISS L1

DATA ACCESS .= PM ST REF L1 + PM LD REF L1
DATA STORE INTO L1$.= PM ST REF L1 – PM ST MISS L1
DATA LOAD FROM L1$.= PM LD REF L1 – PM LD MISS L1

POWER4 DC ˜ DATA ACCESS
DATA HIT L2$ + PM DATA FROM L2
DATA HIT L2$ + PM DATA FROM L25 SHR
DATA HIT L2$ + PM DATA FROM L25 MOD
DATA HIT L2$ + PM DATA FROM L275 SHR
DATA HIT L2$ + PM DATA FROM L275 MOD
DATA HIT L3$ + PM DATA FROM L3
DATA HIT L3$ + PM DATA FROM L35
DATA HIT MEM = PM DATA FROM MEM

POWER4 IC INST ACCESS
INST PREFETCH = PM INST FROM PREF
INST HIT L1$ = PM INST FROM L1
INST HIT L2$ + PM INST FROM L2
INST HIT L2$ + PM INST FROM L25 L275
INST HIT L3$ + PM INST FROM L3
INST HIT L3$ + PM INST FROM L35
INST HIT MEM = PM INST FROM MEM

POWER4 BRT INSTRUCTION = PM INST CMPL
BRANCH = PM BR ISSUED
BRANCH MISP + PM BR MPRED CR
BRANCH MISP + PM BR MPRED TA

CYCLES = PM CYC
˜ BUSY + PM BIQ IDU FULL CYC
˜ BUSY + PM BRQ FULL CYC
˜ BUSY + PM L1 WRITE CYC

POWER4 IFP INSTRUCTION = PM INST CMPL
INTEGER = PM FXU FIN
FLOATING POINT = PM FPU FIN
FLOATING POINT + PM FPU FMA
FLOATING POINT + PM FPU FDIV
FLOATING POINT + PM FPU FSQRT
FLOATING POINT + PM FPU FMOV FEST

POWER4 MFP INSTRUCTION = PM INST CMPL
˜ FLOATING POINT + PM FPU ALL
˜ FLOATING POINT + PM FPU DENORM
˜ FLOATING POINT + PM FPU FRSP FCONV
˜ MEMORY + PM FPU STF
˜ MEMORY + PM LSU LDF

CYCLES = PM CYC
˜ STALL + PM FPU STALL3

23

A.2. Counter metric hierarchy definition
A generic counter metric classification hierarchy, using KOJAK or PAPI preset counter names,

is possible, but in practise it is of limited value. Counter availability is platform-dependant, and
interpreting measured counter values even more so. While PAPI provides a number of presets,
which attempt to provide general platform-independant definitions, this is only partially successful
and introduces additional abstraction which can be undesirable.

PAPI preset event definitions for each supported processor architecture are summarised in [19].
Note that the table is not entirely up-to-date, as event definitions are occassionally added, changed or
deleted: this variability aspect also presents a challenge to interpreting what a PAPI definition really
counts or will count on any given platform. What the table clearly shows is the disparity of event
definition provision between platforms: only PAPI_TOT_CYC and PAPI_TOT_INS are available on
every supported platform, and most events are available on fewer than half. (Curiously, some PAPI
presets are not available on any platform, and indeed probably don’t make too much sense, e.g.,
PAPI_L[123]_ICW defined as “writes to instruction caches.”)

In addition to the fundamental limitation of the native events provided by each processor, it should
also be noted that PAPI presets are limited to events that can be collected simultaneously, i.e., subject
to platform-specific numbers of counter registers and mapping restrictions.

The current set of PAPI preset specifications are a somewhat curious mixture of general (widely
available) events and relatively obscure events only applicable to one or a few platforms, while many
of the most valuable events on other platforms have no PAPI preset specification. This is especially
evident when examining different types of processor stalls and locality events.

Somewhat understandably, the set of native events provided for each processor (and impacting on
its development and validation costs) is highly customised to its particular characteristics and key
performance indicators. Some consideration is also made for compatibility with the events provided
by earlier processor generations. Provision of hardware counters and associated infrastructure was
primarily (at least initially and perhaps even exclusively) intended for internal (i.e., non-customer)
use by the processor developers, and only latterly made available to customers: it is typically neither
intended nor designed with customer needs foremost in mind.

