
A Scalable Approach to MPI Application
Performance Analysis

Shirley Moore1, Felix Wolf1, Jack Dongarra1,
Sameer Shende2, Allen Malony2, and Bernd Mohr3

1 Innovative Computing Laboratory, University of Tennessee,
Knoxville, TN 37996-3450 USA

{shirley, fwolf, dongarra}@cs.utk.edu
2 Computer Science Department, University of Oregon,

Eugene, OR 97403-1202 USA
{malony, sameer}@cs.uoregon.edu

3 Forschungszentrum Jülich, ZAM, 52425 Jülich, Germany
b.mohr@fz-juelich.de

Abstract. A scalable approach to performance analysis of MPI applications is
presented that includes automated source code instrumentation, low overhead
generation of profile and trace data, and database management of performance
data. In addition, tools are described that analyze large-scale parallel profile and
trace data. Analysis of trace data is done using an automated pattern-matching ap-
proach. Examples of using the tools on large-scale MPI applications are
presented.

1 Introduction

Parallel computing is playing an increasingly critical role in advanced scientific re-
search as simulation and computation are becoming widely used to augment and/or
replace physical experiments. However, the gap between peak and achieved perfor-
mance for scientific applications running on large parallel systems has grown consid-
erably in recent years. The most common parallel programming paradigm for these
applications is to use Fortran or C with MPI message passing to implement parallel
algorithms. The complex architectures of large parallel systems present difficult chal-
lenges for performance optimization of such applications. Tools are needed that col-
lect and present relevant information on application performance in a scalable manner
so as to enable developers to easily identify and determine the causes of performance
bottlenecks.

Performance data encompasses both profile data and trace data. Profiling involves
the collect of statistical summaries of various performance metrics broken down by
program entities such as routines and nested loops. Performance metrics include time
as well as hardware counter metrics such as operation counts and cache and memory
event counts. Tracing involves collection of a timestamped sequence of events such as
entering and exiting program regions and sending and receiving messages. Profiling
can identify regions of a program that are consuming the most resources, while detailed

B. Di Martino et al. (Eds.): EuroPVM/MPI 2005, LNCS 3666, pp. 309–316, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

310 S. Moore et al.

tracing can help identify the causes of performance problems. On large parallel systems,
both profiling and tracing present scalability challenges.

Collecting either profile or trace data requires the application program to be instru-
mented. Instrumentation can be inserted at various stages of the program build process,
ranging from source code insertion to compile time to link time to run time options.
Although many tools provide an application programmer interface (API), manual in-
sertion of instrumentation library calls into application source code is too tedious to
be practical for large-scale applications. Thus our tools support a range of automated
instrumentation options. Once an instrumented version of the program has been built,
only a few environment variables need to be set to control runtime collection of profile
and/or trace data.

Collecting profile data for several different metrics on a per-process and per-routine
basis, possibly for several runs with different numbers of processors and/or different test
cases and/or on different platforms results in a data management problem as well as a
presentation and analysis problem. Similar profile data may be collected by different
tools but be incompatible because of different data formats. Our solution to the data
management problems is a performance data management framework that sits on top
of a relational database and provides a common profile data model as well as interfaces
to various profile data collection and analysis tools. For presentation of profile data we
have developed graphical tools that display the data in 2-dimensional and 3-dimensional
graphs. Our tools also support multi-experiment analysis of performance data collected
from different runs.

Event tracing is a powerful method for analyzing the performance behavior of
parallel applications. Because event traces record the temporal and spatial relation-
ships between individual runtime events, they allow application developers to ana-
lyze dependencies of performance phenomena across concurrent control flow. While
event tracing enables the identification of performance problems on a high level of
abstraction, it suffers from scalability problems associated with trace file size. Our ap-
proach to improving the scalability of event tracing uses call-path profiling to determine
which routines are relevant to the analysis to be performed and then traces only those
routines.

