Large Event Tracesin Parallel Performance Analysis

Felix Wolf!, Felix Freitag, Bernd Moht, Shirley Mooré, Brian Wylie!

'Forschungszentrum Jilich, ZAM
52425 Jilich, Germany
{f.wol f, b.nohr, b.wylie}@z-juelich.de

2Universitat Politecnica de Catalunya, Computer Architeg Dept.
08034 Barcelona, Spain
felix@c. upc. es

3University of Tennessee, Innovative Computing Laboratory
Knoxville, TN 37996, USA
shirley@s. utk. edu

Abstract:

A powerful and widely-used method for analyzing the perfance behavior of
parallel programs is event tracing. When an applicationrasetd, performance-
relevant events, such as entering functions or sendingagessare recorded at run-
time and analyzed post-mortem to identify and potentiadiyove performance prob-
lems. While event tracing enables the detection of perfacegroblems at a high
level of detail, growing trace-file size often constrairs stalability on large-scale
systems and complicates management, analysis, and ¥sti@i of trace data. In this
article, we survey current approaches to handle largegraice classify them accord-
ing to the primary issues they address and the primary bettleéy offer.

Keywords: parallel computing, performance analysis, event tracgoglability.

1 Introduction

Event tracing is a powerful and widely-used method for arialy the performance of
parallel programs. In the context of developing parall@goams, tracing is especially
effective for observing the interactions between difféq@mocesses or threads that occur
during communication or synchronization operations andrtalyze the way concurrent
activities influence each other’s performance.

Traditionally, developers of parallel programs use trgcitools, such as Vampir
[NWHS96], to visualize the program behavior along the timis é&n the style of a Gantt

chart (Figure 1), where local activities are representdzbass with a distinct color. Inter-

actions between processes are indicated by arrows or pwytgdllustrate the exchange
of messages or the involvement in a collective operatigpeetively.

77 VAMPIR - Timeling ¢

Cx3dupt (144,525 - 114,38 = 56,126 ns)
1744,94 174,95 ;44,36

Figure 1: Vampir time-line visualization of anP1 application.

To record a trace file, the application is usually instrurednthat is, extra code is in-
serted at various levels that intercepts the desired ewmiggenerates the appropriate
trace records. The events monitored typically includerdamjeand leaving code regions as
well as communication and synchronization events hapgenside these regions. Mem-
ory hierarchy events comprise another important eventiieh is predominantly used
in cache-analysis tools.

Trace records are kept in a memory buffer and written to a filr @rogram termination
or upon buffer overflow. Recording communication and syanfmation events is often
accomplished by interposing wrappers between applicatith communication library
during the link step. While the program is running, each psscor thread generates a
local trace file, which is merged into a global trace aftergpaon termination.

Scalability, as is described in Section 2, is a major lindtabf trace-based performance
analysis. Due to its ability to highlight complex perforncarphenomena, however, trace-
based performance analysis will continue to be needed ieaxhn efficient utilization of
massively-parallel systems. We therefore argue that relsefirected towards improving
the scalability of this diagnosis technique is a worthwhitglertaking.

In this article, we give an overview of existing approactesérit the amount of trace
data needed or to efficiently handle larger event tracesely ttannot be avoided. We
start in Section 2 with a discussion of technical issuestiimgithe scalability of trace-
based performance analysis. In Section 3 we distinguishtgiins leading to large traces.
The actual survey of approaches along with our classifindigresented in Section 4,
followed by our conclusion in Section 5.

2 Scalability Issues

Although event tracing is a powerful performance-diagatesthnique, is has known lim-
itations on large-scale systems. This article focuses oblpms related to trace-file size.

Another set of problems is related to synchronization ohétienings. Since the compar-
ison of event timings across the processes of a paralleranogs an important element
of trace-based performance analysis, the absence of biahaichronized clocks may

adversely affect the accuracy and consistency of eventuneragnts. This problem has
been addressed by hardware solutions, such as the BlueGgaoleal barrier and interrupt
network, runtime measurements with linear interpolat03], and off-line correction
based on logical clocks [Rab97]. Although still an open agsle area, this issue is beyond
the scope of this paper.

