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Abstract. This article describes how the integration of the OpenUH
OpenMP compiler with the KOJAK performance analysis tool can assist
developers of OpenMP and hybrid codes in optimizing their applications
with as little user intervention as possible. In particular, we (i) describe
how the compiler’s ability to automatically instrument user code down
to the flow-graph level can improve the location of performance problems
and (ii) outline how the performance feedback provided by KOJAK will
direct the compiler’s optimization decisions in the future. To demon-
strate our methodology, we present experimental results showing how
reasons for the performance slow down of the ASPCG benchmark could
be identified.

1 Introduction

Many tools have been created to help find performance bottlenecks and tune
parallel codes written using the hybrid MPI/OpenMP programming model. Yet
tool use remains labor-intensive and fragmentary. Our goal is to improve the ap-
plication development and tuning process by creating an integrated environment
for parallel program optimization that reduces the manual labor and guesswork
of existing approaches. We are developing strategies that enable the applica-
tion developer, compiler and performance tools to collaborate and that generate
code based upon a variety of sources of feedback. To demonstrate our ideas, in
this paper we describe the integration of existing, open source software - the
OpenUH compiler [10] and the automatic trace analysis tool KOJAK [19] – into
a single, coherent environment, called COPPER, for collaborative application
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tuning. The integrated application optimization environment permits a variety
of user and tool interactions to solve performance problems, such as compiler
assistance in the instrumentation of an application, and provision of high-level
feedback information by performance tools to direct the compiler in further op-
timizations.

In Section 2 we present related work of tools that support different aspects
of performance feedback analysis and optimizations. In Section 3 we give an
overview of our system and describe its components. Section 4 describes how
OpenUH and KOJAK interact and APIs used to accomplish this interaction.
Section 5 describes the feedback optimization facility in OpenUH and how it can
be extended to support OpenMP optimizations. Section 6 describes the initial
evaluation of our system and experimental results using the ASPCG kernel. In
Section 7, we present our conclusions and plans for future work.

2 Related Work

Profile-guided optimization (PGO), where a program is compiled and executed
to collect execution profiling information that is later used to perform optimiza-
tion in a subsequent compilation step, has been exploited by modern static com-
pilers to achieve significant speedups [4]. On the other hand, dynamic feedback
optimizations have been mainly explored for runtime optimizations [2] [6] [5], dy-
namic compilation [3] and the Java environment [1], where profiling and sampling
information is collected to direct run time optimizations. Unfortunately most of
these systems do not support an integrated environment for MPI/OpenMP code
optimizations and do not take advantage of automatic performance analysis that
searches large amounts of performance data to locate inefficiencies on a higher
level of abstraction.

Existing state-of-the-art performance tools addressing the combined use of
MPI and OpenMP in a single application, such as TAU [11], VGV [7], and VAM-
PIR [14] deliver valuable performance feedback, albeit on a relatively low level
of abstraction. Higher-level information obtained from an automatic analysis
of trace data is provided by KappaPi [8], but only for pure message passing
applications. Aksum [16], Paradyn [12], and Periscope [15] offer automatic per-
formance analysis features for both MPI and OpenMP applications, but make
certain assumptions about the deployment infrastructure that make them less
suitable candidates for integration with the OpenUH compiler.

3 Overview

Figure 1 depicts the overall architecture of the envisioned COPPER environment
and how it relates to the application optimization process. The process starts
with the instrumentation of OpenMP constructs on the source-code level using
a preprocessor called OPARI [13]. In the next step, the application is compiled
by OpenUH and, at the same time, the compiler inserts instrumentation into
the user code to generate traces for KOJAK. After application termination,



KOJAK analyzes the resulting trace file and provides higher-level feedback that
is returned to OpenUH’s feedback optimization module. The initial version of
the COPPER environment, as described in this article, so far only integrates
OpenUH and KOJAK by using compiler-based instrumentation. The KOJAK
feedback is currently returned to the end user instead of the compiler. We hope
to close the automatic feedback loop in the near future. Also, in a later step we
plan to include the PerfSuite profiling tool [9] into the feedback loop for initial
performance assessment and analysis of the OpenMP runtime system.

Fig. 1. COPPER architecture

The following sections describe each of the components more in detail.

3.1 OpenUH

OpenUH [10] is a compiler suite that supports C/C++ and Fortran 90/95 with
OpenMP and/or MPI on the IA-64 running Linux. OpenUH is based on Open64,
originally developed by SGI, subsequently maintained by Intel and now sup-
ported commercially by Pathscale for Opteron architectures. OpenUH is avail-
able as an open source compiler. The major functional parts of the compiler
are the front ends, the inter-language interprocedural analyzer (IPA), and the
middle-end/back end, which is further subdivided into the loop nest optimizer,
auto-parallelizer (with an OpenMP optimization module), global optimizer (or
whole program optimizer), and code generator. OpenUH currently supports
OpenMP 2.0. OpenMP is lowered during different compilation phases. The out-
put code makes calls to a portable run-time library based on Pthreads. The
description of how OpenMP is translated in OpenUH can be found in [10].



