
Performance Evaluation and Optimization of Metacomputing Applications

Daniel Becker1,2, Wolfgang Frings1 and Felix Wolf1,2

{d.becker, w.frings, f.wolf} @fz-juelich.de

1 Forschungszentrum Jülich, Jülich Supercomputing Centre (JSC), 52425 Jülich, Germany
2 RWTH Aachen University, Department of Computer Science, 52056 Aachen, Germany

Abstract

The combination of independent and potentially hetero-
geneous parallel machines creates a powerful metacom-
puter. Such a metacomputer can be used to run a single
parallel application if a single machine does not provide
enough CPUs. However, achieving satisfactory application
performance on such a metacomputer is difficult since in-
stances of grid-related as well as non grid-related perfor-
mance properties may introduce various wait states during
communication and synchronization. In our earlier work,
we have introduced an extension to the SCALASCA tool
set for recording event traces of metacomputing applica-
tions and searching them automatically for patterns of inef-
ficient behavior related to wide-area communication. Here,
we show how this extension in combination with statistical
analyses and time-line visualization provided by VAMPIR
can be applied to evaluate and optimize the performance
of a multi-physics production code running on a heteroge-
neous and geographically dispersed metacomputer.

Keywords: Performance tools, grid computing, meta-
computing, event tracing.

1 Introduction

The solution of critical numerical problems may require
more processing power and memory capacity than is avail-
able on a single parallel machine. Often, coupling multiple
independent parallel machines (i.e., metahosts) to form a
more powerful metacomputer is the only method to increase
the available resources for a single application.

However, although applications can benefit from the in-
creased parallelism offered by a metacomputer, achieving
satisfactory application performance is difficult. Algorithm
design has to adapt to hierarchies of latencies and band-
widths in addition to the heterogeneous hardware architec-

tures found in such environments. Hence, performance op-
timization is a crucial but non-trivial task that needs ade-
quate tool support. A frequent problem that needs special
attention are wait states that occur when the speed at which
the computation progresses varies between metahosts or
when message transfers are delayed by high network la-
tency.

In our earlier work [1], we have shown that automatic
pattern search in event traces is a suitable method to iden-
tify wait states that appear as a result of using a meta-
computer consisting of multiple geographically dispersed
metahosts. There, we have extended the trace-analysis tool
SCALASCA [10] so that it can be used in metacomputing
environments. Challenges addressed by our extension in-
clude performing the pattern analysis in the absence of a
shared file system between metahosts, the synchronization
of time stamps in hierarchical networks, and the definition
of grid-specific patterns that target communication and syn-
chronization across metahost boundaries.

In this paper, we demonstrate that not only performance
evaluation but also performance optimization of applica-
tions running on a heterogeneous and geographically dis-
persed metacomputer are feasible. Using the grid-enabled
tracing and analysis capabilities of theSCALASCA tool set,
we determine relevant performance properties and demon-
strate how this information can be used to significantly im-
prove the performance of MetaTrace [5], a grid-enabled
multi-physics application that simulates the transport ofpol-
lutants in groundwater.

Starting point of our study are event traces generated us-
ing the enhancedSCALASCA measurement infrastructure.
First, we evaluate how the bandwidth and latency require-
ments of our application are met by the wide-area connec-
tion in our grid testbed using the statistical trace-analysis
capabilities ofVAMPIR [8]. Second, we show how the lo-
calization, classification, and quantification of wait states
performed by theSCALASCA trace analyzer assists us in
eliminating a major fraction of waiting times, leading to

32



a significant improvement of the overall performance. Fi-
nally, by running the application on a homogeneous cluster
and comparing the results with those obtained on the meta-
computer, we verify that some of the performance problems
we have identified are indeed the consequence of using a
metacomputer.

The outline of this article is as follows: We start in Sec-
tion 2 with a short description ofVIOLA , the metacomputer
testbed we used for our experiments, and the application
MetaTrace. In Section 3, we describe the methods and tools
used during the optimization process. Then, in Section 4,
we summarize our network analysis followed by an outline
of the incremental optimization process. Finally in Sec-
tion 5, we conclude our paper.

2 The VIOLA metacomputer

VIOLA [4] is a project funded by the German Ministry
for Education and Research, which provides a testbed for
advanced optical network technology. A major focus is the
enhancement and test of advanced grid applications.

