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Abstract—Event traces are helpful in understanding the per-
formance behavior of parallel applications since they allow the in-
depth analysis of communication and synchronization patterns.
However, the absence of synchronized clocks on most cluster
systems may render the analysis ineffective because inaccurate
relative event timings may misrepresent the logical event order
and lead to errors when quantifying the impact of certain
behaviors or confuse the users of time-line visualization tools
by showing messages flowing backward in time. In our earlier
work, we have developed a scalable algorithm that eliminates
inconsistent inter-process timings postmortem in traces of pure
MPI applications. Since hybrid programming, the combination
of MPI and OpenMP in a single application, is becoming more
popular on clusters in response to rising numbers of cores per
chip and widening shared-memory nodes, we present an extended
version of the algorithm that in addition to message-passing
event semantics also preserves and restores shared-memory event
semantics.

I. INTRODUCTION

Due to the availability of inexpensive commodity com-
ponents produced in large quantities, clusters now represent
the majority of parallel computing systems, exhibiting a vast
diversity in terms of architectures, interconnect technologies,
and software environments. As a common trend that can be ob-
served in response to the proliferation of multicore processors
with their rising numbers of cores per chip, the shared-memory
nodes most clusters are composed of are becoming much
wider. At the same time, the memory-per-core ratio is expected
to shrink in the long run. To utilize the available memory more
efficiently, many code developers now resort to using OpenMP
for node-internal work sharing, while employing MPI for
parallelism among different nodes. This has the advantage
that (i) the extra memory needed to maintain separate private
address spaces (e.g., for ghost cells or communication buffers)
is no longer needed, (ii) the effort to copy data between these
address spaces can be reduced, and (iii) the number of external
MPI links per node can be kept at a minimum to improve
scalability. The use of such inherently different programming
models in a complimentary manner is usually referred to as
hybridization. While potentially improving efficiency and scal-
ability, hybridization usually comes at the price of increased
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programming complexity. To ameliorate unfavorable effects of
hybrid parallelization on programmer productivity, developers
therefore depend even more on powerful and robust software
tools that help them find errors in and tune the performance
of their codes.

One technique widely used by cluster tools is event tracing
with a broad spectrum of applications ranging from perfor-
mance analysis [1], performance prediction [2] and model-
ing [3] to debugging [4]. Recording time-stamped runtime
events in event traces is especially helpful for understand-
ing the parallel performance behavior because it enables the
postmortem analysis of communication and synchronization
patterns. For instance, time-line browsers such as Vampir [1]
allow these patterns to be visually explored, while the Scalasca
toolset [5] scans traces automatically for wait states that
occur when processes or threads fail to reach synchroniza-
tion points in a timely manner, for example, as a result of
unevenly distributed workloads. Usually, events are recorded
along with the time of their occurrence to measure the
temporal distance between them and/or to establish a total
event order. Obviously, measuring the time between concurrent
events necessitates either a global clock or well-synchronized
processor-local clocks. While some custom-built clusters such
as IBM Blue Gene offer sufficiently accurate global clocks,
most commodity clusters provide only processor-local clocks
that are either entirely non-synchronized or synchronized
only within disjoint partitions (e.g., SMP node). Moreover,
external software synchronization via NTP [6] is usually not
accurate enough for the purpose of event tracing. Assuming
that potentially different drifts of local clocks remain constant
over time, linear offset interpolation can be applied to map
local onto global timestamps. However, given that in reality
the drift of realistic clocks is usually time dependent, the
error of timestamps derived in this way can easily lead to
a misrepresentation of the logical event order imposed by the
semantics of the underlying communication substrate [7]. This
may lead to errors when quantifying the impact of certain
behaviors or confuse the users of time-line visualization tools
by showing messages flowing backward in time.
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In our earlier work [8], we have introduced a scalable
algorithm for synchronizing timestamps that eliminates incon-
sistent inter-process timings postmortem in traces of pure MPI
applications. This algorithm, the most recent version of the
controlled logical clock (CLC) [9], restores the consistency of
inter-process event timings based on happened-before relations
imposed by point-to-point and collective MPI event seman-
tics. Scalability is ensured by performing the corrections for
individual processes in parallel while replaying the original
communication recorded in the trace. However, the algorithm
is unsuitable for hybrid applications because it neither restores
nor preserves happened-before relations in shared-memory
event semantics. Most important, the restoration of MPI event
semantics may introduce violations of OpenMP event seman-
tics even though those were not violated in the original trace.

