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Abstract:
A powerful and widely-used method for analyzing the performance behavior of

parallel programs is event tracing. When an application is traced, performance-
relevant events, such as entering functions or sending messages, are recorded at run-
time and analyzed post-mortem to identify and potentially remove performance prob-
lems. While event tracing enables the detection of performance problems at a high
level of detail, growing trace-file size often constrains its scalability on large-scale
systems and complicates management, analysis, and visualization of trace data. In this
article, we survey current approaches to handle large traces and classify them accord-
ing to the primary issues they address and the primary benefits they offer.
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1 Introduction

Event tracing is a powerful and widely-used method for analyzing the performance of
parallel programs. In the context of developing parallel programs, tracing is especially
effective for observing the interactions between different processes or threads that occur
during communication or synchronization operations and toanalyze the way concurrent
activities influence each other’s performance.

Traditionally, developers of parallel programs use tracing tools, such as Vampir
[NWHS96], to visualize the program behavior along the time axis in the style of a Gantt
chart (Figure 1), where local activities are represented asboxes with a distinct color. Inter-
actions between processes are indicated by arrows or polygons to illustrate the exchange
of messages or the involvement in a collective operation, respectively.



Figure 1: Vampir time-line visualization of anMPI application.

To record a trace file, the application is usually instrumented, that is, extra code is in-
serted at various levels that intercepts the desired eventsand generates the appropriate
trace records. The events monitored typically include entering and leaving code regions as
well as communication and synchronization events happening inside these regions. Mem-
ory hierarchy events comprise another important event typewhich is predominantly used
in cache-analysis tools.

Trace records are kept in a memory buffer and written to a file after program termination
or upon buffer overflow. Recording communication and synchronization events is often
accomplished by interposing wrappers between applicationand communication library
during the link step. While the program is running, each process or thread generates a
local trace file, which is merged into a global trace after program termination.

Scalability, as is described in Section 2, is a major limitation of trace-based performance
analysis. Due to its ability to highlight complex performance phenomena, however, trace-
based performance analysis will continue to be needed to achieve an efficient utilization of
massively-parallel systems. We therefore argue that research directed towards improving
the scalability of this diagnosis technique is a worthwhileundertaking.

In this article, we give an overview of existing approaches to limit the amount of trace
data needed or to efficiently handle larger event traces if they cannot be avoided. We
start in Section 2 with a discussion of technical issues limiting the scalability of trace-
based performance analysis. In Section 3 we distinguish situations leading to large traces.
The actual survey of approaches along with our classification is presented in Section 4,
followed by our conclusion in Section 5.

2 Scalability Issues

Although event tracing is a powerful performance-diagnosis technique, is has known lim-
itations on large-scale systems. This article focuses on problems related to trace-file size.

Another set of problems is related to synchronization of event timings. Since the compar-
ison of event timings across the processes of a parallel program is an important element
of trace-based performance analysis, the absence of globally synchronized clocks may



adversely affect the accuracy and consistency of event measurements. This problem has
been addressed by hardware solutions, such as the BlueGene/L global barrier and interrupt
network, runtime measurements with linear interpolation [WM03], and off-line correction
based on logical clocks [Rab97]. Although still an open research area, this issue is beyond
the scope of this paper.

The amount of trace data generated poses a problem for (i) management, (ii) visualiza-
tion, and (iii) analysis of trace data. Note that often thesethree aspects cannot be clearly
separated because one may act as a tool to achieve the other, for example, when analysis
occurs through visualization.

The size of a trace file may easily exceed the user or disk quotaor the operating-system
imposed file-size limit of 2GB common on 32-bit platforms. For SciDAC application
Gyro [CW03], we have obtained about 2.9MB of trace data per process for a varying
number of processes - even after applying a relatively selective instrumentation scheme.
Extrapolating this number to 10,000 processes would resultin more than 20GB of data.

However, even if the trace data are divided into multiple files, as supported by Intel’sSTF

trace format, moving and archiving large amounts of trace data can be tedious and cumber-
some. Since a typical performance analysis cycle usually involves several experiments to
adequately reflect different execution configurations, input data sets, and perhaps program
versions, the amount of data becomes multiplied by a larger factor.

Building robust and efficient end-user tools to collect, analyze, and display large amounts
of trace data is a very challenging task. Large memory requirements often cause a signif-
icant slow down or - even worse - place practical constraintson what can be done at all.
Moreover, if the trace data of a single program run are distributed across multiple files,
for example, before merging local files into a single global file, trace processing as it oc-
curs during the merge step may require a large number of files to be open simultaneously,
creating a potential conflict with given operating-system limits.

