
Direct and Fast Ray Tracing of NURBS Surfaces

Oliver Abert∗

Universität Koblenz-Landau

Markus Geimer†

Forschungszentrum Jülich

Stefan Müller‡

Universität Koblenz-Landau

Abstract

Recently it has been shown that Bézier surfaces can be used as a
geometric primitive for interactive ray tracing on a single commod-
ity PC. However, the Bézier representation is restricted, as a large
number of control points also implies a high polynomial degree,
thus reducing the frame rate significantly. In this work we will
present a fast, efficient and robust algorithm to ray trace trimmed
NURBS surfaces of arbitrary degree. Furthermore, our approach
is largely independent of the number of control points of a surface
with respect to the rendering performance. Additionally the degree
and the number of control points of a surface do not influence the
numerical stability of the intersection algorithm.

The desired high performance is achieved by taking a novel ap-
proach of surface evaluation, which requires only minimal prepro-
cessing. We will present a method to transform the computationally
expensive Cox-de Boor recursion into a SIMD suitable form that
maximizes performance by avoiding the recursion and drastically
reduces the number of executed commands.

Keywords: Ray tracing, NURBS, free-form surfaces, interactive
rendering.

Index Terms:

I.3.5 [Computer Graphics]: Computational Geometry and Ob-
ject Modeling—Curve, surface, solid, and object representations
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Raytracing

1 Introduction

Free-form surfaces, including Bézier, B-Spline, or NURBS rep-
resentations, offer a powerful way to easily and exactly describe
curved surfaces for use in computer graphics applications. How-
ever, in most circumstances these surfaces are converted into tri-
angular meshes before rendering, no matter whether ray tracing or
scanline rendering is employed. Until today, graphic cards are not
able to render geometry objects other than triangles. By contrast,
with ray tracing it is generally possible to use any geometry with
which a ray intersection can be computed.

Nevertheless, most ray tracing systems also handle only triangles
as their geometric primitive. However, directly rendering free-form
surfaces instead has several advantages. Real-world data sets, as
they are found in the automobile industry for example, frequently
require extensive triangulation preprocessing (manually as well as
automatically) which can take up to more than a full day. Obvi-
ously, with ray tracing there is no need for such a time-consuming
triangulation, which often introduces artifacts as well. Furthermore,

∗e-mail: abert@uni-koblenz.de
†e-mail: m.geimer@fz-juelich.de
‡e-mail: stefanm@uni-koblenz.de

memory consumption is reduced, since a single surface can repre-
sent the same geometry that needs to be modeled by thousands of
triangles otherwise, depending on the desired detail. In addition, the
accuracy is not limited to a certain distance from the observer, since
the surfaces will always stay perfectly curved even from the shortest
viewing distance. Last but not least, trimming curves are often used
to cut out irrelevant parts of free-form surfaces. A triangulation of
trimmed NURBS patches is still frequently causing problems as
artifacts and long preprocessing times are introduced, whereas in-
tegrating an online trimming test in a ray tracing approach is quite
efficient and feasible. In fact, the system presented in this paper is
capable of efficiently handling trimmed surfaces as well.

A possible solution to avoid triangulation is to convert NURBS
to Bézier surfaces as presented in [8] or [2]. Naturally, the Bézier
representation can be used to describe curved surfaces, however,
the Bernstein polynomials, which form the Bézier basis, have their
degree determined by the number of control points. This increases
computation and memory requirements significantly when increas-
ing the number of control points, thus leaving only quite simple
Bézier surfaces (like bicubic patches with 4×4 control points) suit-
able for interactive use. By employing only low order Bézier sur-
faces it would be necessary to use many patches for a surface that
can be represented easily with a single NURBS surface. In the end
an approach using Bézier surfaces suffers from similar problems as
a classical triangulation approach: long preprocessing times as well
as the introduction of artifacts, especially at the surface boundaries,
although their number is reduced compared to a triangulation.

Figure 1: A model of the VW Polo from different viewpoints. The
car remains perfectly curved, even from the shortest viewing distance,
thanks to the direct ray tracing of NURBS.

With direct ray tracing of NURBS, we present in this paper a
solution that features all advantages but does not suffer from the
problems mentioned, at the cost of a justifiable portion of rendering
speed. Nevertheless, achieved performance for non-trivial scenes
is still above one frame per second on a single PC, though using
multiple CPU cores. The actual intersection algorithm is basically
the same Newton iteration-based approach as presented in [8], how-
ever, the NURBS surface evaluation is novel and explained in de-
tail. Surface evaluation is essential for the performance of the en-
tire system, since compared to a conventional ray tracer, a lot more
time is spent in the actual intersection algorithm than in the traver-
sal of an acceleration data structure. We found that roughly 60%
of the CPU time is spend in the surface evaluation, including the
calculation of partial derivatives. Hence the optimization of these
algorithms is a performance critical task.



2 Previous Work

During the last years several algorithms that allow for ray tracing
free-form surfaces have been developed, though most of them have
not been targeted towards high frame rates. The realization of in-
teractive ray tracing itself was presented just lately. Approaches in
both fields will be discussed briefly in this section.

2.1 Free-Form Surface Ray Tracing

The pioneering work in the field of free-form surface ray tracing
was presented by Toth [24] and Kajiya [13]. The former was first to
employ an iterative Newton approach to find a ray-surface intersec-
tion. Initial estimates required for the Newton iteration to converge
were determined analytically, which on the one hand is very reli-
able, but on the other hand is also very expensive to compute on-
line, thus it is questionable if interactive frame rates can be achieved
using this approach in the way presented. By contrast, Kajiya first
solved the problem of ray and parametric surface intersection with-
out performing a subdivision. By using numerical procedures he
was generally able to solve the problem. However, interestingly he
stated that for a real time computation approximately 33ns compu-
tation time per ray needs to be achieved - which was rather utopian
back in 1982, whereas Table 1 shows that we are now not too far
away from this mark.

