
Trace-Based Parallel Performance Overhead
Compensation

Felix Wolf1, Allen D. Malony2, Sameer Shende2, and Alan Morris2

1 Innovative Computing Laboratory,
University of Tennessee
fwolf@cs.utk.edu

2 Department of Computer and Information Science,
University of Oregon

{malony,morris,sameer}@cs.uoregon.edu

Abstract. Tracing parallel programs to observe their performance introduces in-
trusion as the result of trace measurement overhead. If post-mortem trace analy-
sis does not compensate for the overhead, the intrusion willlead to errors in the
performance results. We show that measurement overhead canbe accounted for
during trace analysis and intrusion modeled and removed. Algorithms developed
in our earlier work [5] are reimplemented in a more robust andmodern tool,KO-
JAK [12], allowing them to be applied in large-scale parallel programs. The ability
to reduce trace measurement error is demonstrated for a Monte-Carlo simulation
based on a master/worker scheme. As an additional result, wevisualize how local
perturbation propagates across process boundaries and alters the behavioral char-
acteristics of non-local processes.

Keywords: Performance measurement, analysis, parallel computing, tracing, mes-
sage passing, overhead compensation.

1 Introduction

Trace-based measurement is used to observe the performanceof a parallel program
when one wants to see the interoperation of multiple threadsor processes of execution,
as it is recorded in a time-sequence trace of events. Any performance measurement,
tracing included, will introduceoverhead during program execution due to extra code
being executed and hardware resources (processor, memory,network) consumed. When
performance overhead affects the program execution, we speak of performance (mea-
surement) intrusion. Performance intrusion, no matter how small, can result inperfor-
mance perturbation [6] where the program’s measured performance behavior is “differ-
ent” from its unmeasured performance. Whereas performanceperturbation is difficult to
assess, performance intrusion can be quantified by several metrics, the most important
of which is dilation in program execution time. This type of intrusion is often reported
as a percentage slowdown of total execution time, but the intrusion effects themselves
will be distributed throughout the performance results. Inthe case of tracing, we will
also see performance error due to intrusion (i.e., performance perturbation) in the tim-
ings of the interdependent events between the processes.

Of course, we cannot compare the measured parallel execution with the “real” par-
allel execution to determine the intrusion error because wedo not have any information
about what the execution would be like without instrumentation. All we know is that
there is measurement overhead included in the trace data andthat this overhead may
have intruded on the parallel performance in such a way as to cause misleading per-
formance effects. For tracing, the overhead introduced with each event measurement
includes the creation of an event record and writing it to a trace buffer. If we can de-
termine the overhead size, it may be possible to subtract this overhead for each event
individually and generate a second “overhead-free” trace file. We must be careful in do-
ing so not to violate thehappened-before relation [1] that exists between interdependent
process events.

While performance intrusion can alter program execution and, thus, perceived per-
formance, parallel performance tools rarely attempt to adjust the performance measure-
ments to compensate for the intrusion. Recently, we have shown overhead compensation
is possible to do in parallel profiling [7, 8]. However, profiling summarizes performance
data and, thus, loses the performance detail captured in traces. Also, because overhead
compensation must be done online, certain forms of performance perturbation cannot
be resolved during profiling. With trace-based overhead compensation, we have the op-
portunity of preserving performance detail while dealing with more complex intrusion
effects. In our earlier work, we designed the performance models necessary for trace
perturbation analysis [5, 10]. However, our implementation of these were for research
purposes only. In this paper, we update our algorithms and build them into a robust trace
measurement and analysis system.

Section 2 provides a brief background on performance intrusion and perturbation
analysis. Our algorithms for overhead compensation are presented in Section 3. Sec-
tion 4 outlines the implementation of these algorithms in the trace analysis tool. We
demonstrate the techniques on a set of validation experiments. Section 5 describes the
experimentation environment, the testcases, and the traceanalysis results. Conclusions
and future work are given in Section 6.

2 Tracing, Intrusion, and Perturbation

Events are actions that occur during program execution. Typical events includeinter-
val events that are characterized by a pair of actions markingentry andexit points, and
atomic events that occur at a single place or time. Tools insert measurement code to
track the performance of a parallel program as made visible by the instrumented events.
Tracing collects event records in anevent trace. Each record describes an event, when
it occurred, and any associated data. From this information, we can see the patterns
of execution behavior that contribute to the performance. The measurement intrusion in
event traces displays itself as alterations of event timingand order. The goal of overhead
compensation in trace analysis is to remove the time intrusion due to measurement over-
head and fix its effects on event ordering, in hopes of recovering the actual performance
behavior.