To remove these limitations, we describe in this paper how
the controlled logical clock is extended to correctly handle
traces from hybrid applications. Our work makes the following
specific contributions:

o Identification of happened-before relations in OpenMP
constructs and library calls as well as their integration
into the existing algorithmic framework

« Extension of the parallel replay mechanism so that it can
replay traces from hybrid codes

« Integration of the enhanced algorithm and replay engine
into the Scalasca performance analysis software

The remainder of this article is organized as follows: After
reviewing related work in Section II, we introduce the pure
MPI version of the CLC algorithm and describe its limitations
in Section III. In Section IV, we present the extensions
necessary to correctly synchronize the timestamps that occur
during the execution of OpenMP constructs. Then, we describe
the hybrid parallelization of the extended algorithm and its
implementation within Scalasca in Section V. In Section VI,
we evaluate the new scheme with respect to its accuracy, show-
ing that the collaterally introduced deviations of local interval
lengths remain within acceptable limits, and its scalability.
Finally in Section VII, we summarize our results and outline
future work.

II. RELATED WORK

In this section we cite several approaches for avoiding or
correcting inconsistent timestamps, applied either online or
postmortem. Network-based synchronization protocols aim at
synchronizing distributed clocks before reading them. The
clocks query the global time from reference clocks, which
are often organized in a hierarchy of servers. For instance,
NTP [6] uses widely accessible and already synchronized
primary time servers. Secondary time servers and clients
can query time information via both private networks and
the Internet. To reduce network traffic, the time servers are
accessed only at regular intervals to adjust the local clock.
Jumps are avoided by changing the drift (i.e., the rate at which
the offset changes over time) while leaving the actual time
unmodified. Unfortunately, varying network latencies limit the
accuracy of NTP to about one millisecond compared to a
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few microseconds required to guarantee the correct total event
order of event traces taken on clusters equipped with modern
interconnect technology.

Time differences among distributed clocks can be char-
acterized in terms of their relative offset and drift. In a
simple model assuming different but constant drifts, the
global time can be established by measuring offsets to a
designated master clock using Cristian’s probabilistic remote
clock reading technique [10]. After estimating the drift, the
local time can be mapped onto the global (i.e., master) time
via linear interpolation. Offset values among participating
clocks are measured either at program initialization [11] or
at initialization and finalization [12], and are subsequently
used as parameters of the linear correction function. So as
not to perturb the program, offset measurements in between
are usually avoided, although a recent approach proposes
periodic offset measurements during global synchronization
operations while limiting the effort required in each step by
resorting to indirect measurements across several hops [13].
While linear offset interpolation might prove satisfactory for
short runs (or interpolation intervals), measurement errors and
time-dependent drifts may create inaccuracies and violated
happened-before relations during longer runs [7]. Additionally,
repeated drift adjustments caused by NTP may impede lin-
ear interpolation, as they deliberately introduce non-constant
drifts.

If linear interpolation alone turns out to be inadequate to
achieve the desired level of accuracy, error estimation allows
the retroactive correction of clock values in event traces
after assessing synchronization errors among all distributed
clock pairs. First, difference functions among clock values are
calculated from the differences between clock values of receive
events and clock values of send events (plus the minimum
message latency). Second, a medial smoothing function can
be found and used to correct local clock values because for
each clock pair two difference functions exist. Regression
analysis and convex hull algorithms have been proposed
by Duda [14] to determine the smoothing function. Using
a minimal spanning tree algorithm, Jézéquel [15] adopted
Duda’s algorithm for arbitrary processor topologies. In addi-
tion, Hofmann [16] improved Duda’s algorithm using a simple
minimum/maximum strategy and further proposed that the
execution time should be divided into several intervals to com-
pensate for different clock drifts in long running applications.
Using a graph-theory algorithm to calculate the shortest paths,
Hofmann and Hilgers [17] simplified Jézéquel’s algorithm
for handling multiprocessor topologies. Biberstein et al. [18]
rewrote Hofmann’s and Hilgers’s algorithm for use on the Cell
BE architecture using a short and intelligible notation. Their
version solves the clock-condition problem only for short inter-
vals (i.e., without splitting into sub-intervals for handling non-
linear drifts of the physical clocks). Babaoglu and Drummond
[19], [20] have shown that clock synchronization is possible at
minimal cost if the application makes a full message exchange
between all processors at sufficiently short intervals. However,
jitter in message latency, nonlinear relations between message



latency and message length, and one-sided communication
topologies limit the usefulness of error estimation approaches.

In contrast, logical synchronization uses happened-before
relations among send and receive pairs to synchronize
distributed clocks. Lamport introduced a discrete logical
clock [21] with each clock being represented by a monoton-
ically increasing software counter. As local clocks are incre-
mented after every local event and the updated values are ex-
changed at synchronization points, happened-before relations
can be exploited to further validate and synchronize distributed
clocks. If a receive event appears before its corresponding
send event, that is, if a clock condition violation occurs, the
receive event is shifted forward in time according to the clock
value exchanged. As an enhancement of Lamport’s discrete
logical clock, Fidge [22], [23] and Mattern [24] proposed
a vector clock. In their scheme, each processor maintains a
vector representing all processor-local clocks. While the local
clock is advanced after each local event as before, the vector
is updated after receiving a message using an element-wise
maximum operation between the local vector and the remote
vector that has been sent along with the message.