Later, Sweeney et al. presented in [23] another approach based
on a Newton iteration for B-Splines. The initial estimate, however,
was acquired by computing the intersection of the ray and a refined
control mesh of the surface. In [16], Martin et al. similarly used a
Newton iteration approach, but in contrast they used a hierarchy of
small bounding volumes which closely approximates the surface,
thus yielding a reliable initial estimate, using the center of the para-
metric interval each bounding box encloses.

Nishita et al. presented in [20] the so-called Bézier Clipping ap-
proach. By exploiting the Bézier convex hull property, regions of
the surface which are known not to intersect the ray are cut away
iteratively, thus isolating the region where an intersection point is to
be found. Campagna et al. [3] further improved and optimized this
algorithm. Unfortunately, more complex surfaces such as NURBS
can not be used directly with this approach. They have to be con-
verted into a Bézier representation beforehand.

Later, Wang et al. combined the Newton iteration approach with
Bézier Clipping in [28]. By taking advantage of the ray coherence
between neighboring primary rays, they were able to improve the
performance by up to a factor of three compared to the original
implementation of Nishita.

Ray tracing of subdivision surfaces was investigated by Kobbelt
et al. in [14] as well as Müller et al. in [18]. Both approaches are
rather slow as they have to deal with a lot of special cases, especially
at edges and surface boundaries.

2.2 Interactive Ray Tracing

Interactive ray tracing was first presented by Muuss et al. in [19],
though their approach was limited to combinatorial solid geome-
try models. Four years later, Parker et al. [21] presented the first
full-featured interactive ray tracer, which was even able to han-
dle NURBS surfaces. However, very expensive shared memory
supercomputers were required, i.e., 60 processors were necessary
to speed up NURBS scenes of moderate complexity to interactive
frame rates.

Wald et al. [27, 26] introduced a highly optimized ray tracer
running on a cluster of standard PCs. By using SIMD instructions
(Single Instruction Multiple Data) and carefully paying attention
to coherence, caching issues, and data layout, they were able to
achieve a speed-up of more than an order of magnitude compared
to conventional ray tracing systems. Though the system has even
been further improved [25], it is still restricted to triangles.

Recently Benthin et al. [2] presented a method to ray trace Bézier
and Loop subdivision surfaces at interactive frame rates. However,
they use a subdivision method that refines the control mesh on the
fly, yielding an approximate intersection point using a triangle mesh
generated from the control points.

Lately, an approach to efficiently ray trace trimmed NURBS sur-
faces was presented in [6, 5]. Though Efremov et al. implemented
a robust and numerically stable algorithm that achieves visually
good results, they do not reach interactive frame rates. Further-
more, NURBS surfaces are not handled directly but converted to
a rational Bézier representation beforehand. Simple scenes require
between three and ten seconds to render on a fast PC, whereas more
complex scenes even require up to several minutes.

Geimer and Abert presented in [8] the interactive ray tracing of
bicubic trimmed Bézier surfaces. By using a Newton iteration sim-
ilar to the one employed in [16] and a highly optimized implemen-
tation (using SIMD instructions, ray and cache coherence, iterative
bounding volume hierarchy traversal), they were able to achieve
more than three frames per second for non-trivial scenes with thou-
sands of trimmed Bézier surfaces on a single processor. The un-
derlying interactive ray tracing system, which is also capable of
rendering triangle meshes, is presented in detail in [7].

Finally, Abert presented in [1] an approach, which is also based
upon [7]. By using a power basis representation for NURBS sur-
faces, he was able to achieve interactive frame rates for scenes with
NURBS surfaces of low complexity, due to the restriced accuracy of
single-precision values. During a preprocessing step all basis func-
tions are converted into a polynomial representation, which makes a
fast evaluation possible. Furthermore, the use of GPUs for NURBS
ray tracing was investigated. Unfortunately, it was shown that cur-
rent GPUs are not yet powerful enough for NURBS surfaces of
arbitrary complexity.

3 System Overview

This section gives a brief survey of the basic system architecture
(see [7] for details), before going into the details of the ray-NURBS
intersection algorithm.

All performance critical computations are completely performed
using SIMD instructions by processing four rays in parallel. This
includes the traversal of the acceleration data structure, the actual
intersection and trimming test, as well as shading. Unlike [27], we
have built our system upon our own SIMD abstraction layer, cur-
rently offering support for Intel’s SSE [12] and Motorola’s AltiVec
[17] instruction sets. Additionally, an FPU mode is able to emulate
a SIMD unit. Due to it’s modular structure, the abstraction layer
could be easily extended to support SIMD instruction sets of other
architectures as well.

Just like for triangle-based ray tracing systems, it is important to
reduce the number of intersection tests performed. Here, it is even
more indispensable, as the test with a NURBS surface is obviously
a lot more expensive than the test against a triangle. In this context,
kd-trees are usually considered to be faster than bounding volume
hierarchies, however, we use the latter due to the fact that an iter-
ative traversal of axis aligned bounding boxes in depth-first order
[22] is well suited for the usage of SIMD instructions and the hi-
erarchy can additionally provide good initial estimates required for
the Newton iteration. To achieve a good performance the hierarchy
is created using the heuristic of Goldsmith and Salmon [9].

Naturally, ray tracing is well suited for parallel execution, and
our system is no exception to that. The application can be run
with an arbitrary number of threads, thus supporting multiprocessor
and/or multicore PCs as well as Intel’s HyperThreading technology
[11].



