Scalable Collation and Presentation of
Call-Path Profile Data with CUBE

Markus Geimer!, Bjorn Kuhlmann '3, Farzona Pulatova 2,
Felix Wolf!-3, and Brian J. N. Wylie!

1 Forschungszentrum Jillich,
John von Neumann Institute for Computing, 52425 JulichrnGzeny
E-mail: {m.geimer, f.wolf, b.wylie} @fz-juelich.de, bjoern.kuhlmann@sap.com

2 University of Tennessee,
Innovative Computing Laboratory, Knoxville, TN 37996-843JSA
E-mail: farzona@gmail.com

3 RWTH Aachen University,
Department of Computer Science, 52056 Aachen, Germany

Developing performance-analysis tools for parallel aggtions running on thousands of pro-
cessors is extremely challenging due to the vast amountrédrpgance data generated, which
may conflict with available processing capacity, memoryititions, and file system perfor-
mance especially when large numbers of files have to be wisttaultaneously. In this article,
we describe how the scalability afuBE, a presentation component for call-path profiles in
the scaLAscAtoolkit, has been improved to more efficiently handle data §em thousands
of processes. First, the speed of writing suitable inpua dats has been increased by elimi-
nating the need to create large numbers of temporary filesorfBeCUBE's capacity to hold
and display data sets has been raised by shrinking their myeimatprint. Third, after intro-
ducing a flexible client-server architecture, it is no longecessary to move large data sets
between the parallel machine where they have been createtti@desktop system where they
are displayed. FinallyjcUBE's interactive response times have been reduced by optigithie
algorithms used to calculate aggregate metrics. All impnoents are explained in detail and
validated using experimental results.

1 Introduction

Developing performance-analysis tools for applicatiamsning on thousands of proces-
sors is extremely challenging due to the vast amount of padace data usually gener-
ated. Depending on the type of performance tool, these dayebm stored in one or more
files or in a database and may undergo different processpg siefore or while they are
shown to the user in an interactive display. Especially wdmne of these steps are carried
out sequentially or make use of shared resources, such fiethgstem, the performance
can be adversely affected by the huge size of performaneesg#s. Another scalability
limit is posed by memory capacity, which may conflict with #iee of the data to be held
at some point in the processing chain. As a consequence&rpenfice tools may either
fail or become so slow that they are no longer usable. Onectggere this is particularly
obvious is the visual presentation of analysis results. éxample, a viewer may prove
unable to load the data or long response times may compron&mctive usage. And
even when none of the above applies, limited display sizgsstilhprevent a meaningful
presentation.

In this article, we describe howuBE!, a presentation component for call-path pro-
files that is primarily used to display runtime summaries tade-analysis results in the
SCALASCA performance tool sétfor MpI applications, has been enhanced to meet the
requirements of large-scale systems. While transitiotorgpplications running on thou-
sands of processors, scalability limitations appearederfdallowing four areas:

1. Collation of data sets: Originally, the data correspogdo each application process
was written to a separate file and subsequently collated@ssequential program —
a procedure that performed poorly due to the large numbditesteing simultane-
ously created and sequentially processed.

2. Copying data sets between file systems: When the user dvémtisplay the data
on a remote desktop, the relatively large data sets first tndik tmoved across the
network.

3. Memory capacity of the display: As the data sets grew langgh increasing proces-
sor counts, they could no longer be loaded into the viewer.

4. Interactive response times: The on-the-fly calculatibaggregate metrics, such as
times accumulated across all processes, consumed in@yasiore time.

To overcome these limitations, we have redesigoedEk in various ways. The ele-
ments of our solution include (i) a parallel collation scleethat eliminates the need to
write thousands of files, (i) a client-server architectinat avoids copying large data sets
between the parallel machine and a potentially remote dpskii) an optimization of the
display-internal data structures to reduce the memonypfattof the data, and (iv) opti-
mized algorithms for calculating aggregate metrics to iorprinteractive response time.
The overall result is substantially increased scalabiityich is demonstrated with realistic
data sets from target applications running on up to 16,38dgssors.

