
Scalable Collation and Presentation of
Call-Path Profile Data with CUBE

Markus Geimer1, Björn Kuhlmann 1,3, Farzona Pulatova1,2,
Felix Wolf1,3, and Brian J. N. Wylie1

1 Forschungszentrum Jülich,
John von Neumann Institute for Computing, 52425 Jülich, Germany

E-mail: {m.geimer, f.wolf, b.wylie}@fz-juelich.de, bjoern.kuhlmann@sap.com

2 University of Tennessee,
Innovative Computing Laboratory, Knoxville, TN 37996-3450, USA

E-mail: farzona@gmail.com

3 RWTH Aachen University,
Department of Computer Science, 52056 Aachen, Germany

Developing performance-analysis tools for parallel applications running on thousands of pro-
cessors is extremely challenging due to the vast amount of performance data generated, which
may conflict with available processing capacity, memory limitations, and file system perfor-
mance especially when large numbers of files have to be written simultaneously. In this article,
we describe how the scalability ofCUBE, a presentation component for call-path profiles in
the SCALASCA toolkit, has been improved to more efficiently handle data sets from thousands
of processes. First, the speed of writing suitable input data sets has been increased by elimi-
nating the need to create large numbers of temporary files. Second, CUBE’s capacity to hold
and display data sets has been raised by shrinking their memory footprint. Third, after intro-
ducing a flexible client-server architecture, it is no longer necessary to move large data sets
between the parallel machine where they have been created and the desktop system where they
are displayed. Finally,CUBE’s interactive response times have been reduced by optimizing the
algorithms used to calculate aggregate metrics. All improvements are explained in detail and
validated using experimental results.

1 Introduction

Developing performance-analysis tools for applications running on thousands of proces-
sors is extremely challenging due to the vast amount of performance data usually gener-
ated. Depending on the type of performance tool, these data may be stored in one or more
files or in a database and may undergo different processing steps before or while they are
shown to the user in an interactive display. Especially whensome of these steps are carried
out sequentially or make use of shared resources, such as thefile system, the performance
can be adversely affected by the huge size of performance data sets. Another scalability
limit is posed by memory capacity, which may conflict with thesize of the data to be held
at some point in the processing chain. As a consequence, performance tools may either
fail or become so slow that they are no longer usable. One aspect where this is particularly
obvious is the visual presentation of analysis results. Forexample, a viewer may prove
unable to load the data or long response times may compromiseinteractive usage. And
even when none of the above applies, limited display sizes may still prevent a meaningful
presentation.

1



In this article, we describe howCUBE1, a presentation component for call-path pro-
files that is primarily used to display runtime summaries andtrace-analysis results in the
SCALASCA performance tool set2 for MPI applications, has been enhanced to meet the
requirements of large-scale systems. While transitioningto applications running on thou-
sands of processors, scalability limitations appeared in the following four areas:

1. Collation of data sets: Originally, the data corresponding to each application process
was written to a separate file and subsequently collated using a sequential program –
a procedure that performed poorly due to the large numbers offiles being simultane-
ously created and sequentially processed.

2. Copying data sets between file systems: When the user wanted to display the data
on a remote desktop, the relatively large data sets first had to be moved across the
network.

3. Memory capacity of the display: As the data sets grew larger with increasing proces-
sor counts, they could no longer be loaded into the viewer.

4. Interactive response times: The on-the-fly calculation of aggregate metrics, such as
times accumulated across all processes, consumed increasingly more time.

To overcome these limitations, we have redesignedCUBE in various ways. The ele-
ments of our solution include (i) a parallel collation scheme that eliminates the need to
write thousands of files, (ii) a client-server architecturethat avoids copying large data sets
between the parallel machine and a potentially remote desktop, (iii) an optimization of the
display-internal data structures to reduce the memory footprint of the data, and (iv) opti-
mized algorithms for calculating aggregate metrics to improve interactive response time.
The overall result is substantially increased scalability, which is demonstrated with realistic
data sets from target applications running on up to 16,384 processors.

The article is organized as follows: In Section 2, we briefly review theCUBE display
component. Then, in Section 3, we describe the parallel collation scheme and how it is used
in SCALASCA, before we explain the client-server architecture in Section 4. The optimized
internal data structures along with the improved aggregation algorithms are presented in
Section 5. Finally, we conclude the paper and point to futureenhancements in Section 6.
Measurement results appear in the text along with the contents they refer to.

