Trace-Based Parallel Performance Overhead
Compensation

Felix Wolf%, Allen D. Malony’, Sameer Shendgand Alan Morrig

1 Innovative Computing Laboratory,
University of Tennessee
fwol f @s. utk. edu

2 Department of Computer and Information Science,
University of Oregon
{mal ony, norris, sameer }@s. uor egon. edu

Abstract. Tracing parallel programs to observe their performanaedéhices in-
trusion as the result of trace measurement overhead. Hrpogem trace analy-
sis does not compensate for the overhead, the intrusioread to errors in the
performance results. We show that measurement overhedgecaccounted for
during trace analysis and intrusion modeled and removegbr&Rhms developed
in our earlier work [5] are reimplemented in a more robust enudiern toolko-
JAK [12], allowing them to be applied in large-scale paralleigrams. The ability
to reduce trace measurement error is demonstrated for aeMeento simulation
based on a master/worker scheme. As an additional resultiswalize how local
perturbation propagates across process boundaries arslthk behavioral char-
acteristics of non-local processes.

Keywords: Performance measurement, analysis, parallel computaang, mes-
sage passing, overhead compensation.

1 Introduction

Trace-based measurement is used to observe the perforrabacearallel program
when one wants to see the interoperation of multiple threagsocesses of execution,
as it is recorded in a time-sequence trace of events. Anypeence measurement,
tracing included, will introduceverhead during program execution due to extra code
being executed and hardware resources (processor, maeratwyprk) consumed. When
performance overhead affects the program execution, waekspiger formance (mea-
surement) intrusion. Performance intrusion, no matter how small, can resyenfior-
mance perturbation [6] where the program’s measured performance behavioifiefd
ent” from its unmeasured performance. Whereas perfornjaerterbation is difficult to
assess, performance intrusion can be quantified by sevetets) the most important
of which is dilation in program execution time. This type ofrusion is often reported
as a percentage slowdown of total execution time, but thasitn effects themselves
will be distributed throughout the performance resultsthia case of tracing, we will
also see performance error due to intrusion (i.e., perfao@@erturbation) in the tim-
ings of the interdependent events between the processes.

Of course, we cannot compare the measured parallel exaauitio the “real” par-
allel execution to determine the intrusion error becausdaeveot have any information
about what the execution would be like without instrumeatatAll we know is that
there is measurement overhead included in the trace datthahthis overhead may
have intruded on the parallel performance in such a way aausecmisleading per-
formance effects. For tracing, the overhead introduced @éch event measurement
includes the creation of an event record and writing it toagdrbuffer. If we can de-
termine the overhead size, it may be possible to subtreztierhead for each event
individually and generate a second “overhead-free” trdeeWife must be careful in do-
ing so not to violate thbappened-beforerelation [1] that exists between interdependent
process events.

While performance intrusion can alter program executiah #mus, perceived per-
formance, parallel performance tools rarely attempt tastdhe performance measure-
ments to compensate for the intrusion. Recently, we hawersbwerhead compensation
is possible to do in parallel profiling [7, 8]. However, profd summarizes performance
data and, thus, loses the performance detail captureddestrélso, because overhead
compensation must be done online, certain forms of perfoom@erturbation cannot
be resolved during profiling. With trace-based overheadpmneation, we have the op-
portunity of preserving performance detail while dealingwmore complex intrusion
effects. In our earlier work, we designed the performancdetwonecessary for trace
perturbation analysis [5, 10]. However, our implementatip these were for research
purposes only. In this paper, we update our algorithms aid them into a robust trace
measurement and analysis system.

Section 2 provides a brief background on performance iitruand perturbation
analysis. Our algorithms for overhead compensation areepted in Section 3. Sec-
tion 4 outlines the implementation of these algorithms ia ttace analysis tool. We
demonstrate the techniques on a set of validation expetéan®action 5 describes the
experimentation environment, the testcases, and thedraagsis results. Conclusions
and future work are given in Section 6.