The article is organized as follows: In Section 2, we brieflyiew thecuse display
component. Then, in Section 3, we describe the paralla@iiofl scheme and how it is used
in SCALASCA, before we explain the client-server architecture in $&cfi. The optimized
internal data structures along with the improved aggregadigorithms are presented in
Section 5. Finally, we conclude the paper and point to fueimeancements in Section 6.
Measurement results appear in the text along with the ctsiteay refer to.

2 CUBE

Thecuske (cuBE uniform BehavioralEncoding) display component is a generic graphical
user interface for the presentation of runtime data fromalpglrprograms, which may
include both performance data but also data on, for exampftime errors. It has been
primarily designed for use iISCALASCA, but is also used in combination with thmau
performance tool suifeand thempi error detection toollARMOT?,

Data model. cuBk displays data corresponding to a single run of an applicatidich is
called anexperiment. The internal representation of an experiment follows a daddel
consisting of three dimensions: a metric dimension, atced-dimension, and a system

p g2000_jag 6384 0 b

File View Help

Metrics ‘ Call Tree ‘ Flat Profile | System Tree Topology View
Root percent /| [Selection percent Feer percent Fi
r=—{] 0.0 Time = Ecnl 0 HYPRE_StructSMGSolve (= E

34.5 Execution = 0.0 hypre_SMGSolve
_ED 0.0 MPI {1 0.0 hypre_StructmatrixDest
=] 0.0 Communication {1 0.0 hypre_StructvectorDes
=—{_1 0.0 Collective L1 0.0 hypre_StrucitatrixRel
[] 0.0 Early Reduce {1 0.0 hypre_StructVectarRef
[] 0.0 Early Scan 0.0 hypre_StructinnerProd
[] 0.0 Late Broadcast {1 0.0 hypre_ShMGRelaxSetRe
] 20 waitatM=N {1 0.0 hypre_SMGRelaxSeth:
] 0.0 K> M Complet ——L1 0.0 hypre_SMGRelaxSetZe
=—{1 13.3 Point-to-point =—{] 0.0 hypre_SMGRelax
@ 49.7 Late Sender [0.0 hypre_SMGRelaxSel
[] 0.0 Late Receiver [164 hypre_SMGResidus
0.0 Synchronization [43.9 hypre_SMGSolve

——] o.omPIID [] 0.0 hypre_SMGSetStruc:
7] 0.0 InitExit 5.9 hypre_SMGResidual r
——] 0.0 Overhead 1.1 hypre_SemiRestrict
1000 Visits [308 hypre_Semilnter
yp P
[1000 Communications [] 0.0 hypre_Structéxg
P py I
[] 0.0 Synchranizations [] 0.0 hypre_SMGAxpy
£ / i
<1 I - |H | ERE =
|70,489.126 (49.7%) | 1418e+05| (30,926,179 (43.9%) | 7.0492+04| [«1.886 + 204%= 3.512e+00

18384 %1 |

Figure 1. cuBedisplay showing &CALASCAtrace-analysis report for thesc sMc2000 benchmark on 16,384
processors. The display shows the hierarchy of performameteics (left pane), the call tree of the program
(middle pane), and the application processes arrangechie-timensional virtual topology (right pane).

dimension. Motivated by the need to represent performaebeaior on different levels
of granularity as well as to express natural hierarchidatienships among metrics, call
paths, or system resources, each dimension is organizeuénaachy.

The metric hierarchy is intended to represent metrics, asd¢hmes or events, and may
provide more general metrics at the top (e.g., executior)tamd more specialized met-
rics closer to the bottom (e.g., communication time). THetcae hierarchy contains the
different call paths a program may visit during executioig (emain()— foo() — bar()).