Defining a generic hierarchy of the most important (available) metrics, and determining a spanning
set of the corresponding native metrics to capture, are open areas of research. KOJAK therefore pro-
vides a flexible mechanism for experimenting with different measurement set and metric hierarchy
definitions.

The approach taken for creating an initial generic hierarchy of KOJAK metrics was based on
consideration of the most widely available, unambiguous and familiar PAPI metrics: i.e., those for
different types of instruction counts, TLB and cache/memory accesses (including hits and misses).

Although PAPI defines various total counts for different levels of cache, i.e., aggregating counts
for instruction and data accesses, it was found more appropriate to consider the two types sepa-
rately: even though the caches themselves may be unified, most analyses consider them separately
(and generally one will dominate the other). Similarly, metrics for each level of cache could have
been structured independantly, but it was prefered to combine them into a single hierarchy to em-
phasise the important relationship between levels: this exploits the exclusive nature of each hit being
uniquely satisfied from one particular level of cache or memory, rather than the otherwise more di-
rect measure of misses (which can miss in multiple cache levels). An advantage of this scheme is
that the absence of a third level cache is naturally represented as having zero hits in that cache level,
while hits from memory are unaffected.

While PAPI v3.0 provides various hit counts, it is unfortunately missing definitions for load (read)

24

and store (write) hit counts for the various data caches, even though these are often available as
native counters or readily derivable. A further PAPI complication is the lack of preset definitions for
counts of instructions and data accesses which are served from memory, having missed in all levels
of cache. Presets PAPI_L3_ICM and PAPI_L3_DCM (and PAPI_L3_LDM and PAPI_L3_STM) have
the appropriate definitions on platforms with three levels of cache, however, for platforms with only
two levels of cache they are undefined and the corresponding PAPI_L2 miss definitions need to be
used instead.

Although the resulting definitions of access hit hierarchies for data and instruction caches are
reasonably portable, in the absence of portable PAPI metric specifications, they require customised
platform-specific mixtures of direct measurements, simple compositions and computations. Even if
portable PAPI metric specifications were provided for the generic hierarchy, it would be desirable
to augment the hierarchies with platform-specific extensions, such as distinction of cache coherency
states or accesses to local versus remote caches.

Definition of a generic hierarchy for different instruction counts is even less satisfactory, largely
due to the more substantial variation in functional unit provision. A secondary complicating factor is
distinction between dispatched/issued and completed/retired instruction counts, with speculatively
issued instructions that don’t complete being overcounted. Definitions of floating-point operations
(i.e., ‘flops’) performed by processors have always tended to be ambiguous, and while counts of
floating-point instructions would appear unambiguous, in practise there is considerable disparity
in which are counted by hardware and which aren’t: overcounting arises when processors count
all instructions executed by notional floating-point units (e.g., including block copy instructions)
or include floating-point stores and/or loads. Fused multiply-add instructions can lead to further
discrepancies between the logical/expected and actual counts.

One of the most valuable hierarchies is also unfortunately the most platform-specific: that which
classifies cycles into busy, stall or idle states. Some processors provide rich hierarchical breakdowns
of stall costs, however, these are typically only applicable to one particular platform (or family).
Since cycles can be readily converted into times, using processor (or memory) frequency, they are
easily interpreted and directly quantify the significance of otherwise hard to judge (and typically
highly variable) events.

25

The following listings provide examples of generic and platform-specific metric hierarchy speci-
fications. The PAPI-based specification primarily offers guidance in determining which native coun-
ters best fit in a platform-specific hierarchy, rather than being useful as is.

POWER4 Specification has three-level cache hierarchies, though since stores write-through there
are only stores into L1, with platform-specific extensions distinguishing locality and sharing of the
caches. FLOATING_POINT has been determined by aggregation rather than direct measurement to
explicitly exclude PM_FPU_STF, which is instead moved to MEMORY. No counters are available to
split predicted and mispredicted branch instructions into taken and untaken counts, and the limited
number of cycles-based counters in that hierarchy might be improved. Many of the available coun-
ters have not been considered, which could provide additional platform-specific metric hierarchies.

Opteron Specification has only two-level cache hierarchies, with additional breakdown of L2
and memory accesses by coherency state. FP_ST_PIPE and FP_FAST_FLAG have been included in
FLOATING_POINT but could alternatively be moved to MEMORY or other locations. The hierarchy
of cycles-based metrics includes comprehensive breakdown of dispatch stalls. Platform-specific
hierarchies include HyperTransport memory and I/O transfers.