2.1 Network topology and hardware ar-
chitecture

The network behind theVIOLA grid consists of a 10
Gbps backbone network with connections to workstations
and compute clusters located at various sites in Germany in-
cluding Sankt Augustin, Jülich, Bonn, Nürnberg, and Erlan-
gen. The nodes of the connected compute clusters are linked
to the backbone with 1 Gbps adapters. The high bandwidth
of the backbone can only be used if the data transmission
between the clusters is done in parallel.

These components form a very heterogeneous metacom-
puter layout with a hierarchy of different network latencies
and varying characteristics of the compute clusters, which
differ with respect to their operating systems (different ver-
sions of Linux) and compilers. It can be expected that the
high latency of inter-machine communication as well as the
heterogeneous hardware may adversely affect application
performance.

2.2 Middleware

Running a parallel application on such a metacomputer
needs middleware components for application startup and
a wide-area communication library for the transfer of data
between application processes residing on geographically
dispersed metahosts. The middleware interacts with local
resource managers to co-schedule jobs on different clus-
ters. The communication library should support transparent
high-bandwidth and low-latency message transfers between
all nodes of the attached clusters.

The co-scheduling of jobs on different clusters in the
VIOLA grid is managed by the grid middlewareUNI-
CORE [7] which has been enhanced by adding a meta-
scheduler for the simultaneous allocation of compute and
network resources. Bierbaum et al. [2] describe this
UNICORE-based infrastructure supporting the co-allocation
of metacomputing resources in more detail, with special
emphasis on the intricate task of coordinating network al-
location with application startup. This infrastructure pro-
vides seamless access to distributed grid resources through
a graphical user interface, which is depicted in Figure 1.

Figure 1. Meta-scheduler and the UNICORE
graphical user interface.

Moreover, VIOLA uses MetaMPICH [3], the MPICH-
basedMPI-implementation developed at RWTH Aachen
University, to establish direct connections to the external
network from each node. MetaMPICH supports these direct
connections through a multi-device architecture that allows
external communication within theVIOLA -testbed with the
maximum bandwidth of 1 Gbps per node across the wide-
area network without the involvement of dedicated router
processes.

2.3 Applications

Applications on theVIOLA grid cover various research
disciplines including environmental research, the designof
complex technological systems like biosensors and crystal
growth for microchip wafer production, and structural me-
chanics in engineering.

MetaTrace, one of the applications running on the
VIOLA -testbed, simulates the transport of pollutants in
groundwater. MetaTrace is a combination of two paral-
lel simulation submodels, Trace and Partrace. Whereas

33



Trace simulates water flow in porous media, Partrace com-
putes the transport of solutes in this water flow. Trace
applies a three-dimensional domain decomposition (in our
case 192×32×32m3) with nearest-neighbor communica-
tion, whereas Partrace tracks individual particles. For sim-
ulating pollutant transport in non-steady flows, the simulta-
neous execution of both submodels is crucial. MetaTrace
couples the two submodels through a parallel connection
between the two submodels. This connection is mainly
used in one direction for the transfer of the distributed three-
dimensional velocity field from Trace to Partrace whenever
Trace completes a simulation step. The unidirectional com-
munication scheme makes MetaTrace suitable to run effi-
ciently on a computational grid. Running each submodel
on a single metahost allows the internal communication to
benefit from the low-latency network whereas only syn-
chronization as well as data exchange between the two sub-
models have to use the high-latency network. The unidirec-
tional and low-frequency communication between the two
submodels is done synchronously over theVIOLA backbone
network through the node-local network adapters. After re-
ceiving the data, Partrace replicates the received velocity
field on each node by synchronously distributing it across
all Partrace nodes using a systolic loop.

3 Performance measurement and analysis

In this section, we illustrate our performance measure-
ment and analysis method used to optimize the application.
We focus on theSCALASCA tool set and its recent exten-
sion that can be used to analyze metacomputing applica-
tions. In addition, we briefly describe theVAMPIR graphical
trace browser.

