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Abstract

The massively parallel computer architectures emerged in the last years create the platform
to redefine the limits of todays scientific simulations. To exploit these platforms efficiently,
applications need a yet unprecedented scaling behavior to several thousands of processes. The
complexity of systems of this magnitude presents a challenge to performance prediction in
general. Sometimes it is feasible to extrapolate from small-scale execution behavior to larger
scales, however, this is not always the case. Applications and algorithms that change their
behavior significantly when executed with a high number of processes will then have to be
investigated on the corresponding scale.

Several performance analysis tools exist to help the developer of large-scale simulations to
identify performance critical phenomena in their application execution. Choosing the best
optimization strategy is still highly depending on the experience of the performance investigator
with the application, its algorithms, the analysis tools, and the computer architecture as well
as its software. Cost-benefit ratios of specific code optimizations are often hard to estimate
precisely. Prediction of a modified application’s execution behavior on large scales can help
with estimating the cost-benefit ratio of a specific application modification.

This thesis introduces the application performance simulator Silas, which uses an event-
trace-based approach to model and predict application execution behavior. Its focus lies on
the simulation of hypothetical code optimizations, based on the modification of an existing
execution trace. It is embedded in the performance analysis tool Scalasca, which is a scalable
set of tools supporting performance investigators in optimizing large-scale applications. Simu-
lated optimizations may include the scaling of region instances, the balancing of parallel region
instances, and the deletion of region instances and message transfers from the event trace. A
model for trace-based performance simulation as well as the needed event-trace manipulation
to simulate optimizations are presented. The implementation of specific parts of the simulator
is discussed and test results of Silas investigating synthetic and real-world applications to
demonstrate its effectiveness are presented.
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1 Introduction

The performance of parallel applications is mainly influenced by two factors: single core perfor-
mance of the code as well as its scalability to multiple cores. Even though processor speeds have
increased in the past according to Moore’s Law [21], the theoretical performance improvements
that can be achieved with a single computing core are mostly saturated, leading to the emerging
multi-core architectures. But even multi-core architectures still pose very tight constraints on
the degree of parallelism possible today. The aggregated performance needed for current scien-
tific simulations therefore calls for massively parallel systems with thousands of nodes, where
each node might comprise several cores. In existing supercomputer systems of architectures like
the Blue Gene Solution of IBM, a single application might be started on almost 300K cores.
This results in very high demands on the applications’ scalability. The main threat to appli-
cation scalability is inter-process communication and synchronization. Applications with no
shared resources and no inter-process communication will almost always show perfect scaling,
however, not all scientific challenges can be modelled this way. An increase of the problem size
often implies a distribution of subparts to different processes, leading to dependencies between
the processes. Here, serialization of access to common resources or simple waiting times in
communication can easily add up to a significant amount, where Amdahl’s Law[1] will lead to
an asymptotic maximum of scalability. Scientific projects mostly focus on the science behind
the simulation and are therefore interested in new results in this field, mostly ignoring the
need for an optimized application. Those applications have provided good results for many
years, why would they now not be feasible anymore? With massively parallel symmetric multi-
processor systems, comprising thousands of computational cores, it is already evident today
that only few applications are fit to run efficiently on those architectures. The productivity of
performance analysis and optimization tools therefore has to reach a level where it becomes
feasible to optimize an application and produce fresh scientific results within a rather short
time. It is therefore of highest importance to identify wasteful waiting times within the parallel
application run, and to improve application performance and scalability.

In this context, event-based performance analysis is a well-known and accepted method for
performance analysis of computer applications. Reasoning about an application’s performance
is based on an event model defining all performance relevant events as well as their semantics
and relations. The application run is modelled as a traced stream of events between two
reference points, often the application start and end. The use of partial traces, which do not
cover the complete execution of the application, is also possible.

The Scalasca tool set is a scalable set of tools, which emerged from the Kojak project and
implements a knowledge-based, automatic search for performance relevant communication and
synchronization patterns in traces reflecting the application behavior. With this approach, it is
possible to automatically expose waiting times on processes linked to another process’ behavior.
The time lost due to these waiting times defines the severity of a specific pattern. Severities
of instances of inefficiency patterns are summarized to present the most severe communication
and synchronization patterns to the user. This is defined as the performance bottleneck – the
most severe performance problem of the application.

In parallel applications, the symptoms of a performance bottleneck may appear (i) much
later than the event causing it, (ii) on a different processor, or (iii) both. The temporal or
spatial distance between cause and symptom constitutes a major difficulty in deriving helpful
conclusions from a set of performance data.

1



1 Introduction

An example for the first category is load imbalance that creates wait states at the next
synchronization point following the imbalance. Since some processes arrive later at this point
due to a higher share of the overall load, those arriving earlier have to wait. Since wait states
can occur as the result of a superposition of several phenomena, it is hard to determine what
the actual contribution of a given imbalance is.

When optimizing an application the outcome of actual code changes can only be estimated.
Questions like“What would be the impact on application performance, when I optimize function
foo to be twice as fast?” or “Is the waiting time in the communication call x caused by an
imbalanced load in the function bar?” can usually be answered only after the change to the
code has been made and a run of the optimized code can be measured and analyzed, as they
are too complex to answer without some kind of experimental observation of the application
performance.

Simulation of hypothetical changes to the code, which are based on a well-defined performance
prediction model, can investigate performance implications much faster than actual changes in
the application code can do. The simulator introduced in this thesis has the specific goal
of helping the user to optimize his application within a given environment, with a focus on
scalability of the application. It therefore contributes to productivity in general, which is
becoming a major focus in high performance computing application development.

This thesis introduces a trace-based simulator for application performance. It is embedded
in the Scalasca tool set and serves as a method of testing hypotheses on possible program
behavior. A hypothesis is encoded as a set of functions that manipulate the original trace.

This thesis is organized as follows: Chapter 2 introduces the Message Passing Interface MPI,
which is widely used as the communication paradigm in many parallel scientific applications
today. Additionally, it gives a short presentation of event-based performance analysis and pro-
vides details on the event model defined and used by the Scalasca tool set for the event
traces the simulator is processing. Chapter 3 introduces replay-based performance prediction,
and describes the proposed optimization hypotheses. A description of a reference implementa-
tion of a simulator model is given in detail in Section 4, as well as implications to the simulator
quality. Finally, Chapter 5 presents performance prediction results, for both synthetic applica-
tions and real world scientific simulations. Chapter 6 summarizes the findings of this work on
performance prediction and concludes this thesis.
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2 Background

2.1 Introduction

Scientific computing is the third pillar of research, next to theory and experiment. Simulations
of physical models give scientists a much more detailed insight into phenomena that cannot be
subject to experimentation, be it either large scale, such as the simulation of the creation of
galaxies or black holes in astrophysics, or nano-scale with simulations on molecular level. Even
engineering sciences and industry applications rely more and more on simulations to gather
data on their research projects. Simulations of different aspects and different levels of detail
and accuracy will increase the scale at which simulation has to be conducted.

In the past years the power of individual processors was steadily increasing, following Moore’s
Law [21], by doubling the number of transistors on a single chip every two years. This lead to
increasingly higher clock rates for the chips, which eventually saturated during the last years,
leaving the peak clock rates for the processors at about 3-4 GHz, as the power consumption
of higher clock rates was no longer satisfiable. Now, more transistors are brought to several
cores on a single chip, which lead to the currently emerging multi-core architectures that will
dominate the next parallel architectures. This has direct impact on scientific applications
today, as their degree of parallelism will have to adapt to the hardware platforms provided.
Applications that remain static in their degree of parallelism will have trouble to compete with
others that show a better scaling behavior.

Figure 2.1 shows the aggregated number of cores on the top 20 computer systems in the
years 2000 to 2007 of the Top 500 list, which announces the fastest computer systems in the
world twice a year. Since the beginning of 2005, the number of cores in the high end computer
systems is rapidly increasing. This trend is continuously advancing as the increase in single
core performance is levelling off, and overall system performance can only be raised by using
more computational cores. As large-scale SMP systems are too expensive to build, most large-
scale systems use a massive amount of medium sized SMP nodes to create a larger distributed
memory machine.

While massively parallel processor systems (MPPs) have been very popular in the 90’s with
computers like the Cray T3E, they were replaced by clusters of SMP systems, where hybrid pro-
gramming models could be applied. These have now evolved to what could be called massively
parallel SMP systems, with a large number of SMP nodes. The IBM Blue Gene/P solution
supercomputer JUGENE for example, inaugurated at the Jülich Supercomputing Centre in the
beginning of 2008, has a total of 16,384 4-way SMP nodes. Currently those architectures can
only be utilized efficiently with message passing libraries, where implementations of the Mes-
sage Passing Interface (MPI) [8, 9] are clearly the most popular among scientific applications.
Using threading libraries within a node is attractive with multi-core chips of four and more
cores per node. In computational sciences, OpenMP can be seen as one of the most widely
used threading interfaces, followed by POSIX threads and others.

Scalability is a key issue in parallel computing and will become more and more important.
Applications running on high-end systems in the so-called High Performance Computing (HPC)
area will be target of immense optimization towards the emerging architectures, to be able to
provide the possibility of simulation at larger scales than today.

In the following sections MPI will be introduced with emphasis on the point-to-point and
collective communication routines, as this is the main MPI communication mode used on large-

3
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Figure 2.1: Aggregated number of cores on top 20 computer systems (2000-2007).

scale architectures today. Performance analysis, with an emphasis on event-based performance
analysis will also be introduced. Concluding this chapter, several other topics related to this
thesis will be covered to complete the background knowledge needed for remainder of this thesis.

2.2 The Message Passing Interface (MPI)

As mentioned above, message passing is an explicit process-communication paradigm widely
used in scientific computing when running on parallel systems with multiple private address
spaces. As message passing itself is a paradigm and not so much a library of any sort, it has
been adapted by different vendors of parallel machines in similar ways that are mostly not
portable across platforms. This means, developing message passing applications was a highly
platform-dependent task, and moving to a new parallel platform resulted in a significant porting
effort.

With the goal of providing a widely used standard for writing message-passing programs, the
Message Passing Interface Forum, comprised of members from academia as well as industry,
created the first version of the MPI standard document in 1994 [8]. It provides a practical,
portable, efficient, and flexible standard for message-passing libraries, which has become the
most used message passing concept for scientific applications. MPI itself is not a library, but
a standardized API defining how a message passing library that implements the standard
must be built and behave. This enables vendors of different parallel machines to optimize
an implementation for a specific platform, while the API for the application is not changing
between different parallel machines, decreasing porting efforts significantly.

In 1997 the first document was revised as MPI 1.1 and extensions were introduced in the MPI
2.0 document [9]. The MPI-2 standard document brought clarifications and new functionality
to the existing MPI-1 document, not replacing but extending it with new features. The MPI
standard documents cover point-to-point, collective and one-sided communication1. However,

1introduced with MPI-2
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2.2 The Message Passing Interface (MPI)

it not only defines communication schemes and their semantics, but also the abstractions needed
to provide a portable and efficient communication interface, such as process groups, communi-
cation contexts, process topologies, a profiling interface, and environmental management and
inquiry functions. Additionally, the bindings for Fortran77, Fortran90 as well as C and C++

are defined.
One of the central data structures, deeply woven into the communication infrastructure of

MPI, is the communicator, containing a process group and its context. The context is a property
of a communicator that permits further partitioning of the communication space. A message
sent in one context cannot be received in another. Contexts are not explicit MPI objects, as
they appear only as a part of communicator. This concept allows the existence of two or more
different communicators, involving the same group of processes. All communication is triggered
within a specific communicator. The global communicator MPI_COMM_WORLD is defined by the
MPI environment, and exists without any intervention by the user after the call to MPI_Init
returns. Furthermore, subsets of this communicator can be created by the executing program.

The communicator’s process group contains a list of all processes, where each process is
assigned a unique identifier called its rank. Ranks range from 0 to n − 1, if n processes are
contained in the communicator. A process can then be uniquely identified in the system with
a given communicator and rank, and any mapping from local rank to global process can be
handled in the background by the communication library.

2.2.1 Point-to-point communication

One of the communication paradigms defined with MPI-1 is point-to-point communication
between a single sender and receiver. MPI defines two classes of point-to-point communication
modes: blocking and non-blocking2. Which refer to the behavior in regard to completion of
the function call employed. Blocking communication functions will return when the transfer
has at least reached the state that the transfer buffer can be reused. Non-blocking calls return
immediately to the user, leaving the transfer buffer in a state in which it must not be touched by
the user, until a call to another function completes the transfer and allows the buffer to be used
again. While blocking calls keep the user from corrupting transfer buffers while transfers are
ongoing, it is not possible to overlap computation and communication. If the communication
hardware supports DMA for message transfers, non-blocking calls can perform significantly
better.

To track ongoing messages started with non-blocking communication calls, MPI defines com-
munication requests. These requests uniquely identify an ongoing message transfer initiated
by a non-blocking communication call. The simulation infrastructure presented in this thesis
does not yet support non-blocking communication. The characteristics of non-blocking com-
munication will therefore not be discussed in the following. Both, blocking and non-blocking
point-to-point communication calls are provided with four different communication protocols:

MPI_Ssend is the synchronous send. It uses a rendezvous protocol with the matching receive op-
eration to handle message exchange. This means that any transfer will only start after
the corresponding receive has been started on the destination process. As indicated
by the name, the two processes involved in the message transfer will synchronize.

MPI_Bsend is the buffered send. Here, the entire message is copied to a user space buffer to
be sent in the background, while the application can continue to work on the original
buffer. Whether the message is sent synchronously or asynchronously is no longer
the issue of the user and dealt with in the background. To enable explicitly buffered

2also called immediate

5



2 Background

message transfers, the user has to provide a buffer with sufficient space via a call to
MPI_Buffer_attach.

MPI_Send is the so-called standard send. Here, the MPI implementation can decide dynami-
cally to either use a synchronous send or a buffered send. As the buffered send would
be implicit, it cannot rely on the user providing buffer space. Therefore, the MPI
implementation has an internal buffer it can use in this case. As the MPI implemen-
tation is competing for memory with the user application, it can typically only reserve
a relatively small memory block for internal buffering. The size of this internal buffer
influences the threshold that decides whether a message is sent in synchronous or
buffered mode.

MPI_Rsend is the ready send. This send call relies on the matching receive to be already
posted by the destination process. The MPI implementation does not perform any
checks whether the receive is actually posted when the send is starting the transfer.
As it is sometimes hard to guarantee this in an algorithm, it is not widely used.

In general, a complete message transfer is identified by the sender, the receiver, the communi-
cator this message transfer is using, and a tag. Yet this identification is not unique. Consecutive
messages can be sent between two processes using the same set of parameters. In this case, the
MPI implementation guarantees that messages with the same communicator and tag between
any pair of processes will be received in sending order. The tag can be an arbitrary positive
number, within an MPI implementation-specific range of values. On messages with different
tags, a receiver can choose to influence the reception order by specifying the tag of the message
to be received. Additionally, the MPI standard also defines the wildcards MPI_ANY_SOURCE to
match messages from any sender and MPI_ANY_TAG to match message with any tag.

2.2.2 Collective communication

The second communication paradigm of MPI is collective communication. All processes within a
specific communicator collectively perform the communication. Unlike point-to-point communi-
cation where a communication can be tagged with a specific number, collective communications
cannot be tagged. This means two consecutive calls of the same type on the same communica-
tor cannot be differentiated any further by the process. As all processes of the communicator
used in the collective communication have to participate, it is implied that for a specific com-
municator that each process is calling the same collective communication routines in the same
order.