Even if the data management problem can be solved, the analysis itself can still be very
time consuming, especially if it is performed without or with only little automatic support.
On the other hand, the iterative nature of many applicationscause trace data to be highly
redundant as the same code is repeated many times with nearlyidentical computations
(e.g., in loops). Thus, compression techniques can be useful for reducing the amount of
data to be stored and analyzed.

In the next section, we discuss why event traces become largeas a foundation for our later
classification of approaches to improve scalability.

3 Reasons for Large Traces

The reasons for large traces can be roughly divided into five categories:

Number of processes/threads. Since this number is equal to the number of time-lines in
a time-line diagram, it is often referred to as thewidth of an event trace (as opposed
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Figure 2: Reasons for large traces and the problems they cause.

to the length, which represents the number of events per process). Because the
total number of communication and synchronization events usually grows with the
number of processes, the width influences both the total amount of data as well as
the total number of local trace files that need to be handled.

Temporal coverage. The intervals to be traced need not cover the entire execution. It
is obvious that restricting tracing to smaller intervals can substantially decrease the
amount of trace data.

Granularity. How many events are recorded during a given interval dependson the fre-
quency at which events are generated. This is typically related to the granularity of
measurements, that is, the level of detail (e.g., function,block, or statement level)
captured through tracing. The reader should note that a highfrequency can also
increase perturbation and alter performance behavior.

Number of event parameters. The parameters recorded as part of an event typically in-
clude a process identifier, a time stamp, and a type identifier. In addition, there may
be one or more type-specific parameters. In parallel performance analysis the num-
ber of parameters rarely exceeds a few unless hardware counter readings, of which
there may be many, are added to the event record.

Problem size. This factor considers the number of performance-relevant events as a result
of the algorithm applied to a certain input problem. A typical example is the number



of iterations performed to arrive at a solution, which can prolong execution time and
increase the number of events to be traced.

Figure 2 summarizes causes and effects of large traces. Notethat all reasons except for the
number of processes fall under the category long traces. However, it should be noted that
growing problem sizes often demand a higher degree of parallelism.

4 Approaches to Improve Scalability

In this section, we discuss several approaches to either avoid or to handle large traces. At
the end, we classify the different methods by causes and effects of the scalability problem
they address.

Frame-based data format. To allow for efficient zooming and scrolling, traditional
trace-visualization tools require the event trace to reside in main memory. As traces grow
bigger, methods are needed to either efficiently access trace data from files or to create a
more compact main-memory representation.

An approach targeting the first option has been developed by Wu et al. [WBS+00]. They
have introduced a trace-file format namedSLOG that supports scalable visualization in the
sense thatCPU-time and memory requirements depend only on the number of graphical
objects to be displayed and neither on the total amount of trace data nor on a particular
interval chosen for display.1

If the user wants to display only a section of an event trace, the SLOG format allows the
viewer to read only the necessary portions of the file. The trace file is divided into frames
(Figure 3) representing different intervals of program execution. To complete the visu-
alization of an interval frame, each frame includes so-called pseudo records that contain
state information from outside the interval, such as message events required to draw mes-
sage arrows beginning or ending outside the displayed section. Linked frame directories
enable rapid access to other time intervals even if they are located far into the run.

Dir Frame Frame Frame Dir Frame FrameDir

Link to next directroy

Links to frames

Figure 3: TheSLOG trace-file structure is divided into frames representing separate intervals.

Work presented in [CGL00] further improves visual performance by arranging drawable
objects into a binary tree of bounding boxes, which also eliminates the need for pseudo
records and provides better support for drawing coarse-grained previews.

1A similar approach is supported by theSTF format.



Periodicity detection. As pointed our earlier, many scientific applications exhibit a
highly repetitive behavior as a result of performing loop iterations of almost identical cal-
culations. If these iterations perform in the same manner, tracing only a few instances is
often sufficient to capture the entire application behavior, that is, tracing can be restricted
to representative intervals, resulting in significantly reduced trace-file length.

Freitag et al. [FCL02] have developed a dynamic mechanism for OpenMP applications
that is able to detect repetitive behavior at run time and to disable tracing after recording
a representative number of iterations. Once the periodic behavior ends, tracing is resumed
until the next periodic section is reached. In this way, the trace-file size obtained for the
NAS LU benchmark was reduced by 95 %. Periodicity is detected usinga distance metric
applied to the stream of function identifiers representing the sequence of function entries
and exits:

d(m) = sign

N−1∑

i=0

|x(i) − x(i − m)|, 0 < m < M ∧ M ≤ N .