Finally, Rabenseifner’s controlled logical clock (CLC) algo-
rithm [9], [25] , recently extended and parallelized by Becker
et al. [8], retroactively corrects clock condition violations
in event traces of message-passing applications by shifting
message events in time while trying to preserve the length
of intervals between local events. The algorithm restores
the clock condition using happened-before relations derived
from both point-to-point and collective MPI event semantics.
Starting from the parallel MPI version of the algorithm, this
paper describes its hybridization, retaining its good accuracy
and scalability characteristics.

III. CONTROLLED LOGICAL CLOCK

Because we focus on a timestamp synchronization method
to be used within the Scalasca trace-analysis framework, we
first describe the Scalasca event model as the algorithm’s
foundation. The information Scalasca records for an individual
event includes at least the timestamp, the location (e.g., the
process or thread) causing the event, and the event type.
Depending on the type, additional information may be sup-
plied. The event model distinguishes between programming-
model independent events, such as entering and exiting code
regions, and events related to MPI and OpenMP operations.
MPI-related events include events representing point-to-point
operations, such as sending and receiving messages, and an
event representing the completion of collective MPI opera-
tions. OpenMP-related events, which are fashioned according
to the POMP event model [26], include events that represent
the creation and termination of a team of threads, leaving
a parallel or barrier region, and acquiring or releasing lock
variables. A fork event indicates that the master thread creates
a team of threads (i.e., workers) and a join event record
indicates that the team of threads is terminated. In addition,
the collective OpenMP exit event indicates that the program

40

TABLE 1
EVENT SEQUENCES RECORDED FOR TYPICAL MPI AND OPENMP
OPERATIONS.

Operation name Event sequence

MPI
MPI_Send() (enter, send, exit)
MPI_Recv () (enter, receive, exit)

MPI_Allreduce () (enter, MPI collective exit)

for each participating process

OpenMP
parallel construct

(fork, enter, OpenMP collective exit, join)
for the participating master thread

(enter, OpenMP collective exit)

for each participating worker thread
(enter, OpenMP collective exit)

for each participating thread

(enter, lock-acquisition, exit)

(enter, lock-release, exit)
(lock-acquisition, enter, exit, lock-release)
(enter, exit)

Implicit and explicit barrier

omp_set_lock
omp_unset_lock
critical construct
atomic construct

leaves either a parallel or a barrier region. Furthermore, a lock-
acquisition event indicates that a lock variable is set, whereas
a lock-release event indicates that this variable is unset. Nested
parallelism and tasking is not yet supported in POMP, although
an extension for tasking is already in preparation [27]. Event
sequences recorded for typical MPI and OpenMP operations
are given in Table I. In preparation of its hybridization, we now
briefly recapitulate the basic principles of the CLC algorithm
in the remainder of this section, where we explain how it is
currently used to synchronize the timestamps of pure MPI
applications.

In general, clock errors may have both quantitative and
qualitative effects. The first category includes changing the
absolute position of an event in the trace or the distance be-
tween two consecutive events. As shown in a recent study [7],
the second category of effects, which manifests as a change of
the logical event order, are also very common as soon as an
application is traced for more than a few minutes. If an event e
happened before another event €', the happened-before relation
e — ¢’ between both events requires that their respective
timestamps C'(e) and C(e’) satisfy the clock condition [21]:

ey

The equation given above can be refined by requiring a tempo-
ral minimum distance (i.e., latency) between the two events —
if its amount is known. While the errors of single timestamps
are hard to assess, obvious violations of the clock condition
between events with a logical happened-before relation, such
as sending and receiving a message, can be easily detected and
offer a toehold to increase the fidelity of inter-process timings.
If the clock condition is violated for a send-receive event
pair, the receive event is corrected (i.e., moved forward in
time). To preserve the length of intervals between local events,
events following or immediately preceding the corrected event
are also adjusted. These adjustments are called forward and
backward amortization, respectively.

Figure 1 illustrates the different steps of the CLC algo-

Vee:e—e = Cle) <C(e).
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(a) Inconsistent event trace: Clock condition violation in point-to-point
communication pair.
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(b) Locally corrected event trace: The timestamp of the violating
receive event is advanced to restore the clock condition.
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(c) Forward-amortized event trace: Event E4 following the receive
event is adjusted to preserve the length of the interval between the
two events.
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(d) Backward-amortized event trace: Event E; preceding the receive
event is advanced to smooth the jump.