2 Tracing, Intrusion, and Perturbation

Events are actions that occur during program execution. Typicah&vincluddnter-
val eventsthat are characterized by a pair of actions marldntgy andexit points, and
atomic events that occur at a single place or time. Tools insert measuregae to
track the performance of a parallel program as made visiptadinstrumented events.
Tracing collects event records in avent trace. Each record describes an event, when
it occurred, and any associated data. From this informati@ncan see the patterns
of execution behavior that contribute to the performanbte. measurement intrusion in
eventtraces displays itself as alterations of event tirmmdjorder. The goal of overhead
compensation in trace analysis is to remove the time irdrugiie to measurement over-
head and fix its effects on event ordering, in hopes of redogdhe actual performance
behavior.

For discussion purposes, let us consider a message passgrap. If we look at
the impact of overhead on events local to a process, therdinseadilation (slowing

down) of when events occur, resulting in later event timenpacompared to an actual
event trace. Because the events occur locally, this dilatam be directly determined
and corrected. However, every message communicationtlirekgrocess event streams
and the evolution of process times become dependent at flodses. The result of
measurement overhead affects the interdependent ordarohgiming of these events
compared to actual. The parallel execution semantics flested in the message com-
munication operations and how the message data is usedmilets process depen-
dencies and message event ordering relationships, buparifally. Non-deterministic
execution allows for alternative message event orderitiffsyent from observed. It is
important to understand that the only information we haveualprocess interdepen-
dencies are the message communication events and whendtwayio themeasured
execution. If our trace analysis does not have enough irdtiom to determine if a dif-
ferent (reconstructed) event order is valid, it must erddhesame ordering of message
communication events in the “approximated” execution akénmeasured execution.

In contrast with our techniques for parallel profile ovetheampensation, trace
overhead analysis can be thought of as a trace-driven repbltye execution where
we can apply both event and timing models to correct intrusiffects. There is also
opportunity in trace analysis to utilize measurements tefrjgrocess events to improve
the accuracy of the approximated execution, such as withpoted message commu-
nication times. For the work reported here, it is importanttmember that the goal of
tracing is to observe detailed temporal performance. Tiveshope that the overhead
analysis will result in more accurate performance chariet#on both as it has to do
with overall performance (e.g., more accurate total exenuimes) as well as local
performance details (e.g., waiting times for individualss&ge communications).

Other research work has sought to characterize measurewenhiead as a way to
bound intrusion effects or to control the degree of intragiaring execution. For in-
stance, the work by Kranzimiller [4] quantifies the overheBMPI monitors using the
benchmarking suite SKaMPI, and Fagot's work [2] assessssisiatically the overhead
of parallel program tracing. The work by Hollingsworth andlbt [3] demonstrates the
use of measurement cost models, both predicted and obséoveahtrol intrusion at
runtime via measurement throttling and instrumentati@alling. Their work primar-
ily deals with profiling-based measurement.

3 Overhead Compensation Algorithms

The trace of a parallel program’s execution provides timgugnced information about
the events that occurred and when they occurred. To comiasiasdhe overhead dur-
ing measurement, we want to characterize the amount of eadrfd) for each event
measurement, and subtract that overhead from the evemtgini-or events that are
local to a process (we will call thedadependent events), this overhead compensation
can be done directly. For events that are involved in deparedecution, we must take
care not to violate happened-before time order relatiqrssti].

The algorithms we present below are based on our earlier {Bofl0], as targeted
here to MPI message passing parallel programs. We makeasagsumptions in these
algorithms:

— Only MPI _Send() andMPI _Recv() are used for point-to-point communication.
— MPI _Send() is always non-blocking.

— Only n-to-n and1-to-n collective operations are considered.

— The per-event measurement overhe@pi¢ constant.

— The buffer copy time is a function of message $i4aize(msQ)).

Clearly, the value€ and O are platform specific and must be measured. Gowe
run experiments with different message sizes and build le tfiper byte copy times
to be queried during analysis. FO; we run an experiment whefé¢ trace events are
generated immediately following each other. The amounimé tconsumed is then
divided byN to giveO.