Often, parallel applications which are free of computa-
tional errors need to be optimized. This requires the infor-
mation which component of the program is responsible for
what kind of inefficient behavior. Performance analysis is
the process of identifying those parts, exploring the reasons
for their unsatisfactory performance, and quantifying their
overall influence. To do this, performance data are mapped
onto program entities. A developer can now investigate ap-
plication’s runtime behavior using software tools. Thus, the
developer is enabled to understand the performance behav-
ior of his application. The process of gathering performance
data is called performance measurement and forms the basis
for subsequent analysis.

Event tracing is a technique for post-mortem perfor-
mance analysis of parallel applications. Time-stamped
events, such as entering a function or sending a message, are
recorded at runtime and analyzed afterwards with the help
of software tools. The information recorded for an event
includes at least a time stamp, the location (e.g., the pro-
cess or node) where the event happened and the event type.

Depending on the type, additional information may be sup-
plied, such as the function identifier for function call events.
Message event records typically contain details about the
message they refer to (e.g., the source or destination loca-
tion and message tag).

Graphical trace browsers, such asVAMPIR, allow the
fine-grained, manual investigation of parallel performance
behavior using a zoomable time-line display and provide
statistical summaries of communication behavior. However,
in view of the large amounts of data generated on contem-
porary parallel machines, the depth and coverage of the vi-
sual analysis offered by a browser is limited as soon as it
targets more complex patterns not included in the statistics
generated by such tools.

By contrast, the trace analyzer of theSCALASCA tool
set [6] automatically searches event traces for patterns ofin-
efficient behavior, classifies detected instances by category,
and quantifies the associated performance penalty. To do
this efficiently at larger scales and also to circumvent the
obstacles arising from the absence of a shared file system
in grid environments, the traces are analyzed in parallel by
replaying the original communication using the same hard-
ware configuration and the same number ofCPUs as have
been used to execute the target application itself.

For our experiments presented in Section 4, we used the
SCALASCA tool set which has been extended to support the
automatic performance analysis of metacomputing applica-
tions. Goal of these extensions was (i) to enable automatic
trace analysis on a metacomputer and (ii) to help identify
metacomputing-specific performance problems in applica-
tions. On a technical level, capabilities have been added to
identify the metahost a process is running on, to synchro-
nize time stamps across a hierarchical network with dif-
ferent latencies, and to analyze traces in the absence of a
shared file system. In addition, special metacomputing pat-
terns have been added to the existing pattern base. The in-
terested reader can find a more detailed description in [1].

4 Performance evaluation and optimization

In this section, we present experimental results that show
the feasibility of evaluating relevant performance metrics
and of optimizing the performance of a real-world produc-
tion code in metacomputing environments.

4.1 Experiment description

To demonstrate that performance measurement in com-
bination with performance analysis can be used to identify
inefficient performance behavior, we analyzed the afore-
mentioned multi-physics application MetaTrace. For our
experiments we used theVIOLA sites at FH Bonn-Rhein-
Sieg Sankt Augustin (FH-BRS) and at Forschungszentrum

34



Figure 2. Analysis results of metacomputer experiment: Lat e Sender problem inside Trace function
cgiteration() at FH-BRS.

Jülich (FZJ) to execute MetaTrace. That is, the metacom-
puter used for our measurements includes two metahosts,
one at each site:

• A PC Linux cluster with 6 4-wayAMD OpteronSMP

nodes at 2 GHz with a usock over Myrinet interconnect
located atFH-BRS.

• A Cray XD1 Linux cluster with 60 2-wayAMD

OpteronSMPnodes at 2.2 GHz with a usock over Rap-
idArray interconnect located atFZJ.

In our first experiment, Partrace ran atFZJ, while Trace
was executed atFH-BRS. To enable a comparison between a
grid environment and a homogeneous cluster we performed
a second experiment on anIBM AIX POWER 4+ cluster at
Forschungszentrum Jülich. In both cases we used 24 pro-
cesses in total.The detailed configurations of these experi-
ments are listed in Table 1.

4.2 Experimental results

To generate the trace data needed to investigate the per-
formance behavior, the instrumented program was executed
on theVIOLA grid. MetaTrace was instrumented by man-
ually inserting directives which were automatically trans-
lated into appropriateSCALASCA measurementAPI calls by
a preprocessor. During the program run, the trace files were
generated in theEPILOG format. The trace data were ana-
lyzed bySCALASCA’s parallel analyzer to generate a pro-
file of high-level performance properties. From the anal-
ysis results we derived our decisions which optimization

we should apply to the application. For fine-grained visual
trace analysis, theEPILOG event trace was converted to the
OTF format.