Graphical tools such as Vampir, Intel Trace Analyzer, and Jumpshot are available to
view trace files collected for parallel executions. These tools typically show a time-line
view of state changes and message passing events. However, analyzing these views for
performance bottlenecks can be like searching for a needle in a haystack. Our approach
searches the trace file using pattern-matching to automatically identify instances of in-
efficient behavior. The performance bottlenecks that are found and related to specific
program call-paths and node/process/thread locations can then be focused on using one
of the previously mentioned trace file viewing tools.

The remainder of this paper is organized as follows. Section 2 describes our auto-
mated approach to insertion of performance instrumentation and collection of perfor-
mance data. Section 3 describes our performance data management framework. Section
4 describes our scalable approaches to analyzing profile data, including techniques for
multi-experiment analysis. Section 5 describes our scalable automated approach to trace
file analysis. Section 6 contains conclusions and directions for future research.

A Scalable Approach to MPI Application Performance Analysis 311

2 Automated Performance Instrumentation

TAU (Tuning and Analysis Utilities) is a portable profiling and tracing toolkit for paral-
lel threaded and or message-passing programs written in Fortran, C, C++, or Java, or a
combination of Fortran and C [3]. TAU can be configured to do either profiling or trac-
ing or to do both simultaneously. Instrumentation can be added at various stages, from
compile-time to link-time to run-time, with each stage imposing different constraints
and opportunities for extracting program information. Moving from source code to bi-
nary instrumentation techniques shifts the focus from a language specific to a more
platform specific approach.

Source code can be instrumented by manually inserting calls to the TAU instrumen-
tation API, or by using the Program Database Toolkit (PDT) and/or the Opari OpenMP
rewriting tool to insert instrumentation automatically. PDT is a code analysis framework
for developing source-based tools. It includes commercial grade front end parsers for
Fortran 77/90, C, and C++, as well as a portable intermediate language analyzer, data-
base format, and access API. The TAU project has used PDT to implement a source-to-
source instrumentor (tau instrumentor) that supports automatic instrumentation
of C, C++, and Fortran 77/90 programs.

The TAU MPI wrapper library uses the MPI profiling interface to generate pro-
file and/or trace data for MPI operations. TAU MPI tracing produces individual node-
context-thread event traces that can be merged to produce SLOG, SDDF, Paraver,
VTF3, or EPILOG trace formats.

TAU has filtering and feedback mechanisms for reducing instrumentation overhead.
The user can specify routines that should not be instrumented in a selective instrumen-
tation file. The tau reduce tool automates this specification using feedback from
previously generated profiling data by allowing the user to specify a set of selection
rules that are applied to the data.

3 Performance Data Management Framework

TAU includes a performance data management framework, called PerfDMF, that is ca-
pable of storing parallel profiles for multiple performance experiments. The perfor-
mance database architecture consists of three components: performance data input,
database storage, database query, and analysis. The performance profiles resident in the
database are organized in a hierarchy of applications, experiments, and trials. Applica-
tion performance studies are seen as constituting a set of experiments, each representing
a set of associated performance measurements. A trial is a measurement instance of an
experiment. Raw TAU profiles are read by a profile translator and stored in the database.
The performance database is an object-relational DBMS specified to provide a standard
SQL interface for performance information query. MySQL, PostgreSQL, or Oracle can
be used for the database implementation. A performance database toolkit developed
with Java provides commonly used query and analysis utilities for interfacing perfor-
mance analysis tools. ParaProf (described in the next section) is one of the tools capable
of using this high-level interface for performance database access. Other performance
analysis tools that have been interfaced with PerfDMF include mpiP, Dynaprof, HPM,
gprof, and KOJAK.

312 S. Moore et al.

4 Scalable Display and Analysis of Profile Data

ParaProf is a graphical parallel profile analyzer that is part of the TAU toolkit. Figure 1
shows the ParaProf framework architecture. Analysis of performance data requires rep-
resentations from a very fine granularity, perhaps of a single event on a single node, to
displays of the performance characteristics of the entire application. ParaProf’s current
set of displays range from purely textual based to fully graphical. Many of the display
types are hyper-linked enabled, allowing selections to be reflected across currently open
windows.