Our system is currently limited to static scenes, which allows for
interactive walk-throughs only. However, it can be easily extended
to support dynamic scenes with hierarchical movements using the
ideas presented in [15] and [26].

4 Our Approach

This section will give details about the approach we have taken.
First, we explain the modifications to an axis-aligned bounding
volume hierarchy necessary for the intersection test. Afterwards,
we give insight into the measures taken during preprocessing,
where an enhanced NURBS representation featuring a collection
of CDBItems (Cox-de Boor item - see Subsection 4.2) permits an
extremely fast evaluation algorithm.

By paying attention to the characteristics of modern processor
architectures (e.g., very long pipelines), we favour a rather “brute
force” approach instead of a very complex algorithm. As was
shown in [27] or [2], a carefully optimized implementation is of-
ten able to easily outperform more complex algorithms on current
CPU architectures.

4.1 NURBS Surface Representation

A NURBS surface is given by the equation

S(u,v) =
n

∑
i=1

m

∑
j=1

Bh
i, jNi,k(u)M j,l(v) (1)

where the Bh
i, j are the control points in homogeneous coordinate

space. A control point is given by (x,y,z,w), where w denotes a
weighting factor. The Ni,k are the basis functions in u parametric
direction and M j,l analogously for the v direction. Furthermore, n
and m are the number of control points, whereas k and l denote the
order of the basis function in u and v parametric direction, respec-
tively.

The basis functions are given by the Cox-de Boor recursion for-
mula [4]:

Ni,k(t) =
(t − xi)Ni,k−1(t)

xi+k−1 − xi
+

(xi+k − t)Ni+1,k−1(t)

xi+k − xi+1
(2)

The recursion will stop if k equals 1. In this case the following
equation applies:

Ni,1(t) =

{
1 if xi ≤ t < xi+1

0 otherwise
(3)

In addition, the convention 0
0 = 0 is adopted for equation (2).

The xi are elements of a knot vector, which is a monotonically in-
creasing series of numbers with n+k elements (m+ l respectively).
Equations 2 and 3 do hold analogously for the parametric v direc-
tion. Knot vectors come in two flavours, open and periodic, where
the former have multiplicity of knot values at the ends equal to the
order k, while periodic knot vectors do not have this constraint.
Additionally they can be uniform (equidistant inner knot values) or
non-uniform (arbitrary positive distance between two consecutive
values).

Obviously, the straight-forward evaluation of equation (1) is not
advisable as the computational demand increases extremely fast
with larger numbers of control points and/or a higher order. Fur-
thermore, a recursive function call becomes expensive when exe-
cuted in the innermost loop of an algorithm. Because a single in-
tersection test requires several surface evaluations (i.e., one surface
and two partial derivative evaluations per iteration step - see Sub-
section 4.4), one of our main objectives was to find a fast method
to evaluate the basis functions by maintaining useful properties like
numerical stability and robustness.

4.2 SIMD Cox-de Boor Representation

As a first step, we rewrite the Cox-de Boor recursion formula into
a form that will allow for a more efficient execution and storage in
memory using SIMD instructions. Equation (2) can be rewritten as

Ni,k(t) = c1(t − xi)Ni,k−1(t)+ c2(xi+k − t)Ni+1,k−1(t)

where c1 = 1
xi+k−1−xi

and c2 = − 1
xi+k−xi+1

. Further substitution

yields

Ni,k(t) = (c2t + c4)
︸ ︷︷ ︸

simd madd

Ni+1,k−1 +(c1t + c3)
︸ ︷︷ ︸

simd madd

Ni,k−1

︸ ︷︷ ︸

simd mul
︸ ︷︷ ︸

simd madd

where now c3 = −xic1 and c4 = −c2xi+k. The underbraces denote
the SIMD commands used for computation during runtime. This
way only three combined multiply-add (madd) and one multiply
command is required, which is achieved by computing ci, i ∈ [1,4]
during preprocessing as these are invariant with respect to t. How-
ever, all four ci have to be precomputed for all basis functions Ni,k

and M j,l . By contrast, the functions for k = 1 and l = 1 are an ex-
ception as these are always 1 in our interval of interest. Fortunately,
the four ci float values perfectly fit into a single SIMD variable1,
which we call CDBItem. Analogously the same approach of iden-
tifying constant values and calculating them in advance works for
the derivatives as well.

As can be seen, a CDBItem stores all the information that is re-
quired to compute the value of a specific basis function Ni,k or its
derivative in parametric u direction, if

• the parameter value u is known (which is the case during run-
time),

• both lower order basis functions Ni,k−1 and Ni−1,k−1 are
known.

As mentioned above, all k = 1 order basis functions are an ex-
ception to that. The same holds analogously for M j,l .

N1,4 N2,4 N3,4 N4,4

N1,3 N2,3 N3,3 N4,3 N5,3

N1,2 N2,2 N3,2 N4,2 N5,2 N6,2

N1,1 N2,1 N3,1 N4,1 N5,1 N6,1 N7,1

Figure 2: Dependencies of the basis functions (here: order k = 4 and
number of control points n = 4). Only the elements within the red
border are different from zero.

Figure 2 exemplarily shows the relevant basis functions
Ni,k, shaded in light blue, for the open, uniform knot vector
[0 0 0 0 1 1 1 1], order k = 4 and number of control points n = 4.

1SIMD registers on SSE and AltiVec are 128 bit wide which is sufficient

for storing four 32 bit floating point values.