2 CUBE

TheCUBE (CUBE Uniform BehavioralEncoding) display component is a generic graphical
user interface for the presentation of runtime data from parallel programs, which may
include both performance data but also data on, for example,runtime errors. It has been
primarily designed for use inSCALASCA, but is also used in combination with theTAU

performance tool suite3 and theMPI error detection toolMARMOT4.

Data model. CUBE displays data corresponding to a single run of an application, which is
called anexperiment. The internal representation of an experiment follows a data model
consisting of three dimensions: a metric dimension, a call-tree dimension, and a system

2



Figure 1. CUBE display showing aSCALASCA trace-analysis report for theASC SMG2000 benchmark on 16,384
processors. The display shows the hierarchy of performancemetrics (left pane), the call tree of the program
(middle pane), and the application processes arranged in a three-dimensional virtual topology (right pane).

dimension. Motivated by the need to represent performance behavior on different levels
of granularity as well as to express natural hierarchical relationships among metrics, call
paths, or system resources, each dimension is organized in ahierarchy.

The metric hierarchy is intended to represent metrics, suchas times or events, and may
provide more general metrics at the top (e.g., execution time) and more specialized met-
rics closer to the bottom (e.g., communication time). The call-tree hierarchy contains the
different call paths a program may visit during execution (e.g., main()→ foo() → bar()).
In the context of pure message-passing applications, the system hierarchy consists of the
three levels machine, (SMP) node, and process. However, in general it can include an addi-
tional thread level to represent analysis results from multi-threaded programs. Besides the
hierarchical organization, the processes of an application can also be arranged in physical
or virtual process topologies, which are part of the data model. A severity function deter-
mines how all the tuples (metricm, call pathc, processp) of an experiment are mapped
onto the accumulated value of the metricm measured while the processp was executing
in call pathc. Thus, an experiment consists of two parts: a definition partthat defines the
three hierarchies and a data part representing the severityfunction.

File format. CUBE experiments can be stored using anXML file format. A file representing
a CUBE experiment consists of two parts: the definitions and the severity function values.
The severity values are stored as a three-dimensional matrix with one dimension for the
metric, one for the call path, and one for the process.CUBE provides a C++API for
creating experiments and for writing them to or loading themfrom a file.

3



Display. CUBE’s display consists of three tree browsers representing themetric, the pro-
gram, and the system dimension from left to right (Figure 1).Since the tree representation
of the system dimension turned out to be impractical for thousands of processes,CUBE

provides a more scalable two- or three-dimensional Cartesian grid display as an alternative
to represent physical or virtual process topologies.

Essentially, a user can perform two types of actions: selecting a tree node or expand-
ing/collapsing a tree node. At any time, there are two nodes selected, one in the metric tree
and another one in the call tree. Each node is labeled with a severity value (i.e., a metric
value). A value shown in the metric tree represents the sum ofa particular metric for the
entire program, that is, across all call paths and the entiresystem. A value shown in the
call tree represents the sum of the selected metric across the entire system for a particular
call path. A value shown in the system tree or topology represents the selected metric for
the selected call path and a particular system entity. To help identify high severity values
more quickly, all values are ranked using colors. Due to the vast number of data items, the
topological display shows only colors. Exploiting that allhierarchies inCUBE are inclu-
sion hierarchies (i.e., that a child node represents a subset of the parent node),CUBE allows
the user to conveniently choose between inclusive and exclusive metrics by collapsing or
expanding nodes, respectively. Thus, the display providestwo aggregation mechanisms:
aggregation across dimensions (from right to left) by selecting a node, and aggregation
within a dimension by collapsing a node.

3 Parallel Collation of Input Data

In SCALASCA, the trace analyzer, a parallel program in its own right, scans multiple
process-local trace files in parallel to search for patternsof inefficient behavior. During
the analysis, each analysis process is responsible for the trace data generated by one pro-
cess of the target application. In the earlier version, at the end of the analysis, all analysis
processes created their ownCUBE file containing the process-local analysis results, which
then had to be collated into a single global result file in a sequential postprocessing step.
This initial approach had a number of disadvantages. First,every local result file contained
exactly the same definition data, causing the analyzer to write large amounts of redundant
information. Second, sequentially collating the local results scaled only linearly with the
number of processes. This was aggravated by the fact that first writing the local results
to disk and then reading them back for collation during the postprocessing phase incurred
expensive but actually unnecessaryI /O activity.