Based on the assumptions above, all dependent executior ibdnessage com-
munication. Point-to-pointf2P) communication involves only the sender and receiver.
The dependencies in collective communication are moredstig. While it is possi-
ble to logically reduce collective communication®®P communication, doing so may
restrict the analysis from applying what is known about thiéective execution seman-
tics.

3.1 Independent Events

Independent events are events that do not directly depéntiecommunication. In
other words, in our environment, they are not communicati@nts. Consider thi¢h
event on a processyent'. We use the notatiosvent', to denote theneasured time
stamp of the event anavent!, to denote thepproximated time stamp of the event after
trace analysis. The trace analysis moves forward in the fi@ceach process, comput-
ing the approximated time stamp of the next event. Thus,yapamt in time during the
analysis, we look to see which immediate next event on eamtegs can be processed
next.

Let us assumevent’, ! has been computed and the next evevent' is not a com-
munication event. The trace analysis can deterraiest), by:

event, = event: ! + (event, —event-l) — O (1)

Effectively, we keep the execution time between the two tsyevent’,, — eventl- 1, and
subtract the overhead. To this value we then add the appatedrtime stamp of the
predecessor evergvent,; 2.

3.2 Dependent Events

What happens if the event is a communicaton event? Here isewthings get in-
teresting. Let us focus oM2pP communication first. There are six events to consider:
enter.send, send, exit.send, enter.recv, recv, andexit.recv. Among these, onlyecv di-
rectly depends on communication. Often instrumentatiome$sage communication
is done using an interposition library, such as in tim profiling interface pmpi [9].
Here, the time stamps of tlsend andenter.send events will likely differ only by a very
small amount. The same is true f@cv andexit.recv.

There are two cases in the measured execution to considepfoticulatr2p com-
munication:

(m.1) enter.recvy < exit.sendp
(m.2) enter.recvyy > exit.sendp

It should be understood that the send and receive eventsking tplace on two dif-
ferent processes. Condition (m.1) means that there is adehpverlap between the
MPI _Send() and theMPl _Recv() operation. Condition (m.2), in contrast, means that
there is a gap between the two.

(m.1) Communication time can be measuredIf enter.recvy, occurs beforexit.sendpm,
we assume that the receiver can begin processing the messagen as it is delivered.
As a result, we can calculate the actual communication thora the measured trace:

Commy, = recvm — sendm (2

This is important since the measured communication timeeisitost accurate represen-
tation of communication performance. Two cases resultfeapproximated execution:

(a.1) sendy+Commy, > enter.recv,

(a.2) sendy +Commy, < enter.recv,

In the first approximation case, the entry to the receive edoefore the communication
completes, meaning that the receiver has to wait. Thus,ghmaimated receive time
can be determined by:

recva = sends +Commy, 3)

In the second case, the receive occurs after the messagkdeaydeen delivered and
supposedly is present at the receiving process. All thaftsd do is for the receiver to
copy the message into the receive buffer:

recva = enter.recv, + C(size(msg)) * size(msg) 4

Again, in our experiments, we use a lookup table to deter@ifoe difference message
sizes.

(m.2) Communication time cannot be measured.If the receive operation begins
after the send operation has finished, we cannot use the imeasurement directly
to compute the message communication time. An upper boupximation on the
communication time still comes from the communication noeasent:

CommiPP¥ = recvm — sendn, (5)

However, this time may include time a message spends sititite receiver before the
receive begins. A lower bound approximation effectivelsuames that the transmission

time through the communications network is zero. In thigcag need to only account
for the message copy time both at the sender and at the receive

Comm®® — 2 « C(size(msg)) * size(msgy) (6)

Since the start times of the send and the receive operatightié significantly pulled
apart in the approximated execution, there is no guarahgétte lower-bound and the
upper-bound communication times together give a valid timerval for the approxi-
mated receive event, that is, the following condition migatviolated:

recv, > enter.recv, (7

This consistency requirement leads to the stipulation ofiimum communication
time that has to be observed in both cases.