Collective communication calls may be synchronizing, which implies no process leaves the
function call until the last process has joined. Only one communication call, the MPI_Barrier,
is explicitly synchronizing, as this is the purpose of this call. Some communication calls, like
MPI_Allreduce, are implicitly synchronizing, as they involve message transfers from each pro-
cess to all others. As it is not possible for a process to receive a message before the sending
process started a send, each process has to remain in the communication call until the last
process has joined. When dealing with synchronizing collective communication, it is in the
programmers’ responsibility to ensure that consecutive collective communication calls on dif-
ferent communicators will be called in the same order on each of the participating processes.
Otherwise, a deadlock will occur, since both ongoing synchronizing communications will not be
able to complete, as each one is waiting for processes engaged in the other call. The function
calls that can currently be simulated by the simulator presented in this thesis are described in
the following:

6



2.3 Performance optimization

MPI_Bcast is used to copy (broadcast) data from one process to all other processes in the com-
municator. This communication call is usually not synchronizing, but the receiving
processes will not be able to exit this call until the root process that is sending the
data has entered the communication call.

MPI_Gather is used to gather data from all processes onto one process. The gathered data is
in the receive buffer of the specified root process after call completion. As the root
process needs to receive data from every other process involved, it cannot complete
the call before every other process has entered the call.

MPI_Allgather is a variant of the gather operation. Here, there is no specific root process, as
all participating processes will receive the complete gathered buffer.

MPI_Scatter is used to send data from one process to all other processes of the communicator.
Unlike broadcast, each process receives a different part of the communication buffer.
The receiving processes will not be able to complete the call until the specified root
process has entered it.

MPI_Reduce is used to perform a specified reduction operation on data sent by the processes
of the communicator. The reduce operation can be either one of the predefined op-
erations, e.g. MPI_SUM, MPI_MAX, etc., or a user-defined operator that only has to
guarantee associativity. Additionally, it can be specified whether the user defined op-
eration is commutative. This means the order of performed reduction operations does
not effect the overall outcome of the function, apart from rounding errors. Rounding
errors in floating-point data are mostly inherent to reduction functions when operands
differ in several orders of magnitude.

MPI_Allreduce is a variant of the reduction function, where the result of the reduction becomes
available in the receive buffer of every participating process.

MPI_Scan is an ordered partial reduction. The reduction operator is used on the operands in
the order of their rank in the communicator that is used, and only up to the rank of
the current process. In principle, this means the exit of each process is only dependent
on the entering of lower ranks in this communicator, however (naive) implementations
might enforce global synchronization (e.g. MPICH).

2.3 Performance optimization

The ways to improve an application’s performance are manifold, due to the mapping of specific
algorithms on the available hardware. Some developers need to optimize the application per-
formance focusing on the single core performance, with criteria such as cache misses, processor
utilization, and similar performance indices, while others need to focus on the parallel nature of
a code, and optimize the communication and process-interaction of the code. This chapter will
give a short introduction to performance optimization, focusing on techniques of measurement
and analysis of the application’s behavior that are relevant to this thesis.

2.3.1 The performance optimization cycle

Regardless of optimizing an application for single core performance or optimizing for scalability,
the approach is very similar. An application has to have its execution behavior monitored, and
this behavior needs to be evaluated to draw conclusions for further improvement. This is an
iterative process that can be described by a cycle, the so-called performance optimization cycle.
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Figure 2.2: The performance optimization cycle.

When broken down into phases, it is comprised of: instrumentation, measurement, analysis,
presentation, evaluation and the actual optimization of the code.

As shown in Figure 2.2, the user starts with the original application, which enters the op-
timization cycle in the instrumentation phase. Instrumentation describes the process of mod-
ifying the application code to enable measurement of performance relevant data during the
application run. This can be achieved with different mechanisms, such as source code instru-
mentation, binary instrumentation or linking with pre-instrumented libraries. Instrumentation
on the source code level can be done by introducing additional instructions into the source code
prior to compilation. When only the compiled binary is available, binary instrumentation can
be used to insert the additional instructions into the application. This is done through binary
rewrite [19], which inserts the instrumentation directly into the existing binary code. The third
method is the use of pre-instrumented libraries, which contain an instrumented version of the
relevant library functions. MPI provides a special interface for this kind of instrumentation,
the so-called PMPI interface. In most cases, where the compiler supports weak symbols, the
MPI library provides the function calls under two symbols different symbols, starting with MPI_
and PMPI_. The first is a weak symbol, which means a tools library can implement a function
with the same name, which is called instead of the function provided by the library. To be able
to still use the library functionality, the latter symbol can then be used inside the interposing
function call. As this interface is defined in the MPI standard, its API is portable and creates
an opportunity for tool developers to provide a single portable measurement library for multiple
different MPI implementations using so-called wrapper functions. Important MPI functions can
be pre-instrumented and linked together with the original MPI library. Listing 2.1 shows an
example wrapper from the Epik measurement system used in the Scalasca tool set, which is
described in more detail in the following sections.

Finally, instrumentation can also be inserted during runtime execution of the application
using dynamic instrumentation [19]. Here, the instrumentation is not inserted statically into
the application code, but depending on the history of the running application, instrumentation
of certain events can be turned on or off. This can be extremely useful when dealing with
long running applications, creating partial event traces. Some dynamic instrumentation tools
support the dynamic removal of instrumentation from the code, thus keeping the instrumen-
tation overhead to a minimum. Others query whether an instrumented function needs to be
measured or not on each invocation of that function call, which can be costly, as this query
adds to the latency of the call. To decide whether a call needs to be monitored or not, blacklist-
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1 int MPI_Barrier( MPI_Comm comm )
2 {
3 int result;
4

5 if (IS_TRACE_ON)
6 {
7 TRACE_OFF();
8 #ifndef ELG_CSITE_INST
9 elg_enter(elg_mpi_regid[ELG__MPI_BARRIER]);

10 #endif
11 result = PMPI_Barrier(comm);
12

13 elg_mpi_collexit(elg_mpi_regid[ELG__MPI_BARRIER],
14 ELG_NO_ID, ELG_COMM_ID(comm), 0, 0);
15 TRACE_ON();
16 }
17 else
18 {
19 result = PMPI_Barrier(comm);
20 }
21

22 return result;
23 }

Listing 2.1: Instrumentation wrapper for MPI_Barrier using the MPI profiling interface.

ing or whitelisting can be used. Blacklisting assumes every function needs to be instrumented
apart from the function listed in the blacklist. Whitelisting assumes that no function should
be instrumented apart from the function listed in the whitelist.

When instrumented code is executed during the measurement phase, performance data is
collected. This can be stored as a profile or an event trace, depending on the desired level
of information needed. The additional instructions inserted during instrumentation and asso-
ciated measurement storage require resources: memory as well as CPU time. Therefore the
application execution is perturbed to a certain degree. Perturbation by the additional measure-
ment instructions may be small enough to get a fairly accurate view of the application event
trace, however, certain application properties like frequently executed regions with extremely
small temporal extent, will always lead to a high perturbation. Thus the measurement of those
regions must be avoided.

The measurement data can also be analyzed after application execution. The amount of
data collected during the application run mainly influences the results of this post-mortem
analysis. If a detailed event trace has been collected, more sophisticated dependencies between
inter-process events can be investigated, resulting in a more detailed analysis report. Especially
inter-process event correlations can usually only be analyzed in such post-mortem analysis. The
information needed to analyze these correlations are usually distributed over the processes in
question, and transferring the data during normal application runtime would lead to a significant
perturbation during measurement, as it would require application resources on the network for
this.

After analyzing the collected data, the result needs to be presented in an analysis report.
This leads to the next phase in the performance optimization cycle: the presentation phase. At
this stage, it is important to reduce the complexity of the performance data to ease evaluation
by the user. If the presented data is too abstract, performance critical event patterns might
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not be recognized by the user. If it is too detailed from the beginning, the user might drown
in too much data. User guidance is therefore the key to productive application optimization.

In the evaluation phase, conclusions are drawn from the presented information, leading to
optimization hypotheses. The user proposes optimization strategies for the application, which
are then implemented in the optimization phase. Afterwards, the effectiveness of the optimiza-
tion has to be verified by another pass through the performance optimization cycle. To increase
productivity within the optimization process, the user needs assistance in assessing different
optimization strategies and their performance impact. When the user is satisfied with the
application performance during evaluation and no further optimization is needed, the instru-
mentation can be disabled, and the performance of the uninstrumented application execution
assessed. The result is the optimized application.

2.3.2 Performance indices for parallel applications

Two main indices are currently used for performance classification of applications when dealing
with its parallel performance: parallel speedup and parallel efficiency. The speedup expresses
the factor of improvement in wall clock time of a parallel execution in comparison to the
sequential execution:

speedup(n) =
Tsequential

Tparallel(n)
(2.1)

The parallel efficiency of a code is calculated as the speedup divided by the number of
processes or threads. It expresses the factor between efficiency of the reference code and its
parallel execution. Efficiency of a sequential program is 1 by definition, as can be derived from
Equations 2.1 and 2.2.

efficiency(n) =
speedup (n)

n
(2.2)

Clearly, when a code has a parallel efficiency of less then 1, more CPU time has to be spent
on a single application run, even if the overall wall clock time is less. This has direct impact on
two very important factors in scientific computing. First, the intention to parallelize a code is
often to reduce the time to solution, which expresses the wall clock time needed to receive an
answer to the problem posed to the application. With decreasing parallel efficiency, the wall
clock time of two runs with different degrees of parallelism converge. This has been expressed
in 1967 by Gene Amdahl [1] and is known as Amdahl’s Law.

speedup(n) =
n

1 + (n− 1)α
(2.3)

Here, α is the fraction of sequential code in the overall application. Figure 2.3 shows this
upper bound for several factors of α against the number of processes ranging from 1 to 65536.
It can be derived easily from the plot that with 1 percent of overall execution being serial, the
achievable speedup is bound by around 100 for 64k processes. This is less than 0.153 percent
parallel efficiency.

However, Amdahl’s law only accounts for strong scaling with a fixed problem size. With
an increasing number or cores, the time spent in parallel computation is decreasing, whereas
the time for serial parts remains constant, eventually dominating the overall time of execution.
Gustafson [14, 15] remarks that strong scaling mostly is a subject of academic research, whereas
in scientific and industry production simulations weak scaling is used most often. In weak scaling
the problem size is scaled with the number of processors, keeping the overall ratio of parallel
computation to serial computation during the application runtime constant. When comparing
application runs, strong scaling is therefore relevant for solving the same problem faster, and
weak scaling is relevant for solving a bigger problem in the same time. This softens the impact
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Figure 2.3: Amdahl’s Law: Speedup for different factors of α.

of Amdahl’s law as a strict upper bound for an applications scalability, and enables current
scientific simulations to be conducted efficiently on several thousands of cores.

Both methods of scalability have their place in assessing scaling behavior of an application.
However, strong scaling is often considered a better indicator, as it poses harder requirements on
the properties of an application. Additionally, there are cases where weak scaling is impossible.
This is the case, when an application code is ported to a system with a higher degree of
parallelism, without scaling the problem size constraints, too. For example, when comparing
the JUMP and JUBL computer systems present at the Jülich Supercomputing Centre today,
both systems provide an equal amount of globally available main memory, however the JUBL
system comprises more than twelve times the number of cores than JUMP. This means, an
application that needs the complete main memory available on the JUMP system, will have to
show a good strong scaling behavior to be able to run the same simulation efficiently on the
JUBL system.

CPU-time-per-solution is another important factor, when dealing with the performance of
parallel applications. It expresses how much CPU time has to be invested to receive the
solution. CPU time is the currency of projects in scientific computing, where projects are
granted a certain amount of CPU time on a system. With decreasing parallel efficiency, more
and more CPU time is needed. A code therefore is considered scalable if it still has a high
parallel efficiency even at large scales.

Communication plays an important role in an application’s parallel efficiency. In distributed
memory environments data that is needed on different processes is either sent explicitly, in
case of message-passing applications, or implicitly, in case of partitioned global address space
languages. The time dedicated to communication is time that is not available for computing
the problem’s solution. It affects application scaling in much the same way as execution of a
sequential part in the application. When parallelizing, communication therefore needs to be
kept to a minimum and, when the hardware supports it, overlapped with computation, and
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with that hidden from the overall execution time.
When dealing with algorithms that work on a single problem running on distributed memory

systems, communication is often inevitable. However, the amount of communication should be
reduced to a minimum, thus elimination of unnecessary communication time will automatically
improve the scalability of the application.

2.3.3 Methods for obtaining performance data

In performance analysis, there a two main strategies for obtaining performance data: direct
and statistical measurement. With direct measurement, the application itself is saving per-
formance relevant information to a so-called event trace at specific points during application
execution. This is often done via prior instrumentation of the application code. The events
describe a certain action at a specific point in time. Even though the application behavior
has to be abstracted, it allows for a consistent tracking of performance relevant available to
the measurement system. A certain dilation of the overall application behavior is inherent to
this measurement method, as the instrumentation becomes part of the applications execution
code. An instrumented version of an application will therefore always have more instructions to
process than the uninstrumented application. Direct measurement is typically preferred when
individual events are critical to understanding execution performance, e.g. communication and
synchronization behavior.

With statistical measurement the application is not instrumented, but observed from the
outside. A sample is taken at a specific point in time triggered externally. This trigger can also
be seen as an event, but is not to be confused with the events of the internal method, where an
event is describing the application state. Here, an event is only the trigger for gathering a sample
of the application state, giving this method its name: sampling. The idea is that a statistically
relevant set of samples allows inferences to be made about entirety. The amount of samples as
well as the moments of taking the samples mainly decide on the quality of the conclusions to
be drawn. While a trigger is often time-based to obtain an even sample rate on the application,
it can as well be any other hardware event, like a cache miss or similar. This way, application
phases with higher cache miss rates are sampled more often, and with that in more detail. In
contrast to the direct method, sampling does not have a deterministic outcome. This means
that between samples, the application state is mostly unknown, and only a high sample rate
will lead to a detailed view of the application behavior. However, even in this case, it will
only allow for statistical analysis of the samples. Perturbation of the investigated application
is mainly influenced by the frequency the samples are taken and whether the measurement is
using hardware support. Each sample also introduces dilation, but not on every event and
not at all when sampling is disabled, providing control over measurement quality. Statistical
sampling is typically employed when the overhead of processing very large numbers of short
execution events would result in overwhelming amounts of measurements and/or unacceptable
measurement perturbation, e.g. for cache misses.

When performance data is gathered, it has then to be decided how to process the information.
Profiling will aggregate specific performance values online. As performance data is aggregated at
runtime, profiling usually needs less memory and disk I/O than tracing, which will be explained
later. Even with long running applications, profiling will show a fairly constant memory usage.
The performance critical data is aggregated during measurement and a so-called application
profile is created at program termination.

As profiling aggregates application execution information on-line and perturbation is kept
to a minimum, there is no inter-process communication issued by the measurement system
during the application run. This limits the possibilities of analysis of inter-process performance
properties.
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Figure 2.4: The Scalasca analysis workflow.