UltraSPARC-III/IV Specification also has only two-level cache hierarchies, complemented with
additional platform-specific SSM locality (on systems supporting scalable shared memory), prefetch
cache and memory controller request hierarchies. The hierarchy of cycles-based metrics includes
comprehensive breakdown of dispatch, unit use, and recirculation stalls. Several derived metrics re-
quire computations with counter measurements that can’t be collected together due to limitations of
the processor hardware. Consequently, partially complete computations from individual collection
experiments need to be aggregated to complete their derivations. Alternatively, some derivations may
be replaced with approximations that ignore measurements that only provide minor contributions to
computations, e.g., DATA_STORE_INTO_MEM and INST_HIT_L2$ can be calculated without the
generally insignificant contribution of EC_ic_miss.

Generic Metric Hierarchy Specification

cycles (including stalls)
compose CYCLES = BUSY + STALL + IDLE
compose STALL = DISPATCH + UNIT_USE + RECIRCULATE

instructions
compose INSTRUCTION = BRANCH + INTEGER + FLOATING_POINT + MEMORY
compose BRANCH = BRANCH_PRED + BRANCH_MISP
compose FLOATING_POINT = FP_ADD + FP_MUL + FP_FMA + FP_DIV + FP_INV + FP_SQRT +

FP_MISC
compose MEMORY = LOAD + STORE + SYNCH

data accesses (to cache hierarchy & memory)
compose DATA_ACCESS = DATA_HIT_L1$ + DATA_HIT_L2$ + DATA_HIT_L3$ + DATA_HIT_MEM
compose DATA_HIT_L1$ = DATA_STORE_INTO_L1$ + DATA_LOAD_FROM_L1$
compose DATA_HIT_L2$ = DATA_STORE_INTO_L2$ + DATA_LOAD_FROM_L2$
compose DATA_HIT_L3$ = DATA_STORE_INTO_L3$ + DATA_LOAD_FROM_L3$
compose DATA_HIT_MEM = DATA_STORE_INTO_MEM + DATA_LOAD_FROM_MEM

instruction accesses (to cache hierarchy & memory)
compose INST_ACCESS = INST_HIT_PREF +

INST_HIT_L1$ + INST_HIT_L2$ + INST_HIT_L3$ + INST_HIT_MEM

TLB accesses (instruction & data)
compose TLB_ACCESS = DATA_TLB_ACCESS + INST_TLB_ACCESS
compose DATA_TLB_ACCESS = DATA_TLB_HIT + DATA_TLB_MISS
compose INST_TLB_ACCESS = INST_TLB_HIT + INST_TLB_MISS

26

Metric Hierarchy Specification with PAPI Presets

cycles (including stalls)
compose CYCLES = BUSY + STALL + IDLE
measure CYCLES = PAPI_TOT_CYC
compose IDLE = PAPI_BRU_IDL + PAPI_FPU_IDL + PAPI_FXU_IDL + PAPI_LSU_IDL
compose STALL = DISPATCH + UNIT_USE + RECIRCULATE
measure STALL = PAPI_RES_STL
measure DISPATCH = PAPI_STL_ICY
measure UNIT_USE = PAPI_FP_STAL
measure RECIRCULATE = PAPI_MEM_SCY
compose PAPI_MEM_SCY = PAPI_MEM_RCY + PAPI_MEM_WCY

instructions
compose INSTRUCTION = BRANCH + INTEGER + FLOATING_POINT + MEMORY
measure INSTRUCTION = PAPI_TOT_INS # or PAPI_TOT_IIS
compose BRANCH = BRANCH_PRED + BRANCH_MISP
measure BRANCH = PAPI_BR_INS
measure BRANCH_PRED = PAPI_BR_PRC
measure BRANCH_MISP = PAPI_BR_MSP
measure INTEGER = PAPI_INT_INS
compose FLOATING_POINT = FP_ADD + FP_MUL + FP_FMA + FP_DIV + FP_INV + FP_SQRT + FP_MISC
measure FLOATING_POINT = PAPI_FP_INS
measure FP_ADD = PAPI_FAD_INS
measure FP_MUL = PAPI_FML_INS
measure FP_FMA = PAPI_FMA_INS
measure FP_DIV = PAPI_FDV_INS
measure FP_INV = PAPI_FNV_INS
measure FP_SQRT = PAPI_FSQ_INS
compose MEMORY = LOAD + STORE + SYNCH
measure LOAD = PAPI_LD_INS
measure STORE = PAPI_SR_INS
measure SYNCH = PAPI_SYC_INS