The remainder do not need to be computed as they are always zero.
Note that every Ni,k with k > 1 basis function depends on basis
functions Ni,k−1 and Ni+1,k−1, except for those at the beginning (if
i + k = n + 1 in this example) or end (if i = n) of a row, which
are dependent only on either Ni,k−1 or Ni+1,k−1. For instance, if
the Cox-de Boor formula has to be evaluated for a given parameter
value of t = 0.5 then N4,1 will be 1 (and all other Ni,1 = 0). Re-
solving the dependencies from bottom to top, we can now compute
N3,2 and N4,2. Afterwards, the three basis functions Ni,3, i > 1 and
finally all four basis functions Ni,4 can be computed. Especially,
all Ni,k with maximum k are important as these are needed to solve
equation (1).

The pyramid shown in Figure 2 will become broader for an in-
creasing number of control points and higher for an increasing de-
gree as depicted in Figure 3. However, evaluating the basis func-
tions for a specific parameter value always results in exactly one
particular Ni,1 to be different from zero, thus the processing time for
a single surface evaluation is largely independent from the number
of control points. As a matter of course there are still effects that
may reduce performance (e.g., fewer cache hits or insufficient bus
bandwidth). However, the only significant performance loss arises
from shortened SIMD effectivity. Parameter value pairs that lie in
different intervals have to be computed sequentially. The more con-
trol points a specific surface has, the smaller the intervals will be-
come. However, if possible, the results will be merged into SIMD
registers, which allows the second part of the computation (evalu-
ating equation 1 with given N and M) to be processed in full par-
allelism, if the rays hit different surfaces with the same number of
control points and equal degree. Even in the worst case, i.e., four
rays hitting four different intervals, the performance will be bet-
ter compared to a sequential FPU-based implementation due to the
streaming architecture of the SIMD unit. The results presented in
Section 6 verify, that even with a large number of control points on
a single surface, the performance still remains high by all means.
Obviously, the degree still influences computation time.

N1,5 N2,5 N3,5 N4,5 N5,5 N6,5 N7,5

N2,4 N3,4 N4,4 N5,4 N6,4 N7,4

N3,3 N4,3 N5,3 N6,3 N7,3

N4,2 N5,2 N6,2 N7,2

321

10

0

0

0

0

0

0

0

0

0000000

0

00

000

0 ≤ t < 1
1 ≤ t < 2

2 ≤ t < 3

Figure 3: The red triangle marks all basis functions that need to be
evaluated for a curve with order k = 5 and n = 7 control points. For
the triangle to be positioned correctly, the parameter value t must sat-
isfy 0≤ t < 1, while assuming a knot vector of [0 0 0 0 0 1 2 3 3 3 3 3].
Depending on the parameter value and knot vector, the red triangle
has to be positioned either at location 1, 2 or 3. For instance, if a
parameter value of t = 2.6 would be used, the red triangle needs to
be positioned at position 3 instead. Notice: For increasing n (or m)
the triangle stays unaltered, merely increasing k (or l respectively)
will heighten it and therefore increase the computational cost for an
evaluation.

4.3 Preprocessing

In this section we describe the preprocessing step, where the accel-
eration data structure is generated, all CDBItems are calculated as
described in 4.2 , and stored along with the appropriate surface.

As with every ray tracer, an acceleration data structure is very
important. In our system, the need for an efficient data structure
is even higher, as the intersection test is much more complex com-
pared to well known triangle tests. Therefore, it is even more impor-
tant to avoid unnecessary tests. Additionally, we need good initial
estimates to start the Newton iteration, which can also be provided
by the hierarchy.

In the majority of cases, conventional ray tracers use either a kd-
tree or a bounding volume hierarchy with axis-aligned bounding
boxes as acceleration data structure. In contrast to [2] we choose a
bounding volume hierarchy, as it is more expensive to compute ini-
tial estimates from a kd-tree. In [2], Benthin et al. are subdividing
the control mesh and computing the final intersection with a trian-
gle approximating the surface at this point in space. However, our
approach is quite different from that, as we are avoiding subdivi-
sion schemes and approximated triangle intersections. Employing
a bounding volume hierarchy, we simply can use the center of the
bounded parametric interval defined by the bounding boxes we are
already using as acceleration data structure.

The major difference to an ordinary bounding volume hierarchy
is that we do not store a whole or even several surfaces in a single
volume, but the union of several volumes bound a single surface
instead. This has two advantages, provided that the volumes are
small enough:

1. The number of rays that hit the volume but miss the geometry
is reduced significantly.

2. The center of the bounded parametric region can be used as a
good initial estimate for the Newton iteration.

Figure 4 gives an example in 2D. Every bounding box stores the
bounded parametric interval. Here, ray A and B hit the blue box

and start the iteration using t = 0.45+0.6
2 = 0.525, whereas ray C

intersects the yellow box using t = 0.75+1.0
2 = 0.875 instead. How-

ever, if only a single bounding box (dashed outer lines) would have
been used, all iterations would start with t = 0.5. The iteration will
most likely diverge or yield wrong results in regions that are too far
away from the midpoint. In the given example, the regions in ques-
tion are marked red, whereas the green area denotes the interval
where t = 0.5 is still an acceptable guess.

Currently, the bounding volumes are created using a simple flat-
ness criterion, i.e., if the evaluation of a predefined set of normal
vectors indicate a surface with high curvature then recursively more
and smaller bounding volumes are generated. However, artifacts,
i.e., wrong or missed intersections, might be introduced, as this ap-
proach uses a user defined θ value to stop the generation process.
There will be too few and inaccurate bounding volumes if this pa-
rameter is chosen to large. Nevertheless, it is quite easy to manually
find a suitable θ value ensuring the convergence of the Newton it-
eration. Even by choosing a conservative value, the number of gen-
erated bounding boxes might be larger than necessary, but having
no significant impact on the rendering speed. However, using the
ideas presented in [24], it would be possible to analytically compute
bounding volumes, thus improving this stage during preprocessing
by removing a potential source for errors.