Table 1. Detailed configurations of the two-
metahost and one-metahost experiments.

Experiment 1 Experiment 2

Partrace
FZJ: IBM AIX POWER 4+:
8 nodes 1 node
1 processes/node 8 processes/node

Trace
FH-BRS: IBM AIX POWER 4+:
4 nodes 1 node
4 processes/node 16 processes/node

4.2.1 Network characteristics of the VIOLA-testbed

For our initial performance measurement we used Meta-
Trace in the configuration described in Section 2. After ap-
plying anOTF converter to ourEPILOG traces, we were able
to determine several performance metrics of theVIOLA -
testbed usingVAMPIR’s statistical summary functionality.

Partrace and Trace simulate the spread of groundwater
pollution collaboratively, and thus, the two submodels ex-
change simulation data at synchronization points across the
external network. That is, the total amount of data sent
across the wide area network represents the use ofVIOLA ’s
infrastructure. Table 2 shows the total amount of data trans-
ferred across the internal and external network within the

35



Figure 3. Analysis results of metacomputer experiment: Dif ference experiment obtained by subtract-
ing the original version from the optimized version.

VIOLA -testbed. As can be seen in our experiment, Trace at
FH-BRSsent in total 547.8 MByte of data across the external
network to Partrace atFZJ. Thus, each Partrace process re-
ceived in average 68.5 MByte of data from Trace across the
external network. It should be mentioned that Partrace sent
only minor control and status information back to Trace.

Table 2. Total amount of data transferred
across the internal and external network in
the VIOLA-testbed in MByte.

FZJ FH-BRS

FZJ 4320.0 0.0
FH-BRS 547.8 1120.0

To clarify whether the data transfer used the full band-
width offered byVIOLA ’s infrastructure, we determined the
maximum data rate of the internal and external commu-
nication as well. Our measurements summarized in Ta-
ble 3 show a maximum data transfer rate of 47.3 MByte/s
between two corresponding processes atFH-BRS and FZJ.
Each node atFH-BRS used a network link with the maxi-
mum bandwidth of 1 Gbps. Since we assigned 16 processes
to Trace and 8 processes to Partrace, only two Trace pro-
cesses on the same 4-way node could communicate in par-
allel with two corresponding Partrace processes during the
data exchange. Given that these two Trace processes shared
a single network link, each of the two could use half of the
bandwidth (62.5 MByte/s per process) offered byVIOLA ’s
network links, and thus, our measurements show that Meta-

Trace almost fully utilized theVIOLA network bandwidth.

Table 3. Maximum P2P communication rate
of the internal and external communication in
the VIOLA-testbed in MByte/s.

FZJ FH-BRS

FZJ 208.6 0.4
FH-BRS 47.3 511.7

In addition, Table 4 illustrates the minimum duration
of the internal and external communication in theVIOLA -
testbed. In our configuration, the external message transfer
duration exceeded the internal message transfer duration by
almost two orders of magnitude. During the communication
between Trace and Partrace, the minimum message transfer
duration was 862.0µs. Given that the sites atFZJ andFH-
BRS lie 100 km apart, the minimum message transfer time
of roughly 333.0µs can be calculated based on the speed
of light. Hence, it can be concluded that theVIOLA net-
work indeed offered a low-latency wide area network link
between the sites used for our experiments.

Our measurements show that MetaTrace took advantage
of the state-of-the-art network capabilites offered by the
VIOLA grid. Solving larger input problems might necessi-
tate further improvements of the underlying network tech-
nology.

36



Table 4. Minimum duration of the internal
and external communication in the VIOLA-
testbed.

FZJ FH-BRS

FZJ 27.3µs 879.0µs
FH-BRS 862.0µs 30.3µs

4.2.2 Incremental performance optimization

To optimize the performance of MetaTrace, we used
SCALASCA to identify undesirable wait states hoping that
they can be easily removed. The optimization was carried
out in two cycles each consisting of a trace analysis using
SCALASCA and a subsequent source-code modification.