Comm™" = (enter.recv, — sendy) + (C(size(msg)) * size(msy)) (8)

Now, both the lower-bound and the upper bound communicéitios need to be mod-
ified not to fall below the minimum, similar to what we did earlin case (m.1/a.2).

Comm®"® — max(2 « C(size(msg)) * size(msg), Comm™") (9)
CommtPP¥ — max(recviy — sendp, Comm™") (10)

Finally, the bounds for the approximated receive time are:

send, + Comml® < recv, < senda + CommniiPPer (11)

3.3 Collective Communication

For our work in this paper, we also consideto-n and 1-to-n collective communi-

cation operations. For any collective communication, we ttansform the operation
to point-to-point communication and then apply the forrsuddove to perform over-
head compensation. However, it is not so easy to transldiiectiee communication

operations into theiP2p equivalents. Also, collective communication has addaion
semantics that must still be enforced when processing thectige events. These se-
mantics can be used to build overhead compensation algariipecific to collective

operations.

n-to-n. Considem-to-n collective communication. There are two collective eveits
interest for each procesanter andexit. The approximateenter time stampenter,,

is determined for each processased on the algorithm for a independent event. How-
ever,exith is dependent on when the collective synchronization ocdiesj be the
process with the latest measured entry evanter /. Letk be the process with the latest
approximated entry evergnterX. Let| be the process with the earliest measured exit
event,exith,. Becausen-to-n collective operations enforce collective synchronizatio
we could assumexit, is computed to be the same for all processes:

exit, = enterk + (exit], — enter)) (12)

Here exith, — enter}, is a measurement (from the trace) of the time to synchrooizes
all processes have entered the collective communicatioweler, we can also measure
this synchronization time for each process individually:

exit, = enterk + (exit), — enter)) (13)

1-to-n. In the case of-to-n collective communication, the translation t@2p equiva-
lent form will work fine for approximation purposes. The oeader (oot) process has
the evententer.send andexit.send. The multiple receivers each have evesrtker.recv
andexit.recv. For each send-receiver pair, we translate the eventslaw/fol

send := enter.send
recv ;= exit.recv

We computesize(msg) as the amount of data received by receiver from root.

Note that the actual communication time cannot be measueeduse it is not
known which fraction of the send operation was performed elnalf of a particular
receiver. Therefore, we essentially give an upper-boumaagmation. Plus, as col-
lective communication is often implemented in a tree-liasHion, receivers may be
senders as well. We do not take this into consideration.

4 Implementation

We validated our model using a prototype implementatiotiwithe koJAK perfor-
mance evaluation system [1Z0JAK is a suite of performance tools that collect and
analyze trace data from parallel programs includit®g applications. Event traces are
generated automatically at runtime using a combinatioroafee code annotations or
compiler-supported instrumentation and hardware coanfére analysis component
uses pattern recognition to convert the traces into inftionmabout performance bot-
tlenecks relevant to developers.

Before executing the application, it is linked to a traciitgdry responsible for
generating the trace file at runtime. The trace files are evrith theepILOG format.
Overhead-intensive activities performed by the librargapport trace-file generation,
such as offset measurements among local clocks for a laterdynchronization or file
10 operations to flush the memory buffer upon overflow, are eseedoy special records
so that the compensation filter can account for these ovdshédter the application
has terminated, an off-line analyzer scans the resultatgtfiles for execution patterns,
classifies them by behavior type, and quantifies their impadthe overall performance.
The results can be viewed incui that shows performance problems broken down by
call path and process or thread (see Figure 2).

At the core of the analyzer is a library calledrL [13] readingePiLOGtraces and
providing abstractions that simplify the task of detectpagterns in the event stream.

These abstractions include execution state informatiaeh) s the progress of collec-
tive operations at the time of a given event, and links betwetated events that allow,
for example, the analyzer to find the send event to a giveriveesent. Another im-
portant feature i€ARL’s ability to access events randomly by their relative positn
the trace file.