4.4 Intersection Test

Beyond the surface evaluation, the intersection test algorithm is
similar to the approach taken by [16]. They generally solved the
problem, but have not targeted at interactive frame rates.

In our approach, we represent the ray by two orthogonal planes
P1 = (N1,d1) and P2 = (N2,d2), where the Ni are orthogonal vectors



t = 0 t = 0.45 t = 0.6 t = 0.75 t = 1

A B C

Figure 4: Example of a NURBS curve with exemplary associated
bounding volumes.

of unit length, perpendicular to the ray direction D. The di are given
by di = NiO with O denoting the ray origin. To find the intersection
of a surface S(u,v) and a ray, we have to find the roots of

R(u,v) =

[
N1S(u,v)+d1

N2S(u,v)+d2

]

(4)

R becoming zero indicates that the distance of the evaluated point
on the surface to both planes is also zero, hence an intersection
point is found.

There are several numerical methods with which this equation
can be solved, however, we have chosen the Newton iteration due
to its advantageous properties like (mostly) quadratic convergence,
given a good initial estimate, and easy computation, even though
the first derivative is required. Nevertheless, the partial derivatives
can be computed in an efficient way as well. Additionally, this
iteration is well suited for SIMD execution, unlike other approaches
using a more complex control flow.

We have to solve a two-dimensional problem. Therefore, the
Newton iteration step is then given by

[
un+1

vn+1

]

=

[
un

vn

]

− J−1R(un,vn)

where J is the Jacobian matrix of R given by

J =

[
N1Su(u,v) N1Sv(u,v)
N2Su(u,v) N2Sv(u,v)

]

Here, Su and Sv denote the partial derivatives in the corresponding
parametric direction.

The iteration will be continued until one of the following termi-
nation criteria is met:

1. If the distance to the real root falls below some user defined
threshold ε , then an intersection point is found, i.e.

|R(un,vn)| < ε

2. Whenever the iteration takes us further away from the root,
the computation will be aborted, assuming divergence.

|R(un+1,vn+1)| > |R(un,vn)|

3. A maximum number of iteration steps has been performed,
also indicating divergence.

Due to the usage of SIMD instructions, the iteration is not fin-
ished until all four parallel computations are completed. Neverthe-
less, often, especially for coherent primary rays, an intersection is
found during the same iteration step. Due to this fact, the perfor-
mance is still improved by more than a factor of three compared to
a sequential execution.

5 NURBS Surface Evaluation

As mentioned before, the NURBS surface evaluation is an integral
part of the whole ray tracing system. Including the partial deriva-
tives, approximately 60% of the processor time is spent in the sur-
face evaluation, depending on the scene. In this section it is shown
how the highest number of evaluations per second to date (to the
knowledge of the authors) can be achieved.

Basically, the task is to solve equation (1) for any given u and
v parameter values. A straight-forward evaluation is, as mentioned
before, highly inadvisable, since there is a lot of redundancy due
to the recursion, thus resulting in vast amounts of unnecessarily
performed computations. This is where our Cox-de Boor cache
(i.e., CDBCache) implementation will help to significantly improve
the performance.

Our approach basically involves three important key routines,
which are:

• Compute a single basis function using the appropriate
CDBItem data set

• Fill a temporary cache for u and v parameter values

• Evaluate the NURBS equation using these two caches

Figure 5 shows an example for filling the cache with k = 4 and
n = 4 for u parametric direction (this process has to be done a sec-
ond time with the v direction data set in case of a surface). N4,1 is
known to be 1, since xi ≤ t < xi+1. All basis functions are com-
puted in the order given in Figure 5.

N1,4

N1,4

N2,4

N2,4

N3,4

N3,4

N4,4

N4,4

N2,3

N2,3

N3,3

N3,3

N4,3

N4,3

N3,2

N3,2

N4,2

N4,2

1

1 2

3

3

4
4

4

5

5

6

6

7
7

7

8
8

8

9

9

req. in eq. (1)

Write

Read

Figure 5: The red arrow denotes the order of computation of the
individual CDBItems where the small black arrows denote data de-
pendencies. The numbers at the bottom indicate when items are
written or read. N3,4 for example is written in step 7 and is depen-
dent on N4,3 (written at step 3) and N3,3 (step 4). This approach
minimizes data dependencies, and thus processor stalls, as much as
possible.



The following is an example for computing a basis function Ni,k

in pseudo code

Ni,k = simd madd(
simd madd(c1, t,c3),nik1,

simd mul(simd madd(c2, t,c4),nik2)
);

where t is the current parameter that must satisfy xi ≤ t < xi+1. Fur-
thermore, the ci are the precomputed values of the corresponding
CDBItem for Ni,k, where nik1 corresponds to the result of Ni,k−1,
analogously nik2 to Ni+1,k−1. Note that if one of them lies outside
the red triangle of Figure 3, the value for that particular niki is zero.

After the caches for both u and v parametric directions have been
computed, i.e., all Ni,k and M j,l with k and l being equal to the
surface order, equation (1) can finally be solved. However, due to
the local control property of B-Splines, only a limited area of the
surface is affected, depending on the degree. It is not necessary to
compute the whole equation, except if n = k and m = l. Otherwise
equation (1) reduces to

S(u,v) =
intU+k+1

∑
i=intU+1

intV+l+1

∑
j=intV+1

Bh
i, jNi,k(u)M j,l(v) (5)

where intU and intV specify the current knot vector interval
number being computed. For instance, given a knot vector of
[0 0 0 1 2 2 2] would yield two intervals, i.e., I1 = [0,1] and
I2 = [1,2].