The analysis of the unoptimized version showed an over-
all execution time of 1837.40 seconds aggregated across all
processes, whereby a major fraction (72.1 %) was spent in
MPI function calls. ThisMPI fraction is composed of the
time used for actual communication (15.4 %) and the time
spent waiting (56.7 %) for a communication partner. Obvi-
ously, the waiting time clearly dominated the overall com-
munication behavior making it the most promising target
for our optimization efforts. Often, reasons for such wait
states can be found in the scheduling of communication op-
erations or in the distribution of work among the processes
involved.

Figure 2 shows a screen shot ofSCALASCA’s trace anal-
ysis results. Apparently, the application suffered from grid-
specificWait at Barriersituations (i.e., global) and non grid-
specificLate SenderandWait at N×Nsituations (i.e., local),
when communicating or synchronizing. As the display indi-
cates, the globalWait at Barrierproblem consumed 18.7 %
of the overall execution time. In addition, the localLate
Senderproblem consumed 10.6 % of the overall execution
time. Finally, the localWait at N×N problem caused 20.2 %
of the overall execution time. For a description of these pat-
terns, the reader may refer to [1].

Trace and Partrace synchronize at a global barrier before
Trace unidirectionally sends the velocity field to Partrace
for further processing. However, because Trace and Par-
trace are essentially two different programs, each submodel
invokes this barrier from a different function. As a result
both functions are diagnosed with the globalWait at Bar-
rier, although both occurrences are closely connected. Most
of the waiting time was attributed to the Partrace function
ReadFieldsFromTrace(), which had to wait until all pro-
cesses in Trace had reached the corresponding barrier call
in functionprinttolink(). That is, we detected an imbal-
ance between Trace and Partrace, since Partrace went ahead
of Trace. Moreover, Trace suffered from localLate Sender

andWait at N×N situations, which together represent most
of the waiting time in internal communication.

The Trace-local Late Senderwas concentrated in
cgiteration(). All Trace processes performed calcula-
tions insidecgiteration() and subsequently distributed
their local results to their nearest neighbors. Afterwards, a
dot product was calculated usingMPI Allreduce(). Al-
though the domain decomposition assigned equally-sized
subdomains to every process, border processes were quicker
because they had fewer neighbors to exchange border cells
with. Given that these processes had fewer communica-
tion partners, they not only waited during the data exchange
phase for their peers in the center but they could also leave
the data exchange phase earlier. That is, this imbalance in-
troduced two performance problems. The first problem oc-
curred while all Trace processes were synchronizing in pairs
to exchange their local results, causing a localLate Sender
situation. The second problem occurred when Trace subse-
quently calculated the dot product, causing a localWait at
N×N situation.

The goal of our first optimization was to make Trace
faster. More precisely, we assumed that reducing the Trace-
local Late Senderproblem insidecgiteration(), would
allow Trace to reach the synchronization point with Par-
trace earlier, which would also decrease the barrier waiting
time between the two submodels. We therefore replaced the
synchronous communication operations incgiteration()
with their asynchronous counterparts, allowing more vari-
ability for the nearest-neighbor data exchange. Now, pro-
cesses inside Trace would be able to process received results
earlier. In addition, the Trace-localWait at N×N situation
would also be reduced, since processes in the center of the
domain could leave the data exchange phase earlier as well.

After our first optimization cycle, we measured an over-
all execution time of 877.90 seconds, corresponding to a
reduction by more than a factor of two. Now, only a frac-
tion of 42.0 % of the overall execution time was spent in
MPI function calls. In Figure 3, a screen shot of a difference
experiment [9] obtained by subtracting the original version
from the optimized one is depicted. Performance gains are
represented by sunken reliefs (negative numbers), perfor-
mance losses by raised reliefs (positive numbers). The num-
bers show the difference in execution time in percent rela-
tive to the unoptimized version. One can easily recognize
that the globalWait at Barrier as well as the Trace-local
Late SenderandWait at N×N were significantly reduced.
For instance, the figure shows that the global waiting time
at the barrier insideReadFieldsFromTrace was reduced
by roughly 14.1% of the total execution time.