The amount of trace data generated poses a problem for (iqgeament, (ii) visualiza-
tion, and (iii) analysis of trace data. Note that often thiisee aspects cannot be clearly
separated because one may act as a tool to achieve the otherample, when analysis
occurs through visualization.

The size of a trace file may easily exceed the user or disk qudtze operating-system
imposed file-size limit of 268 common on 32-bit platforms. For Swic application
Gyro [CWO03], we have obtained about 28 of trace data per process for a varying
number of processes - even after applying a relatively Se¢emstrumentation scheme.
Extrapolating this number to 10,000 processes would r@sufiore than 2@8 of data.

However, even if the trace data are divided into multiplesfiles supported by IntelsTF
trace format, moving and archiving large amounts of trat¢e dan be tedious and cumber-
some. Since a typical performance analysis cycle usuallyles several experiments to
adequately reflect different execution configurationsytrgata sets, and perhaps program
versions, the amount of data becomes multiplied by a laaygof.

Building robust and efficient end-user tools to collect,lgr@, and display large amounts
of trace data is a very challenging task. Large memory requénts often cause a signif-
icant slow down or - even worse - place practical constrantsvhat can be done at all.
Moreover, if the trace data of a single program run are thigted across multiple files,
for example, before merging local files into a single glodal firace processing as it oc-
curs during the merge step may require a large number of éilbe bpen simultaneously,
creating a potential conflict with given operating-systéemnits.

Even if the data management problem can be solved, the @abelf can still be very
time consuming, especially if it is performed without orkvi@nly little automatic support.
On the other hand, the iterative nature of many applicati@use trace data to be highly
redundant as the same code is repeated many times with néanlycal computations
(e.g., in loops). Thus, compression techniques can be lusefteducing the amount of
data to be stored and analyzed.

In the next section, we discuss why event traces becomedargdoundation for our later
classification of approaches to improve scalability.
3 Reasonsfor Large Traces

The reasons for large traces can be roughly divided into fitegories:

Number of processesthreads. Since this number is equal to the number of time-lines in
a time-line diagram, it is often referred to as tkielth of an event trace (as opposed

Temporal coverage Granularity

> high HHHHH-HHHHH>
disabled
-~

Number of processes H—H> low +—+—+—+—++—>
|

width

Number of parameters Problem size
HHHH

large HHHHHHHHHH>

e e
many HHHHHHHHH>
few HH-HHHHHHHH—>

small H-H-H>

Wide traces Long traces

\/

Large Traces

Data management Analysis Visualization
problem problem problem

Figure 2: Reasons for large traces and the problems theg caus

to thelength, which represents the number of events per process). Bedhas
total number of communication and synchronization evestsglly grows with the
number of processes, the width influences both the total atrafidata as well as
the total number of local trace files that need to be handled.

Temporal coverage. The intervals to be traced need not cover the entire exetutip

is obvious that restricting tracing to smaller intervala sabstantially decrease the
amount of trace data.

Granularity. How many events are recorded during a given interval dependlse fre-
guency at which events are generated. This is typicallyed|to the granularity of
measurements, that is, the level of detail (e.g., functidock, or statement level)
captured through tracing. The reader should note that a fnégjuency can also
increase perturbation and alter performance behavior.

Number of event parameters. The parameters recorded as part of an event typically in-
clude a process identifier, a time stamp, and a type identifieddition, there may
be one or more type-specific parameters. In parallel pedoo®a analysis the num-
ber of parameters rarely exceeds a few unless hardwareeraeatings, of which
there may be many, are added to the event record.

Problem size. This factor considers the number of performance-relevastts as a result
of the algorithm applied to a certain input problem. A typiegample is the number

of iterations performed to arrive at a solution, which caml@ng execution time and
increase the number of events to be traced.