Equation (5) regards the fact that

Ni,k = 0 ⇒ i < intU +1∨ i > intU + k +1

respectively the same applies for Mi,k. Hence a great amount of
work can be skipped, especially when intersecting surfaces with a
small degree and a large number of control points. Such surfaces
occur frequently in real-life CAD data, where spatially small sur-
faces with thousands of control points are no rarity. In particular
this applies to trimming curves as well.

6 Results

In this section we present experimental results achieved using the
techniques described above. See Figures 6 and 7 for some exam-
ples. All rendered images are of 5122 pixels resolution. The tests
were performed on a PowerMac G5 with two dual-core processors,
running at 2.5 GHz (1.25 GHz bus speed, 64KB L1 instruction
cache, 32KB L1 data cache, 1024 KB L2 cache per CPU) with
2.5 GB of PC4200 RAM using AltiVec and four threads to take ad-
vantage of all CPU cores. We also compared our results with two
production systems in Table 2.

We claimed earlier that the performance of our algorithm is
largely independent of the number of surface control points. Ta-
ble 1 confirms our statement (compare column one and two in both
rows). The recorded loss in performance is due to the reduced ef-
fectivity of the SIMD instructions. At a certain close distance the
frame rate is increasing again, since in such a case the SIMD ef-
fectivity is growing again. Evaluations are most effective if all four
parameter values lie within the same knot vector interval of their
parametric direction. Therefore increasing the number of control
points together with constant spatial expansion will result in smaller
intervals, thus enforcing more sequential operations. Nevertheless,
beyond that no significant performance loss is occurring.

Our system is also able to handle trimming curves in an effi-
cient way. Since our research in the field of efficient computation
of trimmed NURBS surfaces begun just lately, we are not focussing
on that topic here. Currently we are basically using the same tech-
niques described in this paper, which we adapted for the 2D case.
By finding the closest intersection with a 2D trimming curve we can

compute whether the trimming ray is leaving or entering a trimmed
region. This is only possible if all trimming curves have a consistent
orientation. Following this approach we are able to take advantage
of the highly optimized algorithms we already developed. In Figure
7, a VW Polo model is shown which heavily uses trimming curves.
As can be seen in Table 1, the overhead of trimming is only 6.7%
for this model, though more than half of all surfaces have trimming
curves assigned (38354 trimming curves in total). At present arbi-
trary NURBS curves are supported as trimming curves in contrast to
other systems which in almost all cases only support Bézier curves.

Finally the results show, that the memory usage is quite low.
Although we use several bounding boxes for a single surface, the
memory usage for the bounding volume hierarchy alone is compa-
rable to a triangle based ray tracer, as the latter uses a lot more tri-
angles than we use surfaces. The memory required for the surfaces
and all precomputed data is even lower. For example, the entire
Polo scene uses less than 40 MB in total. With such a low memory
usage, it is possible to easily ray trace very complex scenes.

Figure 6: The Killeroo modell [10] with 56625 control points is shown
on the left side, while the next shows a closeup shot from its head
(See columns two and three in the first row of Table 1). Note, that
the frame rate drops from 3.26 to 1.54 frames per second. However
by taking into account the screen coverage increasing from 14.1% to
92.3% the result is quite satisfying. The average intersection time
for a single test even decreased from 591 ns to 319 ns due to a
more efficient SIMD usage at such a short distance. The same effect
can be observed with the Polo model. Pictures on the right: A
head modeled with 915 bicubic 4×4 NURBS patches and the well-
known Utah teapot, which uses a NURBS representation instead of
the original Bézier surfaces.

Figure 7: Trimmed model of a VW Polo. These renderings are based
on a direct export from Catia V4 engineering data of the Volkswagen
AG. The original data set included only half of the model, so Maya
was used for mirroring only - no further optimizations were applied.
Thus the model contains ”evil” surfaces with thousands of control
points and a high degree (up to 15) for visually less important tiny
geometric details. As the results demonstrate, the system is able to
handle even such surfaces efficiently.



Statistics Killeroo Killeroo Killeroo closeup Teapot Head

NURBS Surfaces 89 89 89 32 915
Screen Coverage 14.1% 14.1% 92.3% 21.16% 43.19%
Average Order 4 4 4 4 4
Number of Control Points 17181 56625 56625 512 14640
Number of Bounding Volumes 104182 130865 130865 12984 13844
Frames per second 3.81 3.26 1.54 7.22 4.37
Intersection Tests/frame 329528 339812 1469232 265712 497000
Total Intersection Time 0.169 s 0.201 s 0.47 s 0.061 s 0.135 s
Average Intersection Time 512 ns 591 ns 319 ns 229 ns 287 ns
Memory Consumption (NURBS) 0.38 MB 1.07 MB 1.07 MB 0.02 MB 0.62 MB
Memory Consumption (BVH) 3.57 MB 4.49 MB 4.49 MB 0.44 MB 0.47 MB
Preprocessing Time 1.57 s 2.49s 2.49 s 0.14 s 0.49 s

Statistics Single Surface Single Surface Polo Polo Polo closeup
(trimmed) (untrimmed)

NURBS Surfaces 1 1 9659 9659 9659
Screen Coverage 32.6% 32.6% 11.9% 12.2% 81.1%
Average Order 4 4 5.47 5.47 5.47
Number of Control Points 16 162409 423416 42316 42316
Number of Bounding Volumes 58 58 604191 604191 604191
Frames per second 9.01 5.53 1.83 1.96 0.70
Intersection Tests/frame 134992 135324 520348 484856 2111640
Total Intersection Time 0.027 s 0.069 s 0.451 s 0.401 s 1.24 s
Average Intersection Time 200 ns 509 ns 866 ns 827 ns 587 ns
Memory Consumption (NURBS) 0.695 KB 0.695 KB 15.75 MB 15.75 MB 15.75 MB
Memory Consumption (BVH) 2.03 KB 2.03 KB 20.74 MB 20.74 MB 20.74 MB
Preprocessing Time 0.0025 s 1.477 s 52.54 s 52.54 s 52.54 s

Table 1: Achieved frame rates and measured timings with different scenes on a quad-processor PowerMac G5 running at 2.5 GHz with 5122

image resolution. Four threads and SIMD instructions are used. Preprocessing is currently still single-threaded and therefore no advantage is
taken of the additional processors. Note that for the Polo scenes the average intersection time includes the time required for the trimming test.