Fig. 1. Backward and forward amortization in the controlled logical clock
algorithm.

rithm using a simple example consisting of two processes
exchanging a single message. The subfigures show the time
lines of the two processes along with their send (S) or receive
(R) event, each of them enclosed by two other events (E;).
Figure 1(a) shows the initial event trace based on the measured
timestamps with insufficiently synchronized local clocks. It
exhibits a violation of the clock condition by having the
receive event appear earlier than the matching send event. To
restore the clock condition, R is moved forward in time to be
lmin ahead of S (Figure 1(b)), with l,,,;, being the minimum
message latency. Because the distance between R and Ej is
now too short, 4 is adjusted during the forward amortization
to preserve the length of the interval between the two events
(Figure 1(c)). However, the jump discontinuity introduced by
adjusting R affects not only events later than R but also
events earlier than R. This is corrected during the backward
amortization, which shifts Fs closer to the new position of R
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(Figure 1(d)). As can be seen in this example, the algorithm
only moves events forward in time.

Moreover, happened-before relations also exist among the
constituent events of collective MPI operations. The algorithm
considers a single collective message-passing operations as
being composed of multiple point-to-point operations, taking
the semantics of the different flavors of such operations into
account (e.g., I-to-N, N-to-1,...). For instance, let us consider
an N-to-1 operation such as gather where one root process
receives data from N other processes. Given that the root
process is not allowed to exit the operation before it has
received data from the last process to enter the operation, the
clock condition must be observed between the enter events of
all sending processes and the exit event of the receiving root
process. Because the algorithm synchronizes the timestamps
of concurrent events using happened-before relations, the
respective “receive” event is put forward in time whenever the
matching “send” event appears too late in the trace to satisfy
the clock condition. In reference to the fact that this method
is based on logical clocks, the send and receive event types
assigned during this mapping are called the logical event types
as opposed to the actual event types (e.g., enter, collective exit)
specified in the event trace. The logical event type can usually
be derived from the name of the MPI operation and the role
a process plays in it.

Although the CLC algorithm removes residual inconsisten-
cies (i.e., those left after applying linear offset interpolation) in
event traces of MPI applications postmortem, it is limited by
two factors. First, it does not account for direct violations of
shared-memory event semantics in the original trace. Although
rare, instances of such violations have been reported [7].
Second and more important, the algorithm does not preserve
happened-before relations in shared-memory operations, be-
cause the constituent events of such constructs are currently
treated as internal events not involved in happened-before
relations with events of other threads. Thus, the restoration
of message-passing semantics may introduce violations of
shared-memory event semantics even though they were not
violated in the original trace. For this reason, the current CLC
algorithm is not suitable for hybrid cluster applications that
use MPI and OpenMP in combination.

The potential implications of isolated corrections based on
MPI event semantics for the semantics of OpenMP events are
exemplified in Figure 2 using the time lines of three threads.
Shown is a violated message exchange between a send and
receive pair followed by the execution of an OpenMP parallel
region. Here, the execution of the OpenMP parallel region by
two threads is enclosed by a fork (#') and a join (J) event of
the master thread. Whereas in Figure 2(a) the point-to-point
event order is violated, the parallel regions appear clearly after
the worker has been forked. However, while in Figure 2(b)
the logical point-to-point event order is restored, now one
thread enters the parallel region before it has been forked,
which is impossible. In other words, the algorithm detects
and corrects the clock condition violation in the point-to-point
message exchange, while the subsequent forward amortization
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(a) Inconsistent point-to-point event semantics followed by consistent
shared-memory fork semantics: All threads enter the parallel region
after they have been forked.
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(b) The correction of inconsistent point-to-point event semantics may
lead to inconsistent shared-memory fork semantics: Here, one thread
enters the parallel region before it has been forked.

Fig. 2. Violations of OpenMP event semantics in the wake of restoring MPI
event semantics.

introduces a new violation as a result of the algorithm not
accounting for event semantics in shared-memory operations.

To address these limitations, Section IV describes the
algorithmic extensions required to restore and preserve not
only point-to-point and collective message-passing but also
shared-memory event semantics, which are relevant for hybrid
codes. Since rapidly increasing parallelism demands that this
correction scales to large numbers of processes and threads,
Section V shows how the hybrid version is parallelized and
integrated into the scalable Scalasca trace-analysis framework.

IV. EXTENSIONS FOR OPENMP

Like in the case of MPI, happened-before relations exist
among the constituent events of OpenMP regions (i.e., ex-
ecuted constructs). To enforce also these relations alongside
those implied by the MPI standard, we treat the events
involved as logical point-to-point communication events. Thus,
a happened-before relation between two events in an OpenMP
region is modeled as the exchange of a logical message
between the two events. Depending on the temporal depen-
dencies among the events characterizing an OpenMP region,
an event can be mapped either onto a logical send or onto a
logical receive event. Once those mappings are defined, our
earlier algorithmic framework [8] can essentially be reused.
This is why we do not repeat the formulas here again and,
instead, concentrate on the identification of happened-before
relations in OpenMP. Table II lists all OpenMP regions cur-
rently supported by our event model where we can identify
happened-before relations and divides them into groups with
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very similar logical communication patterns, which are de-
picted in Figure 3. Although not yet provided by our imple-
mentation, we also consider tasking, whose integration into our
event model is already in progress. Note that the algorithmic
extensions do neither cover thread migration between cores
nor shared-memory event semantics imposed by cluster-wide
OpenMP implementations (e.g., Intel Cluster OpenMP [28])
because in those cases additional communication may be used,
introducing further constraints which are currently ignored by
the algorithm.

