
1

Identifying the root causes of wait states in
large-scale parallel applications

David Böhme∗†, Markus Geimer∗, Felix Wolf∗†‡, and Lukas Arnold∗

∗ Jülich Supercomputing Centre, 52425 Jülich, Germany
† Graduate School AICES, RWTH Aachen University, 52062 Aachen, Germany
‡ German Research School for Simulation Sciences, 52062 Aachen, Germany

{d.boehme, m.geimer, l.arnold}@fz-juelich.de, f.wolf@grs-sim.de

Abstract—Driven by growing application requirements and
accelerated by current trends in microprocessor design, the num-
ber of processor cores on modern supercomputers is increasing
from generation to generation. However, load or communication
imbalance prevents many codes from taking advantage of the
available parallelism, as delays of single processes may spread
wait states across the entire machine. Moreover, when employing
complex point-to-point communication patterns, wait states may
propagate along far-reaching cause-effect chains that are hard to
track manually and that complicate an assessment of the actual
costs of an imbalance. Building on earlier work by Meira Jr. et
al., we present a scalable approach that identifies program wait
states and attributes their costs in terms of resource waste to
their original cause. By replaying event traces in parallel both in
forward and backward direction, we can identify the processes
and call paths responsible for the most severe imbalances even
for runs with tens of thousands of processes.

I. INTRODUCTION

Driven by growing application requirements and accelerated
by current trends in microprocessor design, the number of
processor cores on modern supercomputers is increasing from
generation to generation. With today’s leadership systems
featuring more than a hundred thousand cores, writing effi-
cient codes that exploit all the available parallelism becomes
increasingly difficult. Load and communication imbalance,
which frequently occurs during simulations of irregular and
dynamic domains that are typical of many engineering codes,
presents a key challenge to achieving satisfactory scalability.
As “the petascale manifestation of Amdahl’s Law” [1], even
delays of single processes may spread wait states across the
entire machine, and their accumulated duration can constitute
a substantial fraction of the overall resource consumption. In
general, wait states materialize at the next synchronization
point following the delay, which allows a potentially large tem-
poral distance between the cause and its symptom. Moreover,
when complex point-to-point communication patterns are em-
ployed, wait states may propagate across process boundaries
along far-reaching cause-effect chains that are hard to track
manually and that complicate the assessment of the actual
costs of a delay in terms of the resulting resource waste. For
this reason, there may not only be a large temporal but also a
large spatial distance between a wait state and its root cause.

Essentially, a delay is an interval during which one process
performs some additional activity not performed by other

processes, thus delaying those other processes by the time span
of the additional activity at the next common synchronization
point. Besides simple computational overload, delays may
include a variety of behaviors such as serial operations or
centralized coordination activities that are performed only by a
designated process. In a message-passing program, the costs of
a delay manifest themselves in the form of wait states, which
are intervals during which another process is prevented from
progressing while waiting to synchronize with the delaying
process. During collective communication, many processes
may need to wait for a single late comer, which has a multiply-
ing effect on the costs. Wait states can also delay subsequent
communication operations and produce further indirect wait
states, adding to the total costs of the original delay. However,
while wait states as the symptoms of delays can be easily
detected, the potentially large temporal and spatial distance in
between constitutes a substantial challenge in deriving helpful
conclusions from this knowledge with respect to remediating
the wait states.

The Scalasca performance-analysis toolset [2] searches for
wait states in large-scale MPI programs by measuring the
temporal displacement between matching communication and
synchronization operations that have been previously recorded
in event traces. Since event traces can consume a prohibitively
large amount of storage space, this analysis is intended either
for short runs or for short execution intervals out of longer runs
that have been previously identified using less space-intensive
techniques such as time-series profiling [3]. To efficiently
handle even very large processor configurations, the wait-
state search occurs in parallel by replaying the communication
operations recorded in the trace to exchange the timestamps
of interest. Building on earlier work by Meira Jr. et al. [4],
[5], we describe how Scalasca’s scalable wait-state analysis
was extended to also identify the delays responsible and their
costs. Now, users can see at first glance where load balancing
should be improved to most effectively reduce the waiting time
in their programs. To this end, our paper makes the following
specific contributions:

• A terminology to describe the formation of wait states
• A cost model that allows the delays to be ranked accord-

ing to their associated resource waste
• A scalable algorithm that identifies the delays responsible

2

for wait states and calculates the costs of such delays.
This paper is organized as follows. We start with a dis-

cussion of related work in Section II. Then we introduce
the Scalasca tracing methodology in Section III, providing
the context for the scalable delay analysis that we present
in Section IV. In Section V, we demonstrate the value of
our method using three examples, showing its scalability and
illustrating the additional insights it offers into performance
behavior. Finally, in Section VI, we present conclusions and
outline future work.