To overcome this situation, we devised a new mechanism that lets every analysis pro-
cess send its local result data across the network to a singlemaster process that writes only
a singleCUBE file containing the collated results from all processes. This has the advan-
tage that creating a large number of intermediate files and writing redundant definition data
can be avoided. Although this idea seems trivial, it has to cope with the challenge that the
size of the global data set may easily exceed the memory capacity of the collating master.
Therefore, to ensure that the master never has to hold more data at a time than its capacity
allows, the data is incrementally collected in very small portions and immediately written
to the global result file as it arrives.

The CUBE data model stores the severity function in a three-dimensional matrix in-
dexed by the triple (metric, call path, process). Accordingly, our new collation algorithm

4



16 32 64 128 256 512 1024 2048
Number of Processes

10
0

10
1

10
2

10
3

10
4

10
5

W
al

l t
im

e 
(s

)

Sequential collation
Parallel collation

Figure 2. Comparison of trace-analysis result collation times for theASC SMG2000 benchmark code on Blue
Gene/L. The sequential collation was carried out on the front-end node, whereas the parallel collation was carried
out on compute nodes.

consists of two nested loops, where the outer one iterates over all defined performance
metrics and the inner one iterates over individual call paths. Since we assume that each
analysis process stores only local results, the local process dimension for a given (metric,
call path) combination consists only of a single entry. During an iteration of the inner loop,
just this single value is collected from all analysis processes using anMPI gather opera-
tion. Then, the master process immediately collates all these values into the full (metric,
call path) submatrix and writes it to the global file before the next iteration starts. In this
way, even for 100,000 processes not more than 1MB of temporary memory is required at
a time. To prevent the master process from running out of buffer space when using anMPI

implementation with a non-synchronizing gather, we placeda barrier behind each gather
operation. To support the incremental write process, a special CUBE writer library is pro-
vided, which is implemented in C to simplify linkage to the target application if result files
have to be written by a runtime library.

Figure 2 compares analysis result collation times of the initial sequential version and
the new parallel version for theASC SMG2000 benchmark code5 running on up to 2,048
processes on Blue Gene/L. As can be seen, the sequential collation approach becomes
more and more impractical at larger scales, whereas the improved algorithm scales very
well. Even for 16,384 processes, the parallel scheme took less than five minutes.

4 Client-Server Architecture

To avoid copying potentially largeCUBE data sets from the supercomputer where they have
been generated across the network to a remote desktop for visualization, the previously
monolithic CUBE display was split into a client and a server part. In this arrangement,
the server is supposed to run on a machine with efficient access to the supercomputer’s

5



1024 2048 4096 8192 1638464 128 256 512
Number of Processes

10
2

10
3

10
4

10
5

10
6

M
em

or
y 

us
ag

e 
(k

B
)

Original
Improved

Figure 3. Comparison of the memory footprint ofCUBE on a Linux workstation for trace analyses obtained from
runs of theASC SMG2000 benchmark code at a range of scales using the original (map) and the revised (vector)
internal data representation.

file system (e.g., the front-end node), while the client, a lightweight display component,
runs on the user’s desktop system, querying the required data from the server over aBSD

socket connection and displaying it without substantial further processing. The data is
transferred in relatively small chunks corresponding to the values needed to populate one
tree in the display (e.g., the metric tree or the call tree). Whenever the user performs an
action requiring the update of one or more trees, the server performs all the necessary
calculations including the calculation of aggregate metrics before sending the results to the
client. To ensure security of the transmission, we rely on tunneling the connection through
SSH, which is widely available and usually works smoothly even with restrictive firewall
configurations.

In addition to solving the problem of copying large amounts of data, the server can
also take advantage of a more generous hardware configuration in terms of processing
power and memory available on the machine where it is installed. In this way, it becomes
possible to hold larger data sets in memory and to perform therelatively compute-intensive
calculation of aggregate metrics quicker than on the user’sdesktop. In a later stage, even a
moderate parallelization of the server is conceivable.

The underlying idea of separating the display from the actual processing of the data
has also been used in the design of Vampir Server6, where the trace data is accessed and
prepared by a parallel server program, before it is presented to the user in a pure display
client.