With tracing, the individual events or samples are preserved and written into a trace. In
the following, a trace will refer to event traces gathered by internal measurement. Event traces
give detailed insight into the application state at a specific point during program execution.
Yet, obtaining an event trace can result in a higher perturbation of the application, as the
event trace needs more memory during measurement and might lead to a flush of the event
buffers, involving I/O to disk. Traces are analyzed post-mortem, which means after program
termination, as the amount of data to be analyzed would lead to significant perturbation, if
done online. Offline analysis enables the investigation of more complex performance patterns,
including inter-process behavior.

2.4 Event-based performance analysis

2.4.1 Motivation

As shown in the previous sections, scientific simulations need a growing degree of parallelism
to cope with the given tasks. With increasing parallelism it becomes more and more complex
for the user to get an overview of the global behavior of the application. Tools to analyze
parallel application performance give users the opportunity to reason about the behavior of their
applications. With a growing number of processes, classic tools for application performance
analysis become hard to handle. While measuring and displaying raw data is still feasible on
with small numbers of processes or threads, the user will almost certainly get lost in the sheer
amount of data presented at large scales. It is therefore evident that the ways information
about application performance is presented to the user are subject to a scalable design as well.

To reason about application performance in massively parallel systems, the user will need
automatic assistance to filter relevant information from the measured data. Several approaches
exist to cope with this problem, each allowing a more or less detailed view on application
performance, one of which will be presented below.
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Figure 2.5: The Scalasca measurement system Epik

2.4.2 The SCALASCA analysis workflow

The Scalasca tool set, which forms the basis for the performance simulator presented in this
thesis, consists of several tools, each covering one of the phases of the performance optimization
cycle. The analysis workflow when using Scalasca is displayed in Figure 2.4.

Scalasca uses a combination of the presented instrumentation techniques. While MPI
library functions are instrumented by the use of an interposed pre-instrumented library, user
code is handled by source code instrumentation. Source instrumentation can be done manually,
by inserting instrumentation directives into the code and preprocessing the annotated code by
the source-to-source translator Opari [20]. When coverage of a lot of functions is needed,
automatic function instrumentation by the compiler can be used, but it is not supported by
all compilers. A third method of instrumentation involves automatic instrumentation with
blacklisting support via the Tau instrumentor.

The measurement is handled by the Epik measurement infrastructure [31]. Figure 2.5 shows
the overall architecture of Epik. It is divided into three layers. The top layer offers several
event adaptors for user annotations, computer-generated function instrumentation, MPI library
instrumentation, OpenMP instrumentation, and partitioned global address space languages.
The middle layer is the runtime management for measurement acquisition for processes and
threads, and the bottom layer provides plugins for different forms of output.

The default output module is the profile generator Epitome. The format for the application
profile is the Cube file format [7], which was introduced by Wolf [28] and has received several
revisions since then: the current version is CUBE3. When using trace file output, the user can
choose between two formats: Epilog [30] and OTF [18]. The Epilog format is the standard
format for Scalasca traces, which was initially developed by Mohr and Wolf for Scalasca’s
predecessor Kojak [30]. To improve scalability, Scalasca no longer saves the event trace in
a single file, but uses per-process files for the event trace and two additional files for all event
definitions in the trace and their mappings. The OTF trace format is a development of TU
Dresden, as an open successor for the VTF trace format. It is currently mainly used with
VampirServer, the client/server successor of the Vampir performance analysis tool.

During the analysis phase, Epilog event traces are processed by the Scout analyzer [11].
It is a parallel analyzer for the automatic search of inefficiency patterns in event traces. Scout
uses the same number of processes as the job did that created the event trace. Usually it is
executed directly after the measurement run as part of the same batch script, when an allocation
of that specific number of processes already exists. The analyzer uses the Pearl high-level
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Figure 2.6: The three panes of the Cube presenter.

trace access library [10] to access the event trace. It provides an interface to a simple event
replay, while a callback mechanism supplies the interface to processing the events. Since Pearl
forms the basis for the simulator described in this thesis, it will be discussed in more detail in
Section 2.4.4.

Like Epitome for the application profile, Scout uses the Cube file format for its analysis
report. The data provided in a Cube file is a three-dimensional matrix of severities, with
the dimensions location, call-path and performance property. While the trace data contains
information on individual instances of the performance problems, the Cube file contains the
aggregated severities for each tuple (location, call-tree node, performance property). The file
format is self-describing, enabling all names of performance properties to be read in with the
data.

The reports can then be displayed with the Cube presenter [25]. The presenter uses three
panes, displaying a tree hierarchy for each dimension (Figure 2.6). The performance property
pane is the left-most pane, the call-path is displayed in the middle pane and the location is
presented in the right-most pane. The individual panes display inclusion hierarchies using a tree
widget. As large process counts are unmanageable to view using a tree hierarchy, the location
pane also offers a topology view. If available, the hardware topology is used to visualize the
severity on particular locations in a 2D or 3D grid-like fashion. If an application uses an MPI
cartesian topology, even this can be used to arrange the individual locations in the pane. Each
node in the tree hierarchies of each pane has an associated color coding, visually guiding the
user to the highest severity. A pane shows the distribution of the node value selected in its left
neighbor pane.

The performance property pane has no left neighbor, thus, the data shown is not relative
to a selection. If a node is collapsed, its value as well as the associated color represents an

15



2 Background

inclusive value, which is the sum of the values for all child nodes and its own value. If a node
is expanded, its value represents an exclusive value, which is only the value associated to that
specific node with the values for each child node distributed across each of them.

2.4.3 Event model

In event-based performance analysis, all events in the event trace are defined in an event model.
This model specifies all event types as well as their constraints in the traces. This section will
introduce the parts of the event model used in Epilog event traces that are relevant to the
understanding of this thesis.

Definition 2.1 (event model)
An event model defines the nature of events in the system, as well as the semantics of their
interaction. �

Definition 2.2 (location)
A location models a process in multi-process applications and a thread in multi-threaded and
hybrid applications. �

Definition 2.3 (event)
An event describes an atomic action occurring at a distinct location at a distinct point in time.
Each event has a set of attributes. The attributes type and time as well as the location are
part of every event. Depending on the type, the event can possess additional attributes. Event
attributes are annotated with a dot and the name of the attribute, e.g. e.time. �

Definition 2.4 (event trace)
An event trace is an ordered set of events on one or more locations. The events are ordered
with ascending time stamps.

∀i, j : i < j ⇒ ei.time ≤ ej .time (2.4)

�

Equation 2.4 ensures first that events are in chronological order and, second that their times-
tamps are monotonically increasing. Although no two events on a single location physically
can occur at the same time, condition 2.4 enforces only monotonically increasing timestamps.
Event timestamps written directly by the measurement system are always strictly monotonic,
yet in cases where the timer resolution is not sufficient or events cannot be created by the mea-
surement system with the correct time, they have to be shifted to the approximated time. This
is the case for modelling RMA transfers, where the communication events need to be shifted to
the end of the corresponding synchronization epoch [16].

For a given location the thread of control is modelled by multiple nested region instances.
The dynamic extent of each region instance is defined by the time between its ENTER event
and its EXIT event. Collective function calls, as defined by MPI, are modelled with a special
MPI COLLEXIT event, which is saved instead of a normal EXIT event for the corresponding region.
The MPI COLLEXIT event possesses additional attributes, which include bytes sent and received
during the call, as well as the rank of the associated root process, if applicable.

Point-to-point communication functions are special regions containing additional events con-
cerning communication. This can be an MPI SEND event or an MPI RECV event, or in case of
MPI_Sendrecv and MPI_Sendrecv_replace function, even both. The MPI SEND event is used
to model the earliest time the message transfer could have been started, whereas the MPI RECV

event is used to model the latest time a receive operation could have been completed. The
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Figure 2.7: Pearl concrete and abstract event types.

information stored with the communication events is used to identify communication partners,
as well as the amount of transferred bytes. To define inefficiency patterns for the automatic
search, the constraints of the MPI communication are then modelled using these events.

2.4.4 The PEARL library

The high-level trace-access library Earl, which is used in Kojak, only allows serial access to
an event trace. For Kojak, the event traces measured at each location need to be merged to
a single file. For large-scale applications serial access is no longer feasible, as the amount of
data that has to be processed is too large, and the time needed to analyze such large traces
by a single process is not acceptable. Therefore Earl’s functionality as a high-level interface
to the Epilog trace data has been reimplemented for the development of Scout, the parallel
analyzer of Scalasca.

Pearl is designed to provide a flexible, transparent and convenient access to the event
trace data. It offers a mechanism for iterative processing of the complete event trace, called
event replay. This replay exists in two flavors: forward replay and backward replay. Whereas
the forward replay starts at the first event on each location of the local traces and allows a
chronological processing, the backward replay starts at the last event and iterates in reverse
chronological order. Heart of the replay is a flexible callback mechanism, where the user can
define callback functions to be triggered on special events. Those callbacks can be registered
dynamically with a callback manager, which triggers the callback upon the occurrence of the
desired event. All concrete events can be used as triggers for the callback. Additionally there
are abstract events defined for certain groups of events: ANY, FLOW and P2P. The complete
hierarchy is shown in Figure 2.7, where the concrete events are depicted as orange boxes with
solid border, and abstract events are shown as blue boxes with dotted border.

When the concrete events are not flexible enough to perform a given task, the user can
define additional user events, which can be manually triggered during callback processing. This
enables the user to create chains of callback functions with arbitrary complexity to perform a
given task.

Another feature of Pearl’s replay mechanism is the callback data structure that can be
passed to each callback. This data structure can be customized by the user through inheritance
and used to pass data between individual nodes of the callback network, without having to rely
on global variables at any point. This callback data structure defines at least two methods:
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preprocessing and postprocessing. Those methods are called by the replay before and after
the event is processed by the callback network. The initial callbacks, triggered by the replay
mechanism for each event, are the callbacks associated with the concrete event type of the
current event. Within these callbacks, additional notification of other events can occur.

How this event replay mechanism can be used efficiently to analyze large traces in parallel has
been demonstrated by Geimer et al. with the Scout parallel trace analyzer [11]. This analyzer
uses the target applications’ general communication scheme to analyze the communication dur-
ing replay. This means a point-to-point communication is analyzed by transferring the needed
data to the participating process via point-to-point communication. Collective communication
is analyzed using collective communication calls to transfer the data to the participating pro-
cesses. Currently, the entire trace information is loaded into memory in one piece and then
replayed, allowing a very time-efficient analysis phase.

Finally, Pearl allows the creation of event traces through its writer library. However, the
Pearl library does not process the complete set of events, defined by the Epilog trace-
data format [30] yet. The analysis step currently only supports MPI-1 functionality, thus,
events of MPI one-sided communication and OpenMP are ignored while creating the in-memory
representation of the local trace and are therefore not written out by the writer.

2.5 Related work

This section briefly introduces previous research on simulation-based performance prediction.
While the list may not be exhaustive, the research projects mentioned present some aspects
similar to the performance simulation presented in this thesis.

2.5.1 Perturbation compensation with TAU and KOJAK

Any performance measurement will incur an overhead during program execution that will per-
turb the original application behavior. When the measurement is done by software, the per-
turbation can only be reduced to a certain amount, as the CPU needs to process the sampling
interrupts and measurement instructions where it originally executed user code.

If the level of intrusion can be estimated, Wolf [29] and Shende [24] showed that it is feasible
to create an intrusion model and remove the overhead. This intrusion model was demonstrated
on a Monte-Carlo simulation based on a Master/Worker scheme. With this, perturbation
propagation can be shown to create significant impact on the measured application behavior.

This overhead compensation has been introduced in Kojak, which is the predecessor of the
Scalasca tool set. Its functionality has not yet been ported to Scalasca, but the performance
prediction presented in this thesis is capable of incorporating the correction model easily. The
compensation of overhead can therefore be seen as a possible optimization scenario for the
performance simulator presented in this thesis.

2.5.2 DIMEMAS

Dimemas [12, 13, 2, 3, 4, 22] is a trace-driven simulator for predicting application behavior
of message passing programs. Its development started in 1993 at the Polytechnic University
of Catalonia in Barcelona, Spain, and was marketed by Pallas GmbH since 1996. It shows
similarities with other trace driven tools, such as the AIMS tool set and even the simulator
presented in this thesis. Its initial motivation was to study and predict the behavior of time-
sharing message-passing programs, while they are executed concurrently to other applications.
Primary objective was the study of different scheduling policies in the presence of a multipro-
grammed parallel workload [12]. A question in this context was: “How will the application
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behave, if it would not be perturbed by other applications?”
One goal of Dimemas was to be able to run on a single workstation to avoid a parallel

computer system for generating the simulated traces. The trace generation was initially done
via VAMPIRtrace and uses the Paraver-Tracer now. Both trace generation libraries are very
similar to the instrumentation and measurement structures provided by Kojak and Scalasca.
With its focus mainly on the CPU-related issues of computing, time for message passing is
explicitly excluded from time measurement. The performance prediction is then based on the
timings between two communications to project the behavior on a dedicated machine.

With the prediction of application performance without the influence of other applications
on a time-sharing platform, it is also suited to evaluate performance prediction based on trace
overhead compensation.

2.5.3 AIMS tool set

The AIMS tool set [33] is a tool set for tuning and predicting the performance of message
passing applications in tightly- and loosely-coupled systems. It was developed by NASA Ames
Research Center, under the High Performance Computing and Communications Program in
the mid 90’s. As a performance analysis tool set, it can be seen as predecessor to current
performance analysis tool sets, such as Tau, Kojak or Scalasca.

One part of the AIMS tool set is concerned with the modelling and prediction of application
behavior. Specifically it predicts the scaling behavior of an application when varying the two
parameters N and P , where N represents the problem size and P represents the number of
processors. Output of the performance prediction model can be directly redirected to symbolic
engines like Gnuplot or Mathematica to plot 2-dimensional and 3-dimensional graphs of
expected speed-ups and execution times.

The performance prediction is based on a previously recorded execution trace, which is then
extrapolated to higher processor numbers and problem sizes. This extrapolation can yield
a good view of the scaling behavior of the current application code. The simulation targets
questions like “What if the communication link was twice as fast?” or “What if the performance
on a CPU on each node was doubled?”. These questions focus more on the application behavior
in a modified environment rather then on a modified application in the same environment.

2.5.4 BIGSIM

BigSim [23, 35, 34] is a emulation environment for large-scale applications on petaflop archi-
tectures. It is based on the Charm++ environment, which is an object-based portable parallel
programming language. It consists of parallel objects that communicate via asynchronous
method invocation. It also supports automatic load balancing and migratable objects. A spe-
cial feature of Charm++ is a communication system that supports processor virtualization.
This enables the use of several MPI processes per physical processor.

Using this process virtualization, BigSim is designed to run simulations for several thousands
of processes on systems with a significantly lower processor count. The emulation is using a
similar amount of main memory as the application would, thus it is only feasible when the
emulated architecture is providing much less memory to a process than the host supercomputer
systems does. With the Blue Gene architecture this certainly holds true, as in the first gener-
ation – the Blue Gene/L – each core had 256 megabytes of main memory at its disposal. Its
successor – the Blue Gene/P – doubles that to 512 megabytes per core. Current supercomput-
ing cluster systems with about one thousand cores often have two to four gigabytes of main
memory per core.
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2 Background

The primary goal for BigSim is to aid application developers to prepare their applications
for this new generation of massively parallel systems, while those are still out of reach for most
researchers in computational science.
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3.1 Introduction

While the automatic analysis within the Scalasca tool set already presents a great profit for
productivity when optimizing applications, the evaluation phase and the optimization phase of
the performance analysis cycle are mostly based on the expertise of the user in evaluating the
presented situation. Even with year long experience, estimations on performance increase are
hard to give in parallel computing, as the complexity can be overwhelming, due to the massive
parallelism of the systems. Whether the proposed optimization will have the desired impact
can often only be estimated roughly, and actual changes to the code can be time consuming.
Regarding productivity, the user is interested in getting a positive cost-benefit ratio when
changing the application. By simulating the impact of potential alterations, the user will be able
to estimate whether the proposed modification yields enough increase in overall performance.