II. RELATED WORK

Our approach was inspired by the work of Meira Jr. et al.
in the context of the Carnival system [4], [5]. Using traces
of program executions, Carnival identifies the differences in
execution paths leading up to a synchronization point and
explains waiting time to the user in terms of those differences.
This waiting-time analysis is implemented as a pipeline of
four independent tools: The first stage extracts execution steps
(i.e., region instances) from the trace file. These execution
steps are combined to matching execution paths for every
instance of waiting time during the second stage. The third
stage partitions the execution paths into equivalence classes
so that for every class only one representative needs to be
stored. The fourth stage finally isolates the differences between
matching paths, yielding one or more characterizations for
each program location that exhibits wait states. While our
analysis is very similar on a conceptual level, it offers far
greater scalability, allowing it to be applied to codes running
on tens of thousands of processor cores. Based on a parallel
replay of the underlying traces using as many cores as have
been used by the target application itself, our method exploits
both distributed memory and processing capabilities available
on massively parallel systems. Moreover, we define a concise
terminology and cost model that is both simple in that it
requires only a few orthogonal concepts and powerful in that
it can explain the most important questions related to the
formation of wait states: Which parts of the program (i.e.,
which call paths) and which parts of the system (i.e., which
processes) cause wait states and what are their costs? Finally,
the visual mapping of delays and their costs onto the virtual
process topology offers insights into relationships between the
simulated domain and the formation of wait states, as we
demonstrate in Section V.

Again leveraging the postmortem analysis of event traces,
Jafri [6] applies a modified version of vector clocks to dis-
tinguish between direct wait states that are caused by some
form of imbalance and indirect wait states that are caused
by direct wait states via propagation. However, neither does
his analysis identify the responsible delays, as ours does,
nor does his sequential implementation address scalability
on large systems. While his sequential implementation may
take advantage of a parallel replay approach to improve its
scalability, the general idea of using vector clocks to model
the propagation of waiting time from one process to another,
which is inherently a forward analysis, may be faced with
excessive vector sizes when waiting time is propagated across
large numbers of processes.

Also influenced by Meira Jr. et al., Morajko et al. [7] deter-
mine waiting times and their root causes already at runtime.
Their approach is based on parallel task-activity graphs that
connect communication activities either locally via (computa-
tional) process edges or remotely via message edges. Waiting
times are calculated on-the-fly using piggyback messages and
their values are accumulated separately for every node in the
graph. The graph data is extracted at regular intervals to sta-
tistically infer the root causes of the aggregated waiting times.
While relieving the user from the burden of collecting space-
intensive event traces, the piggyback exchange of timestamps
(i) requires a global clock to be accurate and (ii) may introduce
substantial intrusion [8]. Furthermore, the statistical inference
process may prove inaccurate for applications with highly
time-dependent performance behavior [9]. Finally, the lack of
traces precludes the later simulation of imbalance smoothing
to narrow the space of potential optimizations, as proposed by
Hermanns et al. [10].

In the context of performance analysis, critical path analysis
has been widely studied as an approach to optimally direct op-
timization efforts. Notably, Hollingsworth [11] and Schulz [12]
use piggyback messages to extract critical path data from MPI
programs at runtime. Hollingsworth generates a critical path
profile to gain a high-level overview of code routines whose
optimization promises the largest runtime reduction, whereas
Schulz reconstructs the entire critical path of the program to
allow a more fine-grained analysis. While critical path analysis
effectively pinpoints critical optimization targets and typically
requires less space than a full event trace, it lacks the “global
view” required to study important performance characteristics
such as resource utilization and parallel efficiency since it does
not capture effects outside the critical path. In contrast, by
incorporating delays of each process and call path, and ranking
them according to their severity, our delay analysis provides a
global picture of performance hotspots and detailed guidance
to improve the overall resource utilization.