(Java event model)

Event System

A
cc

es
s Profile Management

Displays

Profile Data Model

(node, context, thread)

D
at

ab
as

e
Fi

le
 S

ys
te

m
A

cc
es

s
D

ir
ec

t f
ro

m
A

pp
lic

at
io

n

A
P

I

Fig. 1. ParaProf Architecture

Fig. 2. Scalable Miranda Profile Display

A Scalable Approach to MPI Application Performance Analysis 313

Fig. 3. 3-D Scatter Plot of Performance Metrics for 32K Miranda Processes

Recently, the TAU project has focused on how to measure and analyze larg-scale ap-
plication performance data. A significant amount of performance data can be generated
for large processor runs. We have been experimenting with three-dimensional displays
of large-scale performance data. For instance, Figure 2 shows the entire parallel pro-
file measurement for a 32K processor run. The performance events (i.e., functions) are
along the x-axis, the threads are along the y-axis, and the performance metric (in this
case, the exclusive execution time) is along the z-axis. This full performance view en-
ables the user to quickly identify major performance contributors. Figure 3 is of the
same dataset, but in this case each thread is shown as a sphere at a coordinate point
determined by the relative exclusive execution time of three significant events. The vi-
sualization gives a way to see clustering relationships.

5 Automated Analysis of Trace Data

KOJAK is an automatic performance evaluation system for parallel applications that
relieves the user from the burden of searching large amounts of trace data manually by
automatically looking for inefficient communication patterns that force processes into
undesired wait states. KOJAK can be used for MPI, OpenMP, and hybrid applications
written in C/C++ or Fortran. It includes tools for instrumentation, event-trace genera-
tion, and post-processing of event traces plus a generic browser to display the analysis
results. The instrumentation tools complement those supplied by TAU.

After program termination, the trace file is analyzed offline using EXPERT [5],
which identifies execution patterns indicating low performance and quantifies them ac-
cording to their severity. These patterns target problems resulting from inefficient com-
munication and synchronization as well as from low CPU and memory performance.

314 S. Moore et al.

Fig. 4. KOJAK analysis results on 192 CPUs

The analysis process automatically transforms the traces into a compact call-path profile
that includes the time spent in different patterns.

Finally, the analysis results can be viewed in the CUBE performance browser [4],
which is depicted in Figure 4. CUBE shows the distribution of performance problems
across the call tree and the parallel system using tree browsers that can be collapsed and
expanded to meet the desired level of granularity. TAU and KOJAK interoperate in that
TAU profiles can be read by CUBE, and CUBE profiles can be read by ParaProf and
exported to PerfDMF.

We recently used KOJAK to investigate scalability problems observed in running
the GYRO MPI application [1] on the SGI Altix platform using a specific input data
set. We used TAU in combination with PDT to automatically insert appropriate EPI-
LOG API calls into the GYRO source code to record entries and exits of user func-
tions. Unfortunately, non-discriminate instrumentation of user functions can easily lead
to significant trace-file enlargement and perturbation: A TAU call path profile taken of
a fully-instrumented run with 32 processes allowed us to estimate the trace file size
above 100 GB.

As a first result, we present an automated strategy to keep trace-file size within man-
ageable bounds. It was notable that shortly-completed function calls without involving
any communication accounted for more than 98 % of the total number of function-call
events. Since the intended analysis focuses on communication behavior only, we auto-
matically generated a so-called TAU include list from the call path profile using a script.
The include list allowed us to instrument only user functions directly or indirectly per-
forming MPI operations. Based on this include list we took trace files of with 32, 64,
128, and 192 processes. Trace file sizes varied between 94 and 562 MB and did not
present any obstacles to our analysis.

GYRO’s communication behavior is dominated by collective operations - in par-
ticular n-to-n operations, where every process sends to and receives from every other
process. Due to their inherent synchronization, these operations often create wait states
when processes have to wait for other processes to begin the operation. KOJAK defines

A Scalable Approach to MPI Application Performance Analysis 315

Fig. 5. Differences between the 128- and the 192-processor run

a pattern called Wait at N × N that identifies this situation and calculates the time spent
in the operation before the last participant has reached it.