The formula computes the vector distance between vectorx(i) and the same vector shifted
by m samples.N is the size of the data window,M is the maximum period length that
can be detected. If the equation returns zero for a givenm, the data window contains
an identical periodic pattern with periodicitym. The evaluation of the distance is based
on an efficient algorithm that requiresO(M) calculations per event. Compared to the
original tracing mechanism, which added about 1-3% of overhead to the execution time,
periodicity detection increased the overhead to only 3-6%.

Call-graph compression. If an event trace is stored in main memory, it is usually orga-
nized as a linear list of event records in chronological order. Knüpfer and Nagel [KN05]
proposed an alternate data structure namedComplete Call Graph (CCG) which arranges
event records in a tree resembling the program’s function call hierarchy, where each node
represents a function call. In contrast to linear lists, time stamps appear transformed into
the durations that lie between two subsequent events. Each local trace is transformed into
a separateCCG.

The main advantage over linear lists is the ability to merge equal or similar nodes with the
intent of “shortening” traces. This is achieved by eliminating redundancy along the time
axis created as result of iterative behavior - similar in spirit to the previously discussed
on-line periodicity detection only that it is performed off-line.

CompressedCCGs (cCCGs) are created from regularCCGs by applying either lossless or
lossy compression. It is important to note that this occurs entirely transparent to read
access, in that a later decompression is not required. The deviation arising from lossy
compression can be controlled both in terms of the absolute maximum deviation of in-
dividual time stamps and in terms of the relative percentagethat the durations between
subsequent events are changed.

The computational effort required forCCG construction isO(n) with n being the total
number of events. The overall complexity ofCCG compression isO(N ∗m) with N being
the total number of nodes in theCCG andm a rather small data-dependent factor. Experi-
mental results showed memory compression ratios between 2 to 8 for lossless compression



and up to 44 for lossy compression with midrange deviation bounds (1000 clock ticks and
50 % interval deviation).

CCGs not only save memory, they can also speed up analysis. Queries, such as summary
statistics, are most efficiently computed in a recursive manner along theCCG tree structure.
Caching of intermediate results at graph nodes can significantly accelerate subsequent
queries. Since in compressed trees redundant nodes have been merged, cached results can
be reused even within the same query.

Distributed analysis. Whereas the previous two approaches primarily address long
traces, Brunst and Nagel [BN03] have designed and prototyped a distributed performance
analysis service suitable to access and evaluate, in particular, wide traces collected on ma-
chines with a large number ofCPUs. The service is called Vampir Next Generation (VNG)
and essentially constitutes a scalable version of the popular Vampir event-trace browser.

VNG is based on the principle of keeping performance data close to the location where they
were created and of exploiting distributed memory for the analysis. It consists of a parallel
analysis server and a potentially remote visualization client. The server is submitted post-
mortem as a separate parallel job usually on the machine where the trace data were created.
The client runs on the user workstation and interacts with the server via a network.

The parallelization is based onMPI combined with pthreads and follows a master-worker
scheme. A master process handles incoming client requests by partitioning the work and
delegating the resulting subtasks to the worker processes.These are responsible for storage
and analysis of different subsets of the overall trace data,which are distributed across
multiple files. To support multiple client sessions, each server process may employ several
session threads. Similar to theSLOG approach,VNG limits the amount of data maintained
by the visualization client to a volume that is independent of the amount of traced event
data. Benefits of the distributed architecture have been demonstrated most notably for
summary charts and load operations with super-linear speed-ups of 60 and 40, respectively,
measured for16 + 1 processes. To further improve the support of long traces,VNG has
been successfully combined withCCG compression.

Automatic pattern search. The approaches covered so far have been devised mainly
with graphical trace browsers in mind. Either the amount of trace data has been reduced
and/or the access to it has become more efficient. However, from a user’s perspective
nothing has changed, the general way of looking at the data isstill the same: zooming in
and out until a phenomenon of interest has been found. Especially in view of large-scale
systems creating a need to deal with larger traces, this process can be time consuming and
- given the size of the search space - complete coverage is hard to achieve.

