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Abstract. Straightforward trace collection and processing becomes in-
creasingly challenging and ultimately impractical for more complex, long-
running, highly-parallel applications. Accordingly, the scalasca project
is extending the kojak measurement system for mpi, openmp and par-
titioned global address space (pgas) parallel applications to incorporate
runtime management and summarisation capabilities. This offers a more
scalable and effective profile of parallel execution performance, for an
initial overview and to direct instrumentation and event tracing to the
key functions and callpaths for comprehensive analysis. The design and
re-structuring of the revised measurement system are described, high-
lighting the synergies possible from integrated runtime callpath sum-
marisation and event tracing for scalable parallel execution performance
diagnosis. Early results from measurements of 16,384 mpi processes on
IBM BlueGene/L already demonstrate considerably improved scalability.

1 KOJAK/SCALASCA event tracing and analysis

The kojak toolset provides portable automated measurement and analysis of
hpc applications which use explicit message-passing and/or implicit shared-
memory parallelisations with mpi, openmp and pgas [2, 3]. Via interposition
on library routines, preprocessing of source code directives/pragmas, or inter-
facing with compilers’ function instrumentation, a comprehensive set of com-
munication and synchronisation events pertinent to the execution of a parallel
application can be acquired, augmented with timestamps and additional metric
measurements, and logged in trace files. These time-ordered event traces from
each application thread are subsequently merged into a global time-ordered trace
for analysis, via automatic rating of performance property patterns or interactive
time-line visualisation.

Despite the demonstrated value of the event tracing approach, using kojak,
vampir [4], DiP/Paraver [5] or commercial alternatives such as Intel Trace Col-
lector and Analyzer, a key limitation is the trace volume which is directly pro-
portional to granularity of instrumentation, duration of collection, and number
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of threads [6]. Multi-process and multi-thread profiling tools such as mpiP [13],
ompP [14] and proprietary equivalents, avoid this limitation by aggregating exe-
cution statistics during measurement and producing performance summaries at
completion. A variety of tracing and profiling options have been incorporated
by the tau toolkit [7], including flat (function), specifiable-depth callpath and
calldepth profiling. Measurement tools can generally exploit library interposi-
tion, via re-linking or dynamic library loading, to track mpi usage, however,
implicit parallelisation with openmp and function tracking typically require dy-
namic instrumentation [8] or re-compilation to insert special instrumentation.

scalasca is a new project which is extending kojak to support scalable per-
formance measurement and analysis of large-scale parallel applications, such as
those consisting of thousands of processes and threads. Parallelisation of post-
mortem trace analysis via replay of events and message transfers required re-
construction of the trace measurement and automated analysis foundation [9].
This is being complemented with runtime summarisation of event measurements
into low-overhead execution callpath profiles, which will also be used to re-
configure instrumentation and measurements or direct selective event tracing.
Reports from both runtime summarisation and trace analysis will use the same
cube format, so they can also be readily combined, for presentation and in-
vestigation with the associated browser [10]. Ultimately, improved integration
of instrumentation, measurement and analyses will allow each to be progres-
sively refined for large-scale, long-running, complex application executions, with
automation providing ease of use.

After describing the synergies possible from integrating runtime callpath pro-
filing and event tracing, the design of the revised measurement system is intro-
duced, and specific usability and scalability improvements that have been incor-
porated are detailed, followed by discussion of initial results with the prototype
revised implementation of event tracing which demonstrate its effectiveness at a
range of scales.

2 Runtime measurement summarisation

An approach without the scalability limitations of complete event tracing is
runtime measurement summarisation. As each generated event is measured, it
can be immediately analysed and incorporated in a summary for events of that
type occurring on that program callpath (for that thread). Summary informa-
tion is much more compact than event traces, with size independent of the total
collection duration (or the frequency of occurrence of any function): it is equiv-
alent to a local profile calculated from the complete event trace, and combining
summaries produces a global callpath profile of the parallel execution.

For measurements which are essentially independent for each process, such as
interval event counts from processor hardware counters, runtime summarisation
can effectively capture the profile without the overhead of rendering a bulky
vector of measurements. On the other hand, performance properties related to
inter-process interaction, such as the time between when a message was sent and
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available to the receiver and its eventual receipt (i.e., “late receiver”), can only
be determined in a portable way by combining disjoint measurements that is not
practical at runtime. Fortunately, the inter-process performance properties are
generally specialised refinements of the process-local ones available from runtime
summarisation.

Doing the local analysis at runtime during measurement, and in parallel,
reduces the need for large files and time-consuming post-processing and results
in a timely initial overview of the execution performance.

Runtime measurement processing and summarisation also offers opportuni-
ties to decide how to deal with each event most effectively as it is generated.
Frequently encountered events may be candidates to be simply ignored, due to
the overhead of processing measurements for them. Other events may have a very
variable cost which is typically small enough to be negligible but occasionally
significant enough to warrant an explicit detailed record of their occurrence.