Because of its convenient model to access and processitifaceation EARL was
chosen to implement the compensation filter. The filter igsif three parts: (i) a com-
ponent to measure platform-specific quantities, such aawbeage per-event overhead
and the memory bandwidth needed to compute the buffer comy (i) a queuing sys-
tem to reorder the events in accordance with the approxahtatee stamps, and (iii)
the actual compensation engine to execute the algorithswitded earlier in Section
3. To accommodate cache effects, the memory bandwidth isunes for buffers of
varying size. To improve scalability, the queuing systenasmtains only a finite win-
dow of time stamps, events whose final position within therapimated trace can be
determined and whose time stamps are no longer needed toxappte subsequent
events are written to the approximated trace.

5 Experimental Results

To illustrate the effectiveness of our strategy, we exaraiparalleipi application that
computes the value af using a Monte-Carlo integration algorithm, which calcatat
the area under the circle function curve from 0 to 1. The mmogcomprises of a master
(or server) task that generates work packets with a set dbramumbers. The master
task waits for a request from any worker and sends a chunkmaforaly generated
numbers to it. For each pair of numbers that is given to a @dsr worker, it finds
out whether the pair of Cartesian coordinates representdébdebnumber is inside or
outside the circle. Thus, the workers collectively esterthe value oftiteratively until

it is within a given error range.

We executed the application in two modes: uninstrumentedrstrumented. The
instrumentation was applied to all user functions amd functions to generate a&pI-
LOG trace file during execution. The number of processors wasd/dretween 2 and
32 on a 4-way Intel Pentium Il Xeon 550 MHz Linux cluster whnodes. We ran
the application 5 times under each configuration and toolslkttoetest run as our rep-
resentative. The time stamps in the trace files were injt@illected using th@pbTsc
timer and later off-line synchronized with process 0 usingdr interpolation between
two offset measurements to compensate for different cloifisdamong local clocks.
For each measured trace file, two approximated trace files gamerated, the first one
using lower-bound approximation, the second one using rippend approximation.
The results are shown in Figure 1.

The main fraction of the instrumentation overhead resutismfa small function
namedget _coor ds() that is frequently called by worker processes. Since nuraber
invocations is proportional to the amount of work, the antoafintrusion declines
as the number of worker increases. It can be seen that thetexetimes generated
by both approximations come close to the uninstrumented.tivhen the dilation of
execution time introduced by the instrumentation is higlr, approximation proves

35 T

Instrumented —+—

Approx. (lower bound) ---%---

Approx. (upper bound) ------
Uninstrumented &

20 -

Execution time (sec)

Number of processes

Fig. 1. Measured and approximated execution times for Monte-Gagofification.

to be most effective in terms of the percentage of overheambved. Unfortunately,
however, the lower-bound compensation is still too pesgimin that it remains con-
sistently above the uninstrumented execution. Reasorthifomight be found in inac-
curate measurements of platform constants and in simplisdmptions made by the
model itself.

In Figure 1, we only investigate execution tirdew down. The actual strength of
our approach, however, is that the approximated eventdraéav us to study the per-
turbation, that is, the qualitative change in program balrasaused by the overhead.
Since interprocess communication can propagate instriati@m overhead across dif-
ferent processes, perturbation effects may be observegratcass that actually does
not produce significant overhead itself. To examine qualégperturbation effects in
more detail, we applied0JAK’s pattern analyzegxPERTto the measured and the ap-
proximated trace file. The two results have been subtraciedkoJAk’ s performance
algebra utility [11] to study the overhead composition itaile The results are shown
in Figure 2 displayed in theOJAK GUI.

All numbers represent percentages of the difference inxbewtion time between
measured and approximated execution. The left pane shewssérall difference bro-
ken down by behavior type for the entire program and all psses. It can be seen
that the majority (63 %) of the overhead is non-communicafie., metricExecution
expanded). The non-communication overhead has been foupel & direct effect of
the tracing library’s operation (i.e., per-event overhaad flushing the memory buffer)
and is almost exclusively caused by workers. On the othed heasignificant fraction
(28 %) of the total overhead is waiting time within thate Sender pattern, which de-
scribes a receiver waiting for a message that has not be¢iyesernn contrast to our
previous finding, this indirect effect of perturbation camearly exclusively (80 %)
attributed to the server.