In the context of pure message-passing applications, stemsyhierarchy consists of the
three levels machines{P) node, and process. However, in general it can include arn add
tional thread level to represent analysis results fromintluteaded programs. Besides the
hierarchical organization, the processes of an applicaigm also be arranged in physical
or virtual process topologies, which are part of the dataehod severity function deter-
mines how all the tuples (metria, call pathe, proces) of an experiment are mapped
onto the accumulated value of the metricmeasured while the procegavas executing

in call pathc. Thus, an experiment consists of two parts: a definition {hattdefines the
three hierarchies and a data part representing the sefuarittion.

Fileformat. CUBE experiments can be stored usingan_ file format. A file representing
a CUBE experiment consists of two parts: the definitions and thersigvfunction values.
The severity values are stored as a three-dimensionabnwaith one dimension for the
metric, one for the call path, and one for the processiBE provides a C++ApP| for
creating experiments and for writing them to or loading tHesm a file.

Display. cuBE's display consists of three tree browsers representingniteic, the pro-
gram, and the system dimension from left to right (FigureSihce the tree representation
of the system dimension turned out to be impractical for Hamals of processesyBE
provides a more scalable two- or three-dimensional Caegiid display as an alternative
to represent physical or virtual process topologies.

Essentially, a user can perform two types of actions: selget tree node or expand-
ing/collapsing a tree node. At any time, there are two nodiested, one in the metric tree
and another one in the call tree. Each node is labeled withexigevalue (i.e., a metric
value). A value shown in the metric tree represents the suapatrticular metric for the
entire program, that is, across all call paths and the esgiseem. A value shown in the
call tree represents the sum of the selected metric acressitire system for a particular
call path. A value shown in the system tree or topology regresthe selected metric for
the selected call path and a particular system entity. Tp idelntify high severity values
more quickly, all values are ranked using colors. Due to #st mumber of data items, the
topological display shows only colors. Exploiting that lirarchies incuBE are inclu-
sion hierarchies (i.e., that a child node represents a sabde parent nodef;UBE allows
the user to conveniently choose between inclusive and sixelunetrics by collapsing or
expanding nodes, respectively. Thus, the display provitesaggregation mechanisms:
aggregation across dimensions (from right to left) by delgca node, and aggregation
within a dimension by collapsing a node.

3 Parallel Collation of Input Data

In SCALASCA, the trace analyzer, a parallel program in its own rightnscaultiple
process-local trace files in parallel to search for pattefrisefficient behavior. During
the analysis, each analysis process is responsible forabe tlata generated by one pro-
cess of the target application. In the earlier version, atethd of the analysis, all analysis
processes created their ownBsE file containing the process-local analysis results, which
then had to be collated into a single global result file in ausetjal postprocessing step.
This initial approach had a number of disadvantages. Fevstyy local result file contained
exactly the same definition data, causing the analyzer tie \anige amounts of redundant
information. Second, sequentially collating the locautessscaled only linearly with the
number of processes. This was aggravated by the fact thiawfiting the local results
to disk and then reading them back for collation during thetpmcessing phase incurred
expensive but actually unnecessdxy activity.

To overcome this situation, we devised a new mechanismétaelery analysis pro-
cess send its local result data across the network to a simagéer process that writes only
a singlecuse file containing the collated results from all processes.sHas the advan-
tage that creating a large number of intermediate files aitthgredundant definition data
can be avoided. Although this idea seems trivial, it has fmeawith the challenge that the
size of the global data set may easily exceed the memory itgpéthe collating master.
Therefore, to ensure that the master never has to hold mtaeatia time than its capacity
allows, the data is incrementally collected in very smalitijpms and immediately written
to the global result file as it arrives.