One factor that induces complexity into the estimation of the impact of changes to the
application code are correlations between different performance properties in the application
behavior. This means the existence of a performance problem may influence other perfor-
mance problems present in the application behavior. It might even lead to the point that one
performance problem is completely canceled out by another one, and execution time savings
realized by eliminating the first problem will be annihilated again by the second one, rendering
all changes to the code useless in terms of optimizing for minimal computing time when the
second performance problem cannot be eliminated as well.

This chapter introduces the foundation for replay-based modification of existing event traces
using an execution simulator to predict application performance behavior after the optimiza-
tion of a specific aspect of the code. As the simulator uses trace-based information to model
application performance, a certain degree of abstraction of the application code in investigation
is inherent to this approach. Traces are usually not based on instruction level granularity, thus
optimization hypotheses cannot be applied on instruction level either. Questions like “What if I
can reduce the cache-miss rate of function foo?” will have to be redefined to “What if function
foo performs twice as fast?”. The possible optimization strategy of increasing the performance
through a more sophisticated memory access pattern is left implicit, as it is not relevant to
the simulation process. Yet, it will become important again when the user has to evaluate the
cost-benefit ratio based on the simulation result.

When using the simulator to investigate hypothetical changes to the application code, the
turnaround time for one pass through the performance optimization cycle can be reduced, as
optimizations do not need to be implemented in the application code directly. The increase
or decrease in performance due to a proposed optimization in the code can be obtained even
before one line of code has been changed. The performance impact as well as the cost-benefit
ratio can be estimated more precisely.

3.2 Terms and definitions

This section will introduce the terms and definitions used to describe the capabilities of the
performance simulation proposed in this thesis. In the following, the terms event trace and
trace are used interchangeably. They are used for streams of events describing application
runtime behavior. T is used for the original trace, and T ′ is used for modified traces. For
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further differentiation, indices may appear on the bottom right part, as in T ′
id, which is used

for the resulting trace of the identity simulation. The basis for the performance simulator is a
simulation model.

A simulation model M describes the system behavior during simulation. It specifies how
event manipulation is carried out during the simulation run. In other words, a simulation
model is a set of rules that define how specific events have to be shifted by updating their
timestamps. While the simulation model is used as a complete atomic set, the simulation
hypothesis is assembled at runtime by several partial hypotheses.

A partial hypothesis is the building block for the simulation hypothesis, which describes the
complete modification of the event trace. It may describe the modification of the temporal
extent of a region instance, the balancing of region instances across several processes, or the
elimination of specific events. The optimization hypothesis H is a set of partial hypotheses,
which model the proposed modification. The hypothesis, which contains no partial hypothesis,
is called the empty hypothesis H0. The simulation hypothesis is a way to encode abstract
changes to the code to be considered in a simulation run.

Definition 3.1 (simulation)
Let T be the original event trace, and T ′ the simulated event trace. Then

sim : T ×M×H → T ′ (3.1)

is called the simulation of T ′. If H = H0, sim is called the identity simulation. �

3.3 Simulation and performance prediction

Performance prediction tools assist the user in estimating application behavior under the as-
sumption of changing parameters. A parameter can be either a change in problem size, number
of processors executing the application, a changing execution environment, or even a changing
application. The goal of this thesis is to provide a system to predict application behavior after
a code modification, based on an event trace of the unmodified application.

The simulator is used during the evaluation phase of the performance optimization cycle
shown in Figure 2.2 on page 8. Instead of moving to the optimization phase, the simulation
phase will shortcut the cycle directly to a new pass providing the input to a new analysis phase,
as shown in Figure 3.1.
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The evaluation phase yields the proposition of optimization hypotheses. A trace resembling
these optimizations is produced in the simulation phase. This trace can then be processed
further in the original cycle, which leads to a new evaluation phase. This inner cycle is traversed
until the user is satisfied with the estimated performance increase and the concrete code changes
can be proposed. The changes to the application code will then have to pass once more through
the cycle to prove their effectiveness.

3.4 Optimization Hypotheses

In the context of this thesis, the user has several possibilities to influence how the existing event
trace can be manipulated. The manipulations are only possible on an abstract level. ”Switch
the order of two instructions” is not within the scope of a tool working on an event trace, as the
event trace itself is only an abstract view of the application behavior. Still, manipulations on
this higher level of abstraction provided in an event trace can be very powerful. The following
sections will introduce optimization hypotheses, which can be used in the proposed replay-based
simulation of application performance presented in this thesis.

3.4.1 Scaling of regions

Performance of a specific user function can be measured by the time it needs to complete.
Thus, changes in the performance can be modelled by scaling the runtime of this function.
Region instances are described in the event model by the time between entering and leaving
the function. When reasoning about elapsed time in a function, two different times have to
be taken into account: the inclusive time and the exclusive time. The inclusive time describes
the overall time a function call needs to complete. When the function itself is calling other
functions, the time spent in the callees is also attributed to the caller. It is therefore desirable
to obtain the exclusive time, which defines the overall time needed for completion, excluding
the time spent in child nodes in the call tree.

When scaling a function foo, i.e., modifying the performance of foo, the scaling therefore
only applies to the parts where code of foo is executed. Thus, scaling applies only to the
exclusive time.

If a function call is a leaf node in the call tree, as shown in Figure 3.2(a), its inclusive and
exclusive time are equal by definition. As a result, functions of this kind can be scaled directly
by adjusting the timestamp of the EXIT event and all following events. When a function call
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is an inner node in the call tree, it is interrupted by a function call at least once, as depicted
in Figure 3.2(b). One way to scale these kind of functions is to apply the scaling factor to
each part where the function is active. As shown in Figure 3.2(c), it might also be desirable
to scale only certain parts of this function. This can model improvements made only before or
after an intermediate function call. The function call interrupting the execution of the caller
increases the level of granularity in this case. Finally, between an EXIT and an immediately
following ENTER event that model two consecutive function calls, the EXIT event of the first
call and the ENTER event of the second call have a time distance of a minimal latency. When
scaling a function, this latency must not be scaled, as this can usually not be influenced by the
user. Thus, scaling should only be applied if the time difference is above a certain threshold,
as shown in Figure 3.2(d).

3.4.2 Balancing of regions

Load imbalance is one of the most severe performance problems when dealing with massively
parallel systems. Minimal waiting times on individual processes can easily add up to a wait
states in communication or synchronization region instances. Therefore, balancing parallel
parts of the application is very much desirable.

In the current analysis performed by the Scalasca tool set, imbalances in the application
run will show up as significant severities of inefficiency patterns on process-synchronizing events.
However, these synchronization points are usually not the original cause of the waiting time.
Instead, the waiting time is calculated with respect to the semantics of the synchronization
point, such as a message, which cannot be received before it is sent. If a receiving process
is entering the receive call before the sender is entering the corresponding send call, the time
between the two corresponding ENTER events is the waiting time.

Definition 3.2 (load imbalance)
Load imbalance is the difference in work on two or more processes between two of their syn-
chronization points. A common reference time span, like the overall average, is chosen for all
processes and the absolute value of the individual time difference is added to the complete
imbalance of this process group. �

This definition is grasping the core of the matter, yet, it is too general to be handled easily
in performance analysis. A load imbalance may be comprised of several region instances. Each
of these region instances can have different execution times on the corresponding locations.
Additionally, the imbalanced timespan on the locations is not necessarily composed of the
same regions. This is quite unwieldy when identifying the cause of the imbalance. Which of the
region instances in the timespan would be the cause of the load imbalance of the two processes?
Which region should be modified? To reduce the complexity of these questions, load imbalance
needs to be evaluated on a per-region-instance basis.

Definition 3.3 (regional load imbalance)
Regional load imbalance is the difference in execution time of the correlating region instances
on two or more processes. �

As with the general load imbalance, the regional load imbalance in regard to a common
reference point is aggregated when more than two processes are involved. It assumes that the
investigated scientific simulation uses a domain decomposition algorithm to distribute work,
where all processes having a similar call tree work on different parts of the data.

Whereas the effects of load imbalances turn up as waiting time in the application event trace
and can identified by the automatic analysis, the cause of the imbalance is currently still to be
manually identified by the user. To support the user in the deeper investigation by narrowing
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Figure 3.3: Different balancing strategies

down on specific locations, load imbalances can be characterized by classifying the affected
process in above and below the reference time span. By definition, an imbalance is caused by
the minority of the processes, which means the class with the lower cardinality is defined as the
causing set of processes. If both classes have the same cardinality, as with a single point-to-
point transfer, it is up to the user to define one of the classes as the cause. In two inefficiency
patterns of Scalasca defined for point-to-point communication, namely the Late Sender
and Late Receiver, the cause of the waiting time is defined to be on the process that the
other is waiting for.

When a specific instance of a regional load imbalance is identified as the cause of the waiting
time, the elimination of it in the application code may still be very complex. For instance, it
might require reimplementation of a new domain decomposition strategy, which can be very
intricate to realize. A simulator, however, can balance function calls easily, as it involves only
the manipulation of timestamps, due to the simulation being based on the event trace and not
the initial domain decomposition. The prediction of application behavior after the modification
can then be used to verify the cause of the waiting time, and give an estimation of the possible
performance impact as well.

When balancing a function call, different strategies can be used, as depicted in Figure 3.3.
The original load imbalance is shown in Figure 3.3(a). The optimal solution to fix this imbalance
is to balance each instance of the function call, as shown in Figure 3.3(b) as global instance-
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balancing. Unfortunately, this type of balancing imposes very strict rules on the properties of
the function to be balanced. The simulator has no information on which region instances on the
different processes correspond to the parallel instance of that call. Thus, it will have to assume
that the nth instance of foo on process x corresponds to the nth instance of foo on process
y. Therefore, this type of balancing only works on functions that have exactly the same shape.
The shape in this context defines the position in the call tree and the functions that are called
within the function itself. This restriction can often be met in applications that work with
parallel algorithms that have a similar structure on each process, in particular SPMD (Single
Program Multiple Data) applications, where the same executable is started in parallel to work
on independent parts of the same problem.

However, these restrictions cannot be fulfilled in every application, thus, a means to approx-
imate the correct balancing has to be found. Figure 3.3(c) shows an example of balancing a
function, not across processes but on the same processor. This is called process-local balancing.
While this balancing strategy is very lean in the restrictions it imposes on the shape of foo,
balancing within one process to overcome an imbalance across processes, might not lead to the
desired result.

The third balancing strategy, shown in Figure 3.3(d), is called global balancing. Here, the
function foo is balanced globally over all instances on all locations. This means all instances on
all locations where the function is called will have the same length. This is suited for function
calls that should theoretically have equal length on each invocation, but are not balanced due
to some runtime parameter. An example would be globally distributed parallel computation
phases in iterations. When each iteration corresponds to one function call, balancing across the
phases will yield a good balancing for each instance.

If the different phases have significantly different lengths, and this difference is part of the
algorithm, global balancing will eliminate this characteristic from the event trace. Scaled
balancing is bridging this gap, aggregating the time used for the function per process, and
calculating the balancing upon these aggregated values. The absolute increase or decrease in
time on the process is distributed with respect to the percentage an instance added to the
aggregated time. This way, the process-local imbalance in the call is somewhat conserved,
while a global balancing is still taking place. Please note in Figure 3.3(e) that this strategy
might lead to inverting a regional load imbalance instance when the process-local variation of
region instances’ temporal extent differs significantly. Whereas in the original imbalance shown
in Figure 3.3(a) the upper location spends more time in the corresponding region instances
than the lower location. This changed after the scaled balancing in Figure 3.3(e) on the second
region instance, where execution time on the upper location is less than on the lower location.

With all presented types of balancing, the concrete change to an individual region instance on
a single location is subject to the same modification strategies used for region-instance scaling.

3.4.3 Elimination of regions

One of the advantages of the proposed form of application performance prediction is its ab-
straction from the original algorithm during the computational phases. This means that single
phases of the application run can be investigated in isolation. For example, the preconditioning
of a matrix will not be necessary, since during the performance simulation no actual matrix is
being processed.

The process of isolating such phases for further investigation needs the elimination of sur-
rounding events that are not of interest. While it is easy to manage the local deletion of events,
it must be guaranteed that corresponding events on remote processes are deleted too, to ensure
a consistent state for the global event trace. This means, if an MPI SEND event is deleted, the
corresponding MPI RECV event needs to be deleted in the event trace of the receiving process.
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If a collective call is eliminated on one process, it must be ensured that it is deleted on all other
processes involved in this call, accordingly.

Yet, elimination of regions is not only useful to reduce the simulation space that is being
processed, but can also be used to explicitly test the influence of one or more regions on
following regions. To test the correlation, as shown in Figure 3.4, the severities of two runs –
one with and one without the regions of interest – can be compared. When the severity of a
performance problem after the deletion of a region is decreased, it proves the correlation of its
occurrence in the trace and a following communication inefficiency. The degree of influence on
the performance problem is equivalent to the change in severity of that specific performance
problem.

3.4.4 Elimination of messages

Messages or communication between processes in general are synchronization points between
processes, thus, directly influencing the scaling behavior of an application. Zero-sized messages
are an example where communication may be explicitly used for process synchronization. Even
though the message itself has no payload, the receiving process has to wait for the sender to send
the message. In practice, these kind of messages can be used for token passing, as a barrier-less
synchronization over several processes, where a certain order in processing is needed.

However, these kind of messages can also appear in the system inadvertently, when the size
of the message is calculated automatically, and the actual communication is executed without
regard of the buffer size or when the receiver doesn’t know the size of the message to receive
in advance. When happening in all-to-all communication patterns, it can lead to significant
waiting times. As a direct result of the synchronizing effect described earlier, messages with
payload might have to wait for reception until several other zero-sized messages have been
received. Whereas these waiting times are unintentional here, it has to be emphasized that this
behavior can sometimes be desired.

Additionally, the elimination of messages with certain properties can give insight to specific
behavior of an application. Small messages bring a high latency cost in regard to the transferred
bytes. The impact of these latencies can be investigated by comparing the application behavior
with and without those messages. Messages can be specified for deletion by size, tag or its
occurring region.
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4.1 Introduction

This chapter will introduce the application performance simulator Silas. Its implementation
is based on the performance simulation model introduced in Chapter 3. First, the overall
architecture of the simulator will be discussed, proposing a trace-based event replay approach
for parallel performance prediction, which uses the event trace interface library Pearl. As
part of the twofold architecture with simulation model and hypothesis as the core elements, the
reenact model as well as the corresponding optimization hypotheses are introduced. As Silas
does not yet fully implement all proposed optimization hypotheses, this chapter will conclude
with future work for extending the simulator’s capabilities.