Alternatively, a profile summary from which it is possible to determine how
frequently each function is executed, and thereby assess their importance with
respect to the cost of measurement, can be used as a basis for selective instru-
mentation which avoids disruptive functions. Subsequent measurements can then
benefit from reduced perturbation for more accurate profiling or become suitable
for complete event tracing.

Runtime measurement summarisation therefore complements event tracing,
providing an overview of parallel execution performance which can direct instru-
mentation, measurement and analysis for more comprehensive investigation.

3 Integration of summarisation and tracing

An integrated infrastructure for event measurement summarisation and trac-
ing offers maximum convenience, flexibility and efficiency. Applications instru-
mented and linked with the measurement runtime library can be configured to
summarise or trace events when measurement commences, and subsequent mea-
surements made without rebuilding the application. It also becomes possible to
simultaneously combine both approaches, with a general overview profile sum-
mary refined with analysis of selective event traces where they offer particular
insight.

Along with the practical benefit of maintaining a single platform-specific
measurement acquisition infrastructure, sharing measurements of times, hard-
ware counters and other metrics avoids duplicating overheads and potential ac-
cess/control conflicts. It also facilitates exact comparison of aggregate values
obtained from both approaches.

Some form of runtime summarisation is probably always valuable, perhaps
as a preview or compact overview. Metrics calculated from hardware counter
measurements are generally most effectively captured in such summaries. Ex-
tended summaries with additional statistics calculated may be an option. Only
in the rare case where the runtime overhead should be reduced to an absolute
minimum is it expected that summarisation might be completely disabled.
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Unless it can be readily ascertained that the application’s execution charac-
teristics are suitable for some form of event tracing, the default should be for
tracing to initially be inactive. When activated, simply logging all events would
provide the most complete execution trace where this was desired (and from
which a summary profile could be calculated during postprocessing analysis).
Alternatively, selective tracing may be based on event characteristics (such as
the event type or a measurement duration longer than a specified threshold), or
based on analysis from a prior execution (e.g., to filter uninteresting or overly
voluminous and obtrusive measurements).

Furthermore, the availability of measurements for the entry of each new
function/region frame on the current callstack, allows for late determination
of whether to include them in an event trace. For example, it may be valuable to
have a trace of all communication and synchronisation events, with only func-
tion/region entry and exits relevant to their callpaths (and all others discarded
at runtime). The callstack and its entry measurements can be tracked without
being logged until an event of interest is identified (e.g., by its type or duration),
at which point the (as yet unlogged) frame entry measurements from the current
callstack can be used to retroactively log its context (and mark the associated
frames such that their exits will also be logged), while new frames subsequently
encountered remain unlogged (unless later similarly identified for logging).

To have the most compact event traces, only message transfers need to be
logged with their callpath identifier. Non-local performance properties subse-
quently calculated from post-mortem analysis of the traced message transfer
events can then be associated with the local performance properties for the
same callpaths already generated by runtime summarisation.

If desired, separate dedicated libraries for summarisation and tracing could
also be provided and selected during application instrumentation preparation.

4 Implementation of revised measurement system

kojak’s measurement runtime system formerly was based on an integrated event
interfacing, processing and logging library known as epilog [11]. Files containing
definitions and event records were produced in epilog format, and manipulated
with associated utilities. Execution traces can have performance properties au-
tomatically analysed, or can be converted to other trace formats for visualisation
with third-party tools.

The epilog name, file format and utilities are retained in the revised design
of the measurement system, but only for the logging/tracing-specific component
of a larger integrated summarisation and tracing library, epik, as shown in Fig-
ure 1. Event adapters for user-specified annotations, compiler-generated function
instrumentation, openmp instrumentation, and the mpi library instrumentation
are now generic, rather than epilog/tracing specific. Similarly, platform-specific
timers and metric acquisition, along with runtime configuration and experiment
archive management, are common epik utility modules. A new component,
epitome, is dedicated to producing and manipulating totalised measurement
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Fig. 1. EPIK runtime library architecture.

summaries. Both epilog and epitome share a common runtime management
system, episode, which manages measurement acquisition for processes and
threads, attributes them to events, and determines which summarisation and/or
logging subsystems they should be directed to (based on the runtime measure-
ment configuration). Additional auxilliary event processing and output can also
be incorporated as epik back-end event handler modules.

In addition to restructuring the measurement system, various usability and
scalability improvements have been incorporated, to be able to manage measure-
ments collected from thousands of processes.