7 Comparison

Only few people have worked on interactive ray tracing of NURBS
surfaces, thus a comparison is rather difficult. Efremov [5] pre-
sented some results in his master’s thesis. On a 3.06 GHz Xeon
CPU he achieved a frame rate of 0.22 frames per second using a
8002 image resolution with a scene comparable to our head scene
(976 surfaces, 15616 control points, average order of 4.0). By
roughly taking the difference in resolution and processor speed
into account, this still leaves us a speed-up factor of approximately
three. However, due to the fact that rational Bézier surfaces rather
than NURBS are used, his approach does not scale well with an
increasing surface degree. Rendering a more complex scene with
64659 patches, 1261136 control points, and an average degree of
7.58 requires 8.61 minutes to compute. Although we currently do
not have a comparable scene available, we expect our system to
render such a scene in clearly less than 10 seconds.

By contrast, Martin et al. [16] also traced NURBS surfaces di-
rectly. However, the numbers they presented were measured on a
300 MHz MIPS R12000 processor, which makes it quite difficult to
compare the results, due to the very different hardware platform.

Compared to our own Bézier based ray tracing system presented
in [8] we achieve a lower frame rate, which is obvious as NURBS
are a lot more complex than their Bézier counterparts. However,
we were able to increase the image quality while decreasing the
preprocessing time at the same time. The data provided by Volks-
wagen was not directly usable with the Bézier-based system since
the NURBS surfaces had to be converted into a bicubic Bézier rep-
resentation, which involved a lot of manual work. Additionally, due
to the conversion, the Bézier based model suffers from visual arti-
facts (see Figure 8), mainly gaps between surfaces. The frame rate
achieved for the Polo scene using the Bézier-based system is 6.92
frames per second, which means, the approach presented in this pa-

per is currently ”only” 3.7 times slower. However, note that there
was a lot of manual preprocessing work included (i.e., converting
the NURBS surfaces into bicubic 4×4 patches). Without such a
conversion the rendering time would have been far from interactive
due to the global control property of Bézier surfaces. Also note the
problems of this approach shown in Figure 8.

Figure 8: Artifacts occurring in a Bézier-based approach (left) [8]:
Gaps between Bézier surfaces due to data conversion. Such artifacts
can not appear in a NURBS based approach as presented in this
paper (right). Note, that the gap between the reflector and car body
is not an error, but modeled this way. However, white pixels shown
in the magnified region around and on the bumper are indeed errors,
resulting from the conversion of NURBS surfaces into bicubic Bézier
patches

8 Conclusions & Future Work

Though most ray tracing systems use only triangles as their geo-
metric primitive, recently it has been shown that it is feasible to ray
trace Bézier surfaces at interactive frame rates on a single commod-
ity PC.



System Our approach Maya Rhino 3D

Load File n.a. 4.12 min 3 min
Preprocessing 0.87 min n.a. 21.75 min
Rendertime/frame 0.54 s 20 s 71 s
Memory usage < 50 MB > 1.0 GB > 1.2 GB

Table 2: All three systems load and render the VW Polo scene once.
Note that the time taken for loading the file is contained in the
preprocessing time, while Maya does preprocessing, i.e., low detail
triangulation in this case, on the fly while loading. All three resulting
images were comparable in their visual quality. The Rhino 3D timings
were measured on a Pentium IV 2.8 GHz with 1 GB of RAM running
Windows XP Professional. Since all three approaches are using ray
tracing for rendering the graphic cards are not important here.

In this paper, we have presented a novel approach to NURBS
surface evaluation, which in conjunction with the interactive ray
tracing system developed by Geimer [7], allows for ray tracing of
arbitrary NURBS surfaces. Furthermore, the performance of our
proposed algorithm is largely independent of the number of con-
trol points and is numerically stable for any degree and number of
control points. Preprocessing time is short even for complex mod-
els, typically not exceeding one minute. An optimized bounding
volume hierarchy provides good initial estimates for the Newton
iteration, which is the foundation of the intersection test. In addi-
tion, we have shown that memory consumption is very low and can
compete well with triangle based models, especially if high detail
is desired.

The most important factor for the high performance is the ex-
tremely fast NURBS surface evaluation, which of course could also
be useful in other contexts, like collision detection using NURBS
or precise ray picking on such models.

In the context of this paper, we have only considered interactive
walk-through scenarios. However, it is basically also possible to in-
troduce dynamic interaction without too much effort, since known
concepts should work seamlessly with our approach as long as no
surface is deformed. In this case, some or all CDBItems need to
be recomputed, however, investigating the usability of deformable
NURBS surfaces in a realtime environment could be an interesting
subject for further work.

Additionally, the bounding volume hierarchy creation can be im-
proved by generating a box only for regions, which are known to
converge based on the approach presented in [24].

If a high frame rate is considered more important than a short
preprocessing time, it would also be feasible to integrate the Bézier
intersection code described in [8] into our NURBS-based system.

Finally, memory consumption could be reduced even further, as
any CDBItem set with identical k, and n, and uniform knot vector,
will result in exactly the same precomputed ci values. Very large
scenes and/or very homogeneous scenes (only bicubic 4× 4 sur-
faces for example) will benefit most. In these cases, surfaces would
be able to use the same item set. This might also increase cache
performance as well, depending on the scene.