Figure 2 summarizes causes and effects of large traces tiNdtall reasons except for the
number of processes fall under the category long traces.eMenyit should be noted that
growing problem sizes often demand a higher degree of péisal.

4 Approachesto Improve Scalability

In this section, we discuss several approaches to eithét avéo handle large traces. At
the end, we classify the different methods by causes andteité the scalability problem
they address.

Frame-based data format. To allow for efficient zooming and scrolling, traditional
trace-visualization tools require the event trace to eesidnain memory. As traces grow
bigger, methods are needed to either efficiently access tfata from files or to create a
more compact main-memory representation.

An approach targeting the first option has been developedibgtsl. [WBS-00]. They
have introduced a trace-file format nansaG that supports scalable visualization in the
sense thatpu-time and memory requirements depend only on the numberaghigal
objects to be displayed and neither on the total amount oétdata nor on a particular
interval chosen for display.

If the user wants to display only a section of an event trduest oG format allows the
viewer to read only the necessary portions of the file. Theetfae is divided into frames
(Figure 3) representing different intervals of programak®on. To complete the visu-
alization of an interval frame, each frame includes soechfiseudo records that contain
state information from outside the interval, such as messagnts required to draw mes-
sage arrows beginning or ending outside the displayedosectiinked frame directories
enable rapid access to other time intervals even if theyomaged far into the run.

Links to frames

Link to next directroy
Figure 3: ThesLoGtrace-file structure is divided into frames representinupsate intervals.

Work presented in [CGLOQ] further improves visual perfono@ by arranging drawable
objects into a binary tree of bounding boxes, which also ielittes the need for pseudo
records and provides better support for drawing coarsieglgreviews.

1A similar approach is supported by teeFformat.

Periodicity detection. As pointed our earlier, many scientific applications exhbi
highly repetitive behavior as a result of performing logéttions of almost identical cal-
culations. If these iterations perform in the same mannagjrtg only a few instances is
often sufficient to capture the entire application behavfwt is, tracing can be restricted
to representative intervals, resulting in significantlgiueed trace-file length.

Freitag et al. [FCLO2] have developed a dynamic mechanisn®fiermp applications
that is able to detect repetitive behavior at run time andgahle tracing after recording
a representative number of iterations. Once the periodiedder ends, tracing is resumed
until the next periodic section is reached. In this way, tlaee¢-file size obtained for the
NAS LU benchmark was reduced by 95 %. Periodicity is detected wsitigtance metric
applied to the stream of function identifiers representirgtequence of function entries
and exits:

N1
d(m) :signz lz(i) —z(i—m)], 0O<m<MAM<N
=0

The formula computes the vector distance between ve¢ipand the same vector shifted
by m samples.N is the size of the data windoul/ is the maximum period length that
can be detected. If the equation returns zero for a giwerthe data window contains
an identical periodic pattern with periodicity. The evaluation of the distance is based
on an efficient algorithm that requiré3(A/) calculations per event. Compared to the
original tracing mechanism, which added about 1-3% of ozadto the execution time,
periodicity detection increased the overhead to only 3-6%.

Call-graph compression. If an event trace is stored in main memory, it is usually orga-
nized as a linear list of event records in chronological oré@ipfer and Nagel [KNO5]
proposed an alternate data structure na@emiplete Call Graph (ccG) which arranges
event records in a tree resembling the program’s functiirheararchy, where each node
represents a function call. In contrast to linear lists gtistamps appear transformed into
the durations that lie between two subsequent events. Baahttace is transformed into
a separatecac.

The main advantage over linear lists is the ability to meggeador similar nodes with the
intent of “shortening” traces. This is achieved by elimingtredundancy along the time
axis created as result of iterative behavior - similar inispd the previously discussed
on-line periodicity detection only that it is performed-tifie.

Compresse@CcGs (ccCGs) are created from regulaiccs by applying either lossless or
lossy compression. It is important to note that this occuntirely transparent to read
access, in that a later decompression is not required. Thiatiba arising from lossy
compression can be controlled both in terms of the absolatemum deviation of in-
dividual time stamps and in terms of the relative percentagethe durations between
subsequent events are changed.