Figure 3(a) shows the measured execution of one iterationirMonte-Carlo ex-
ample with four processes in a time-line diagram. The fingipead sections represent

lhal CUBE: diff.cu
File ¥iew Help
Perfarmance Metrics

=[] 0.0 Time
= & 63.2 Execution
= [0.0 mP
=[] 0.0 Communication

= [0.0 Collective
[] 0.0 Early Reduce
[T -0.2 Late Broadcast
0.7 Wait at N = N

= [7aPeF

Call Tree

=[] 0.0 main
[0.0 MPI_Init
[0.0 MPI_Beast
[0.0 MPI_Comm_create
= [0.0 worker
] 0.0 MPI_Send
5.5 MPI_Recy
[0.0 get_coords
[0.0 MPI_Allreduce

System Tree

=1 [] 0.0 Linux Cluster
=[] 0.0 zam0D0ge1
[] 0.0 Process 0
[0.0 Process 1
[0.0 Process 2
O 225 Process 3

[] 0.0 Late Receiver [] 0.0 DUMP
W) 254 Late Sender =[] 0.0 master
]ooio =
[] 0.0 Synchronization [0.0 MPI_Send
[] 0.0 visits [] 0.0 MPI_Commn_fres
[0.0 MPI_Finalize
FIIII ‘ ‘ ‘ ‘ ‘ ‘ IFIIIIIIIIIFIIIIIIIIIFIIIIIIIIW
10 20 30 40 50 B0 il G0 a0 100

l|4_x1 |

Fig. 2. Composition of overhead for 4 processors.

workers processing a chunk of random numbers. The blagkestindicate calls to
get _coords(), the function mainly responsible for intrusion. At the lowtt, the master
process (process 3) performs three send operations - oradbrof the three workers,
after which it starts waiting in a receive call for resporiBee wait state lasts until the
end of the collective call performed by all workers to detierenthe progress of the
computation.

Figure 3(b), in contrast, shows about the same amount ofuirectime of the
lower-bound approximation. The iteration on the left fimsIsignificantly earlier. Most
notable is, however, that as a result of the reduced oveniside on the worker time
lines, the wait state found on the master time line becanmefiigntly smaller, whereas
the preceding send operations remained about the same, dinuexample demon-
strates that local perturbation effects can propagatesagrmocess boundaries and sig-
nificantly distort the performance behavior of non-localqasses.

6 Conclusion

Most parallel performance measurementtools ignore theneael incurred by their use.
Tool developers attempt to build the measurement systeffiicismtly as possible, but
do not attempt to quantify the intrusion other than as a pdage slowdown in execu-
tion time. Our earlier work on overhead compensation inlfnarofiling showed that
the intrusion effects on the performance of events localimaess can be corrected [7]
and it also modeled how local overheads affected performdalay across the compu-
tation [8]. However, parallel profiling only provides pemnfisance summary statistics. In
order to see execution detail, tracing measurements mustduk This papers concerns
the compensation of overhead during trace analysis.

L dVampir 3.0 - Timeline

17,817 =

s x L
I " Pl - UDRKER
WET_COORDS

[HASTER

WALLREDUCE

WPL
LISR
HASTER
Process 12 HP. g WORKER
WGET_COORDS
Process 2 5 i WALLREDUCE

Process 03

(b) Approximated execution.

Fig. 3. VAMPIR time-line diagrams of measured and approximatedaeten.

The goal of trace analysis is to detect performance patt@nadsidentify perfor-
mance problems associated with certain patterns. It is itapbthen that the timing
properties of the trace data be as accurate as possibleh€acbecan introduce intrusion
that alters event timing structure and order, causing aedysis to report performance
problems where none are presentin the “actual” executidn,@ven mask performance
problems that might otherwise appear.