data accesses (to cache hierarchy & memory)
compose DATA_ACCESS = DATA_HIT_L1$ + DATA_HIT_L2$ + DATA_HIT_L3$ + DATA_HIT_MEM
compose DATA_HIT_L1$ = DATA_STORE_INTO_L1$ + DATA_LOAD_FROM_L1$
compose DATA_HIT_L2$ = DATA_STORE_INTO_L2$ + DATA_LOAD_FROM_L2$
compose DATA_HIT_L3$ = DATA_STORE_INTO_L3$ + DATA_LOAD_FROM_L3$
compose DATA_HIT_MEM = DATA_STORE_INTO_MEM + DATA_LOAD_FROM_MEM
measure DATA_ACCESS = PAPI_L1_DCA
measure DATA_HIT_L1$ = PAPI_L1_DCH
compute DATA_STORE_INTO_L1$ = PAPI_L1_DCW - PAPI_L1_STM
compute DATA_LOAD_FROM_L1$ = PAPI_L1_DCR - PAPI_L1_LDM
measure DATA_HIT_L2$ = PAPI_L2_DCH
compute DATA_STORE_INTO_L2$ = PAPI_L2_DCW - PAPI_L2_STM
compute DATA_LOAD_FROM_L2$ = PAPI_L2_DCR - PAPI_L2_LDM
measure DATA_HIT_L3$ = PAPI_L3_DCH
compute DATA_STORE_INTO_L3$ = PAPI_L3_DCW - PAPI_L3_STM
compute DATA_LOAD_FROM_L3$ = PAPI_L3_DCR - PAPI_L3_LDM
measure DATA_HIT_MEM = PAPI_L3_DCM # or PAPI_L2_DCM if no 3rd-level D-cache
measure DATA_STORE_INTO_MEM = PAPI_L3_STM # or PAPI_L2_STM if no L3 D-cache
measure DATA_LOAD_FROM_MEM = PAPI_L3_LDM # or PAPI_L2_LDM if no L3 D-cache

instruction accesses (to cache hierarchy & memory)
compose INST_ACCESS = INST_HIT_L1$ + INST_HIT_L2$ + INST_HIT_L3$ + INST_HIT_MEM
measure INST_ACCESS = PAPI_L1_ICA
measure INST_HIT_L1$ = PAPI_L1_ICH
measure INST_HIT_L2$ = PAPI_L2_ICH
measure INST_HIT_L3$ = PAPI_L3_ICH
measure INST_HIT_MEM = PAPI_L3_ICM # or PAPI_L2_ICM if no 3rd-level I-cache

TLB accesses (instruction & data)
compose TLB_ACCESS = DATA_TLB_ACCESS + INST_TLB_ACCESS
compose DATA_TLB_ACCESS = DATA_TLB_HIT + DATA_TLB_MISS
compose INST_TLB_ACCESS = INST_TLB_HIT + INST_TLB_MISS
measure DATA_TLB_MISS = PAPI_TLB_DM
measure INST_TLB_MISS = PAPI_TLB_IM

27

POWER4-specific Metric Hierarchy Specification

cycles (including stalls)
compose CYCLES = BUSY + PM_FPU_FULL_CYC + PM_FPU_STALL3 + PM_BIQ_IDU_FULL_CYC

+ PM_BRQ_FULL_CYC + PM_L1_WRITE_CYC
measure CYCLES = PM_CYC

instructions
compose INSTRUCTION = BRANCH + INTEGER + FLOATING_POINT + MEMORY
measure INSTRUCTION = PM_INST_CMPL

compose BRANCH = BRANCH_PRED + BRANCH_MISP
measure BRANCH = PM_BR_ISSUED
compute BRANCH_PRED = PM_BR_ISSUED - PM_BR_MPRED_CR - PM_BR_MPRED_TA
compose BRANCH_MISP = PM_BR_MPRED_CR + PM_BR_MPRED_TA

compose INTEGER = PM_FXU_FIN

compose FLOATING_POINT = PM_FPU_ALL + PM_FPU_DENORM + PM_FPU_FDIV + PM_FPU_FMA
+ PM_FPU_FMOV_FEST + PM_FPU_FRSP_FCONV + PM_FPU_FSQRT