The computational effort required farcG construction isO(n) with n being the total
number of events. The overall complexity@fG compression i® (N xm) with N being
the total number of nodes in tltec G andm a rather small data-dependent factor. Experi-
mental results showed memory compression ratios betweae8 ot lossless compression

and up to 44 for lossy compression with midrange deviatiamiog (1000 clock ticks and
50 % interval deviation).

CCGs not only save memory, they can also speed up analysis. €3ustich as summary
statistics, are most efficiently computed in a recursivemeanlong theccGtree structure.
Caching of intermediate results at graph nodes can significantlglacate subsequent
gueries. Since in compressed trees redundant nodes havenkeged, cached results can
be reused even within the same query.

Distributed analysis. Whereas the previous two approaches primarily address long
traces, Brunst and Nagel [BNO3] have designed and protdtgmistributed performance
analysis service suitable to access and evaluate, in plartigvide traces collected on ma-
chines with a large number afPus. The service is called Vampir Next Generation¢)

and essentially constitutes a scalable version of the poMampir event-trace browser.

VNG is based on the principle of keeping performance data ctodestiocation where they
were created and of exploiting distributed memory for thalysis. It consists of a parallel
analysis server and a potentially remote visualizaticentliThe server is submitted post-
mortem as a separate parallel job usually on the machineathetrace data were created.
The client runs on the user workstation and interacts wigtstirver via a network.

The parallelization is based arpi combined with pthreads and follows a master-worker
scheme. A master process handles incoming client requggtartitioning the work and
delegating the resulting subtasks to the worker proce3$ese are responsible for storage
and analysis of different subsets of the overall trace datach are distributed across
multiple files. To support multiple client sessions, eaalieeprocess may employ several
session threads. Similar to tseoG approachyNG limits the amount of data maintained
by the visualization client to a volume that is independdrthe amount of traced event
data. Benefits of the distributed architecture have beerodstrated most notably for
summary charts and load operations with super-linear spps@f 60 and 40, respectively,
measured foll6 + 1 processes. To further improve the support of long traeces has
been successfully combined witit G compression.

Automatic pattern search. The approaches covered so far have been devised mainly
with graphical trace browsers in mind. Either the amountad¢ data has been reduced
and/or the access to it has become more efficient. Howeven & user’s perspective
nothing has changed, the general way of looking at the dattilithe same: zooming in
and out until a phenomenon of interest has been found. Edpeiti view of large-scale
systems creating a need to deal with larger traces, thigpsoran be time consuming and

- given the size of the search space - complete coveragedsdachieve.

An approach based on automatic pattern search, which wasogped by Wolf and Mohr
[WMO03] and implemented in theoJAK tool, tries to combine the expressiveness of trace
data with the compactness of profile dakaJAK scans trace files off-line for execution
patterns representing inefficient behavior, such as conwation and synchronization de-
lays, thus relieving the user from the burden of searchirgelamounts of trace data man-
ually. SincekoJak distinguishes patterns of different shape, the performéebavior is
automatically classified by bottleneck type. Once a matchldeen found, the detected

pattern instance is gauged to quantify its performance atnpaerms of the time lost due
to its occurrence. The measurements are accumulated argethapto the call tree and
the hierarchical structure of the parallel system. TheltiegLthree-dimensional represen-
tation of performance behavior owes its compactness th¢tfatthe time dimension (i.e.,
length) of the trace has been made implicit by aggregatiaquahtified pattern matches.
The automatic analysis has been optimized by exploitingstiexialization hierarchy in
which the different patterns are arranged. In addition eesjpps between 2.5 and 13, this
strategy has also reduced the amount of code needed toliegwipatterns.

Topological analysis. The integration of process topologies into @Ak framework
[BSWT05] has improved the analysis of wide traces by visually giog processes ac-
cording to their virtual or physical topological chara@sécs and by helping identify
macro-patterns that put primitive pattern instance intargér context covering the en-
tire topology.