3.2 KOJAK

KOJAK is an automatic performance analysis system for MPI, OpenMP, and hy-
brid applications written in C/C++ or Fortran. It is based on automatic pattern
search in event traces and uses different interoperable components to support
the analysis cycle from trace generation to visualization of analysis results.

In the COPPER environment, user regions are automatically instrumented
by the OpenUH compiler. The OpenUH compiler supports the instrumenta-
tion of function, loop, conditional branch, and compare and goto program
units. OPARI [13] performs automatic instrumentation of OpenMP constructs
according to the POMP profiling interface for OpenMP. Section 4.1 describes
OPARI and POMP in more detail. Instrumentation of MPI functions is fully
automated by interposing an MPI wrapper library based on the PMPI profiling
interface.

At runtime, the instrumented executable generates a single trace file that
can be searched off-line for inefficiency patterns using the EXPERT analyzer
[19]. The patterns concentrate on wait states resulting from suboptimal parallel
interaction. Those can appear in MPI point-to-point or collective communication
when processes have to wait for data sent by other processes or in OpenMP when
threads reach a barrier at different points in time or when threads compete for
the ownerships of locks. Low CPU and memory performance can also be analyzed
by adding hardware counter information to event records.

The analysis process transforms the traces into a compact XML represen-
tation that maps higher-level performance problems onto the call tree and the
hierarchy of system resources, such as nodes, processes, and threads. The XML
file can be viewed in the CUBE performance browser (see Figure 4) or, alterna-
tively, automatically processed by third-party tools using the CUBE API.

4 Tool Interactions

This section describes how KOJAK and the OpenUH compiler instrument OpenMP
constructs and user regions, respectively. The profiling interface and advantages
of using KOJAK high-level feedback are also presented.

4.1 OpenMP Instrumentation

Similar to the MPI profiling interface PMPI, Mohr et al. [13] defined a portable
API that exposes OpenMP parallel execution to performance tools. The perfor-
mance interface is called ”POMP”. The POMP API consists of callback functions
that are called before and after all OpenMP constructs and runtime routines.
The callbacks can be inserted into the program during OpenMP compilation,
through a source or binary instrumentation tool, or activated by an instrumented
OpenMP runtime system.

OPARI [13] is a source-to-source translation tool that can add POMP instru-
mentation to C, C++, and Fortran programs. When reading a parallel program



containing OpenMP directives, KOJAK automatically invokes OPARI to insert
POMP performance calls where appropriate. As a final step of the instrumenta-
tion, KOJAK links the application with a library implementing the POMP API
to generate appropriate events and write them to the trace buffer. Thus, with
the help of the PMPI library and the OpenUH user-region instrumentation, our
approach provides a fully automatic solution to the instrumentation of OpenMP
and mixed-mode MPI/OpenMP applications.

4.2 OpenUH Instrumentation and Profiling Interface

Compile-time instrumentation has several advantages over source-level and object-
level instrumentation. We can use the compiler analysis to detect regions of in-
terest where we can measure and instrument certain events to support different
performance metrics. Also, the instrumentation can be performed at different
compilation phases, allowing certain optimizations to take place before the in-
strumentation. These capabilities play a significant role in the reduction of in-
strumentation points, improve our ability to deal with program optimizations,
and reduce the instrumentation overhead and size of performance trace files.

The instrumentation module can be invoked at six different phases during
compilation, which are before and after three major stages in the translation:
interprocedural analysis, loop nest optimizations, and SSA/DataFlow optimiza-
tions. For example, if the user decides to instrument the source code after the
interprocedural analysis phase, program transformations such as procedure in-
lining will reduce the instrumentation points for callsites and the compiler will
instrument the body of the procedure being inlined.

The OpenUH compiler provides an interface to enable the instrumentation
of three types of user regions: functions, conditional branches, and loops. The
instrumentation of other types of regions such as MPI operations and OpenMP
constructs are avoided so that they can be handled by the profiling libraries of
PMPI and POMP. Procedure and control flow instrumentation is essential to
relate the PMPI and POMP results to the execution path of the application.
We plan to integrate the POMP instrumentation in later versions of OpenUH.
For now we are using OPARI to do it. Additionally, the user has the option to
instrument his code after OpenMP gets translated to threading code (by setting
a special compiler flag). In this case the OpenMP runtime system specific calls
are additionally instrumented by the compiler.