1) Team creation and termination: Figure 3(a) shows the
time-line visualization of three threads executing a parallel
region. The master thread creates a team of threads (at fork
event F) whose members subsequently enter the parallel
region (at enter events F;). In such a situation, the master
thread sends a logical message to all worker threads. The fork
event of the master thread is considered a logical send event,
whereas all the enter events of the corresponding parallel
region, one from each worker in the team, are considered
logical receive events. After each thread left the parallel region
(at OpenMP collective exit events OX;), this team of threads
is terminated, as indicated by the join event (J) of the master
thread. Here, the master thread receives logical messages from
all worker threads. The join event (.J) of the master thread is
considered a logical receive event. All OpenMP collective exit
events (OX;) of the corresponding parallel region, one from
each worker in the team, are considered logical send events.

2) Barrier: OpenMP barrier constructs are similar to MPI
barriers and therefore adhere to the same execution semantics,
which require that no thread is allowed to exit a barrier
region before the last thread has entered it. Such a situation
is illustrated in Figure 3(b). All threads in the team are at
the same time sender and receiver. All enter events (F;) are
considered logical send events and all OpenMP collective
exit events (OX;) are considered logical receive events. This
situation shows up in explicit and implicit barrier regions.

3) Locking: Figure 3(c) visualizes two threads competing
for a lock variable. First, one thread acquires (LA;) and
releases (L R) the lock variable. Then, the other thread locks

TABLE II
CLASSIFICATION OF OPENMP REGIONS.

Category

Team creation
Team termination
Barrier

OpenMP region

begin of parallel region

end of parallel region

explicit barrier region

implicit barrier (if executed) at the end of
parallel region
loop region (i.e., for, do)
single region
workshare region
sections region

omp_set_lock

omp_unset_lock

critical region

task region

taskwait region

Locking

Tasking
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(a) Team creation and termination: The execution of a parallel region
is chronologically enclosed by fork and join events.
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(b) OpenMP barrier: A thread is allowed to exit a barrier region only
after the last thread has entered it.
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(c) OpenMP lock sequence: A thread can acquire a lock only after it
has been released — if it was acquired earlier.
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(d) OpenMP task sequence: A task can only be resumed after it has
been suspended.

Fig. 3. Happened-before relations in OpenMP regions visualized as arrows
representing logical messages.

(LAs) the same variable after the lock has been released by
the first thread. In such a situation, two different happened-
before relations exist. First, the thread represented by the
upper time line is allowed to release the lock only after it
has been acquired (LA; — LR). Since these two events
occur on the same time line, this relation is trivially enforced.
Second, the thread represented by the lower time line can
only acquire the lock once it has been released by the other
thread (LR — LAs). Given that a lock variable can be owned
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only by one thread at a time, the releasing thread sends a
logical message to the next thread acquiring the lock. The
lock-acquisition event is considered a logical receive event,
whereas the lock-release event of the thread releasing the lock
is considered a logical send event. Since at program start none
of the locks is occupied, the first thread acquiring a given lock
does not need to wait for a preceding lock-release event.

As Scalasca models the execution of critical constructs
with lock events, the above-mentioned happened-before re-
lations also exist in critical regions. Given that a critical
construct restricts the execution of a structured block to a
single thread at a time, a lock-acquisition event is recorded
before a thread enters the critical region, whereas a lock-
release event is recorded after the thread leaves the critical
region. Because the same unspecified name or a user-defined
name is used to identify a critical region, the event model
provides lock identifiers representing the name of a critical
region. In addition, similar happened-before relations are also
found in atomic and flush constructs, but the source-code
instrumentation applied by Scalasca does not allow events
inside these regions to be recorded [26], although this would
be necessary to determine when a thread enters or leaves
such a region. For instance, an atomic construct ensures that
a specific storage location is updated atomically. Similar to
critical constructs, it would be required to record when a thread
executes inside the atomic construct. However, the execution
of an atomic construct is restricted to statements that can be
calculated atomically, which prevents the insertion of tracing
calls. The flush directive, which does not have any code
attached to it, is even more restrictive in this regard. Since
we cannot record events inside such regions, these constructs
are currently ignored by the algorithm.