Holistic analysis. In order to assess single-node performance in additionedithe-
based patterns focusing primarily on parallel interagtibakoJak framework allows the
user to record a large variety of hardware-counter readimgsding cache misses.LB
misses, and floating-point operations as part of certaintazords. As pointed out in
Section 3, this can easily lead to a significant trace-filamy@ments, especially when data
from a large number of counters are recorded to gain insifybte comparing counter
values across various functional units. To avoid tracedittargement proportional to
the number of recorded counters, Wylie et al. [WMWO05] replacsingle experiment by
multiple experiments conducted under similar conditi@ash time recording a different
subset of the desired counters. The resulting traces algzadasseparately and the results
merged into a single integrated “holistic” picture of perfance behavior.

Granularity reduction. Indiscriminate instrumentation of user functions canlgdsad

to significant trace-file enlargement and perturbatiorgroftaused by short but frequently
executed user-function calls without any communicatioincé trace analysis focuses
mostly on communication and synchronization, recordimgfions not involved in such
operations rarely contribute to the analysis. To keep tfdeesize within manageable
bounds, Moore et al. [MWDO05] devised a semi-automatic two-step process to prevent
calls to these functions from being recorded: First, a calhprofile is generated using
the TAau tool [MS03]. Next, a script automatically extracts all feioon names directly or
indirectly involved in communication or synchronizatioalls and generates a so-called
TAU include list used to restrict instrumentation to those fioms only on subsequent
runs. Using this method, the trace-file size for the afordioead Gyro code could be
reduced from more than 1088 (estimated) to less than 1&B for 32 processes. The
latest version ofrau also includes an on-line mechanism to filter out functionsctiat
are not ancestors ofpi calls.

Statistical analysis. Aguilera et al. [ATTWO06] apply multivariate statisticaldeniques
to event traces with the aim of isolating processes that thiglexperiencing communica-
tion problems, thus clearly addressing wide traces. Thethodology follows a sequence

of five steps: (i) extract communication data from the traleg {ii)) summarize extracted
communication information, (iii) create a distance matrsing data from the previous
step, (iv) perform hierarchical clustering, and finally {@gntify process pairs of interest
for a more in-depth analysis.

Table 1: Classification of approaches to improve the sdéthabf trace analysis.

Approach Primary reason addressed Primary benefit

Frame-based format Long traces Speeds up visualization

Periodicity detection Temporal coverage Reduces tracelévant intervals

Call-graph compression Temporal coverage Reduces traadgaveraging similar behavior
Distributed analysis Number of processes Speeds up asalgdivisualization

Automatic pattern search Long traces Speeds up analysis

Topological analysis Number of processes Groups procésseslysis and visualization
Holistic analysis Number of parameters Distributes patamseacross several experiments
Granularity reduction Granularity Reduces trace to reieeaents

Statistical analysis Number of processes Speeds up amalysi

To summarize our survey, Table 1 classifies the differenhous by the primary reason
addressed (Figure 2) and the primary symptom cured.

5 Conclusion

We have discussed several recent approaches to improweanatysis scalability and
classified them by the primary causes and effects they agl(fable 1). Although each
constitutes an important improvement, none of them in igmais powerful enough to
meet the extreme scalability requirements of today's supaputers and applications.
However, we notice that the above approaches can be seergaly larthogonal in the
sense that they can be effectively combined to facilitategadr degree of scalability.
For example, as already anticipated by combimmgs with cccas, thevNG concept
of analyzing trace data in parallel could be extended to theraatic pattern search and
enhanced with periodicity detection or call-graph comgim@s

Acknowledgements This work was partially supported by the Spanish MinistrySof-
ence and Technology under Contract TIN2004-07739-C02\W&. would also like to
thank Holger Brunst and Andreas Knipfer for helping imgrawr understanding of the
VNG and & cG approaches.