4.2 Architecture

The simulator’s main building block is a parallel event replay of the event trace, which is
provided by the Pearl library. The Pearl library offers a high-level access to the event trace
and provides additional interfaces to easily perform replay-based processing. The heart of the
event replay is a callback mechanism that allows the definition and registration of callback
handlers for specific native as well as user-defined events.

Figure 4.1 shows the overall architecture of Silas, as well as its external interfaces. The
green blocks with dashed border show modules that were developed for Silas, and the orange
blocks with dotted border shows the usage of external libraries, here the Pearl library. The
original trace is read by the corresponding parts of the Pearl library, while the simulation
model and optimization hypothesis are defined in an external configuration file. Trace, model
and hypothesis are used by the replay facility of the simulator, which is using a special callback
data structure to aid the event trace manipulation. After the simulation is finished, the event
trace is handed over to the Pearl writer facility to write the modified trace, resembling the
application behavior of the application modified according to the optimization hypothesis. As
described earlier, this modified trace can then be analyzed again to evaluate the effectiveness
of the applied hypotheses.

The model as well as the optimization hypotheses are encoded using the callback mechanism
of Pearl. This means, callback functions are defined and registered for specific events where
they should get invoked. The model describes the overall behavior of the simulator, the number
of replays used, as well as the techniques used for altering the event trace. A replay can be either
local or global. Local replays do not involve inter-process communication other than possibly
on start and end of the replay, whereas global replays involve inter-process communication also
during the event replay itself. The hypotheses describe change patterns, which are to be applied
to the event trace by the simulator.

The simulator supports an arbitrary number of replays of the event trace. This number is
determined by the simulation model, as it defines how modifications to the code are performed.
Complex modifications might need multiple replays to obtain a good performance prediction.
The interface to a model’s runtime configuration is given by the model’s virtual member func-
tion get_run_configuration(), which is overridden by each model implementation to fit the
model’s needs. The configuration is returned as a vector that stores the direction of replay as
well as the name. The overall size of the vector determines the number of replays performed.
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Figure 4.1: Main components of the Silas simulator

The simulation model as well as the performance hypotheses use callbacks to perform the mod-
ifications on the event trace. Even though an hypothesis’ modifications to the event trace is
independent of the model in general, it has to register its callback methods during specific runs.

The simulation run is then an iteration over all configured runs, with the following phases:

1. Create a callback manager object and register model and hypothesis callbacks for the
current run.

2. Signal the START user event.

3. Start a forward or backward replay, according to the configured direction.

4. Signal the FINISHED user event after the replay processed the last event.

5. Start over again, with the next configured replay run or terminate.

After the last replay, the Pearl writer is used to write the modified event trace to disk. A
difference in format to the original event trace is only that any attributes with local scope in
the original trace have already been modified to the global scope. Applications using this trace
do not need to perform this part of the preprocessing again, and can directly use the event
trace files with its global identifiers.

4.3 The reenact model

The first model implemented for the simulation is the reenact model. The name was chosen as
the model is remeasuring the events’ timestamps, as the application behavior is reenacted in real
time. However, event traces are an abstract description of the application’s behavior. Thus, the
simulation can neither perform exactly the same computations nor transfer exactly the same
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buffers that were transferred during original measurement. This has to be approximated by the
model. The reenact model uses real communication with pre-allocated buffers and a waiting
function to model the applications behavior during the remeasurement phase.

The events in the event trace can be categorized in two classes: those involving communica-
tion and those not. The reenact model uses a look-ahead algorithm to process the event trace,
which means, the current event is one event ahead of the actions that have to be taken. For
example, a collective communication call is reenacted when the corresponding MPI COLLEXIT

event is processed. In other words, when the evolution of the simulation on a process p reaches
event ei, which means the timestamp of event ei has just been written, the replay is processing
event ei+1 to decide what to do with the time span between ei and ei+1.

The communication callbacks are notified on native events of type EXIT for point-to-point
send calls, RECV on point-to-point receive calls as well as the MPI_Sendrecv, which implements
a deadlock-free, combined send and receive call. The collective communication callbacks are
notified on MPI COLLEXIT events. The MPI SEND event, for example, is not used as a commu-
nication trigger, as it is written to the event trace before the transfer begins. As the replay is
using the described look-ahead mechanism, the following event needs to be the trigger, which
is the EXIT event of the corresponding region. Clearly, the events alone cannot be the indicator
for the notification of the callbacks, as a communication would then be triggered on each exit.
The region an event belongs to is also taken into account. For example, the point-to-point send
is triggered only on EXIT events of the corresponding MPI regions of MPI_Send, MPI_Ssend,
and MPI_Bsend calls.

4.3.1 Simulating CPU time

If an event does not notify a communication callback, it triggers the simulation of the time
span between itself and the preceding event. This is needed to simulate the correct temporal
offsets between the communicating processes.

On UNIX-like systems, waiting a specific time span can usually be accomplished by calling
library functions like usleep or nanosleep. These functions implement an interrupt driven
idling, having the operating system wake up the process after the timer has exceeded the
specified time. Modern massively parallel systems, like the Cray XT series or the IBM Blue
Gene family of supercomputers, often run a reduced kernel on the compute nodes, which do
not offer all standard services. For the Blue Gene/L, this includes the timing functions usleep
and nanosleep mentioned above. Thus, a different mechanism for waiting needs to be found.
As interrupt-driven waiting is not an option, a busy-waiting scheme is the algorithm of choice.
The Blue Gene/L systems provide a very fast and very accurate timer function to query the so-
called wall clock time, rts_get_timebase. It will return the time in seconds since the partition
has been booted. Its accuracy is around 10 nanoseconds.

This enables a time span simulation routine as shown in Listing 4.1. With the time span
parameter and a configurable overhead compensation, the end time is calculated in line 5. After
this initialization, a loop continuously queries the timing function to check whether the end time
is reached. The function is used by the callback function that is registered for so-called internal
events, which do not involve communication. Despite this busy-waiting implementation, the
terms idle and idling will be used henceforth to describe the time span simulation. The timing
function to retrieve the wall clock time is called get_wtime and is also shown in Listing 4.1.
It directly calls the runtime system function whose result has to be scaled to the clock speed
of the processor. To minimize function call overhead, both function calls are inlined by the
compiler.

31



4 Implementation

1 inline void ReenactModel::simulate_timespan(double time)
2 {
3 /* calculate the end time for this call */
4 pearl::timestamp_t end_time =
5 get_wtime() + time - idle_overhead;
6

7 while (get_wtime() < end_time)
8 ; /* busy waiting: do nothing else, but checking the time */
9 }

10

11 inline double ReenactModel::get_wtime()
12 {
13 /* Use high resolution timer of the runtime system */
14 return ( rts_get_timebase() * clockspeed );
15 }

Listing 4.1: Timing and time span simulation routines for Blue Gene/L

4.3.2 Simulating communication

Reenacting the given communication in an application is a fast and accurate way to deal with
several unknowns in the communication library implementation. The measurement of a real
transfer transparently models latency costs, link bandwidth, and network congestion.

The event trace provided by the Pearl library layer gives access to the required information,
such as the number of bytes transferred, the name of the function call, and other MPI specific
information, like the root process of collective operations, where applicable. It can use this
information to reenact the message transfer. The communication callbacks used by the reenact
model to simulate MPI communication are built much like the wrappers of the measurement
system tracing library, yet, as the simulator is not an interposed library, but an MPI application
itself, it does not need to use the PMPI-interface.

Listing 4.2 shows an example of a point-to-point callback, here, reenacting an MPI_Ssend call.
To record the communication time as accurately as possible, the measurement calls directly
wrap the call to the corresponding MPI call.

A collective operation is modelled by a normal ENTER event and a special exit event,
MPI COLLEXIT. The collective communication is taking place between these two events, and
the parameters to this call are saved with the exit event. Listing 4.3 displays a typical callback
for a collective operation, here MPI_Allreduce. The handling of timestamp modification is com-
parable to the point-to-point communication callbacks. Line 21 and 24 show the modification
of the ENTER and MPI COLLEXIT event.

As collective operations are modelled by only two events and the callback management is
done in lines 15-18 prior to the first time measurement. The overhead of the measurement
wrapper that was initially part of the time span of the collective operation, is eliminated, while
the overhead of the callback handler is attributed to the region instance preceding the collective
operation. This results in a slightly smaller time attributed to the collective operation.

The communication callback for MPI_Allreduce was deliberately chosen to show another
aspect concerning simulation accuracy. MPI reduction operations have an associated reduction
operator which defines how the communicated data is reduced. The event trace, however, only
stores information on how many bytes have been transferred in the call, and does not include the
reduction operator. In the simulation callback, this is approximated by using the binary-AND
operator. Depending on the MPI implementation, this might lead to discrepancies between the
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1 void ReenactModel::cb_mpi_ssend(
2 const pearl::CallbackManager& cbman,
3 int user_event, const pearl::Event& event,
4 pearl::CallbackData* cdata)
5 {
6 silas::CallbackData* data =
7 static_cast<silas::CallbackData*>(cdata);
8

9 // cache pointer to preceding (send) event
10 pearl::Event prev = event.prev();
11

12 MpiComm* comm = prev->get_comm();
13 void *buf = data->get_send_buffer();
14 int count = prev->get_sent();
15 int dest = comm->get_rank(prev->get_dest()->get_process());
16 int tag = prev->get_tag();
17

18 MPI_Comm mpicomm = comm->get_comm();
19

20 // set send event timestamp
21 prev->set_time(get_wtime() - reference_timestamp);
22 // send message
23 MPI_Ssend(buf, count, MPI_BYTE, dest, tag, mpicomm);
24 // set exit event timestamp
25 event->set_time(get_wtime() - reference_timestamp);
26 }

Listing 4.2: Simulation callback for MPI_Ssend

time needed for the original communication call and the simulation, yet, testing with real world
examples has shown this to be reasonably accurate on the Blue Gene/L platform. This might
be due to the hardware support for reductions on the MPI COMM WORLD communicator
present on the Blue Gene architectures.

Not all MPI communication functions are currently supported by this model. Non-blocking
point-to-point communication functions as well as collective calls involving variable send and
receive counts are not in the scope of this model yet. Both classes of functions are excluded from
the model due to missing information in the event trace. While some of the limitations with
non-blocking communication calls could be overcome (see Section 4.7), the collective commu-
nication involving variable send and receive counts can only be overcome using either external
information provided to the simulator or additional information stored in the event trace.

4.3.3 Improving accuracy

One of the most important issues in performance prediction is the accuracy of the result. When
the difference between the simulated result and the real result that is measured after successful
code optimization is exceeding a certain level, it will no longer be feasible to use it as a basis for
estimating the cost-benefit ration prior to code alteration. It is therefore of absolute importance
to reduce the prediction deviation to a minimum.
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1 void ReenactModel::cb_mpi_allreduce(
2 const pearl::CallbackManager& cbman,
3 int user_event, const pearl::Event& event,
4 pearl::CallbackData* cdata)
5 {
6 /* INFO:
7 * The operation and datatype used are not available from the trace
8 * data. This implies that reenactment of the reduce operation may
9 * deviate from the ’real’ reduce used by the application, as an

10 * operation on bytes might take longer than on ints, etc.
11 */
12 silas::CallbackData* data =
13 static_cast<silas::CallbackData*>(cdata);
14

15 int count = event->get_received();
16 void *sbuf = data->get_send_buffer(count);
17 void *rbuf = data->get_recv_buffer(count);
18 MPI_Comm mpicomm = event->get_comm()->get_comm();
19

20 // set enter event timestamp
21 event.prev()->set_time(get_wtime() - reference_timestamp);
22 MPI_Allreduce(sbuf, rbuf, count, MPI_BYTE, MPI_BAND, mpicomm);
23 // set exit event timestamp
24 event->set_time(get_wtime() - reference_timestamp);
25 }

Listing 4.3: Simulation callback for MPI_Allreduce

Action list

As the reenact model is based on actual measurement of time spans, it is important to reduce the
overhead during the simulation run. As shown in one of the previous sections, the notification
of a communication function is not only depending on the event type, but also on the enclosing
region. A comparison of region identifiers during the simulation can be very costly and distort
the result. The reenact model therefore introduces a mechanism to preevaluate the critical
parameters that lead to the decision on which callback needs to be triggered, the action list. It
stores the user-defined event types that need to be triggered for all events in the event trace.
The user-defined event types stored in the action list are called actions.

Definition 4.1 (action)
An action is a user-defined Pearl event, defined by Silas, to be used directly to trigger a
simulation callback. Only one callback per action is allowed to be registered, but several actions
are allowed to trigger the same callback.

�

The action list is assembled prior to the actual simulation to enable a very fast triggering of
callbacks. The following actions are defined by Silas:

SKIP is used in the idle time aggregation described later in this section. It will cause the re-
play to proceed directly to the next event, without calling the pre- and postprocessing
methods of the callback data structure.

DELETE behaves much like the SKIP action, yet, it additionally indicates that this event is not
considered in idle time aggregation and especially will not be written to the simulated
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trace. This action is needed, as the Pearl event trace interface currently does not
allow the insertion and deletion of events into or from the event trace.

SKIP END is a special form of the SKIP action. It indicates the last instance of several consec-
utive SKIP actions, which has to be handled differently.

INIT is used to initialize the action list. The callback preparing the action list for simulation
can subscribe to this action.

BEGIN is used for the first event in the event trace.

END is used for the last event in the event trace.

NOOP is an action that is not associated with a callback, but may still be triggered. The
time needed to trigger the event is higher than that of a SKIP and less than IDLE.
Details follow later in this section.

IDLE triggers the time span simulation function.

There are also actions for each type of communication call, where the action is named like
the corresponding MPI call, without the preceding MPI and written all in capital letters.
For example, SEND is used as a registration target for the callback initiating an MPI_Send
call. Other supported communication actions are SSEND, BSEND, RECV, SENDRECV, BARRIER,
BCAST, ALLREDUCE, ALLGATHER, and SCAN.

Silas also defines Pearl user events that will not appear in the action list, but are used to
create the network of callbacks to handle the performance prediction and event trace manipu-
lation. These are:

START is a special action that is triggered before each replay run is started. It can be used
to setup data structures and initialize the replay, which is started right after it.

FINISHED is the counterpart of START. It is signaled after the last event has been processed.

ANY is a convenience target to enable registration of callbacks on any action.

ATOMIC REGION EXIT is used to trigger actions on leaf nodes in the call tree. The term atomic
region refers to its property of not being interrupted by another function call.

SEND EXIT is a special trigger that is signaled when a cut hypothesis is active. At the end of
a blocking MPI point-to-point send call, it is then decided, whether this call needs to
be eliminated.

RECV EXIT is the counterpart to the SEND EXIT for a blocking MPI point-to-point receive call.