Given that our current event model does not provide event
attributes such as a sequence count indicating the logical
order of lock events, this order can only be derived from
the timestamps as they are recorded in the trace. Assuming
that on most systems the thread-local clocks within a team
are synchronized, these timestamps provide a reasonably re-
liable sequence indicator. However, as on some systems this
assumption cannot be maintained, the timestamp alone may
be insufficient to determine the correct precedence order of
lock events and their violation in the course of MPI-related
CLC corrections. Nevertheless, on all systems the algorithm
can preserve the event order as found in the original trace.
Hence, the original order of lock events is determined prior to
the synchronization and subsequently used when the roles of
logical senders and receivers are determined.

4) Tasking: Figure 3(d) shows the time-line visualization
of two threads executing an untied task. One thread creates a
task at the task-begin event (75) and subsequently suspends
this task at the task-suspend event (7)5). Afterward, a thread
different from the one that executed the task before it was
suspended resumes the task at the task-resume event (TR) and
finally terminates the task at the task-termination event (1'7).
Note that a task may be suspended at any point, not only at
implied scheduling points, although some compilers respect
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scheduling points even for untied tasks. The task-suspend
event (T)S) is considered a logical send event, whereas the
task-resume event (TR) is considered a logical receive event.
Note that this happened-before relation is naturally fulfilled
for tied tasks and does not demand any correction. Finally,
taskwait regions impose further happened-before relations (not
shown) between the exit events of the child tasks created by
the surrounding task region and the exit event of the taskwait
region, which can be handled accordingly.

V. HYBRID PARALLELIZATION

Scalasca, the performance analysis toolset for which our
algorithm has been primarily designed, uses event traces to
identify wait states that occur, for example, as a result of an
unevenly distributed workload and that may harm performance
especially at larger scales [5]. The basic analysis workflow
is depicted in Figure 4. To ensure scalability of the wait-
state search, the traces are scanned in parallel using as many
processors as have been used to execute the target application
itself. After loading the process-local traces into the potentially
distributed main memory of the machine, Scalasca traverses
them simultaneously while replaying the original communi-
cation recorded in the trace to exchange information relevant
to the search. To increase the accuracy of this analysis on
clusters without global clock, Scalasca applies the parallel
CLC algorithm after the traces have been loaded and before the
wait-state analysis takes place. To optimize the fidelity of the
correction, the timestamps first undergo a pre-synchronization
step, which performs linear offset interpolation based on offset
measurements taken during initialization and finalization of the
target application. As an alternative to the wait-state search,
the corrected traces can also be rewritten and visualized using
an third-party time-line browser.

Just like the wait-state analysis, the CLC algorithm requires
comparing events involved in the same communication opera-
tion, which is why it follows a similar parallelization strategy,
adopting the general idea of performing a parallel replay. Since
trace processing capabilities (i.e., processors and memory)
grow proportionally with the number of application processes,
we can achieve good scalability on large processor configu-
rations. During the replay, sending and receiving processes
exchange the information needed to synchronize the event
timestamps. However, different from the wait-state search,
which requires only a forward replay, the CLC algorithm
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performs the replay in both directions — forward and back-
ward. The backward replay, during which the roles of sender
and receiver are reversed, is needed because the backward
amortization requires knowledge of receiver timestamps on
the sender side. To make the parallel CLC implementation
applicable to realistic traces from hybrid codes, we

« cnabled the replay engine to deal with hybrid traces,

« added logic for the proper identification of logical senders
and receivers among OpenMP-related events, and

o facilitated the exchange of timestamps between the
threads responsible for these events as a prerequisite for
the synchronization.

The parallel CLC algorithm is, again like the wait-state
analysis, implemented on top of PEARL [29], a parallel library
that offers higher-level abstractions to read and analyze large
volumes of trace data including random access to individual
events, links between related events, functionality to transfer
and access remote events, and replay support. In the pure
MPI case, the usage model of the library assumes a one-to-
one mapping between analysis (i.e., correction) and target-
application processes. That is, for every process of the target
application, one correction process responsible for the trace
data of this application process is created. Data exchange
during the replay is accomplished via MPI. The basic idea
behind our new hybrid scheme was again to mirror the process
and thread structure of the target application and to make the
CLC implementation a hybrid program in its own right. To this
end, our trace-access library was extended such that the events
of every application thread including new OpenMP-specific
event types can be accessed and processed by a dedicated
analysis thread. Now, the one-to-one correspondence between
the executions of the target application and the CLC algorithm
exist on two levels: processes and threads. The resulting
parallel processing scheme becomes a hybrid parallel replay
of the target application. Note that the current usage model
is restricted in that it supports only MPI calls on the master
thread (i.e., MPI funneled mode) and only a fixed number of
threads per process.

To synchronize the timestamps, each thread scans the
event trace for clock-condition violations and applies forward
and backward amortization, as introduced earlier. During the
forward amortization, events belonging to OpenMP regions
may be classified as logical senders or receivers according
to their role in these regions. Events indicating the creation
or termination of a team of threads and events indicating the
acquisition and release of lock variables are easily classified
based on their event type as specified in the trace. For events
related to entering or leaving parallel or barrier regions, the
logical event type is derived from the region name (e.g.,
parallel, barrier) and the role (e.g., master thread) a
particular thread plays therein.