Recognizing load imbalance as a major concern for parallel
performance, several authors have developed approaches to
observe and assess uneven load distributions. Calzarossa et
al. [13] rank code regions based on their dispersion across
the process space to identify the most promising optimization
target. Phase profiling [14] can expose time-varying load
distributions that would otherwise be hidden when perfor-
mance metrics are summarized along the time axis. To address
the storage implications of the two-dimensional process-time
space, Gamblin et al. [15] apply wavelet transformations bor-
rowed from signal processing to obtain fine-grained but space-
efficient time-series load-balance measurements for SPMD
codes. Concentrating exclusively on the time axis to avoid
communication at runtime, Szebenyi et al. [3] use a clustering
algorithm to compress time-series call-path profiles online as
they are generated. The added value of our approach compared
to pure load-data acquisition is to deliver insights into the
actual costs of an imbalance with respect to the formation of
wait states, which is a non-trivial undertaking especially in the
presence of complex point-to-point communication patterns.
However, since the above-mentioned profiling techniques do
not require detailed event traces that are too costly to generate

3

Instr.
target
application

Measurement

library

Local
event traces

Parallel
analysis

Global
analysis report

Graphical
browser

Fig. 1. Scalasca’s parallel trace-analysis workflow. Gray rectangles denote programs and white rectangles with the upper right corner turned down denote
files. Stacked symbols denote multiple instances of programs or files running or being processed in parallel.

for longer runs, they may serve as a basis for identifying
suitable candidate execution intervals for our delay analysis.

III. TRACING METHODOLOGY

As the foundation for our subsequent considerations, we
start with a review of Scalasca’s event-tracing methodol-
ogy [2]. Scalasca, a performance-analysis toolset specifically
designed for large-scale systems, scans event traces of parallel
applications for wait states that occur, for example, as the
result of an unevenly distributed workload. Such wait states
can present major obstacles to achieving good performance,
especially when the aim is to scale communication-intensive
applications to large processor counts. As a first step towards
reducing their impact, the current version of Scalasca provides
a diagnostic method that allows the localization and quantifi-
cation of wait states especially at larger scales. Although this
simple wait-state search already supports both pure MPI and
hybrid MPI/OpenMP codes, our more advanced delay analysis
is currently restricted to single-threaded MPI codes, which is
why the remainder of the paper focuses exclusively on this
programming model.

Scalability is achieved by making the Scalasca trace ana-
lyzer a parallel program in its own right. Instead of sequen-
tially processing a single global trace file, Scalasca processes
separate process-local trace files in parallel by replaying
the original communication on as many processor cores as
were used to execute the target application itself. Since trace
processing capabilities (i.e., processors and memory) grow
proportionally with the number of application processes, we
were able to complete trace analyses of runs with up to
294,912 cores on a 72-rack IBM Blue Gene/P system [16].

A. Trace-Analysis Workflow

Figure 1 illustrates Scalasca’s trace-analysis workflow. Be-
fore any events can be collected, the target application is
instrumented, that is, extra code is inserted to intercept relevant
events at runtime, generate appropriate event records, and store
them in a memory buffer before they are flushed to disk.
Usually, the instrumentation is performed in an automated
fashion during compilation and linkage. In view of the I/O
bandwidth and storage demands of tracing on large-scale
systems, and specifically the perturbation caused by processes
flushing their trace data to disk in an unsynchronized way
while the application is still running, it is generally desirable to
limit the amount of trace data per application process, so that
the size of the available trace buffer is not exceeded. This can

be achieved via selective tracing, for example, by recording
events only for intervals of particular interest or by limiting
the number of time steps during which measurements take
place. In this sense, our method should be regarded as an in-
depth analysis technique to investigate shorter intervals (e.g.,
critical iterations of the time-step loop) that were previously
identified on the basis of coarser performance data. Since
it is roughly proportional to the frequency of measurement
routine invocations, the execution time dilation induced by the
instrumentation is highly application-dependent and therefore
hard to quantify in general terms.

After the target application has terminated and the trace data
has been flushed to disk, the trace analyzer is launched with
one analysis process per (target) application process and loads
the entire trace data into its distributed memory address space.
Future versions of Scalasca may exploit persistent memory
segments available on systems such as Blue Gene/P to pass the
trace data to the analysis stage without involving any file I/O.
While traversing the traces in parallel, the analyzer performs
a replay of the application’s original communication behav-
ior. During the replay, the analyzer identifies wait states in
communication operations by measuring temporal differences
between local and remote events after their timestamps have
been exchanged using an operation of similar type. Every wait-
state instance detected by an analysis process is categorized
by type (e.g., late sender) and the associated waiting time
is accumulated in a local [type, call path] matrix. At the
end of the trace traversal, the local matrices are merged
into a three-dimensional [type, call path, process] structure
characterizing the whole experiment. This global analysis
report is then written to disk and can be interactively examined
in the provided report explorer. Being the explorer view most
relevant to this paper, the explorer can visualize the distribution
of accumulated waiting times across two- or three-dimensional
Cartesian process topologies for every combination of wait-
state type and call-path (Figures 5, 9, 10, and 12).