Each user-region type is further divided into several sub-categories when-
ever possible. For instance, a loop type may be do loop, while do loop or
do while loop. Conditional branches may be of type if then, if then else,
true branch, false branch, or cselect. The name of the sub-category is com-
municated back to KOJAK through the profiling interface and later displayed
in the call-tree view of the KOJAK GUI. This detailed presentation provides
users with a fine-grained control flow graph in which taken branches, untaken
branches, and specific loops are all displayed.

The compiler instrumentation is done by first traversing an intermediate rep-
resentation of a program to locate different program constructs. The compiler



locates starting and exit points of constructs such as procedures, branches and
loops to insert specific profiling calls at these points. The compiler profiling in-
terface API is defined as follows. Argument begn ln represents the beginning
line of the region, and end ln represents the end line of the region. type indi-
cates the specific subtype of the region. pu name is the name of a function or
subroutine.

– Functions to initialize and finalize the profiling library:

void profile_init(void)

void profile_finish(void)

– Subroutine entry and exit functions:

void profile_invoke(char *pu_name, INT32 begn_ln,

INT32 end_ln, char *file_name)

void profile_invoke_exit(void)

– Conditional branch entry and exit functions:

void profile_branch(BranchSubType type, INT32 begn_ln,

INT32 end_ln, char *file_name)

void profile_branch_exit(void)

– Loop entry and exit functions:

void profile_loop(LoopSubType type, INT32 begn_ln,

INT32 end_ln, char *file_name)

void profile_loop_exit(void)

The interface has been implemented in KOJAK as part of the trace library to
generate appropriate events upon region entry and exit.

4.3 KOJAK High-Level Feedback

To optimize a parallel application based on the MPI/OpenMP programming
model, developers usually want to see whether the application is load imbalanced,
where the synchronization overhead lies, and where there are opportunities to
overlap computation and communication. For each parallel region, KOJAK is
able to display the execution time broken down by call path and thread or
process. The identification of wait states in combination with the distinction of
different OpenMP constructs and user-region types simplifies the comparison of
loop scheduling strategies and the validation of the program design. OpenMP
parallel for and parallel sections constructs are two common cases where KOJAK
can be used.



When the hardware counter feature is enabled, performance data supplied
by the PAPI library is also recorded in the trace file. The hardware counter
information will help us to correct CPU and memory anomalies such as unevenly
distributed L1/L2 cache miss rate, significantly high TLB misses, and long stalls
of the pipeline across a group of threads.

In a later stage of the integration project, the OpenUH compiler will read
the analysis results from the XML file and automatically perform optimizations.
The feedback mechanism to be used for this purpose is described below.

5 Compiler Optimizations for OpenMP

OpenUH has a basic facility for performing feedback-directed optimizations,
which are accomplished via the automatic insertion of instrumentation and com-
piler annotation of the profiling results in the intermediate representation. It is
able to use this facility to improve procedure inlining and branch prediction and
to improve the cost modeling analysis for loop nests. The current feedback in-
frastructure supports profiling results at the procedure and control flow level of
the procedure. Our main focus has been to extend this infrastructure to sup-
port hybrid OpenMP/MPI code optimizations. Our initial focus explores loop
transformations to alleviate the problem of parallel loop load imbalances. Feed-
back information from KOJAK gives the compiler cost modeling information
related to the parallel overhead of a given transformation. For example, if KO-
JAK reports a synchronization problem (e.g. long waits at a barrier) because of
load imbalances, the compiler will assign a high cost for parallel synchroniza-
tion overhead. Based on dependence analysis and interprocedural array region
(array data-flow analysis) information, the compiler will try out a set of loop
permutations, including loop interchange, loop tiling and outer loop unrolling,
to alleviate the problem. The compiler also applies different strategies, including
attempting to determine which loop in the nest is most profitable to parallelize
and determining an appropriate scheduling strategy, and chunk size.

6 Experimental Results

To illustrate our approach, we performed an experimental analysis of the dif-
ferent process/thread allocation strategies for the ASPCG sparse linear algebra
kernel [18]. Large sparse linear systems that are used in simulation of turbulent
flow calculation in complex geometries typically have several million unknowns.
The ASPCG kernel from Virginia Tech solves such systems with a preconditioned
conjugate gradient(PCG) method. The iterative CG method uses a two-level ad-
ditive Schwarz preconditioner which adopts a domain decomposition approach to
compute solutions on subdomains. The code is available in serial, MPI, OpenMP,
and hybrid versions. For our experiments, we used the hybrid version and com-
piled ASPCG with the OpenUH compiler.

The experiments were performed on NCSA’s SGI Altix machine which con-
sists of two SMP systems running the Linux operating system. Each system has



512 Intel Itanium2 1.6 GHz processors. Figures 2, 3, and 4 show performance
analysis results for the PCG method preconditioned by the additive Schwarz
method for the problem size of 8194 × 8194. The GUI windows displayed in-
clude three trees. The left tree represents performance properties, the middle
tree represents call paths of the source code, and the right tree represents sys-
tem resources. The numbers represent percentages of the overall execution time.