Moreover, in the optimized version the globalWait at
Barrier problem consumed 8.6 % (18.7 % before) of the
overall execution time and the Trace-internalLate Sender
problem consumed 3.7 % (10.6 % before) of the overall ex-

37



ecution time. Finally, the Trace-localWait at N×N prob-
lem caused 7.8 % (20.2 % before) of the overall execution
time. By means of asynchronous communication, we were
able to significantly reduce theLate Sendersituation inside
Trace since Trace did not wait at synchronization points
insidecgiteration() during the internal data exchange.
In addition, Trace now needed less time for a single iter-
ation and so Trace reached the synchronization point with
Partrace earlier, which reduced the globalWait at Barrier
problem. Finally, the waiting time at the Trace-localWait
at N×N situation was notably decreased as well, which was
caused by the elimination of synchronization points during
the preceeding data exchange phase.

Figure 4. Vampir display: Event traces of all
Partrace processes during one simulation cy-
cle.

However, the application still suffered from a globalWait
at Barrier situation apparent in the two functions mentioned
earlier. We decided to perform a second optimization cy-
cle. Trace has variable simulation time steps which depend
on the accuracy of the respective calculation whereas Par-
trace uses constant time steps independent of the accuracy.
Since the communication between the two submodels is es-
sentially unidirectional and asynchronous by nature, we re-
placed the synchronous communication operations between
Trace and Partrace including the barrier call with their asyn-
chronous equivalents to eliminate the globalWait at Barrier
problem. It is worth noting, that without the asynchronous
communication scheme, removing the barrier call would
cause waiting times during the data exchange. Also, al-
though in our case a decreased runtime of Partrace increases
the waiting time during the data transfer between Trace and
Partrace, we applied an optimization to Partrace as well.
Figure 4 visualizes the event traces of all Partrace processes
during one simulation cycle by showing a time line for each
process indicating its current execution state by color. Us-
ing VAMPIR’s zooming capability we examined the runtime
behavior further. Partrace used a systolic loop to distribute
its simulation data internally. We decided to replace the
original communication scheme with a collective commu-

nication since the collective operationMPI Allgather()
needs substantially less effort.

Table 5. Summary of performance measure-
ments of the unoptimized version and after
each optimization cycle.

Optimization
unoptimized 1 2

MPI fraction 72.1 % 42.0 % 34.4 %
Wait at Barrier 18.7 % 8.6 % 0.9 %

Late Sender 10.6 % 3.7 % 1.7 %
Wait at N×N 20.2 % 7.8 % 6.0 %

The results of our final performance measurement in-
cluding the aforementioned optimizations showed only a
fraction of 34.4 % of the overall execution time (771.50
seconds) spent inMPI function calls. Further, our analy-
sis results showed that the globalWait at Barrier problem
could be completely eliminated. Additionally, the Trace-
localLate Senderversion only consumed 3.9 % of the over-
all execution time and the Trace-localWait at N×N prob-
lem caused 6.0 % of the overall execution time. Hence,
the major performance problems were significantly reduced
and, thus, the performance behavior was significantly im-
proved. Table 5 summarizes the values of the respective
performance problem after each optimization cycle accord-
ing to the functions mentioned above.

Finally, we compared the application performance on the
VIOLA metacomputer achieved before and after our opti-
mizations with the performance when running on the ho-
mogeneousIBM AIX POWER 4+ cluster. While Figure 5 (a)
shows the the total execution time before and after one and
two optimization cycles, Figure 5 (b) shows the correspond-
ing percentage of the execution time spent inMPI function
calls. In addition, the respectiveMPI waiting time is de-
picted. As can be seen, the overall execution time as well
as itsMPI fraction is smaller in each experiment performed
on the homogenous cluster than on the metacomputer. The
optimizations showed only minor influence on the applica-
tion performance in the homogeneous case. We were able to
significantly reduce the total execution time from 1837.40
seconds to 771.50 seconds on the metacomputer. Hence,
we were able to significantly reduce grid-specific perfor-
mance problems of a parallel computational grid applica-
tion by eliminating the major fraction of waiting times in
several optimization cycles.

5 Conclusion

In this paper, we have shown that our extension to the
SCALASCA tool set in combination with statistical analyses

38



0

200

400

600

800

1000

1200

1400

1600

1800

2000

210

optimization cycle

ti
m

e
 [
s
]

Execution time two metahost case

Execution time one metahost case

(a) The total execution time before the optimization and after one and
two optimization cycles.