The cuBE data model stores the severity function in a three-dimexadimatrix in-
dexed by the triple (metric, call path, process). Accortlingur new collation algorithm

5

10

10

Wall time (s)
i

o
o

=
o

9—@ Sequential collation
A—A Parallel collation

16 32 64 128 256 512 1024 2048
Number of Processes

Figure 2. Comparison of trace-analysis result collationes for theasc smMc2000 benchmark code on Blue
Gene/L. The sequential collation was carried out on thetfemd node, whereas the parallel collation was carried
out on compute nodes.

consists of two nested loops, where the outer one iteratesallvdefined performance
metrics and the inner one iterates over individual call patBince we assume that each
analysis process stores only local results, the local godanension for a given (metric,
call path) combination consists only of a single entry. Rgrn iteration of the inner loop,
just this single value is collected from all analysis preaassusing ampPi gather opera-
tion. Then, the master process immediately collates aflehalues into the full (metric,
call path) submatrix and writes it to the global file before trext iteration starts. In this
way, even for 100,000 processes not more tharslof temporary memory is required at
a time. To prevent the master process from running out oebsfiace when using aup|
implementation with a non-synchronizing gather, we plaadshrrier behind each gather
operation. To support the incremental write process, aiapeoBE writer library is pro-
vided, which is implemented in C to simplify linkage to thegat application if result files
have to be written by a runtime library.

Figure 2 compares analysis result collation times of thgainsequential version and
the new parallel version for thesc sMc2000 benchmark codeunning on up to 2,048
processes on Blue Gene/L. As can be seen, the sequentiai@olahpproach becomes
more and more impractical at larger scales, whereas theoiredralgorithm scales very
well. Even for 16,384 processes, the parallel scheme taskthan five minutes.

4 Client-Server Architecture

To avoid copying potentially largeuBE data sets from the supercomputer where they have
been generated across the network to a remote desktop talizegtion, the previously
monolithic cusk display was split into a client and a server part. In this mgement,

the server is supposed to run on a machine with efficient adcethe supercomputer’s

10

10

10

Memory usage (kB)

10

49— Original
A—A Improved

64 128 256 512 1024 2048 4096 8192 16384
Number of Processes

10

Figure 3. Comparison of the memory footprint@fBE on a Linux workstation for trace analyses obtained from
runs of theasc sMG2000 benchmark code at a range of scales using the origirzgd)(amd the revised (vector)
internal data representation.

file system (e.g., the front-end node), while the client,ghtiveight display component,
runs on the user’s desktop system, querying the requiredfdan the server over BSD
socket connection and displaying it without substantiattfer processing. The data is
transferred in relatively small chunks corresponding ®m\hlues needed to populate one
tree in the display (e.g., the metric tree or the call treehewever the user performs an
action requiring the update of one or more trees, the seredopns all the necessary
calculations including the calculation of aggregate nestbiefore sending the results to the
client. To ensure security of the transmission, we rely emaling the connection through
ssH, which is widely available and usually works smoothly evathwestrictive firewall
configurations.

In addition to solving the problem of copying large amouritslata, the server can
also take advantage of a more generous hardware configuiati@rms of processing
power and memory available on the machine where it is iregtalin this way, it becomes
possible to hold larger data sets in memory and to performetlagively compute-intensive
calculation of aggregate metrics quicker than on the ugsesgtop. In a later stage, even a
moderate parallelization of the server is conceivable.

The underlying idea of separating the display from the dqiuacessing of the data
has also been used in the design of Vampir S&€rwehere the trace data is accessed and
prepared by a parallel server program, before it is predewotéhe user in a pure display
client.

5 Optimized Internal Data Structures and Algorithms

Since a substantial number of entries in the three-dimeasseverity matrix are usually
zero (e.g., no communication time in ner® functions), the original C+iul imple-

120

B Metric tree
@ Calltree
[0 Systemtree

100

80

60

40

Relative calculation time (%)

20

64 128 256 512 1024 2048 4096 8192 16384
Number of Processes

Figure 4. Calculation times of the improved aggregatioridigm for the three different hierarchies in relation
to the original implementation (=100%) for trace analysktimed from runs of thasc smMc2000 benchmark
code at a range of scales. The measurements were taken omandrkstation.

mentation used the associatseL container classt d: : map to store only the non-zero
entries in the manner of a sparse matrix. The data structopéoged a three-level nesting
of maps using metric, call-path, and process pointers as key

However, experiments showed that in practice the third Jevieich stores the severity
values of all processes for a particular tuple (metric, path), is usually densely popu-
lated. BecaussTL maps are often implemented using some form of self-balgrtzimary
search tree, this observation implied an opportunity fartzstantial reduction of the mem-
ory overhead and at the same time for an improvement of thesadatency for individual
entries. Hence, the lowest nesting level was replacesithd; : vect or . However, this
change required the global enumeration of all processdsasalte process humber could
be used as vector index.