Furthermore, we defined functions to exchange and com-
pare timestamps between threads during the different replay
phases — mostly representing different flavors of reduction
operations. The required communication pattern depends on



the type of OpenMP regions whose event timestamps are to
be synchronized. As mentioned earlier, in the absence of more
precise order attributes the logical event order of lock events
is currently derived from their relative timings as recorded in
the trace, which may be inaccurate only in those rare cases
where the thread-local clocks within a team exhibit significant
errors. For this purpose, the chronological event order of lock
events is determined in advance and stored in a global data
structure before the actual replay is applied. During the replay
of lock operations, timestamps are exchanged between the
threads competing for the same lock — similar to the replay of
point-to-point messages.

VI. EXPERIMENTAL EVALUATION

In this section, we evaluate the accuracy and scalability of
the parallel controlled logical clock algorithm when applied to
traces of hybrid codes and also give evidence of the frequency
and the extent of clock condition violations in such traces.
We ran our experiments on the Nicole cluster at the Jiilich
Supercomputing Centre. This cluster consists of 32 compute
nodes, each with two quad-core AMD Opteron processors
running at 2.4 GHz. The individual compute nodes of the
Nicole cluster are linked with an Infiniband network. The
measured MPI inter-node latency was 4.5 us, the measured
MPI intra-node latency was 1.5 ps. Unless stated otherwise,
all numbers presented in this section represent the average
across at least three measurements.

As a first test case served the application PEPC, a parallel
tree-code for rapid computation of long-range Coulomb forces
in n-body particle systems [30]. In the course of this evaluation
study, the original parallel processing scheme, an MPI imple-
mentation of the Barnes-Hut tree algorithm [31] according
to the Warren-Salmon hashed oct-tree structure [32], was
enriched with shared-memory parallelism within the solver
and integrator parts. Applying a strong scaling strategy, a
fixed overall number of particles (i.e., 524288) with 100 solver
iterations was configured, resulting in an approximately ideal
speedup behavior [33]. In our test configurations, the runtime
was approximately 30, 15 or 7.5 min with 64, 128 or 256
threads. Given that tracing the full run would consume a
prohibitively large amount of storage space, selective tracing
was applied so that the solver and integrator parts were traced
only during iteration 50. This mimics the common practice
of tracing only pivotal points that warrant a more detailed
analysis.

A hybrid version of the Jacobi solver, which originally
comes along with the OpenMP Source Code Repository of the
Parallel Computing Group at the La Laguna University, was
used as a second test case [34]. This benchmark solves the
Poisson equation on a rectangular grid assuming uniform dis-
cretization in each direction and Dirichlet boundary conditions.
The original benchmark, a pure OpenMP implementation,
had been combined with MPI-based parallelism. Following
a strong scaling strategy, a fixed matrix size of 2000 x 2000
was configured. To emulate a run long enough so that drift
deviations may have a noticeable effect, we inserted sleep
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TABLE III
EXECUTION CONFIGURATIONS AND THE DISTRIBUTION OF REVERSED
MESSAGES IN THE ORIGINAL TRACE AND VIOLATED MESSAGES DETECTED
DURING THE TIMESTAMP SYNCHRONIZATION WITH RESPECT TO THE
PROGRAMMING-MODEL SEMANTICS THEY VIOLATE.

\ I PEPC I Jacobi \
# CPUs 64 | 128 | 256 32 64 | 128 256
# processes 16 32 64 16 32 64 128
# threads 4 4 4 2 2 2 2

[ Distribution of reversed messages in the original trace [%] |
MPI 100 | 100 | 100 100 | 100 | 100 100
OpenMP 0 0 0 0 0 0 0

[ Violated messages detected during synchronization [%] |
MPI 44 46 42 81 84 81 40
OpenMP 55 53 57 18 15 18 59

statements immediately before and after the main compu-
tational phase so that it was carried out ten minutes after
initialization and ten minutes before finalization, resulting in
a total execution time of roughly twenty minutes.