Acknowledgements

The authors would like to thank all people who contributed to this
paper with helpful discussions and comments, especially Stephan
Palmer, Rodja Trappe, Thorsten Grosch, and Anneli Lundin. In
addition, we would like to thank the Volkswagen AG for providing
the Polo data set.

References

[1] O. Abert. Interactive ray tracing of NURBS surfaces by using SIMD

instructions and the GPU in parallel. Master’s thesis, Universität

Koblenz-Landau, Germany, 2005.

[2] C. Benthin, I. Wald, and P. Slusallek. Interactive ray tracing of free-

form surfaces. In Proceedings of ACM AFRIGRAPH, pages 99–106,

Nov. 2004.

[3] S. Campagna, P. Slusallek, and H.-P. Seidel. Ray tracing of spline

surfaces. 13(6):265–282, Aug. 1997.

[4] C. de Boor. On calculating with B-Splines. Journal of Approximation

Theory, 6:50–62, 1972.

[5] A. Efremov. Efficient ray tracing of trimmed NURBS surfaces. Mas-

ter’s thesis, Saarland University, Saarbrücken, Germany, 2004.

[6] A. Efremov, V. Havran, and H.-P. Seidel. Robust and numerically

stable Bézier clipping method for ray tracing NURBS surfaces. In

Proceedings of 21st Spring Conference on Computer Graphics, pages

127–135, May 2005. (Budmerice, Slovakia, May 12–14, 2005).

[7] M. Geimer. Interaktives Ray Tracing. PhD thesis, Universität

Koblenz-Landau, Germany, 2005.

[8] M. Geimer and O. Abert. Interactive ray tracing of trimmed bicubic

Bézier surfaces without triangulation. In WSCG’2005 Full Papers

Conference Proceedings, pages 71–78, Feb. 2005.

[9] J. Goldsmith and J. Salmon. Automatic Creation of Object Hierarchies

for Ray Tracing. IEEE Computer Graphics and Applications, 7(5):14–

20, May 1987.

[10] headus (metamorphosis) Pty Ltd. Killeroo model.

http://www.headus.com/au/cinefex/1.html, 2006.

[11] Intel Corp. Hyper-Threading Technology.

http://www.intel.com/technology/hyperthread/, 2004.

[12] Intel Corp. IA-32 Intel Architecture Software Developer’s Manual,

Volume 2: Instruction Set Reference, 2004.

[13] J. T. Kajiya. Ray tracing parametric surfaces. Computer Graphics

(Proceedings of SIGGRAPH 82), 16(3):245–254, July 1982.

[14] L. Kobbelt, K. Daubert, and H.-P. Seidel. Ray tracing of subdivision

surfaces. In Rendering Techniques ’98 (Proceedings of the Eurograph-

ics Workshop on Rendering), pages 69–80, July 1998.

[15] J. Lext and T. Akenine-Möller. Towards rapid reconstruction for ani-

mated ray tracing. Eurographics 2001 Short presentations, pages 311–

318, Sept. 2001.

[16] W. Martin, E. Cohen, R. Fish, and P. Shirley. Practical ray tracing

of trimmed NURBS surfaces. journal of graphics tools, 5(1):27–52,

2000.

[17] Motorola, Inc. AltiVec Technology Programming Interface Manual,

1999.

[18] K. Müller, T. Techmann, and D. Fellner. Adaptive ray tracing of sub-

division surfaces. Computer Graphics Forum (Proceedings of Euro-

graphics 2003), 22(3):543–552, Sept. 2003.

[19] M. J. Muuss. Towards real-time ray-tracing of combinatorial solid ge-

ometric models. In Proceedings of BRL-CAD Symposium, June 1995.

[20] T. Nishita, T. W. Sederberg, and M. Kakimoto. Ray tracing trimmed

rational surface patches. Computer Graphics (Proceedings of SIG-

GRAPH 90), 24(4):337–345, Aug. 1990.

[21] S. Parker, W. Martin, P.-P. J. Sloan, P. Shirley, B. Smits, and

C. Hansen. Interactive ray tracing. In Proceedings of ACM Symposium

on Interactive 3D Graphics, pages 119–126, Apr. 1999.

[22] B. Smits. Efficiency issues for ray tracing. journal of graphics tools,

3(2):1–14, 1998.

[23] M. Sweeney and R. Bartels. Ray tracing free-form B-spline surfaces.

IEEE Computer Graphics and Applications, 6(2):41–49, Feb. 1986.

[24] D. L. Toth. On ray tracing parametric surfaces. Computer Graphics

(Proceedings of SIGGRAPH 85), 19(3):171–179, July 1985.

[25] I. Wald. Realtime Ray Tracing and Interactive Global Illumination.

PhD thesis, Saarland University, Saarbrücken, Germany, 2004.

[26] I. Wald, C. Benthin, and P. Slusallek. Distributed interactive ray trac-

ing of dynamic scenes. In Proceedings of IEEE Symposium on Parallel

and Large-Data Visualization and Graphics, pages 77–86, Oct. 2003.

(Seattle, Washington, October 20–21, 2003).

[27] I. Wald, P. Slusallek, C. Benthin, and M. Wagner. Interactive rendering

with coherent ray tracing. Computer Graphics Forum (Proceedings of

Eurographics 2001), 20(3):153–164, Sept. 2001.

[28] S.-W. Wang, Z.-C. Shih, and R.-C. Chang. An efficient and stable

ray tracing algorithm for parametric surfaces. Journal of Information

Science and Engineering, 18(4):541–561, July 2001.