An approach based on automatic pattern search, which was developed by Wolf and Mohr
[WM03] and implemented in theKOJAK tool, tries to combine the expressiveness of trace
data with the compactness of profile data.KOJAK scans trace files off-line for execution
patterns representing inefficient behavior, such as communication and synchronization de-
lays, thus relieving the user from the burden of searching large amounts of trace data man-
ually. SinceKOJAK distinguishes patterns of different shape, the performance behavior is
automatically classified by bottleneck type. Once a match has been found, the detected



pattern instance is gauged to quantify its performance impact in terms of the time lost due
to its occurrence. The measurements are accumulated and mapped onto the call tree and
the hierarchical structure of the parallel system. The resulting three-dimensional represen-
tation of performance behavior owes its compactness the fact that the time dimension (i.e.,
length) of the trace has been made implicit by aggregation ofquantified pattern matches.
The automatic analysis has been optimized by exploiting thespecialization hierarchy in
which the different patterns are arranged. In addition to speedups between 2.5 and 13, this
strategy has also reduced the amount of code needed to describe the patterns.

Topological analysis. The integration of process topologies into theKOJAK framework
[BSW+05] has improved the analysis of wide traces by visually grouping processes ac-
cording to their virtual or physical topological characteristics and by helping identify
macro-patterns that put primitive pattern instance into a larger context covering the en-
tire topology.

Holistic analysis. In order to assess single-node performance in addition to the time-
based patterns focusing primarily on parallel interaction, theKOJAK framework allows the
user to record a large variety of hardware-counter readingsincluding cache misses,TLB

misses, and floating-point operations as part of certain event records. As pointed out in
Section 3, this can easily lead to a significant trace-file enlargements, especially when data
from a large number of counters are recorded to gain insightsfrom comparing counter
values across various functional units. To avoid trace-fileenlargement proportional to
the number of recorded counters, Wylie et al. [WMW05] replace a single experiment by
multiple experiments conducted under similar conditions,each time recording a different
subset of the desired counters. The resulting traces are analyzed separately and the results
merged into a single integrated “holistic” picture of performance behavior.

Granularity reduction. Indiscriminate instrumentation of user functions can easily lead
to significant trace-file enlargement and perturbation, often caused by short but frequently
executed user-function calls without any communication. Since trace analysis focuses
mostly on communication and synchronization, recording functions not involved in such
operations rarely contribute to the analysis. To keep trace-file size within manageable
bounds, Moore et al. [MWD+05] devised a semi-automatic two-step process to prevent
calls to these functions from being recorded: First, a call path profile is generated using
the TAU tool [MS03]. Next, a script automatically extracts all function names directly or
indirectly involved in communication or synchronization calls and generates a so-called
TAU include list used to restrict instrumentation to those functions only on subsequent
runs. Using this method, the trace-file size for the aforementioned Gyro code could be
reduced from more than 100GB (estimated) to less than 100MB for 32 processes. The
latest version ofTAU also includes an on-line mechanism to filter out function calls that
are not ancestors ofMPI calls.

Statistical analysis. Aguilera et al. [ATTW06] apply multivariate statistical techniques
to event traces with the aim of isolating processes that might be experiencing communica-
tion problems, thus clearly addressing wide traces. Their methodology follows a sequence



of five steps: (i) extract communication data from the trace file, (ii) summarize extracted
communication information, (iii) create a distance matrixusing data from the previous
step, (iv) perform hierarchical clustering, and finally (v)identify process pairs of interest
for a more in-depth analysis.

Table 1: Classification of approaches to improve the scalability of trace analysis.

Approach Primary reason addressed Primary benefit

Frame-based format Long traces Speeds up visualization

Periodicity detection Temporal coverage Reduces trace to relevant intervals

Call-graph compression Temporal coverage Reduces trace data by averaging similar behavior

Distributed analysis Number of processes Speeds up analysis and visualization

Automatic pattern search Long traces Speeds up analysis

Topological analysis Number of processes Groups processesin analysis and visualization

Holistic analysis Number of parameters Distributes parameters across several experiments

Granularity reduction Granularity Reduces trace to relevant events

Statistical analysis Number of processes Speeds up analysis

To summarize our survey, Table 1 classifies the different methods by the primary reason
addressed (Figure 2) and the primary symptom cured.

5 Conclusion

We have discussed several recent approaches to improve trace-analysis scalability and
classified them by the primary causes and effects they address (Table 1). Although each
constitutes an important improvement, none of them in isolation is powerful enough to
meet the extreme scalability requirements of today’s supercomputers and applications.
However, we notice that the above approaches can be seen as largely orthogonal in the
sense that they can be effectively combined to facilitate a higher degree of scalability.
For example, as already anticipated by combiningVNG with cCCGs, theVNG concept
of analyzing trace data in parallel could be extended to the automatic pattern search and
enhanced with periodicity detection or call-graph compression.
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