4.1 Usability improvements

To facilitate diverse measurement collections and analyses, and avoid the clutter
of multiple (and perhaps thousands of) files appearing in the program’s working
directory, a new experiment archive directory structure has been introduced. A
unique directory is created for each measurement execution to store all of the raw
and processed files associated with that measurement and its analysis. Instead of
applying each kojak tool to files of the appropriate type, the tools can now also
accept the name of the experiment archive directory, from which the appropriate
files are transparently located and into which new files are deposited. This new
structure makes it easier for the tools to robustly determine and maintain the
integrity of the experiment measurement/analyses, and should also be easier for
users to manage (e.g., when they wish to move an experiment to a different
system for storage or analysis).

On-the-fly file compression and decompression [12] reduces the size of exper-
iment archives, with an additional bonus in the form of reduced file reading and
writing times (despite additional processing overheads).

In addition to a library which can be used by external tools to read and write
epilog traces, utilities are provided to convert traces to and from the formats
used by other tools, such as vampir and Paraver. Furthermore, as an alternative
to post-mortem trace conversion, experimental support has been incorporated
within epik to directly generate traces in otf format [15].

4.2 Scalability improvements

epilog traces were previously written from each thread’s collection buffer into
temporary files, which were merged according to event timestamp order into
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process rank traces and finally a global trace file at measurement finalisation.
Re-reading and re-writing these large trace files was required to produce a se-
quential trace that the sequential analysis tool could handle. Furthermore, ad-
ditional scans through each trace were required to locate the definition records
interspersed within the files so that they could be globalised and written as a
header in the merged file. Although this merging was often initiated automati-
cally, and the thread stage was partially parallelised, it was a notable bottleneck
in the combined measurement and analysis process which was extremely sensi-
tive to filesystem performance. Fortunately, parallel trace analysis has no need
for merged trace files, since the analysis processes read only the trace files that
they require [9].

The traces written by each thread can therefore be written directly into the
experiment archive, from where the subsequent analysis processes can access
them. These event traces are written using process-local identifiers for regions,
communicators, threads, etc., which will later need to be converted to a globally
consistent set of identifiers for a unified analysis. Definitions which were previ-
ously interspersed with event records in the traces are now handled separately.

As an interim solution, these local definitions have been written to files to be
unified into a global definitions file and associated local–global mapping files via
postprocessing. These files are much smaller than the corresponding event traces,
and can be unified quite efficiently by the separate unifier, however, creating large
numbers of (small) intermediate files has been found to be inefficient.

Generation of the global definitions and associated local–global identifier
mappings is required for unified analysis, and although it is a predominantly
sequential operation, it is advantageous for it to be done on conclusion of the
parallel measurement. Instead of each process rank writing local definitions to
file(s), the buffers can be sent to rank 0 to produce a global set and associ-
ated identifier mappings. Post-mortem trace analysis requires this information
to be filed along with the traces in the experiment archive, however, the run-
time measurement summarisation can immediately exploit the returned identifier
mappings to directly produce a unified measurement summary.

Although all of the definitions are required for the complete analysis report,
identifiers do not require to be globalised when they are common to all processes
or can be implied, such as the measurement metrics (time and hardware coun-
ters) and machine/node & process/thread identifiers. The remaining analysis
is for callpaths, consisting of lists of region identifiers; unified analysis requires
globalisation of these callpath identifiers.

Callpaths can be specified as node-region-id and parent-callpath-id records,
so that only tail-segments need to be defined and callpaths are reconstructed by
combining segments from each tail node via its parents’ nodes to the root (which
has a null parent-callpath-id). These can be added to the existing local definitions
in the buffers to be unified by rank 0, or specified and unified separately.

Tracking the current callpath is part of the episode functionality, whereas
epitome maintains the set of local callpaths according to which measurements
are summarised, therefore it is straightforward to provide a complete set of
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(local) callpaths on measurement conclusion. Provision of the global callpath set
and local–global callpath identifier mappings also allows these to be used in the
post-mortem trace analysis, avoiding a scan through the trace to determine the
local callpaths and their subsequent unification. Even in the case where epitome

measurement summarisation is not performed, there are still advantages from
maintaining callpaths and associated visit counts.

The primary use is likely to be the use of callpath visit counts to threshold
the number of times paths (events) are traced. In conjunction with the callstack
of (region-entry) measurements, region enter/exit events can be tracked until an
event of interest (such as a message transfer) indicates that the current buffer of
events should be logged, such that uninteresting callpaths are effectively pruned
from the trace. Alternatively, message transfers may be tagged with (local) call-
path identifiers, allowing them to be efficiently traced in isolation from the region
enter/exit events that otherwise determine callpath context. These approaches
reduce the overhead of tracing frequently-executed, intrusive and/or uninterest-
ing callpaths, making tracing and subsequent trace analysis more effective.

5 Results

To evaluate the effectiveness of some of the changes to the kojak measurement
system, a number of tracing experiments have been performed at a range of
scales with the current prototype implementation and the prior version.