#measure FLOATING_POINT = PM_FPU_FIN # includes PM_FPU_STF!

compose MEMORY = PM_FPU_STF + PM_LSU_LDF + SYNCH

data accesses (to cache hierarchy & memory)
compose DATA_ACCESS = DATA_HIT_L1$ + DATA_HIT_L2$ + DATA_HIT_L3$ + DATA_HIT_MEM

level 1 data cache
compose DATA_HIT_L1$ = DATA_LOAD_FROM_L1$ + DATA_STORE_INTO_L1$

compute DATA_STORE_INTO_L1$ = PM_ST_REF_L1 - PM_ST_MISS_L1
compute DATA_LOAD_FROM_L1$ = PM_LD_REF_L1 - PM_LD_MISS_L1

level 2 data cache
compose DATA_HIT_L2$ = DATA_LOAD_FROM_L2$

compose DATA_LOAD_FROM_L2$ = PM_DATA_FROM_L2 + PM_DATA_FROM_L25_MOD
+ PM_DATA_FROM_L25_SHR + PM_DATA_FROM_L275_MOD + PM_DATA_FROM_L275_SHR

level 3 data cache
compose DATA_HIT_L3$ = DATA_LOAD_FROM_L3$

compose DATA_LOAD_FROM_L3$ = PM_DATA_FROM_L3 + PM_DATA_FROM_L35

memory/system data
compose DATA_HIT_MEM = DATA_LOAD_FROM_MEM

compose DATA_LOAD_FROM_MEM = PM_DATA_FROM_MEM

instruction accesses (to cache hierarchy & memory)
compose INST_ACCESS = INST_PREFETCH +

INST_HIT_L1$ + INST_HIT_L2$ + INST_HIT_L3$ + INST_HIT_MEM
compose INST_PREFETCH = PM_INST_FROM_PREF
compose INST_HIT_L1$ = PM_INST_FROM_L1
compose INST_HIT_L2$ = PM_INST_FROM_L2 + PM_INST_FROM_L25_L275
compose INST_HIT_L3$ = PM_INST_FROM_L3 + PM_INST_FROM_L35
compose INST_HIT_MEM = PM_INST_FROM_MEM

TLB accesses (instructions & data)
compose TLB_ACCESS = DATA_TLB_ACCESS + INST_TLB_ACCESS
compose DATA_TLB_ACCESS = DATA_TLB_HIT + DATA_TLB_MISS
measure DATA_TLB_MISS = PM_DTLB_MISS
compose INST_TLB_ACCESS = INST_TLB_HIT + INST_TLB_MISS
measure INST_TLB_MISS = PM_ITLB_MISS

28

Opteron-specific Metric Hierarchy Specification

cycles (including stalls)
compose CYCLES = BUSY + IC_FETCH_STALL + FP_NONE_RET
measure CYCLES = CPU_CLK_UNHALTED
compose IC_FETCH_STALL = FR_DECODER_EMPTY + FR_DISPATCH_STALLS
compose FR_DISPATCH_STALLS = FR_DISPATCH_STALLS_BR + FR_DISPATCH_STALLS_FAR +

FR_DISPATCH_STALLS_FULL_FPU + FR_DISPATCH_STALLS_FULL_LS +
FR_DISPATCH_STALLS_FULL_REORDER + FR_DISPATCH_STALLS_FULL_RESERVATION +
FR_DISPATCH_STALLS_SER + FR_DISPATCH_STALLS_SEG + FR_DISPATCH_STALLS_QUIET

instructions
compose INSTRUCTION = BRANCH + INTEGER + FLOATING_POINT + MEMORY
measure INSTRUCTION = FR_X86_INS

compose BRANCH = BRANCH_PRED + BRANCH_MISP
measure BRANCH = FR_BR
compose BRANCH_PRED = BRANCH_PRED_TAKEN + BRANCH_PRED_UNTAKEN
compute BRANCH_PRED_TAKEN = FR_BR_TAKEN - FR_BR_TAKEN_MIS
compute BRANCH_PRED_UNTAKEN = FR_BR - FR_BR_MIS - FR_BR_TAKEN + FR_BR_TAKEN_MIS
compose BRANCH_MISP = BRANCH_MISP_TAKEN + BRANCH_MISP_UNTAKEN
#measure BRANCH_MISP = FR_BR_MIS
compute BRANCH_MISP_TAKEN = FR_BR_TAKEN_MIS
compute BRANCH_MISP_UNTAKEN = FR_BR_MIS - FR_BR_TAKEN_MIS