Simulation of very small time spans

The time span simulation routine naturally has a minimal time span it can accurately simulate.
Any time span smaller than this threshold will receive an absolute error of the difference of its
original time to this threshold. These time spans are of very small scale, yet, often present in
event traces, as they model temporal distances between two consecutive function calls. Time
spans higher than this threshold, will be handled by the IDLE action. The reenact model also
defines two additional actions: NOOP and SKIP. Those enable the modelling of time spans
smaller than the minimum simulation time span. However, both actions have a constant time
associated with them. NOOP uses the overhead of the callback manager to model the time
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IDLE IDLE IDLE

(a) unaggregated action list

SKIP SKIP IDLE

(b) aggregated time > noop threshold

SKIP SKIP NOOP

(c) noop threshold ≥ aggregated time > skip threshold

SKIP SKIP SKIP END

(d) skip threshold ≥ aggregated time

ENTER EXIT MPI COLLEXIT

Figure 4.2: Aggregation of consecutive idle actions

span, as it does not receive a callback registration. Thus, the callback manager is signalling the
NOOP action, but no additional code will be executed. This overhead is usually lower than the
minimal time span that can be accurately simulated by the time span simulation routine. If
the time span in question is even smaller than the time modelled by the NOOP action, the SKIP

action can be used. This will circumvent any further processing of the event, and will proceed
to the next event in the trace. This will result in the smallest overhead possible.

Idle aggregation

When reenacting the relative temporal offset between the processes, special care has to be taken
to reduce the overhead to a minimum. While the traces are collected on the same system, their
timestamps are subject to the same accuracy. However, very small time spans between events
can lead to a significant relative error. As with every individual simulation of a time span
an absolute error within a specific range is introduced, one can reduce the resulting relative
error, by aggregating several consecutive waiting time spans to a single one, and adjusting the
timestamps of the aggregated events after the actual simulation.

As it can easily be deduced from Listing 4.1, the current time span simulation routine will
never return before the real time has elapsed, if it is assumed that the parameter idle overhead
is between zero and the real overhead. The overhead itself can mostly only be estimated, leaving
a certain inaccuracy on each invocation of the call.

Usually, an application will have several consecutive events that are all triggering the timespan
simulation routine. With each call to the routine, a certain error will be introduced to the
measurement. With its idle aggregation mode, the reenact model allows the simulation of
consecutive timespans with a single call, and recalculates the timestamps of the aggregated
events later. To enable this, two additional local replay runs are defined, directly wrapping
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the simulation run. As they only process their local event trace and do not reenact the events,
those replays are usually much faster than the simulation replay. During the replay before the
simulation run, aggregatable time spans are combined and marked in the action list, while the
replay after the simulation run enables the calculation of the correct timestamps of the events
belonging to the aggregated time spans.

In the event trace a sequence of aggregatable time spans is usually interrupted by a commu-
nication time span. Henceforth, the first will be called idle epoch and the latter communication
epoch. Those two epochs alternate in the event trace. This means no two successive communi-
cation epochs will ever occur, while two successive idle epochs will always be aggregatable to a
single one.

With one single call for several aggregated time spans, the inaccuracy of this single call is
spread over several regions, rendering the individual error much smaller than with separate
time span simulation calls. Additionally, aggregation of time spans will increase the chance
that even very small time frames can be simulated precisely, as they can then be part of an
epoch whose dimensions are better suited for the time span simulation routine, rather than one
of the approximating actions NOOP or SKIP, which then occur less often. In conjunction with
the techniques for the simulation of very small time spans, idle aggregation can significantly
reduce overhead in the simulation phase and increase accuracy.

Figure 4.2 shows different modes when aggregating consecutive idle actions. In the situation
depicted in Figure 4.2(a), three consecutive IDLE actions are enclosed by two collective exits.
These exits have a communication associated with them and therefore form the boundary for
the aggregation. The different modes of aggregation only differ in the action used for the last
event. All aggregated events but the last one will receive a SKIP action. Deleted events will
keep their DELETE action and are not part of the aggregated time frame. The last action
defines the action to be used for the aggregated time span. To determine which action is
used, the aggregation process is consulting two thresholds introduced in the previous section,
which can be specified in the simulator’s configuration (see Section 4.5: the noop threshold and
the skip threshold. The noop threshold defines the minimal time span that can be efficiently
simulated with the waiting time function. If the time span to be simulated is larger than this
threshold, the last action will be set to IDLE, which means the simulator will initiate the time
span simulation function for the aggregated amount of time, as shown in Figure 4.2(b). If the
aggregated time span is less than the noop threshold but higher than the skip threshold, the
NOOP action will be used, as done in Figure 4.2(c). This action is more or less empty, but still
produces some overhead, whose temporal extent lies between the two thresholds. This overhead
is used to simulate the time spans. If the aggregated time is even less than the skip threshold,
the action will be set to SKIP END, as displayed in Figure 4.2(d). Here, all events between the
two enclosing communications will be skipped, resulting in the smallest amount of overhead
currently possible with this simulation model.

When idle aggregation is enabled, the complete simulation is comprised of alternating com-
munication and idle actions. This enables the measurement of the timestamps to be done
entirely by the communication callbacks, as shown in the lines 21 and 25 of Listing 4.2. When
idle aggregation is not enabled, the individual idle actions will set the corresponding timestamp
on the associated events individually.

When a set of time spans is aggregated, the individual percentage of each time span of the
aggregated time is saved. The time for the aggregated time span, measured in the simulation
replay, is then distributed to the individual time spans of the idle epoch in respect to their
original percentage, and the timestamps of the corresponding events are updated accordingly.
As only one time span simulation call is issued, the overall dilation is reduced, and the remaining
error is distributed over all time spans of the idle epoch.
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Overhead compensation

The anatomy of send and receive regions is always very similar. On sending events, the ENTER

and the MPI SEND event are very close together, as the instrumentation first writes the ENTER

event, then possibly does some small calculations and writes the MPI SEND event, directly before
engaging in the transfer. The time between those events is naturally very small and, if seen in
context with overhead compensation, pure overhead. On receiving events, this layout is very
similar, except the communication event MPI RECV is coupled very close to the EXIT event,
and the time between the ENTER and the MPI RECV event models the actual transfer. In the
combined functions MPI_Sendrecv and MPI_Sendrecv_replace the MPI SEND will occur close
to the ENTER and MPI RECV close to the EXIT event.

In relation to the work of Wolf et al. on tracing overhead compensation [29] introduced
in Section 2.5.1, this overhead can be reduced to a minimal minimal time span that models
the time needed to start the transfer after entering the function. While the time span is just
reduced to a minimal temporal extent, it is still part of the idle epoch, which might be subject
to idle aggregation. In the aggregated time span the percentage of this overhead is then much
less than in the original trace.

Perturbation compensation is a hypothesis by itself, however, always with global scope. It
will not make sense to enable this overhead compensation only for a subset of the events, as
all events are subject to tracing overhead. Therefore, it is not encoded as a partial hypothesis,
but can be enabled or disabled at runtime by a special configuration flag. When compensating
tracing overhead, no other optimization hypotheses should be enabled, as it will be hard to
interpret the resulting performance increase.

As perturbation compensation of an event trace itself was not the focus of this thesis, is was
not fully implemented. However, it its shown to be a valid target for replay-based performance
prediction, and might be addressed by future work.

Replay overhead minimization

The original replay mechanism of Pearl involves a flexible interface which allows the sub-
scription to native as well as user events. As the simulator is entirely using user-defined events,
this flexibility of Pearl bares an inherent overhead to the simulation. During the simulation
replay, first a callback is notified that will then itself do nothing but signal the corresponding
action. To overcome this double notification problem, the replay mechanism was modified in
two ways. First, the replay was adapted to use the action list of the callback data structure
directly as the point of entry into the callback network, rather than the native type of the
event. Secondly, with the notification using the action list concept, skipping of certain events
was implemented at the core to ensure a very low-cost event skip needed for aggregation and
deletion of events.

4.3.4 Replay definition

With the functionality described in the preceding sections, the reenact model now defines four
replay steps: hypothesis application, idle aggregation, simulation and postprocessing. The first
two replays are local replays to prepare the actual reenactment. The simulation replay is the
only global reenacting replay of this model, followed by a last local replay to postprocess some
of the events. Before each replay run, the special action START is triggered. This is used in the
reenact model to initialize some values in the callback data structure prior to the run. After
the last event of the event trace is processed, the special action FINISHED is triggered. Here,
some collective data exchange functions are used to exchange inter-process information.
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Hypothesis application

During this first replay, as the name suggests, the defined optimization hypotheses are applied
to the events in the event trace, by notification of the corresponding abstract events. This
means, events are either not touched at all, shifted to a new timestamp, or marked as deleted.
The shifting of events is done through an attribute of the callback data structure, ∆t. The first
callback called on an event in this phase directly shifts the timestamp of the current event by
∆t. This applies any shifting due to the shift of prior events to be done first. Then, any further
processing decides on how ∆t is adjusted before the next event is processed.

During this phase, the event trace as well as internal parameters stored in the callback data
structure are set up. This setup includes the tracking of the maximal buffer sizes used for
communication and pre-allocation of communication buffers for the simulation phase. For each
event, the appropriate action is chosen and saved to the action list also present in the callback
data structure.

Idle aggregation

This phase is entirely local to a process, and is dedicated to perform the idle aggregation
described earlier. As it is involving only local information and modifications, its execution time
is only influenced by the number of events to be processed, as no inter-process communication
or synchronization needs to be done.

Simulation

To enable maximal accuracy, the reenact model uses a dedicated replay for measuring the new
timestamps that reduces management overhead to a minimum. It builds upon the action list,
which is set up in the preceding replay runs. In the simulation replay, the action list is used
as a lookup table to minimize the overhead during the simulation phase when deciding on the
appropriate action to trigger. During this phase, a maximum of one callback is executed per
simulated event and no callbacks are called for skipped and deleted events. The simulation
of MPI communication functions is done with individual callbacks for each communication
function. This eliminates overhead that would otherwise be introduced by determining the
correct communication function during the simulation run. The decision on the appropriate
callback is made in advance during the non-time-critical phases prior to simulation.

The time in non-communication functions is sent waiting by the individual processes to
create the correct temporal offsets between the communication partners. This enables the
communication functions to deliver a very precise image of the communication performance to
be expected.

Postprocessing

The last replay, which updates all timestamps of events skipped due to idle aggregation, is a
local replay again. To adjust the timestamps of the skipped events, the time span between the
event associated with the IDLE , NOOP or SKIP END action and the preceding communication
event is determined and distributed on the individual events, according to their share on the
original distribution that was saved during the aggregation phase.

4.3.5 Synchronizing the Simulation Startup

As already emphasized, the correct temporal offset between the individual processes is one of the
core elements concerning the accuracy of the reenact model. This includes the recreation of the
exact temporal evolution of events on process startup. However, the startup of MPI processes
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(a) Original trace (b) Simulated trace

Figure 4.3: Original and simulated startup of Sweep3d benchmark.

is not deterministic. It is neither guaranteed that the order of initializing the processes is in
process rank order, nor that processes will start in the same order on consecutive runs. If
the simulation replay would start from a barrier synchronized state, it would certainly not
reflect the original application startup, hence, would produce inaccuracies in the timestamp
modification up to the first global synchronization in the application. If the application has
no global, synchronizing communication, the complete run would be affected, degrading the
prediction accuracy. The simulation replay therefore has to simulate the startup sequence
itself, to keep process synchronization as close to the original trace as possible.

In the reenact model of Silas, this is achieved through a specific startup callback that is
triggered directly before the replay starts. Here, the timestamps of the first event on each
process trace are exchanged to search the minimal timestamp. This timestamp will then work
as the zero-point for the simulated trace. Then, each process determines its local time span
between its first event and the zero-point. All processes are then synchronized by a barrier,
after which they wait this determined time span. This ensures that the simulated trace will
show the processes start up in the order of the original trace with a minimum of inaccuracies.
Figure 4.3 shows the original application trace and the simulated trace in the first millisecond of
execution of Sweep3d [27]. Even though the resolution of the figure does not allow a quantitative
verification of the accuracy of the simulation, the congruence of the two startup sequences can
still be observed on a qualitative level. Simulation accuracy will be discussed in depth in
Chapter 5.

This method of temporal synchronization of the processes can in principle also be used to
adjourn the simulation run at some point, for example to perform some internal calculations,
and then resume the simulation without affecting the prediction accuracy. This may become
important when the overall trace size is limiting the amount of additional data the simulator
can precalculate. A simulation in several steps would then become possible through consecutive
partial simulations of the complete trace.

4.4 Optimization Hypotheses

Several of the partial hypotheses discussed in Chapter 3 have been implemented for the reenact
model to prove the effectiveness of the simulation. A full implementation of all optimization
hypotheses is beyond the scope of this thesis, but will be addressed in future work.
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4.4.1 Scaling of regions

The scaling of regions is currently only available for atomic region instances, which are not
interrupted by other flow events. To scale an atomic region, the time span between the ENTER

and EXIT event is multiplied with the associated scaling factor. The exit event is shifted
appropriately, and ∆t is updated to enable successive events to be adapted to the new offset.

4.4.2 Balancing of regions

Similar to the scaling of regions, balancing is currently only available for atomic regions that
fulfill the restrictions for the global instance balancing strategy. The average time span is
determined by a global reduction operation using the MPI_SUM operator, dividing the result by
the number of participating processes. The resulting time span is then used to calculate the
new timestamp of the EXIT event, and ∆t is updated correspondingly.

4.4.3 Elimination of regions

The elimination of regions involves three parts. For events on the local process, it can easily
be decided whether an event has to be marked for deletion. Additionally, the inter-process
connections with point-to-point and collective communication have to be checked as well. For
point-to-point communication, a ping-pong scheme is used to exchange the deletion flag for
this transfer between the two communication partners. If either of the flags is indicating a
deletion, both processes will delete the events corresponding to this transfer. This has to be
done for consistency reasons. For collective communication functions this can be dealt with via
a reduction of all local flags using the maximum-operator. If any single flag is set, the reduction
will lead to the deletion of the collective communication call. After eliminating a region, all
successive events on a process are shifted by the time spanned by the deleted region on that
process. The action for the deleted events is set to DELETE. Additionally, the timestamps of
deleted events are invalidated by setting them to a negative timestamp, enabling the Pearl
writer library to stop the export of these events.

The Pearl writer library uses the replay mechanism to iterate over the event trace and
write the events to a new trace file. As the writer is encapsulated in a library, it does not use
the callback data structure defined for Silas, which contains the action list. Therefore, the
deleted events cannot be identified by a corresponding action in the action list, but need to
be marked in existing attributes. As deleted events should not appear in the written trace, it
was decided to use the timestamp attribute of the event to indicate deletion. By definition,
negative timestamps are now considered invalid, and the writer library was modified to discard
such invalidated events, accordingly.

4.4.4 Elimination of messages

The elimination of messages is concerned with deleting specific messages from the event trace.
These messages can be identified either by size or by tag. If the hypothesis is referring to the
size, the data is only present on the sending process, thus, it has to decide whether the send
matches the criteria and notify the receiver via a message transfer. All three events of a point-
to-point operation are associated with a DELETE action in the action list and their timestamps
are invalidated.
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<Configuration> ::= <Model> <Hypotheses>
<Model> ::= MODEL <String> <Options>
<Options> ::= [[ <Options> , ] <Option> ]
<Option> ::= OPTION <String> <String>

| OPTION <String> <Number>
| OPTION <String> <Boolean>

<Hypotheses> ::= [[ <Hypotheses> , ] <Hypothesis> ]
<Hypothesis> ::= <Balance> | <Cut> | <Scale>
<Region> ::= REGION <String>
<Balance> ::= BALANCE <Region> <Options>
<Cut> ::= CUT <Region> <Options>

| CUT <Message> <Options>
<Message> ::= MESSAGE <MessageOption>
<Relation> ::= == | != | < | <= | > | >=
<MessageOption> ::= SIZE <Relation> UNSIGNED

| TAG <Relation> UNSIGNED
<Scale> ::= SCALE <Region> <Number>
<Number> ::= UNSIGNED | INTEGER | REAL
<Boolean> ::= TRUE | FALSE
<String> ::= ” ? Printable ASCII characters ? ”

Table 4.1: The configuration file grammar in EBNF

4.5 Simulator Configuration

To allow a convenient interface to the simulation, the user can influence the model and hypoth-
esis through a configuration file, which is read by the simulator at startup. The grammar of
the configuration file is shown in Table 4.1.