For discussion purposes, let us consider a message passing program. If we look at
the impact of overhead on events local to a process, there is atime dilation (slowing

down) of when events occur, resulting in later event time stamps compared to an actual
event trace. Because the events occur locally, this dilation can be directly determined
and corrected. However, every message communication linksthe process event streams
and the evolution of process times become dependent at thesepoints. The result of
measurement overhead affects the interdependent orderingand timing of these events
compared to actual. The parallel execution semantics, as reflected in the message com-
munication operations and how the message data is used, determines process depen-
dencies and message event ordering relationships, but onlypartially. Non-deterministic
execution allows for alternative message event orderings,different from observed. It is
important to understand that the only information we have about process interdepen-
dencies are the message communication events and when they occur in themeasured
execution. If our trace analysis does not have enough information to determine if a dif-
ferent (reconstructed) event order is valid, it must enforce thesame ordering of message
communication events in the “approximated” execution as inthe measured execution.

In contrast with our techniques for parallel profile overhead compensation, trace
overhead analysis can be thought of as a trace-driven replayof the execution where
we can apply both event and timing models to correct intrusion effects. There is also
opportunity in trace analysis to utilize measurements of interprocess events to improve
the accuracy of the approximated execution, such as with computed message commu-
nication times. For the work reported here, it is important to remember that the goal of
tracing is to observe detailed temporal performance. Thus,we hope that the overhead
analysis will result in more accurate performance characterization both as it has to do
with overall performance (e.g., more accurate total execution times) as well as local
performance details (e.g., waiting times for individual message communications).

Other research work has sought to characterize measurementoverhead as a way to
bound intrusion effects or to control the degree of intrusion during execution. For in-
stance, the work by Kranzlmüller [4] quantifies the overhead of MPI monitors using the
benchmarking suite SKaMPI, and Fagot’s work [2] assesses systematically the overhead
of parallel program tracing. The work by Hollingsworth and Miller [3] demonstrates the
use of measurement cost models, both predicted and observed, to control intrusion at
runtime via measurement throttling and instrumentation disabling. Their work primar-
ily deals with profiling-based measurement.

3 Overhead Compensation Algorithms

The trace of a parallel program’s execution provides time-sequenced information about
the events that occurred and when they occurred. To compensate for the overhead dur-
ing measurement, we want to characterize the amount of overhead (O) for each event
measurement, and subtract that overhead from the event timings. For events that are
local to a process (we will call theseindependent events), this overhead compensation
can be done directly. For events that are involved in dependent execution, we must take
care not to violate happened-before time order relationships [1].

The algorithms we present below are based on our earlier work[5, 10], as targeted
here to MPI message passing parallel programs. We make several assumptions in these
algorithms:

– Only MPI Send() andMPI Recv() are used for point-to-point communication.
– MPI Send() is always non-blocking.
– Only n-to-n and1-to-n collective operations are considered.
– The per-event measurement overhead (O) is constant.
– The buffer copy time is a function of message sizeC(size(msg)).

Clearly, the valuesC andO are platform specific and must be measured. ForC, we
run experiments with different message sizes and build a table of per byte copy times
to be queried during analysis. ForO, we run an experiment whereN trace events are
generated immediately following each other. The amount of time consumed is then
divided byN to giveO.

Based on the assumptions above, all dependent execution is due to message com-
munication. Point-to-point (P2P) communication involves only the sender and receiver.
The dependencies in collective communication are more interesting. While it is possi-
ble to logically reduce collective communication toP2P communication, doing so may
restrict the analysis from applying what is known about the collective execution seman-
tics.

3.1 Independent Events

Independent events are events that do not directly dependent on communication. In
other words, in our environment, they are not communicationevents. Consider theith
event on a process,eventi. We use the notationeventi

m to denote themeasured time
stamp of the event andeventi

a to denote theapproximated time stamp of the event after
trace analysis. The trace analysis moves forward in the trace for each process, comput-
ing the approximated time stamp of the next event. Thus, at any point in time during the
analysis, we look to see which immediate next event on each process can be processed
next.