compose FLOATING_POINT = FP_ADD_PIPE + FP_MULT_PIPE + FP_ST_PIPE + FP_FAST_FLAG

compose MEMORY = LOAD + STORE + SYNCH

data accesses (to cache hierarchy & memory)
compose DATA_ACCESS = DATA_HIT_L1$ + DATA_HIT_L2$ + DATA_HIT_L3$ + DATA_HIT_MEM
measure DATA_ACCESS = DC_ACCESS

level 1 data cache
compute DATA_HIT_L1$ = DC_ACCESS - DC_MISS

no L1$ load/store alias definitions possible for opteron
#compose DATA_STORE_INTO_L1$ = NA_OPTERON
#compose DATA_LOAD_FROM_L1$ = NA_OPTERON

level 2 data cache
compose DATA_HIT_L2$ = DATA_STORE_INTO_L2$ + DATA_LOAD_FROM_L2$
compose DATA_STORE_INTO_L2$ = DC_L2_REFILL_M
compose DATA_LOAD_FROM_L2$ = DC_L2_REFILL_O + DC_L2_REFILL_E + DC_L2_REFILL_S

no L3$ data cache alias definitions appropriate for opteron
#compose DATA_HIT_L3$ = DATA_STORE_INTO_L3$ + DATA_LOAD_FROM_L3$
#compose DATA_STORE_INTO_L3$ = NA_OPTERON
#compose DATA_LOAD_FROM_L3$ = NA_OPTERON

memory/system data
compose DATA_HIT_MEM = DATA_STORE_INTO_MEM + DATA_LOAD_FROM_MEM
compose DATA_STORE_INTO_MEM = DC_SYS_REFILL_M
compose DATA_LOAD_FROM_MEM = DC_SYS_REFILL_O + DC_SYS_REFILL_E + DC_SYS_REFILL_S

instruction accesses (to cache hierarchy & memory)
compose INST_ACCESS = INST_HIT_L1$ + INST_HIT_L2$ + INST_HIT_MEM
#measure INST_ACCESS = IC_FETCH

compute INST_HIT_L1$ = IC_FETCH - IC_L2_REFILL - IC_SYS_REFILL

compose INST_HIT_L2$ = IC_L2_REFILL
#compose INST_HIT_L3$ = NA_OPTERON
compose INST_HIT_MEM = IC_SYS_REFILL

29

TLB accesses (instructions & data)
compose TLB_ACCESS = DATA_TLB_ACCESS + INST_TLB_ACCESS
compose DATA_TLB_ACCESS = DATA_TLB_HIT + DATA_TLB_MISS
compute DATA_TLB_HIT = DC_L1_DTLB_MISS_AND_L2_DTLB_HIT
compute DATA_TLB_MISS = DC_L1_DTLB_MISS_AND_L2_DTLB_MISS
compose INST_TLB_ACCESS = INST_TLB_HIT + INST_TLB_MISS
compute INST_TLB_HIT = IC_L1ITLB_MISS_AND_L2ITLB_HIT
compute INST_TLB_MISS = IC_L1ITLB_MISS_AND_L2ITLB_MISS

HyperTransport memory & I/O transfers
compose HT_TRANSFER = HT_MEM_XFER + HT_I/O_XFER
compose HT_MEM_XFER = HT_LL_MEM_XFR + HT_LR_MEM_XFR + HT_RL_MEM_XFR
compose HT_I/O_XFER = HT_LL_IO_XFR + HT_LR_IO_XFR + HT_RL_IO_XFR

doesn’t fit in Instruction hierarchy
compose SIMD = FR_FPU_MMX_3D + FR_FPU_SSE_SSE2_PACKED + FR_FPU_SSE_SSE2_SCALAR

UltraSPARC-III/IV-specific Metric Hierarchy Specification

**** hierarchy requires aggregation of partial/incomplete computations ****

cycles (including stalls)
compose CYCLES = BUSY + IDLE + STALL
measure CYCLES = Cycle_cnt
compose STALL = DISPATCH + UNIT_USE + RECIRCULATE
compose DISPATCH = Dispatch0_IC_miss + Dispatch0_mispred + Dispatch_rs_mispred