The terminal symbols UNSIGNED, INTEGER and REAL describe the corresponding num-
ber type and allow different notations, such as omitting the sign on positive integers and
floating-point numbers, and using the scientific notation for specifying a floating-point value.

The overall configuration file layout is quite simple. It has two parts, defining the model
and its options as well as zero, one or more optimization hypotheses and their corresponding
options.

The model options are given as key-value pairs with a preceding keyword OPTION, where
keys are string, and values can be either strings, numbers or boolean values. Options with
boolean values are referred to as flags. Strings always have to be enclosed in quotes. This
approach for configuration enables a fast and flexible way to add new model options without
having to change the configuration grammar and with that keeping it simple. All options in the
configuration are passed on to the model, which then decides to either interpret the option or
to ignore it completely. As the simulator provides an interface for several different models, it is
more flexible to keep model specific keywords out of the formal description of the configuration.

The reenact model has several options that can be specified in the runtime configuration:

compensate perturbation enables or disables the perturbation compensation features of the model.
Currently, this compensation is implemented only for point-to-point communication
events.

aggregate idle can be of value enabled or disabled. When enabled, the idle aggregation described
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1 # Example configuration for SILAS
2 MODEL "Reenact"
3 OPTION "idle overhead" 5e-06
4 BALANCE REGION "foo"
5 SCALE REGION "bar" 0.5
6 CUT MESSAGE SIZE == 0

Listing 4.4: An example configuration file

in Section 4.3.3 is activated.

noop threshold indicates the minimal time that can be modelled with the IDLE action. Below
this threshold, the NOOP action will be used to simulate time spans.

skip threshold indicates the minimal time that can be modelled with the NOOP action. Below
this threshold, the SKIP END action will be used to simulate time spans.

The hypotheses are constructed by a left-recursive rule, which enables the correct number of
hypotheses to be matched by the parser. Currently, the configuration recognizes three different
types of hypotheses: balance, cut and scale. These correspond to the definitions of optimization
hypotheses in Chapter 3. Their implementation will be discussed in more detail below. Each
hypothesis entry starts with a keyword identifying its type: BALANCE, CUT, or SCALE.

The balance hypothesis currently only takes one additional parameter, which specifies the
region that should be balanced by its name. Additionally, options to the balancer can be
specified to identify the specific balancing mode to be used with this region, as discussed in
Section 3.4.2. An option key that is prepared to be interpreted by the simulator is:

mode Describes which balancing mode to be used for this partial hypothesis. Valid values
are global instance, process-local, global and scaled1, corresponding to the balancing
modes described in Section 3.4.2.

The cut hypothesis is available in two flavors: region and message. The first is specified with
CUT REGION, and enables the elimination of a region, including all enclosed regions as well as
message transfers and their corresponding events. Collective operations within this region will
also be eliminated on remote processes, even if they are not lying within a deleted region on the
remote process. This ensures that the processes, where this communication would otherwise
not be deleted, do not enter a deadlock, as some processes on the collective communication will
never call this function.

Cutting a message transfer applies to point-to-point communication only, and is specified
with CUT MESSAGE. Currently, cutting messages of a certain type is a global operation,
meaning it is not restricted to certain regions or call paths. The criteria to delete a message
can relate to either the size or the tag of the message. Currently, the parameters cannot be
combined to refer to a message of size x with tag y.

The scale hypothesis can be applied to a region. The scaling factor is described by a number,
which can be given in any number format that is convertible to a floating point number in
C/C++.

Comments to the configuration file, which allow the annotation of specific configuration rules
as well as quick enabling and disabling, are introduced by the hash character, and reach to the
end of the current line. An example configuration file for Silas is shown in Listing 4.4.

1currently only global instance balancing is fully implemented
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4.6 Limitations

As mentioned earlier, the simulator does not perform execution behavior predictions with
instruction-level granularity. Optimization hypothesis are applied on region instances, where
each region instance usually contains several instructions. Additionally, Silas does not take
memory bandwidth or cache behavior into account. On shared-memory nodes, several cores
compete for the available memory bandwidth on a single node and sometimes share caches.
Changes in the inter-process behavior may lead to changes in the memory access patterns on
that node. During the execution of the real application this may have an effect on the execu-
tion of a specific function, either lengthening the time span used for that region instance or
shortening it. However, the simulator cannot reeanct this memory access pattern, and there-
fore will only simulate the same local execution time spans, as observed during the original
application execution. Furthermore, when dealing with load balancing, computational region
instances and preceding or succeeding communication calls correlate. Load imbalances based
on different amounts of workload, as opposed to equal workload that needs different time spans
for processing, may have a similar imbalance in the size of transfer buffers that represent these
workloads. This correlation is not expressed by simulation hypotheses yet. Simulation support
for non-blocking MPI communication calls can also not be provided by the simulation until the
event trace contains the required request tracking information. Special non-blocking function
calls like MPI_Iprobe or MPI_Test*, where the number of region instances present in the event
trace is dependent on the relative order of concurrent activities on different processes, would
require on-the-fly insertion or deletion of events from the event trace. Additionally, the com-
plex communication algorithms possible with these functions tend to be out of the scope of the
proposed simulation model.

4.7 Future Work

As described earlier, not all optimization hypotheses introduced in Chapter 3 have been imple-
mented yet. Therefore, one focus of future work lies on extending the simulator presented in
this thesis to support the missing hypotheses. This applies mainly to the scaling and balancing
of non-atomic regions. Additionally, the existing features can be subject to a more fine-grained
specification. This includes eliminating messages and regions with respect to their enclosing
region, as well as allowing multiple options on a single cut hypothesis. This will enable the
specification of hypotheses like “Delete all instances of foo within bar.” or “Delete all messages
with tag x in region foo.”

To enable a more sophisticated modification of the event trace, real deletion as well as
insertion of events into the trace will be a feature that opens new possibilities for extended
optimization hypotheses, like “Replace the call to MPI_Sendrecv with two independent calls to
MPI_Send and MPI_Recv” or even, once non-blocking communication can be handled, “Replace
the blocking communication in foo with non-blocking calls and place the MPI_Wait call after
bar.” However, to enable this within the underlying event trace access layer Pearl, the internal
data structures have to be changed substantially. Additionally, the Pearl interface to the trace
information will have to be publicized, as currently only the timestamp can be modified on an
event.

One of the drawbacks of the reenact model is the fact that it needs as much time for the
simulation as the original application, while most of the time is spent waiting for the correct
moment to engage in communication. As the simulator provides a flexible interface for pluggable
models, a model that is based entirely on computation of new timestamps could be created and
investigated. As no idling would then be involved to recreate the communication behavior in
the trace, it might increase simulation speed. However, the MPI standard explicitly leaves a lot
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Figure 4.4: Performance simulation in an automated analysis environment.

of freedom for implementors to implement communication calls efficiently. Thus, the model will
need to be highly and flexibly configurable to adapt to the MPI implementation in use, and will
need a possibility to obtain all influencing parameters, like eager limits, latencies, throughput
and similar. If this cannot be obtained, accuracy of the prediction will degrade significantly.
In this context, further investigation is needed to show its feasibility.

Finally, performance prediction is still only a tool for further automatic assistance to the
user in analyzing and optimizing large codes. Figure 4.4 displays a sketch of how Silas can be
integrated in the automatic performance analysis tool set, such as Scalasca.

After the original trace has been analyzed, the analysis report is investigated by a tool to
detect load imbalances. According to the imbalances found, different optimization hypotheses
are proposed, which serve as input for the performance simulator. The simulator uses the
original trace and the specified hypothesis to create a simulated trace, which in turn is subject
to performance analysis. While the analysis report of the simulated trace serves as feedback to
the load balance detection, it is also used to assess the quality of the hypothesis. The feedback
loop in simulation is needed to verify that no additional imbalances have been introduced by
the simulation. These are then subject to new optimization hypotheses. The optimization
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assessment will create a list of possible optimization strategies and their predicted performance
improvement. Now the user can judge on concrete code optimizations more easily and precisely.
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5 Results

To demonstrate the effectiveness of the proposed performance prediction, the Silas simulator
was tested in several application scenarios. The results obtained from investigations on synthetic
as well as real-world applications are discussed in this chapter. All applications have been
investigated on the Blue Gene/L computer system JUBL at the Jülich Supercomputing Centre
of the Research Centre Jülich. It consists of 8192 dual-core nodes, interconnected via a 3D
torus network for point-to-point communication, a tree-network for collective communication
and a signaling network, which is used for process synchronization. The dual-core nodes can be
used in two different execution modes: co-processor (CO) and virtual-node mode (VN). In co-
processor mode, the first core of each node is executing the application code, while the second
core is dedicated to handle the application’s communication calls. In virtual-node mode, both
cores host a process of the application code, and each core handles both application code and
communication calls. The total memory available on a single compute node is 512 megabytes,
which is either available to the single process running in co-processor mode, or has to be shared
between two processes running in virtual node mode, with 256 megabytes available to each
process.

5.1 Synthetic Examples

As predicting the effect of load balancing is one of the central features of the simulator, two
synthetic applications have been created. Synthetic applications provide a good means for
controlled test cases for the simulation software, tailored to isolate the use of specific features
of the simulator. This explicit control can then be used to compare the simulation results with
measurements of a real application run of a modified version.

5.1.1 LB-COLL

The synthetic example lb-coll creates a classic example for the Wait at NxN inefficiency
pattern. In this pattern a mutual dependency between each pair of the N processes creates
waiting times on the individual locations when others join the operation late. In the tested
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application, the individual processes are entering the synchronizing collective communication
call at different times, depending on their rank. As no process can complete the call before all
other processes have entered the call, the difference in the time of the ENTER event of a process
and the time of the ENTER event of the last process to join is counted as waiting time.

While the time of the EXIT event of a region depends on the computation or communication
done inside of the function call, the timestamp of the corresponding ENTER event is dependent
only on the history of the process up to that time. This means that the cause for waiting time
can not only lie in a load imbalance within the specific region instance, but also in some other
region instances preceding the ENTER event of the imbalanced region instance.

Figure 5.1 shows one possible incarnation of this process time line pattern, as it is realized
in lb-coll. The first region instances on the individual locations model the imbalanced calls
of function foo. The middle region instance of the displayed triple on each location models
the call of function bar, which is balanced and therefore neither contributing to the imbalance
nor decreasing it. The last region instances on each location model the synchronizing collective
MPI communication. In the case of lb-coll the communication is an MPI_Allreduce. As this
communication scheme involves an all-to-all communication pattern, it possesses an implicit
synchronization of all participating processes. In the lb-coll application, this triple of function
calls is repeated 100 times.

To demonstrate that the waiting time within a communication function is not necessarily
caused by the directly preceding function call, a call to bar is interposed between the imbalanced
function call foo and the communication routine. Although the call to bar is triggered on the
individual processes at different points in time, their instances are independent of each other
and need the same time to complete on each location. Therefore, it does not influence the
imbalance introduced by foo.

Figure 5.2 presents the deviation of the simulated performance to the measured application
performance. Figure 5.2(a) displays the deviation on identity simulations in co-processor as well
as virtual node mode on 32 to 512 nodes on JUBL. Both modes show a very similar pattern on
the identity simulation, with less than 0.3 · 10−3 percent deviation. The event trace was then
balanced using the global-instance balancing scheme. The deviation of the simulated balancing
from the measured performance of the manually balanced code proved to be very small with
values less than 0.3 · 10−2 percent.

48



5.1 Synthetic Examples

time

lo
ca

ti
o
n
s

bar barfoo

bar barfoo

bar barfoo

bar barfoo

imbalance

imbalance

waiting time

waiting time

ENTER EXIT MPI COLLEXIT MPI SEND MPI RECV

Figure 5.3: Load imbalance causing waiting time in point-to-point communication

0.2

-0.2

0.4

-0.4

32 64 128 256 512 1024

0

%
de

vi
at

io
n
×

10
−

3

# of processes

CO mode

VN mode

(a) identity simulation

0.1

-0.1

0.2

-0.2

32 64 128 256 512 1024

0

%
de

vi
at

io
n
×

10
−

1

# of processes

CO mode

VN mode

(b) global instance balancing of foo

Figure 5.4: Percent deviation on lb-p2p simulation

5.1.2 LB-P2P

lb-p2p is a synthetic application creating controlled waiting time in a point-to-point communi-
cation scenario. A schematic view of the pattern is shown in Figure 5.3. Again the application
calls two user functions: foo with variable time per process, and bar with constant time per
process. In point-to-point communication, the synchronization is evidently only between the
two processes involved in the communication. The communication pattern in lb-p2p demon-
strates this by creating a load imbalance between odd and even ranks. Then, two point-to-point
transfers are started. The first transfer is issued between two odd or two even processes, where
both processes have the same offset in regard to the global imbalance. Therefore, the MPI_Send
on the sender as well as the MPI_Recv on the receiver are started at the same time, and no
additional waiting time is created. The second transfer is issued between one odd and one even
rank, which still have a time offset to each other. The MPI_Recv is started on the receiver much
earlier than the MPI_Send on the sender, creating waiting time, which is detected by the Late
Sender inefficiency pattern. This function call pattern is repeated 100 times.

The simulated balancing of the region foo eliminates the majority of the Late Sender
pattern, and the overall prediction is again very close to what can be measured when changing
the original application, as it can be seen in Figure 5.4(b).
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5.2 Real World Applications

After the feasibility of the performance simulation was proven with the synthetic examples, real
world applications were analyzed and the resulting traces used for performance simulation. The
simulation of real world applications poses a greater challenge on the accuracy of the simulator,
as the overall CPU time, the event frequency as well as the number of events are much larger
compared to the synthetic test applications.

5.2.1 SWEEP3D

The benchmark code Sweep3D [27] is an MPI program performing the core computation
of a real ASCI application. It solves a 1-group time-independent discrete ordinates (Sn) 3D
Cartesian geometry neutron transport problem by calculating the flux of neutrons through each
cell of a three-dimensional grid (i, j, k) along several possible directions (angles) of travel. The
angles are split into eight octants, each corresponding to one of the eight directed diagonals of
the grid.

To exploit parallelism, Sweep3D maps the (i, j) planes of the three-dimensional domain onto
a two-dimensional grid of processes. The parallel computation follows a pipelined wavefront
process that propagates data along diagonal lines through the grid.

Responsible for the wavefront computation in the code is a subroutine called sweep, which
alternately initiates wavefronts from all four corners of the two-dimensional grid of processes.
The wavefronts are pipelined to enable multiple wavefronts to follow each other along the
same direction simultaneously. Thus, the parallelization in Sweep3D is based on concurrency
among algorithmically independent processes and pipelining among algorithmically dependent
processes.

The Sweep3D code is written in Fortran77 with the addition of automatic arrays and the
usage of a C timer routine. For the simulation this is irrelevant, as the simulator is working
only on the measured event traces. However, for an application to be traceable with Scalasca
it must be written in Fortran77 and newer, C/C++ or a combination of those languages.