Let us assumeeventi−1
a has been computed and the next event,eventi is not a com-

munication event. The trace analysis can determineeventi
a by:

eventi
a = eventi−1

a + (eventi
m − eventi−1

m) − O (1)

Effectively, we keep the execution time between the two events,eventi
m − eventi−1

m , and
subtract the overhead. To this value we then add the approximated time stamp of the
predecessor event,eventi−1

a .

3.2 Dependent Events

What happens if the event is a communicaton event? Here is where things get in-
teresting. Let us focus onP2P communication first. There are six events to consider:
enter.send, send, exit.send, enter.recv, recv, andexit.recv. Among these, onlyrecv di-
rectly depends on communication. Often instrumentation ofmessage communication
is done using an interposition library, such as in theMPI profiling interface,PMPI [9].
Here, the time stamps of thesend andenter.send events will likely differ only by a very
small amount. The same is true forrecv andexit.recv.

There are two cases in the measured execution to consider fora particularP2P com-
munication:

(m.1) enter.recvm ≤ exit.sendm

(m.2) enter.recvm > exit.sendm

It should be understood that the send and receive events are taking place on two dif-
ferent processes. Condition (m.1) means that there is a temporal overlap between the
MPI Send() and theMPI Recv() operation. Condition (m.2), in contrast, means that
there is a gap between the two.

(m.1) Communication time can be measured.If enter.recvm occurs beforeexit.sendm,
we assume that the receiver can begin processing the messageas soon as it is delivered.
As a result, we can calculate the actual communication time from the measured trace:

Commm = recvm − sendm (2)

This is important since the measured communication time is the most accurate represen-
tation of communication performance. Two cases result for the approximated execution:

(a.1) senda +Commm > enter.recva

(a.2) senda +Commm ≤ enter.recva

In the first approximation case, the entry to the receive occurs before the communication
completes, meaning that the receiver has to wait. Thus, the approximated receive time
can be determined by:

recva = senda +Commm (3)

In the second case, the receive occurs after the message has already been delivered and
supposedly is present at the receiving process. All that is left to do is for the receiver to
copy the message into the receive buffer:

recva = enter.recva +C(size(msg))∗ size(msg) (4)

Again, in our experiments, we use a lookup table to determineC for difference message
sizes.

(m.2) Communication time cannot be measured.If the receive operation begins
after the send operation has finished, we cannot use the tracemeasurement directly
to compute the message communication time. An upper bound approximation on the
communication time still comes from the communication measurement:

Commupper
a = recvm − sendm (5)

However, this time may include time a message spends sittingat the receiver before the
receive begins. A lower bound approximation effectively assumes that the transmission

time through the communications network is zero. In this case, we need to only account
for the message copy time both at the sender and at the receiver:

Commlower
a = 2 ∗ C(size(msg))∗ size(msg) (6)

Since the start times of the send and the receive operation might be significantly pulled
apart in the approximated execution, there is no guarantee that the lower-bound and the
upper-bound communication times together give a valid timeinterval for the approxi-
mated receive event, that is, the following condition mightbe violated:

recva > enter.recva (7)

This consistency requirement leads to the stipulation of a minimum communication
time that has to be observed in both cases.

Commmin = (enter.recva − senda)+ (C(size(msg))∗ size(msg)) (8)

Now, both the lower-bound and the upper bound communicationtime need to be mod-
ified not to fall below the minimum, similar to what we did earlier in case (m.1 / a.2).

Commlower
a = max(2∗C(size(msg))∗ size(msg),Commmin) (9)

Commupper
a = max(recvm − sendm,Commmin) (10)

Finally, the bounds for the approximated receive time are:

senda +Commlower
a ≤ recva ≤ senda +Commupper

a (11)

3.3 Collective Communication

For our work in this paper, we also considern-to-n and 1-to-n collective communi-
cation operations. For any collective communication, we can transform the operation
to point-to-point communication and then apply the formulas above to perform over-
head compensation. However, it is not so easy to translate collective communication
operations into theirP2P equivalents. Also, collective communication has additional
semantics that must still be enforced when processing the collective events. These se-
mantics can be used to build overhead compensation algorithms specific to collective
operations.

n-to-n. Considern-to-n collective communication. There are two collective eventsof
interest for each process:enter andexit. The approximatedenter time stamp,enteri

a,
is determined for each processi based on the algorithm for a independent event. How-
ever,exit i

a is dependent on when the collective synchronization occurs. Let j be the
process with the latest measured entry event,enter j

m. Letk be the process with the latest
approximated entry event,enterk

a. Let l be the process with the earliest measured exit
event,exit l

m. Becausen-to-n collective operations enforce collective synchronization,
we could assumeexita is computed to be the same for all processes:

exit i
a = enterk

a + (exit l
m − enter j

m) (12)