0

10

20

30

40

50

60

70

80

210

optimization cycle

[%
]

MPI fraction two metahost case

waiting time two metahost case

MPI fraction one metahost case

waiting time one metahost case

(b) The percentage of the waiting time and execution time spent in MPI
calls before the optimization and after one and two optimization cycles.

Figure 5. Optimization results on a homoge-
neous cluster and a metacomputer.

and time-line visualization provided byVAMPIR can be used
to evaluate and optimize the performance of a multi-physics
production code running on a heterogeneous and geograph-
ically dispersed metacomputer. Using the grid-enabled trac-
ing and analysis capabilities of theSCALASCA tool set, we
have determined relevant performance properties and have
experimentally demonstrated that this information can be
used to significantly improve performance.

First, we were able to verify that the bandwidth and la-
tency requirements of our application are met by the wide-
are connection in theVIOLA grid. Second, we presented a
detailed description of the performance optimizations ap-
plied to MetaTrace. While MetaTrace fully utilized the
entire network resources provided by theVIOLA grid, we
have shown in several optimization cycles that our modifi-
cations eliminated the major fraction of waiting times. In
addition, we compared results from a homogeneous cluster
with those obtained on the metacomputer, confirming that
some of the performance problems we identified are indeed
the consequence of using a metacomputer.

Given the fact that performance optimization for just a
single machine is already a non-trivial task that requires
substantial tool support, we argue that this is even more im-
portant for grid environments. With grid-enabled tools de-
velopers are able to optimize their applications to achievean
appropriate performance level. Using MetaTrace as an ex-
ample, we have shown that grid-enabled performance tools
allow efficient execution of parallel applications in grid en-
vironments.

References

[1] D. Becker, F. Wolf, W. Frings, M. Geimer, B. Wylie, and
B. Mohr. Automatic trace-based performance analysis of
metacomputing applications. InProceedings of the IEEE In-
ternational Parallel and Distributed Processing Symposium
(IPDPS), Long Beach, California, March 2007.

[2] B. Bierbaum, C. Clauss, T. Eickermann, L. Kirtchakova,
A. Krechel, S. Springstubbe, O. Wäldrich, and W. Ziegler.
Orchestration of distributed MPI-applications in a
UNICORE-based grid with metampich and metaschedul-
ing. In Proc. 13th European PVM/MPI Conference, Bonn,
Germany, September 2006. Springer.

[3] B. Bierbaum, C. Clauss, M. Pöppe, S. Lankes, and T. Be-
mmerl. The new multidevice architecture of MetaMPICH
in the context of other approaches to grid-enabled MPI.
In Proc. 13th European PVM/MPI Conference, Bonn, Ger-
many, September 2006. Springer.

[4] BMBF (Ministry for Education and Research).Vertically
Integrated Optical Testbed for Large Applications in DFN
(VIOLA). http://www.viola-testbed.de/.

[5] Forschungszentrum Jülich.Solute Transport in Heteroge-
neous Soil-Aquifer Systems. http://www.fz-juelich.
de/icg/icg-iv/modeling.

[6] M. Geimer, F. Wolf, B. J. N. Wylie, and B. Mohr. Scalable
parallel trace-based performance analysis. InProc. 13th Eu-
ropean PVM/MPI Conference, Bonn, Germany, September
2006. Springer.

[7] S. Haubold, H. Mix, W. E. Nagel, and M. Romberg. The
UNICORE grid and its options for performance analysis.
pages 275–288, 2004.

[8] W. Nagel, M. Weber, H.-C. Hoppe, and K. Solchenbach.
VAMPIR: Visualization and analysis of MPI resources.Su-
percomputer, 12(1):69–80, 1996.

[9] F. Song, F. Wolf, N. Bhatia, J. Dongarra, and S. Moore.
An algebra for cross-experiment performance analysis. In
Proc. of the International Conference on Parallel Process-
ing (ICPP), Montreal, Canada, August 2004. IEEE Com-
puter Society.

[10] F. Wolf and B. Mohr. Automatic performance analysis of
hybrid MPI/OpenMP applications.Journal of Systems Ar-
chitecture, 49(10-11):421–439, Nov. 2003.

39