Fig. 2. Difference experiment of ASPCG between 8×4 run and 4×8 run. Unlike Figure
3, this figure focuses on the difference in the MPI communication.

We conducted two experiments on 32 processors with 8 processes 4 threads
each and 4 processes 8 threads each respectively (i.e., 8 × 4 and 4 × 8 config-
urations). The walltime is about 35 minutes to execute the 8 × 4 experiment
and about 25 minutes for the 4 × 8 run. A virtual difference experiment was
computed by subtracting the 4× 8 experiment from the 8× 4 experiment using
our performance algebra tool [17]. Positive values represent performance losses
of the 8 × 4 experiment, and negative values represent gains of 8 × 4. By com-
paring the two experiments, we find the 8× 4 run is slower than the 4 × 8 run
by 12.8% (4.9% lies in OpenMP constructs and 3.5% in MPI communication).



In order to show the difference experiment in more detail, we use two figures,
Figure 2 and Figure 3, to display the difference located in MPI communication
and OpenMP constructs, respectively. As shown in Figure 3, the 8 × 4 experi-
ment spent 3.5% more time in MPI communication than the 4 × 8 experiment
did. After expanding the tree node of ”MPI”, we can see detailed information in
Figure 2. The reason why the 8 × 4 experiment is slower is because the greater
number of processes induced bigger overhead in ”Wait at N × N” and longer
blocking time in ”Late Sender” and ”Messages in wrong order”. In addition, the
increased loss in the metric ”Idle Threads” (4.9%) is a consequence of the higher
MPI time when the MPI calls were made during sequential phases of execution.
Prolonged sequential executions cause slave threads to sit idle, which is a typical
problem of hybrid programs.

Fig. 3. Difference experiment of ASPCG between 8×4 run and 4×8 run. Unlike Figure
2, this figure focuses on the difference in the OpenMP constructs.

To continue to investigate the reason for the greater cost in OpenMP (shown
in Figure 3), the selected property in the left tree reveals a performance problem:
4.9% of the total execution time was spent waiting in front of OpenMP barriers.
The waiting time is significant and it typically indicates the problem of load-



imbalance. The scheduling strategy we used was static. The 4× 8 experiment
is more load-balanced than the 8 × 4 one since the workload of the former is
more evenly distributed among 8 threads than that of the latter which uses only
4 threads to compute the same amount of work.

Figure 4 displays the result for the 16× 2 ASPCG experiment and demon-
strates that more fine-grained control flow information can help users distinguish
different instances of function calls within a region. As an example, the ”Late
Sender” property shown in Figure 4 takes 5.8% of the total execution time. In
examining the ”Late Sender” problem, we hope to identify which MPI Wait in
P2P communication spent most of the time blocking. With the help of condi-
tional branch regions, we are able to identify the locations of the most expensive
calls. The four expanded nodes with blue boxes in the middle tree account for
86% of the ”Late Sender” inefficiency. By clicking the right-button of the mouse,
one can look at the corresponding source code and modify it to eliminate the
problem.

Fig. 4. Tracking down locations of significant late senders for ASPCG with 8 × 2
processors by taking advantage of the detailed control flow information in the middle
tree.

7 Conclusions and Future Work

Large-scale parallel applications on advanced architectures with deep memory
hierarchies rarely achieve a moderate fraction of the theoretical peak perfor-
mance. Our work provides a framework to automatically analyze and optimize



performance of hybrid MPI/OpenMP applications through integration of an op-
timizing compiler (OpenUH) with a performance analysis tool (KOJAK). While
KOJAK automates the process of instrumenting MPI functions and OpenMP
constructs, OpenUH automatically instruments user regions down to the flow-
graph level at different compilation stages. The compile-time instrumentation
allows a variety of optimizations before the instrumentation and using the re-
sults of static analysis will help reduce the instrumentation overhead and the
amount of trace data. KOJAK gives performance feedback at a significantly
higher level than traditional tools. Such high-level information will enable the
OpenUH compiler to adjust the performance model parameters and determine
the most effective optimizing strategies to optimize parallel loops.

So far we are able to instrument regions of conditional branches and loops.
The support for switch regions is under development. The instrumentation of
loops can produce a huge amount of event trace data when confronted with a
deep loop nest. An approach to turn the instrumentation of loops on and off or
use sampling mechanisms is being considered. The source-to-source translation
approach of OPARI has some limitations. We hope to integrate the POMP in-
strumentation in later versions of the OpenUH compiler. Our future research will
mainly focus on how to provide useful compiler-oriented feedback and how the
compiler can adapt optimization strategies accordingly. In this context, we plan
to extend the current set of KOJAK performance properties to support advanced
loop optimizations and scheduling, which might also include the monitoring of
OpenMP runtime events beyond those specified in POMP.
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