5 Optimized Internal Data Structures and Algorithms

Since a substantial number of entries in the three-dimensional severity matrix are usually
zero (e.g., no communication time in non-MPI functions), the original C++GUI imple-

6



2048 4096 8192 1638464 128 256 512 1024
Number of Processes

0

20

40

60

80

100

120

R
el

at
iv

e 
ca

lc
ul

at
io

n 
tim

e 
(%

)

Metric tree
Call tree
System tree

Figure 4. Calculation times of the improved aggregation algorithm for the three different hierarchies in relation
to the original implementation (=100%) for trace analyses obtained from runs of theASC SMG2000 benchmark
code at a range of scales. The measurements were taken on a Linux workstation.

mentation used the associativeSTL container classstd::map to store only the non-zero
entries in the manner of a sparse matrix. The data structure employed a three-level nesting
of maps using metric, call-path, and process pointers as keys.

However, experiments showed that in practice the third level, which stores the severity
values of all processes for a particular tuple (metric, callpath), is usually densely popu-
lated. BecauseSTL maps are often implemented using some form of self-balancing binary
search tree, this observation implied an opportunity for a substantial reduction of the mem-
ory overhead and at the same time for an improvement of the access latency for individual
entries. Hence, the lowest nesting level was replaced bystd::vector. However, this
change required the global enumeration of all processes so that the process number could
be used as vector index.

Figure 3 compares the memory consumption of the original implementation to the
consumption of the revised version on a Linux workstation for trace-analysis data sets
obtained from runs of theASC SMG2000 benchmark code at various scales (similar results
have been obtained for other data sets). As can be seen, changing from map to vector at
the process level led to a significant reduction of the memoryfootprint. Depending on the
data set and the number of processes, a reduction by factors between three and six could
be observed. As a result, theCUBE viewer is now able to display analysis results at much
larger scales.

In the course of the above modification, we enumerated also metrics and call paths to
improve the performance of some of the algorithms used to calculate aggregate metrics,
such as the accumulated time spent in a specific call path including all its children. In
particular, the calculation of the inclusive and exclusiveseverity values for the metric, call
path, and system hierarchy was revised by replacing recursions in depth-first order with
iterations over the enumerated objects in both directions.The reuse of already calculated

7



sums at deeper levels of the hierarchy was preserved by making sure that child nodes
received a higher index than their parents did.

Figure 4 compares the iterative aggregation algorithms to their recursive counterparts
on a Linux workstation, again using theSMG2000 data sets as an example. As can be seen,
the new algorithm significantly reduced the aggregation time in the majority of the cases.
The fact that the calculation of the metric tree was slower intwo cases can be ignored
because this tree is calculated only once during the entire display session, whereas the call
tree and the system tree have to be frequently re-calculated. In the end, the previously often
slow response times that were noticeable especially at large scales could be substantially
reduced.

6 Conclusion

In this paper, we have presented a number of measures to improve the scalability of the
CUBE display. Although none of the changes required truly novel algorithms, they nonethe-
less led to tangible results in the form of a much quicker generation of input data sets, a
simplified usage on remote desktops, significantly reduced memory requirements, and no-
ticeably improved interactive response times. While certainly adding to the convenience
of the overall user experience, the most important accomplishment, however, is thatCUBE

and the tools depending on it can now be used to study the runtime behavior of applications
running at substantially larger scales.

References

1. F. Song, F. Wolf, N. Bhatia, J. Dongarra, and S. Moore,An Algebra for Cross-
Experiment Performance Analysis, in: Proc. of the International Conference on Par-
allel Processing (ICPP), pp. 63–72, IEEE Society, Montreal, Canada, August 2004.

2. Markus Geimer, Felix Wolf, Brian J. N. Wylie, and Bernd Mohr, Scalable Parallel
Trace-Based Performance Analysis, in: Proc. 13th European PVM/MPI Users’ Group
Meeting, vol. 4192 ofLNCS, pp. 303–312, Springer, Bonn, Germany, September
2006.

3. Sameer Shende and Allen D. Malony,The TAU Parallel Performance System, Inter-
national Journal of High Performance Computing Applications,20, no. 2, 287–331,
2006.

4. B. Krammer, M. S. Müller, and M. M. Resch,Runtime Checking of MPI Applications
with MARMOT, in: Proc. of Parallel Computing (ParCo), pp. 893–900, Málaga,
Spain, September 2005.

5. Accelerated Strategic Computing Initiative, “The ASC SMG2000 benchmark code”,
http://www.llnl.gov/asc/purple/benchmarks/limited/smg/,
2001.

6. H. Brunst and W. E. Nagel,Scalable Performance Analysis of Parallel Systems: Con-
cepts and Experiences, in: Proc. of the Parallel Computing Conference (ParCo), pp.
737–744, Dresden, Germany, 2003.

8