Here,exit l
m−enter j

m is a measurement (from the trace) of the time to synchronize,once
all processes have entered the collective communication. However, we can also measure
this synchronization time for each process individually:

exit i
a = enterk

a + (exit i
m − enter j

m) (13)

1-to-n. In the case of1-to-n collective communication, the translation to aP2P equiva-
lent form will work fine for approximation purposes. The one sender (root) process has
the eventsenter.send andexit.send. The multiple receivers each have eventsenter.recv
andexit.recv. For each send-receiver pair, we translate the events as follows:

send := enter.send
recv := exit.recv

We computesize(msg) as the amount of data received by receiver from root.
Note that the actual communication time cannot be measured because it is not

known which fraction of the send operation was performed on behalf of a particular
receiver. Therefore, we essentially give an upper-bound approximation. Plus, as col-
lective communication is often implemented in a tree-like fashion, receivers may be
senders as well. We do not take this into consideration.

4 Implementation

We validated our model using a prototype implementation within the KOJAK perfor-
mance evaluation system [12].KOJAK is a suite of performance tools that collect and
analyze trace data from parallel programs includingMPI applications. Event traces are
generated automatically at runtime using a combination of source code annotations or
compiler-supported instrumentation and hardware counters. The analysis component
uses pattern recognition to convert the traces into information about performance bot-
tlenecks relevant to developers.

Before executing the application, it is linked to a tracing library responsible for
generating the trace file at runtime. The trace files are written in theEPILOG format.
Overhead-intensive activities performed by the library tosupport trace-file generation,
such as offset measurements among local clocks for a later time synchronization or file
IO operations to flush the memory buffer upon overflow, are enclosed by special records
so that the compensation filter can account for these overheads. After the application
has terminated, an off-line analyzer scans the resulting trace files for execution patterns,
classifies them by behavior type, and quantifies their impacton the overall performance.
The results can be viewed in aGUI that shows performance problems broken down by
call path and process or thread (see Figure 2).

At the core of the analyzer is a library calledEARL [13] readingEPILOG traces and
providing abstractions that simplify the task of detectingpatterns in the event stream.

These abstractions include execution state information, such as the progress of collec-
tive operations at the time of a given event, and links between related events that allow,
for example, the analyzer to find the send event to a given receive event. Another im-
portant feature isEARL’s ability to access events randomly by their relative position in
the trace file.

Because of its convenient model to access and process trace information,EARL was
chosen to implement the compensation filter. The filter consists of three parts: (i) a com-
ponent to measure platform-specific quantities, such as theaverage per-event overhead
and the memory bandwidth needed to compute the buffer copy time, (ii) a queuing sys-
tem to reorder the events in accordance with the approximated time stamps, and (iii)
the actual compensation engine to execute the algorithms described earlier in Section
3. To accommodate cache effects, the memory bandwidth is measured for buffers of
varying size. To improve scalability, the queuing systems maintains only a finite win-
dow of time stamps, events whose final position within the approximated trace can be
determined and whose time stamps are no longer needed to approximate subsequent
events are written to the approximated trace.

5 Experimental Results

To illustrate the effectiveness of our strategy, we examinea parallelMPI application that
computes the value ofπ using a Monte-Carlo integration algorithm, which calculates
the area under the circle function curve from 0 to 1. The program comprises of a master
(or server) task that generates work packets with a set of random numbers. The master
task waits for a request from any worker and sends a chunk of randomly generated
numbers to it. For each pair of numbers that is given to a particular worker, it finds
out whether the pair of Cartesian coordinates represented by the number is inside or
outside the circle. Thus, the workers collectively estimate the value ofπ iteratively until
it is within a given error range.

We executed the application in two modes: uninstrumented and instrumented. The
instrumentation was applied to all user functions andMPI functions to generate anEPI-
LOG trace file during execution. The number of processors was varied between 2 and
32 on a 4-way Intel Pentium III Xeon 550 MHz Linux cluster with8 nodes. We ran
the application 5 times under each configuration and took theshortest run as our rep-
resentative. The time stamps in the trace files were initially collected using theRDTSC

timer and later off-line synchronized with process 0 using linear interpolation between
two offset measurements to compensate for different clock drifts among local clocks.
For each measured trace file, two approximated trace files were generated, the first one
using lower-bound approximation, the second one using upper-bound approximation.
The results are shown in Figure 1.