Due to its specific communication patterns and the waiting times implied, Sweep3D has been
subject to performance investigations in the past [6, 17]. Though the waiting time is inherent
to the communication pattern, and can only be optimized by completely changing the commu-
nication pattern, which currently cannot be simulated with Silas, it proved a good candidate
for testing identity simulation, as it involves point-to-point as well as collective communication,
and is scalable to large numbers of processes.
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Figure 5.5 displays the percentage of deviation to the original trace for the aggregated CPU
time, the communication and computation time. Communication time is the overall time spent
in MPI communication and synchronization functions. Computation time is the remaining time
of the aggregated CPU time without the communication time. The computation time shows a
small positive absolute error to the simulation of timespans, while that of the communication
time of the simulation is negative. This is potentially caused by two factors: the approximation
of reduction functions described in Section 4.3.2 causing the communication to perform faster
as well as a different temporal process offset while reenacting the communication due to the
execution time simulation dilation. Still the overall accuracy of identity simulation is very high,
with an overall CPU time deviation of less than 0.1 percent.

5.2.2 XNS

Xns is an academic computational fluid dynamics code (CFD) for simulation of unsteady
fluid flows [5]. Its simulation capabilities include micro-structured liquids in situations with
significant deformation of the computational domain. It is based on finite-element methods,
using unstructured meshes and iterative solution strategies.

It consists of more than 32 thousand lines of Fortran90 code distributed over 66 files. The
ewd substrate library is used to encapsulate the use of BLAS routines. Xns is parallelized
via the use of message passing libraries, and is portable between a wide range of computer
architectures. It was also successfully ported to the Blue Gene architecture, but until the first
Jülich Scaling Workshop it failed to scale to several thousands of processes [32].

The simulation studied at that time was a test-case of a 3-dimensional space-time simulation
of the MicroMed DeBakey axial ventricular assist blood pump. The mesh used in the simulation
had a resolution of 3,714,611 elements. Domain decomposition was done using the Metis graph
partitioner to create element sets, which form contiguous subdomains. These subdomains were
then assigned to the processes.

Xns uses an iterative solver, and several tests with longer running simulations showed that
deviation of time between individual iterations was very small and that the first iteration could
be chosen as a representative in analyzing the iteration step. The application was therefore
configured to perform only a single iteration.

Whereas the computational parts scaled well to higher number of processors, initial perfor-
mance analysis showed that the communication routines performing scatter and gather opera-
tions between the processes became increasingly dominant for the overall performance. As the
computational work per process decreased with increasing processor counts (strong scaling),
this behavior is not uncommon for distributed-memory parallelizations.

Further analysis showed that calls to ewdgather1 and ewdscatter2 would eventually domi-
nate the simulation performance, as they were issuing an increasing amount of communication
calls using MPI_Sendrecv. Both function calls are part of the ewd substrace library and are
used to exchange simulation data between the subdomains. The payload of the individual
transfers would vary substantially, however, as the communication is used to exchange bound-
ary information between the processes it is not uncommon to be like this, either. Additionally,
the data exchange was done for every processor pair, with a growing number of transfers being
issued with an empty payload.

During optimization of the application, the communication routines using MPI_Sendrev were
modified to use separate calls to MPI_Send and MPI_Recv. Then, the message transfers with
empty payload were suppressed, resulting in a significant performance gain and a radical in-
crease in scalability. In this example, the elimination of messages was easy. Since a static
partitioning is used, all processes could determine the number of elements linked to each par-
tition, and with that the amount of data to be transferred between a pair of processes.
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Figure 5.6: Percent deviation on Xns identity simulation on 128 nodes

Xns was chosen as a real-world application test case for optimization hypotheses of Silas,
as it is an example where performance improvements were achieved by optimizing the original
application, and results of the corresponding simulation could be verified. The domination of the
application’s runtime clearly showed only on problem sizes involving more than 900 processes.
However, handling of traces of this size from long running applications is not trivial. The amount
of events written to the event trace will lead to a significant dilation of the measurement or
inhibit the measurement completely. The largest trace that was obtained by measuring the
unoptimized application was a 1024 process run in co-processor mode on JUBL. The overall
trace size is 68 gigabytes with a total of 8,798,565,118 events and an average count of 8,592,349
events per process. Memory limitations of Silas currently prevent simulations of this size,
therefore, the basis for performance simulation was a 128-node trace of an application run.
Event though performance improvements between the unoptimized and optimized version of
Xns are not so evident as with process counts higher than 1000, it presents a valid first test
case.

The design of the function calls ewdscatter2 and ewdgather1, however, poses a significant
challenge to simulation accuracy. In those function calls individual communication calls are
issued in a for-loop. In addition to very small payloads, the event rate in this part of the
simulation is extremely high, with alternation between very small message transfers and short
computational times. This means, the resulting idle and communication epochs are of very small
scale, which leads to a high relative error rate, even if the absolute error rate is still very small.
Figure 5.6 shows the analysis report of the identity simulation of an Xns trace. The analysis
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report viewed was created using the cube diff utility, which uses a so-called performance
algebra [26, 25] to calculate the difference between two experiments in the form of Cube analysis
reports for each individual node of the hierarchies being displayed. The reports used for this
particular difference were the measured trace of the unoptimized Xns application on one hand
and the identity simulation of this trace on the other. This file is then viewed using the“External
percent” display mode of Cube, where percentage values are displayed in relation to another
analysis report. Here, the referenced analysis report is the measured trace of the unoptimized
application. In this setup positive numbers will indicate parts of the applications behavior
where the simulation needed more CPU time than the original unoptimized application, while
negative values indicate the simulator being faster than the measurement of the unoptimized
code. All values of the left pane, which displays the performance properties of Xns, are therefore
to be read as the percentage of dilation of the simulation run. Additionally, the call-tree pane
of Cube is set to show “Selection Percent”, which in turn shows the distribution of the node
and value selected in the left pane in the call tree.

The overall deviation in computation time is mainly attributed to the two function calls
ewdscatter2 and ewdgather1, which can be identified in the middle pane by their large severity
and dark squares. The figure shows that those two functions are contributing significantly to
the overall deviation. With the selected view and “Execution” selected in the performance
property pane, it can be seen, that the computation time is deviated by 0.6 percent of the
original runtime of the trace. ewdscatter2 and ewdgather1 both show a positive deviation of
roughly 80 percent of the selected performance property, which would account for more than
the 0.6 percent of computation time. This is possible as the value in the performance property
pane is aggregated over all call-tree nodes, with positive and negative deviation cancelling each
other, resulting in the presented example.

The functions in question implement the data distribution between the steps of the iterations.
While on a small scale, the individual processes have fairly large domains, with common borders
to some of the other processes, this rapidly changes when increasing the process count, as the
subdomains become smaller and the amount of adjacent subdomain to a single subdomain is
a lot smaller than the overall count of subdomains. With the many-to-many communication
pattern of gathering and scattering data between the processes, the count of zero-sized messages
is increasingly disproportionate to the count of messages with payload, rendering most of the
communication without any use to the simulation itself. As mentioned, the optimization of
Xns involved the elimination of these zero-sized messages, to make transfers between processes
only if data actually needs to be exchanged.

As the Pearl event trace interface provides only read access to the event information except
the event timestamp, this modification could not be simulated, but had to be done by the
user. Thus, the simulation could only start on the intermediate step of individual send and
receive calls. Figure 5.7 shows the difference in analysis data of measurements of the optimized
and unoptimized code versions. Figure 5.8 is displaying the predicted difference in application
performance based on the unoptimized version, simulating the corresponding code modification.
Even with the difficulties of accurately simulating minimal time spans, the overall prediction
of time savings in those two function calls is yielding good results. The function calls of
ewdscatter2 and ewdgather1 can easily be identified in the figures, with their higher severity
than the surrounding calls in the call tree, shown in the middle pane. The time savings of
ewdscatter2 in this part of the call tree amounts to 363 seconds, while its prediction yielded
375 seconds. The measured performance increase of ewdgather1 in this part of the code is
yielding 332 seconds, while the prediction is 311 seconds.

Most of the predicted application behavior outside of the investigated call tree shown in Figure
5.8 is within the accuracy bounds already shown in the identity simulation of the unoptimized
code, which was discussed earlier. There is a deviation of computational time that is due to non-
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Figure 5.7: Measured performance improvements of Xns on 128 nodes

deterministic behavior of function calls involving disk I/O. With varying load on the file system,
these calls will take a different amount of time to perform the same task. The simulation of the
optimization hypothesis and the measurement of the optimized application are two individual
runs, and while the simulation is simulating the exact same time needed for those functions
as in the run of the unoptimized application, the run of the optimized application shows a
different performance. However, not all deviation of the predicted performance is attributed
to computational regions. The calls to ewdscatter2 and ewdgather1 within the function call
genbc show a significant difference in communication times, however, the cause for this could
not yet be identified. Further investigation on this is the subject of future work on Silas.

5.3 Future Work

The investigations of the Xns application and early prototypes of a load imbalance pattern in
the analysis tool Scout led to the discovery of multiple instances of load imbalance. Some of
the imbalances are located on inner nodes of the call-tree, thus the support for balancing inner
nodes has to be implemented prior to their investigation. One occurrence that was located in a
leaf node of the call tree could be hypothetically balanced by Silas, which yielded a six percent
performance gain, if eliminated completely. In collaboration with the developers of Xns, it has
to be investigated whether a corresponding code optimization is feasible.

Current investigations of Silas simulations of Xns mainly focus on the execution on 128
nodes in co-processor mode. Larger Xns event traces than the one investigated in this thesis
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Figure 5.8: Predicted performance improvements of Xns on 128 nodes

have been created, such as a 1024 node trace in co-processor mode with a total size of 67
gigabytes. Simulation on this event trace posed a new challenge to the simulation infrastructure,
and memory limitations led to significant inaccuracies, as the idle time aggregation had to
be disabled on these large simulations. In parallel to the development of Silas, the Pearl
infrastructure was improved in its memory consumption behavior. To enable the simulation of
those large traces, the modifications of the Pearl trace interface have to be incorporated into
the code base of the simulator. Additional support for large traces could be obtained through
iterative simulation of the event trace, which was already outlined in Section 4.3.5. Also, a
pure computational simulation model may yield a smaller memory footprint.
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In scientific computing, applications face a growing number of cores available in the super-
computing systems they run on. With the newly emerging massively parallel architectures
comprising several thousands of cores, the new frontier for large-scale applications will be the
efficient use of the provided computational power to expand the possibilities of simulation as
the third pillar of research. Whether a code is fit to run on several thousands of cores is not
easily predictable from data of runs on small scales, as some algorithms show their weaknesses
only on this very large scale. With performance evaluation of those algorithms conducted on
production scale, the application developer can get detailed insight to the complex behavior of
his large-scale application.

Modern supercomputing environments allow applications to run efficiently with several hun-
dreds of thousands of processes. However, only few application codes fulfill all requirements to
run at this scale. One of the central issues in optimizing large-scale codes is the complexity
of the parallel system that needs to be handled. Not only is it sometimes hard to estimate
the behavior of a software system running at large scales, it is usually also a challenge to work
through the vast amounts of data gathered when monitoring such a large-scale run. To in-
crease the productivity of the optimization process, the user needs assistance in reducing this
complexity.

Scalasca is a set of tools for automatically searching for inefficiency patterns in event
traces. It provides mostly automatic user assistance through several steps in the performance
optimization cycle, as introduced in Chapter 2, ending in the presentation of a distilled perfor-
mance report. The presentation of this performance report guides the investigator to the most
performance-relevant points in the application. Yet, the evaluation of this report still needs
significant intervention by the user.

This thesis presents the application performance simulator Silas, an event-replay-based per-
formance prediction tool to aid the user in estimating the effects on the application behavior
after specific changes in the application. The basis for performance prediction is an abstract
application behavior model provided by an event trace. The event trace interface for the simu-
lator is provided by the Pearl library, which is part of Scalasca. It provides efficient access
to the distributed event trace and supports parallel iterative processing using a callback mech-
anism. The simulator uses this callback mechanism to define actions to be taken on certain
events in the event trace. Those callback functions can be divided into two classes: those be-
longing to the model and those belonging to the simulated optimization hypothesis. The model
comprises all callbacks that deal with the actual performance prediction whereas the optimiza-
tion hypothesis contains all callbacks that modify the trace data to resemble the specified code
changes. The simulator performs one or more event replays that are defined by the model to
reach a final state where the event trace in memory corresponds to the application’s behavior
after the proposed optimization. The result is a new event trace that can then be analyzed and
compared to the original one by the use of the existing trace analysis, performance algebra and
presentation tools.

The presented simulator focusses on the prediction of large-scale application behavior. It
simulates changes in the inter-process behavior after modifications of the code. It will not
answer the question of which order is best for the execution of consecutive local instructions,
for example to improve cache usage, but will give a prospect of the global performance change
that can be expected when a certain part of the application runs faster.
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The accuracy of the proposed performance prediction using the reenact model was shown
in Chapter 5 on the synthetic applications lb-p2p and lb-coll. Both applications create a
controlled load imbalance scenario, one involving point-to-point communication and the other
involving collective communication. The simulator proved to be very precise in the prediction
of the behavior of these synthetic applications, with mostly less than 0.1 percent deviation from
the measured performance of an optimized application version.

Additionally, two real world applications were tested with the current implementation of the
simulator: Sweep3D and Xns. The ASCI benchmark application Sweep3D was used as a test
subject for the identity simulation to verify simulation accuracy. Although the absolute devia-
tion was higher than on the synthetic applications before, the results still confirm an accurate
performance prediction. The fluid dynamics application Xns was the second application under
investigation. The fact that for a specific prior optimization code versions with and without
optimization are available, created an excellent test case to verify whether the performance
gain achieved would also have been predicted by the simulation. Xns proved to be a hard test
case, as it contained a large number of very small time spans between events, which largely
influences the simulation precision of the proposed reenact model. Still, the results that could
be obtained by simulating the optimization show a deviation of less than three percent in CPU
time from the simulated optimization to the measurement of the optimized code version.

As some aspects of the simulator exceed the scope of this thesis, complete support for the
proposed optimization hypotheses is the subject of future work. Additional work will also
include increasing the prediction accuracy, and reducing the memory footprint of the simulator.
As such, the Xns application code will be subject to further load balance simulation and general
deeper investigation.
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[3] Rosa M. Badia, Jesús Labarta, Judit Gimenez, and Francesc Escale. DIMEMAS: Predict-
ing MPI applications behavior in Grid environments. In Workshop on Grid Applications
and Programming Tools (GGF8), 2003.
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[10] M. Geimer, F. Wolf, A. Knüpfer, B. Mohr, and B. J. N. Wylie. A Parallel Trace-Data
Interface for Scalable Performance Analysis. In Proc. 8th Workshop on State-of-the-art
in Scientific and Parallel Computing, volume 4699 of Lecture Notes in Computer Science,
pages 398–408. Springer, June 2006.

[11] Markus Geimer, Felix Wolf, Brian J. N. Wylie, and Bernd Mohr. Scalable Parallel Trace-
Based Performance Analysis. In Proceedings of the 13th European Parallel Virtual Machine
and Message Passing Interface Conference, volume 4192 of Lecture Notes in Computer
Science, pages 303–312, Bonn, Germany, 2006. Springer.
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