Table III lists the investigated execution configurations
along with the distribution of reversed logical messages with
respect to the programming model semantics they violate
(i.e., MPI or OpenMP). Apparently, in the original trace
only violations of MPI event semantics occurred. However, to
preserve the logical event order in the corrected trace, OpenMP
event semantics were temporarily violated and subsequently
restored by the hybrid version of the CLC algorithm. While
the pure MPI version that does not account for OpenMP event
semantics would leave these violations unnoticed, the hybrid
CLC algorithm recognizes such situations and restores the
correct order of OpenMP events in the synchronized event
trace. After applying the algorithm, the traces were free of
any clock-condition violations.
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Fig. 5. Percentage of (logical) MPI messages with the order of send and
receive events being reversed in the original trace.
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Fig. 6. Relative deviation of the event distance: Percentage of execution time
consumed by intervals with deviation above threshold

Moreover, Figure 5 shows the frequency of reversed mes-
sages as percentage of the total number of messages. Given
that none of the OpenMP event semantics was violated
in the original trace, the numbers only refer to point-to-
point messages and logical messages that can be derived
by mapping collective MPI communication onto point-to-
point communication. Although the graphs suggest that the
number of violations decreases as the number of processors
is increased, such a relationship was not generally confirmed
in other studies [8]. In the case of PEPC, the drop in the
overall runtime might offer an explanation though. The extent
of these clock condition violations can be assessed by the
average and maximum displacement errors (i.e., the time the
receive event appears earlier than the send event) of logical
message events in backward order, as seen in the original
trace. The PEPC traces exhibit an average error of 21.7us
and a maximum error of 531.0us, whereas the Jacobi exhibit
an average error of 3.5us and a maximum error of 98.0us.
The numbers demonstrate that clock-condition violations may
appear frequently and that individual violations can be large
in absolute terms.

To assess the collateral error inflicted on local timings
while applying the CLC algorithm, we determined the relative
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deviation of local interval lengths, considering two different
types of intervals:

o intervals between an event and the first event on the same
location, which is referred to as the event position, and

« intervals between adjacent thread-local events (i.e., in-
tervals between an event and its immediate successor),
which is referred to as the event distance.

For the Jacobi experiments only the middle section of the trace
between the sleep statements was considered. The maximum
relative deviation of the event position across all PEPC and
Jacobi measurements was negligible. The maximum absolute
deviation of the event position was 535.78 us for PEPC and
102.67 us for Jacobi, roughly corresponding to the respective
maximum displacement error observed. Moreover, Figure 6
shows the relative deviation of the event distance across
different numbers of processors for both test applications. Each
bar indicates the percentage of execution time consumed by
intervals in a certain error class. All numbers represent the
maximum across three measurements. It can be seen that
in spite of very small averages, deviations of occasionally
more than 100% are still possible, but the aggregate time
consumed by those deviations is very small and their influence
on performance analysis results will usually be negligible.

On identical configurations, the timestamp synchronization
was a factor of 2-3 slower than the equivalent uninstrumented
execution of PEPC, which we hope to optimize in future
versions of our implementation. To evaluate the scaling be-
havior of the hybrid synchronization method, Figure 7 shows
a comparison to the Scalasca wait-state analysis and the unin-
strumented PEPC solver. The numbers for each configuration
are normalized with respect to the execution time of PEPC in
the 64 thread configuration. The results demonstrate that the
parallel timestamp synchronization, the wait-state analysis, and
the execution of PEPC itself exhibit roughly equivalent scaling
behavior, which was to be expected due to the replay-based
nature of the two trace processing mechanisms.

VII. CONCLUSION

Event traces of parallel applications on clusters may suffer
from inaccurate timestamps in the absence of synchronized
clocks. As a consequence, the analysis of such traces may yield
wrong quantitative and qualitative results, among other effects
confusing the users of time-line visualizations with messages
flowing backward in time. Because linear offset interpolation

100%

W PEPC
 timestamp synchronization
wait-state analysis

80%

60%

time consumed [%]

128
#threads

b —
256

64

Fig. 7. Normalized execution time of the parallel timestamp synchronization
on Nicole.



can account for such deficiencies only for very short runs,
the CLC algorithm retroactively synchronizes timestamps in
event traces and restores the correct logical event order. It does
so in a scalable manner by replaying the traces in parallel.
In this paper, we extended the CLC algorithm, which was
previously designed for pure MPI applications, to also cover
hybrid applications that use MPI and OpenMP in combination.
The major contribution was the identification of happened-
before relations in OpenMP to be taken into account by the
algorithm and the hybridization of the parallel replay mech-
anism. Finally, the hybrid CLC version was integrated into
the Scalasca performance-analysis toolset. Our experimental
evaluation showed that the good accuracy and scalability
characteristics of the pure MPI version were retained in the
hybrid version.

In the future, we plan to adapt our algorithm to more
advanced OpenMP features such as nested parallelism and
tasking as those features are successively integrated into the
POMP event model used by Scalasca. Moreover, we want
to increase the accuracy of the CLC algorithm further by
improving the preceding pre-synchronization via linear clock-
offset interpolation, which currently rests on only two offset
measurements taken during program initialization and final-
ization. With low-overhead offset measurements periodically
taken during globally synchronizing operations, as introduced
by Doleschal et al. [13], the linear interpolation can better
account for drift deviations, reducing the number of violations
our algorithm needs to correct in the first place and further
improving the overall quality of the event timestamps.
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