Figure 3 compares the memory consumption of the originaléempntation to the
consumption of the revised version on a Linux workstationtface-analysis data sets
obtained from runs of thesc sMc2000 benchmark code at various scales (similar results
have been obtained for other data sets). As can be seen,iggdrgn map to vector at
the process level led to a significant reduction of the menfmoiprint. Depending on the
data set and the number of processes, a reduction by factweén three and six could
be observed. As a result, tloe/BE viewer is now able to display analysis results at much
larger scales.

In the course of the above modification, we enumerated alsoam@nd call paths to
improve the performance of some of the algorithms used toutste aggregate metrics,
such as the accumulated time spent in a specific call pathdimg all its children. In
particular, the calculation of the inclusive and exclusegerity values for the metric, call
path, and system hierarchy was revised by replacing remgsn depth-first order with
iterations over the enumerated objects in both directidine reuse of already calculated

sums at deeper levels of the hierarchy was preserved by makire that child nodes
received a higher index than their parents did.

Figure 4 compares the iterative aggregation algorithmbea tecursive counterparts
on a Linux workstation, again using te@Gc2000 data sets as an example. As can be seen,
the new algorithm significantly reduced the aggregatiortimthe majority of the cases.
The fact that the calculation of the metric tree was slowetio cases can be ignored
because this tree is calculated only once during the ernptay session, whereas the call
tree and the system tree have to be frequently re-calculbtéige end, the previously often
slow response times that were noticeable especially at lsrgles could be substantially
reduced.

6 Conclusion

In this paper, we have presented a number of measures tovmfite scalability of the
cuBEdisplay. Although none of the changes required truly nolggi@thms, they nonethe-
less led to tangible results in the form of a much quicker gatien of input data sets, a
simplified usage on remote desktops, significantly reduoeehany requirements, and no-
ticeably improved interactive response times. While éeffaadding to the convenience
of the overall user experience, the most important accatpient, however, is thatyse
and the tools depending on it can now be used to study themaritehavior of applications
running at substantially larger scales.

References

1. F. Song, F. Wolf, N. Bhatia, J. Dongarra, and S. Modka, Algebra for Cross-
Experiment Performance Analysis, in: Proc. of the International Conference on Par-
allel Processing (ICPP), pp. 63-72, IEEE Society, Monti@ahada, August 2004.

2. Markus Geimer, Felix Wolf, Brian J. N. Wylie, and Bernd MpBcalable Parallel
Trace-Based Performance Analysis, in: Proc. 13th European PVM/MPI Users’ Group
Meeting, vol. 4192 olLNCS, pp. 303-312, Springer, Bonn, Germany, September
2006.

3. Sameer Shende and Allen D. Maloiifae TAU Parallel Performance System, Inter-
national Journal of High Performance Computing Applicasi®0, no. 2, 287-331,
2006.

4. B. Krammer, M. S. Muller, and M. M. RescRuntime Checking of MPI Applications
with MARMOQT, in: Proc. of Parallel Computing (ParCo), pp. 893-900, &4al,
Spain, September 2005.

5. Accelerated Strategic Computing Initiative, “The ASC GRDOO benchmark code”,
http://ww. |1 nl.gov/asc/purpl e/ benchmarks/|imted/ sny/,

2001.

6. H. Brunst and W. E. Nagefcalable Performance Analysis of Parallel Systems: Con-
cepts and Experiences, in: Proc. of the Parallel Computing Conference (ParCo), pp
737-744, Dresden, Germany, 2003.