Figure 4 shows the KOJAK result display for the 192-processor trace. All numbers
shown represent percentages of the execution time accumulated across all processes
representing the total CPU-allocation time consumed. The left tree contains the hierar-
chy of patterns used in the analysis. The numeric labels indicate that 21.3 % was spent
waiting as a result of Wait at N × N as opposed to 27.7 % spent in actual collective
communication. The middle tree shows the distribution of this pattern across the call
tree. Thus, about 1/2 of the collective communication time is spent in wait states, a
diagnosis that is hard to achieve without using our technique.

To better understand the evolution of these phenomena as processor counts increase,
we compared the analysis output of the 128-processor run against the 192-processor run
using KOJAK’s performance algebra utilities [4]. The difference-operator utility com-
putes the difference between the analysis results belonging to two different trace files.
The difference can be viewed using the KOJAK GUI just in the same way the orig-
inal results can be viewed. Figure 5 shows the 128-processor results subtracted from
the 192-processor results. According to our measurements with KOJAK, the total ac-
cumulated execution time grows by 72.3 % when scaling from 128 to 192 processes,
indicating a significant decrease in parallel efficiency. Figure 5 (left tree) shows the
composition of the difference classified by performance behavior with all numbers be-
ing percentages of the total time difference. About 2/3 can be attributed to waiting in
all-to-all operations, while about 1/3 can be attributed to the actual communication in
collective operations. The increase in computation is negligible.

After writing short script for EARL [2], a high-level read interface to KOJAK
event traces, we found that the performance problems observed when running with

316 S. Moore et al.

192 CPUs happen in relatively small communicators not exceeding a size of 16. Al-
though this information was not yet sufficient to remove the performance problem, it
allowed us to pose the question about it more clearly by showing the evolution of hard-
to-diagnose performance behavior (i.e., wait states) in a way that cannot be done using
traditional tools.

Future work will investigate the reason for the increased waiting and communica-
tion times and try to clarify whether there is a relationship between both phenomena.
Since the code scales well on other platforms, platform rather than application charac-
teristics might play a role.

6 Conclusions and Future Work

TAU provides an extensible framework for performance instrumentation, measurement,
and analysis. KOJAK provides an automated approach to analysis of large-scale event
traces. The benefits of our research include automated trace-size reduction and auto-
mated analysis of hard-to-diagnose performance behavior. However, further work is
needed on integrating profile and trace data analysis and on supporting additional tools
such as multivariate statistical analysis tools. Further work is also needed to process the
trace files in a distributed parallel manner in order to scale to terascale and petascale
systems of the future.

Acknowledgements

This research is supported at the University of Tennessee by the U.S. Department of En-
ergy, Office of Science contract DE-FC02-01ER25490, and at the University of Oregon
by the U.S. Department of Energy, Office of Science contract DE-FG02-05ER25680.

References

1. J. Candy and R. Waltz. An Eulerian gyrokinetic Maxwell solver. J. Comput. Phys., 186:545,
2003.

2. N. Bhatia F. Wolf. EARL - API Documentation. Technical Report ICL-UT-04-03, University
of Tennessee, Innovative Computing Laboratory, October 2004.

3. S. S. Shende. The Role of Instrumentation and Mapping in Performan ce Measurement. PhD
thesis, University of Oregon, August 2001.

4. F. Song, F. Wolf, N. Bhatia, J. Dongarra, and S. Moore. An Algebra for Cross-Experiment
Performance Analys is. In Proc. of the International Conference on Parallel Processing (
ICPP), Montreal, Canada, August 2004.

5. F. Wolf, B. Mohr, J. Dongarra, and S. Moore. Efficient Pattern Search in Large Traces through
Successive Refinement. In Proc. of the European Conference on Parallel Computing (Euro-
Par), Pisa, Italy, August - September 2004.

	Introduction
	Automated Performance Instrumentation
	Performance Data Management Framework
	Scalable Display and Analysis of Profile Data
	Automated Analysis of Trace Data
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