References

[ATTWO06] G. Aguilera, P. J. Teller, M. Taufer, and F. Wolf. A/fStematic Multi-step Methodology
for Performance Analysis of Communication Traces of Distreéd Applications based

on Hierarchical Clustering. IRroc. of the 5th International Workshop on Performance
Modeling, Evaluation, and Organization of Parallel and Distributed Systems (PMEO-
PDS), Rhodes, Greece, April 2006. Accepted for publication.

[BNO3] H. Brunst and W. E. Nagel. Scalable Performance Asialgf Parallel Systems: Con-
cepts and Experiences. Rroc. of the Parallel Computing Conference (ParCo), Dres-
den, Germany, 2003.

[BSWT05] N. Bhatia, F. Song, F. Wolf, B. Mohr, J. Dongarra, and Sokéo Automatic Exper-
imental Analysis of Communication Patterns in Virtual Tappes. InProc. of the
International Conference on Parallel Processing (ICPP), Oslo, Norway, June 2005.
IEEE Society.

[CGLOO] A.Chan, W. Gropp, and E. Lusk. Scalable Log FilesRarallel Program Trace Data
(DRAFT). Technical report, Argonne National Laborator§0R.

[CWO03] J. Candy and R. Waltz. An Eulerian gyrokinetic Maxinsslver. J. Comput. Phys.,
186:545-581, 2003.

[FCLO2] F. Freitag, J. Caubet, and J. Labarta. On the Sd#jabf Tracing Mechanisms. In
Proc. of the European Conference on Parallel Computing (Euro-Par), volume 2400 of
Lecture Notes in Computer Science, Paderborn, Germany, August 2002. Springer.

[KNO5] A. Knuipfer and W. E. Nagel. Construction and Compies of Complete Call Graphs
for Post-Mortem Program Trace Analysis.Rroc. of the International Conference on
Parallel Processing (ICPP), pages 165-172, Oslo, Norway, June 2005. IEEE Society.

[MSO03] A. D. Malony and S Shende. Performance TechnologyClamplex Parallel and Dis-
tributed Systems. In P. Kacsuk and G. Kotsis, edit@sality of Parallel and Dis-
tributed Programs and Systems, pages 25-41. Nova Science Publishers, Inc., New
York, 2003.

[MWD05] S. Moore, F. Wolf, J. Dongarra, S. Shende, A. Malony, antBhr. A Scalable Ap-
proach to MPI Application Performance Analysis.Rroc. of the 12th European Par-
allel Virtual Machine and Message Passing Interface Conference (EUROPVMMPI),
Sorrento, Italy, September 2005. Springer.

[NWHS96] W. Nagel, M. Weber, H.-C. Hoppe, and K. Solchenba¢hMPIR: Visualization and
Analysis of MPI ResourcesSupercomputer, 63, XI1(1):69—-80, 1996.

[Rab97] R. Rabenseifner. The Controlled Logical Clock - alal Time for Trace Based
Software Monitoring of Parallel Applications in Workstari Clusters. InProc. of
the 5th EUROMICRO Wbrkshop on Parallel and Distributed Processing (PDP), pages
477-484, London, UK, January 1997.

[WBS™00] C. E. Wu, A. Bolmarcich, M. Snir, D. Wootton, F. Parpia, 8han, E. Lusk, and
W. Gropp. From Trace Generation to Visualization: A Perfante Framework for
Distributed Parallel Systems. Proc. of the Supercomputing Conference (SC2000),
Dallas, TX, November 2000.

[WMO03] F. Wolf and B. Mohr. Automatic performance analysishybrid MP1/OpenMP ap-
plications. Journal of Systems Architecture, 49(10-11):421-439, 2003. Special Issue
“Evolutions in parallel distributed and network-basedqassing”.

[WMWO05] B. Wylie, B. Mohr, and F. Wolf. Holistic hardware cater performance analysis of
parallel programs. IiProc. of Parallel Computing 2005 (Par Co 2005), Malaga, Spain,
September 2005.