The main fraction of the instrumentation overhead results from a small function
namedget coords() that is frequently called by worker processes. Since numberof
invocations is proportional to the amount of work, the amount of intrusion declines
as the number of worker increases. It can be seen that the execution times generated
by both approximations come close to the uninstrumented time. When the dilation of
execution time introduced by the instrumentation is high, our approximation proves

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of processes

Instrumented
Approx. (lower bound)
Approx. (upper bound)

Uninstrumented

Fig. 1. Measured and approximated execution times for Monte-Carloapplication.

to be most effective in terms of the percentage of overhead removed. Unfortunately,
however, the lower-bound compensation is still too pessimistic in that it remains con-
sistently above the uninstrumented execution. Reasons forthis might be found in inac-
curate measurements of platform constants and in simplifiedassumptions made by the
model itself.

In Figure 1, we only investigate execution timeslow down. The actual strength of
our approach, however, is that the approximated event traces allow us to study the per-
turbation, that is, the qualitative change in program behavior caused by the overhead.
Since interprocess communication can propagate instrumentation overhead across dif-
ferent processes, perturbation effects may be observed at aprocess that actually does
not produce significant overhead itself. To examine qualitative perturbation effects in
more detail, we appliedKOJAK’s pattern analyzerEXPERT to the measured and the ap-
proximated trace file. The two results have been subtracted usingKOJAK’ S performance
algebra utility [11] to study the overhead composition in detail. The results are shown
in Figure 2 displayed in theKOJAK GUI.

All numbers represent percentages of the difference in the execution time between
measured and approximated execution. The left pane shows the overall difference bro-
ken down by behavior type for the entire program and all processes. It can be seen
that the majority (63 %) of the overhead is non-communication (i.e., metricExecution
expanded). The non-communication overhead has been found to be a direct effect of
the tracing library’s operation (i.e., per-event overheadand flushing the memory buffer)
and is almost exclusively caused by workers. On the other hand, a significant fraction
(28 %) of the total overhead is waiting time within theLate Sender pattern, which de-
scribes a receiver waiting for a message that has not been sent yet. In contrast to our
previous finding, this indirect effect of perturbation can be nearly exclusively (80 %)
attributed to the server.

Figure 3(a) shows the measured execution of one iteration inour Monte-Carlo ex-
ample with four processes in a time-line diagram. The finely striped sections represent

Fig. 2.Composition of overhead for 4 processors.

workers processing a chunk of random numbers. The black stripes indicate calls to
get coords(), the function mainly responsible for intrusion. At the bottom, the master
process (process 3) performs three send operations - one foreach of the three workers,
after which it starts waiting in a receive call for response.The wait state lasts until the
end of the collective call performed by all workers to determine the progress of the
computation.

Figure 3(b), in contrast, shows about the same amount of execution time of the
lower-bound approximation. The iteration on the left finishes significantly earlier. Most
notable is, however, that as a result of the reduced overheadvisible on the worker time
lines, the wait state found on the master time line became significantly smaller, whereas
the preceding send operations remained about the same. Thus, our example demon-
strates that local perturbation effects can propagate across process boundaries and sig-
nificantly distort the performance behavior of non-local processes.

6 Conclusion

Most parallel performance measurement tools ignore the overhead incurred by their use.
Tool developers attempt to build the measurement system as efficiently as possible, but
do not attempt to quantify the intrusion other than as a percentage slowdown in execu-
tion time. Our earlier work on overhead compensation in parallel profiling showed that
the intrusion effects on the performance of events local to aprocess can be corrected [7]
and it also modeled how local overheads affected performance delay across the compu-
tation [8]. However, parallel profiling only provides performance summary statistics. In
order to see execution detail, tracing measurements must beused. This papers concerns
the compensation of overhead during trace analysis.

(a) Measured execution.

(b) Approximated execution.

Fig. 3. VAMPIR time-line diagrams of measured and approximated execution.

The goal of trace analysis is to detect performance patternsand identify perfor-
mance problems associated with certain patterns. It is important then that the timing
properties of the trace data be as accurate as possible. Overhead can introduce intrusion
that alters event timing structure and order, causing traceanalysis to report performance
problems where none are present in the “actual” execution, or to even mask performance
problems that might otherwise appear.