The algorithms we designed and re-engineeradipak can remove measurement
overhead from a parallel trace. In doing so, we contend thfepeance properties [14]
captured in the transformed trace data will be more reptatiea of the performance
behavior in a uninstrumented execution. The experimewsgmted here give powerful
evidence to this conclusion. The Kojak analysis of the nmast@ker test case shows
clearly the better performance problem identification assallt of overhead compensa-
tion. Figure 3 gives visual evidence to the improvement iraitid event time relations.

It is important to understand that we do not claim the comattstrace resulting
from trace analysis is exactly the same as the trace of arstuamented execution, if
that trace could be obtained without measurement overlitgadtven difficult to make
quantitative statements about the bounds on analysis. éndeed, theperformance
uncertainty principle [6] implies that the accuracy of performance data is invgrse
correlated with the degree of performance instrumenta@un goal is to improve the
tradeoff, that is, to improve the accuracy of the perforneagiata through more intel-
ligent trace analysis. What we are saying in this paper istti@performance results
produced by applying our algorithms for trace-based ovethmmpensation will be
more accurate that performance results produced withaapeasation. In addition,

we are providing this overhead compensation capabilityatesof-the-art tracing tools
that are being distributed to the parallel computing comityun

7 Acknowledgements

This research is supported at the University of Oregon bytg Department of En-
ergy (DOE), Office of Science contract DE-FG02-05ER25680th& University of
Tennessee, this research is supported by the U.S. DeparfEnergy under Grants
DE-FG02-01ER25510 and DE-FC02-01ER25490.

References

1. L. Lamport, “Time, Clocks and the Ordering of Events in atbbuted System,CACM,
21(7), pp. 558-565 (July 1978).

2. A. Fagot and J. de Kergommeaux, “Systems Assessment Ofidxdnead of Tracing Parallel
Programs,Euromicro Workshop on Parallel and Distributed Processing, pp. 179-186, 1996.

3. J. Hollingsworth and B. Miller, “An Adaptive Cost Systewr fParallel Program Instrumen-
tation,” Euro-Par Conference, Volume I, pp. 88—97, August 1996.

4. D. Kranzlmuller, R. Reussner, and C. Schaubschladéanitor Overhead Measurement
with SKaMPI,” EuroPVM/MPI Conference, LNCS 1697, pp. 43-50, 1999.

5. A. Malony, “Event Based Performance Perturbation: A Cakely,” Principles and Prac-
tices of Parallel Programming (PPoPP), pp. 201-212, April 1991.

6. A. Malony, “Performance Observability,” Ph.D. thesisnitersity of lIllinois, Urbana-
Champaign, 1991.

7. A. Malony and S. Shende, “Overhead Compensation in Redoce Profiling,"Euro-Par
Conference, LNCS 3149, Springer, pp. 119-132, 2004.

8. A.Malony and S. Shende, “Overhead Compensation in RaRdformance ProfilingPar-
allel Processing Letters, to be pubished, 2005.

9. Message Passing Interface Forum. MPI: A Message Pasterfglce Standard, Chapter 8,
Profiling Interface, Juni 1995. http://www.mpi-forum.org

10. S. Sarukkai and A. Malony, “Perturbation Analysis of ktigevel Instrumentation for SPMD
Programs,"Principles and Practices of Parallel Programming (PPoPP), pp. 44-53, May
1993.

11. F. Song, F. Wolf, N. Bhatia, J. Dongarra, and S. Moore. Agehra for Cross-Experiment
Performance Analysis. [Rroc. of the International Conference on Parallel Processing
(ICPP), Montreal, Canada, August 2004.

12. F. Wolf and B. Mohr. Automatic performance analysis ditiy MP1/OpenMP applications.
Journal of Systems Architecture, 49(10-11):421-439, 2003. Special Issue “Evolutions in
parallel distributed and network-based processing”.

13. F. Wolf. EARL - APl Documentation. Technical Report ICQLF04-03, University of Ten-
nessee, Innovative Computing Laboratory, October 2004.

14. F. Wolf and B. Mohr. Specifying Performance Propertie®arallel Applications Using
Compund Events.Parallel and Distributed Computing Practices, 4(3), September 2001.
Special Issue on Monitoring Systems and Tool Interopétgbil