Measurements were taken on the Jülicher BlueGene/L system (JUBL), which
consists of 8,192 dual-core 700 MHz PowerPC 440 compute nodes (each with 512
MBytes of memory), 288 I/O nodes, and IBM p720 service and login nodes each
with eight 1.6 GHz Power5 processors [16]. The parallel measurements were made
on a dedicated compute partition, whereas the sequential post-processing steps
ran on the lightly loaded login node.

asc benchmark smg2000 [17] is a parallel semi-coarsening multigrid solver,
and the mpi version performs many non-nearest-neighbor point-to-point commu-
nication operations (and only a negligible number of collective communication
operations). In an investigation of weak scaling behaviour, a fixed 64×64×32
problem size per process with five solver iterations was configured, resulting in
a nearly constant application run-time as additional cpus were used: uninstru-
mented execution times are shown with open diamonds in Figure 2, along with
a breakout of the wall time spent in the parallel solver as open triangles.

Instrumented versions of smg2000 were prepared with the prior and current
development versions of the kojak measurement system, and the times for run-
ning these are also shown in Figure 2: the lighter solid diamonds are the older
version and the darker solid diamonds the latest version, which is more than an
order of magnitude faster at the larger scales.

In each case, measurement was done using 100MByte trace buffers on each
process to avoid intermediate buffer flushes to file which would otherwise seri-
ously impact performance during measurement. The time taken by the parallel
solver is the same for both versions when instrumented and measured (shown
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with solid right triangles) and found to be dilated less than 15% compared to
the uninstrumented version (open left triangles), which is generally considered
acceptable. Similarly, the number of events traced for each process is also identi-
cal in both versions, and slowly increases with the total number of processes: the
crosses in Figure 2 are the mean number of events per process (in thousands),
with the vertical extents corresponding to the range (which grows to more than
±50% of the mean). The aggregate number of events traced therefore increases
somewhat faster than linearly, to over 40,000 million events in the 16,384-process
configuration, and this manifests in the total sizes of the measurements when
archived on disk. In its new compressed form, the corresponding experiment
archive totals almost 230 GBytes, whereas the former uncompressed trace files
are around 2.5 times larger. On-the-fly compression is a factor in the improved
performance, however, the most significant gain is from avoiding trace re-writing
and merging (which also makes trace writing times rather more deterministic).

The benefits of the new approach are especially evident when post-processing
the traces. The prior version of the kojak measurement system performs a semi-
parallel thread trace merging when experiments are archived, which is followed
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by a separate sequential process trace unification and merge: the light circles in
Figure 2 show how this quickly becomes impractical for larger scales. By writing
local definitions and thread event traces directly into the experiment archive,
followed by a separate sequential unification of just the definition records and
creation of local–global identifier mappings (the darker circles), the new version
scales much more favourably.

These improvements combined demonstrate trace measurement now scaling
to 16,384 processes, considerably beyond the prior practical limits. (The corre-
spondingly more scalable analysis of the new traces is further motivation [18].)

6 Further and future work

Definition unification has subsequently been incorporated within the measure-
ment finalisation, where gathering and unifying the local definitions both avoids
the need to create definitions files for each process and the separate (sequen-
tial) unification step, thereby further improving measurement performance. Only
when traces are produced for post-mortem analysis, is it necessary for the unified
global definitions and identifier mappings to be written for each rank.

Runtime callpath summary data similarly needs to be gathered by the master
process, so that it can be written as a unified report. The local callpath identi-
fiers used by each process to store its measurements must therefore be mapped
to those of the global call-tree, using the mappings returned to each process rank
by the master process for this purpose. Finally, serial report writing functionality
has already been refactored from the cube library, allowing callpath measure-
ment data to be streamed to file as it is gathered, measurement by measurement,
without it needing to be previously stored in memory in its entirety.

The runtime analysis summary reports are being formatted for presentation
and investigation with the same cube analysis browser used for the reports pro-
duced by the former sequential and new parallel automatic event trace analysers.
Direct comparison will thereby be possible using the cube algebra utilities [10],
and will facilitate determination of instrumented functions which are problem-
atic, due to their frequency of execution or measurement overheads. Selective
instrumentation or measurement configuration can then be employed to cir-
cumvent those functions (or callpaths) in subsequent performance measurement
executions, to obtain the highest quality analysis in a reliable, scalable manner.

The effectiveness of the new measurement and analysis capabilities are being
evaluated on a range of hpc systems and applications, particularly at large scale,
where they are also being compared with other tracing and profiling tools. Even
simple operations, such as creating a separate file for each process in the same
directory, can become prohibitively expensive at the largest scales, suggesting
a need for exploiting the system-specific hierarchy in the structure of the mea-
surement archive. Similarly, coordination of file writing may benefit from being
adapted to the capabilities of the underlying I/O and file system.
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