The algorithms we designed and re-engineered inKOJAK can remove measurement
overhead from a parallel trace. In doing so, we contend the performance properties [14]
captured in the transformed trace data will be more representative of the performance
behavior in a uninstrumented execution. The experiments presented here give powerful
evidence to this conclusion. The Kojak analysis of the master-worker test case shows
clearly the better performance problem identification as a result of overhead compensa-
tion. Figure 3 gives visual evidence to the improvement in detailed event time relations.

It is important to understand that we do not claim the compensated trace resulting
from trace analysis is exactly the same as the trace of an uninstrumented execution, if
that trace could be obtained without measurement overhead.It is even difficult to make
quantitative statements about the bounds on analysis error. Indeed, theperformance
uncertainty principle [6] implies that the accuracy of performance data is inversely
correlated with the degree of performance instrumentation. Our goal is to improve the
tradeoff, that is, to improve the accuracy of the performance data through more intel-
ligent trace analysis. What we are saying in this paper is that the performance results
produced by applying our algorithms for trace-based overhead compensation will be
more accurate that performance results produced without compensation. In addition,

we are providing this overhead compensation capability in state-of-the-art tracing tools
that are being distributed to the parallel computing community.

7 Acknowledgements

This research is supported at the University of Oregon by theU.S. Department of En-
ergy (DOE), Office of Science contract DE-FG02-05ER25680. At the University of
Tennessee, this research is supported by the U.S. Department of Energy under Grants
DE-FG02-01ER25510 and DE-FC02-01ER25490.

References

1. L. Lamport, “Time, Clocks and the Ordering of Events in a Distributed System,”CACM,
21(7), pp. 558-565 (July 1978).

2. A. Fagot and J. de Kergommeaux, “Systems Assessment of theOverhead of Tracing Parallel
Programs,”Euromicro Workshop on Parallel and Distributed Processing, pp. 179–186, 1996.

3. J. Hollingsworth and B. Miller, “An Adaptive Cost System for Parallel Program Instrumen-
tation,” Euro-Par Conference, Volume I, pp. 88–97, August 1996.

4. D. Kranzlmüller, R. Reussner, and C. Schaubschläger, “Monitor Overhead Measurement
with SKaMPI,” EuroPVM/MPI Conference, LNCS 1697, pp. 43–50, 1999.

5. A. Malony, “Event Based Performance Perturbation: A CaseStudy,” Principles and Prac-
tices of Parallel Programming (PPoPP), pp. 201–212, April 1991.

6. A. Malony, “Performance Observability,” Ph.D. thesis, University of Illinois, Urbana-
Champaign, 1991.

7. A. Malony and S. Shende, “Overhead Compensation in Performance Profiling,”Euro-Par
Conference, LNCS 3149, Springer, pp. 119–132, 2004.

8. A. Malony and S. Shende, “Overhead Compensation in Parallel Performance Profiling,”Par-
allel Processing Letters, to be pubished, 2005.

9. Message Passing Interface Forum. MPI: A Message Passing Interface Standard, Chapter 8,
Profiling Interface, Juni 1995. http://www.mpi-forum.org.

10. S. Sarukkai and A. Malony, “Perturbation Analysis of High-Level Instrumentation for SPMD
Programs,”Principles and Practices of Parallel Programming (PPoPP), pp. 44–53, May
1993.

11. F. Song, F. Wolf, N. Bhatia, J. Dongarra, and S. Moore. An Algebra for Cross-Experiment
Performance Analysis. InProc. of the International Conference on Parallel Processing
(ICPP), Montreal, Canada, August 2004.

12. F. Wolf and B. Mohr. Automatic performance analysis of hybrid MPI/OpenMP applications.
Journal of Systems Architecture, 49(10-11):421–439, 2003. Special Issue “Evolutions in
parallel distributed and network-based processing”.

13. F. Wolf. EARL - API Documentation. Technical Report ICL-UT-04-03, University of Ten-
nessee, Innovative Computing Laboratory, October 2004.

14. F. Wolf and B. Mohr. Specifying Performance Properties of Parallel Applications Using
Compund Events.Parallel and Distributed Computing Practices, 4(3), September 2001.
Special Issue on Monitoring Systems and Tool Interoperability.