+ Dispatch0_br_target + Dispatch0_2nd_br
compose UNIT_USE = Rstall_IU_use + Rstall_FP_use + Rstall_storeQ
compose RECIRCULATE = Re_RAW_miss + Re_PC_miss + Re_DC_miss + Re_FPU_bypass
compose Re_DC_miss = Re_DC_missovhd + Re_EC_miss + RECIRC_EC_HIT

instructions
compose INSTRUCTION = BRANCH + INTEGER + FLOATING_POINT + MEMORY
measure INSTRUCTION = Instr_cnt

requires computations with measurements that can’t be collected together!
compose BRANCH = BRANCH_PRED + BRANCH_MISP
compose BRANCH_PRED = BRANCH_PRED_TAKEN + BRANCH_PRED_UNTAKEN
compute BRANCH_PRED_TAKEN = IU_Stat_Br_count_taken - IU_Stat_Br_miss_taken
compute BRANCH_PRED_UNTAKEN = IU_Stat_Br_count_untaken - IU_Stat_Br_miss_untaken
compose BRANCH_MISP = BRANCH_MISP_TAKEN + BRANCH_MISP_UNTAKEN
compute BRANCH_MISP_TAKEN = IU_Stat_Br_miss_taken
compute BRANCH_MISP_UNTAKEN = IU_Stat_Br_miss_untaken

compose FLOATING_POINT = FA_pipe_completion + FM_pipe_completion

compose MEMORY = LOAD + STORE + SYNCH

data accesses (to cache hierarchy & memory, no L3$)
compose DATA_ACCESS = DATA_HIT_L1$ + DATA_HIT_L2$ + DATA_HIT_MEM

level 1 data cache (D$)
compose DATA_HIT_L1$ = DATA_STORE_INTO_L1$ + DATA_LOAD_FROM_L1$
compute DATA_STORE_INTO_L1$ = DC_wr - DC_wr_miss
compute DATA_LOAD_FROM_L1$ = DC_rd - DC_rd_miss

level 2 data cache (E$)
compose DATA_HIT_L2$ = DATA_STORE_INTO_L2$ + DATA_LOAD_FROM_L2$
compose DATA_STORE_INTO_L2$ = EC_write_hit_RTO + EC_WRITE_HIT_ETC
measure DATA_STORE_INTO_L2$ = DC_wr_miss
compute DATA_LOAD_FROM_L2$ = DC_rd_miss - EC_rd_miss

memory/system data
compose DATA_HIT_MEM = DATA_STORE_INTO_MEM + DATA_LOAD_FROM_MEM
compute DATA_STORE_INTO_MEM = EC_misses - EC_rd_miss - EC_ic_miss # 3 PICs!
compute DATA_LOAD_FROM_MEM = EC_rd_miss

30

instruction accesses (to cache hierarchy & memory, no L3$)
compose INST_ACCESS = INST_HIT_L1$ + INST_HIT_L2$ + INST_HIT_MEM
measure INST_ACCESS = IC_ref

compute INST_HIT_L1$ = IC_ref - IC_miss
compute INST_HIT_L2$ = IC_miss - EC_ic_miss # both require PIC1!
compute INST_HIT_MEM = EC_ic_miss

TLB accesses (instructions & data)
compose TLB_ACCESS = DATA_TLB_ACCESS + INST_TLB_ACCESS
compose DATA_TLB_ACCESS = DATA_TLB_HIT + DATA_TLB_MISS
compute DATA_TLB_MISS = DTLB_miss
compose INST_TLB_ACCESS = INST_TLB_HIT + INST_TLB_MISS
compute INST_TLB_MISS = ITLB_miss

SSM locality (only for scalable shared memory systems)
compose SSM_LOCALITY = EC_MISSES + EC_wb
compose EC_MISSES = EC_miss_local + EC_miss_remote
compose EC_miss_local = EC_MISS_MTAG_LOCAL + EC_miss_mtag_remote
compose EC_wb = EC_WB_LOCAL + EC_wb_remote

Prefetch-cache (P$)
compose P$_READS = PC_port0_rd + PC_port1_rd
compose PC_port0_rd = PC_MS_misses + PC_PORT0_ETC

memory controller requests
compose MC_READS = MC_reads_0 + MC_reads_1 + MC_reads_2 + MC_reads_3
compose MC_WRITES = MC_writes_0 + MC_writes_1 + MC_writes_2 + MC_writes_3
compose MC_STALLS = MC_stalls_0 + MC_stalls_1 + MC_stalls_2 + MC_stalls_3