To allow accurate trace analyses on systems without glob-
ally synchronized timers, linear interpolation based on clock
offset measurements during initialization and finalization of
the target program accounts for major differences in offset and
drift. In addition, an extended and parallelized version of the
controlled logical clock algorithm [17] is optionally applied
to compensate for drift jitter and other more subtle sources of
inaccuracy.

4

B. Event Model

An event trace is an abstract representation of execution
behavior codified in terms of events. Every event includes a
timestamp and additional information related to the action it
describes. The event model underlying our approach specifies
the following event types:

• Entering and exiting code regions. The region entered is
specified as an event attribute. The region that is left is
implied by assuming that region instances are properly
nested.

• Sending and receiving messages. Message tag, commu-
nicator, and the number of bytes are specified as event
attributes.

• Exiting collective communication operations. This special
exit event carries event attributes specifying the commu-
nicator, the number of bytes sent and received, and the
root process if applicable.

MPI point-to-point operations appear as either a send or a
receive event enclosed by enter and exit events marking the
beginning and end of the MPI call, whereas MPI collective
operations appear as a set of enter / collective exit pairs
(one pair for each participating process). The attributes of the
communication events are essential for the parallel replay. In
the next section, we will see typical event sequences produced
by our event model.

IV. DELAY ANALYSIS

In sharp contrast to the simple wait-state analysis explained
above, the delay analysis identifies the root causes of wait
states and calculates the costs of delays in terms of the waiting
time that they induce.

A. Terminology and Cost Model

To better understand our delay-detection algorithm and the
associated cost model, the reader may imagine the execution
of a parallel program represented as a time-line diagram with a
separate time line for every process, as shown in Figure 2. The
accumulated execution time or resource consumption can then
be modeled as the aggregated length of the intervals occupied
by some process’s activity. In a typical MPI program this is
the wall-clock execution time multiplied by the number of
processes under the slightly simplifying assumption that all
processes start and end simultaneously. In the following, we
will define the terminology underlying our algorithm and cost
model.

a) Wait state: A wait state is an interval during which
a process sits idle. The amount of a wait state is simply the
length of the interval it covers. Wait states typically occur
inside a communication operation when a process is waiting
to synchronize with another process that has not yet reached
the synchronization point. In Figure 2, processes B and C
exhibit wait states that are shown as hatched areas. In both
cases, the waiting occurs because they are trying to receive
a message that has not been sent yet, a situation commonly
referred to as late sender.

Wait states can be classified in two different ways, depend-
ing on the direction from where we start analyzing the chain

time

p
ro

ce
ss

es

A

B

C

comp

comp

comp

S1

S2R1

R2

Delay

Direct wait state

Short-term costs of

delay in comp on A
Propagating wait state Delay

Indirect wait state Direct wait state

Long-term costs of

delay in comp on A
Terminal wait state

Fig. 2. Time-line diagram showing the activities of three processes and their
interactions. The execution of a certain code region is displayed as a shaded
rectangle and the exchange of a message as an arrow pointing in the direction
of the transfer. Regions labeled S and R represent send and receive operations,
respectively. Events recorded in the trace are symbolized as small circles (enter
and exit) or squares (send and receive). Process A delays process B due to an
imbalance in function comp(), inducing a wait state in the receive operation
R1 of B. The wait state in B subsequently delays process C. Thus, the total
costs of the delay on A correspond to the total amount of wait states caused
by it directly (short-term costs) or indirectly (long-term costs).

of causation that leads to their formation. If we start from the
cause, we can divide wait states into direct and indirect wait
states. A direct wait state is a wait state that was caused by
some “intentional” extra activity that does not include waiting
time itself. In our example, the wait state in R1 on process
B is a direct wait state because it was caused by excess
computation of process A in function comp(). However, by
inducing a wait state in process B, this excess computation
is indirectly responsible for a wait state in R2 on process
C, which is why we call this second wait state indirect. The
example thus illustrates that wait states may propagate across
multiple processes. On the other hand, process C also exhibits
a direct wait state produced by communication imbalance: The
actual receipt of the message at B delays the dispatch of the
message to C.

If we look at wait-state formation starting from the effect,
we can distinguish between wait states at the end and those
in the middle of the causation chain. A terminal wait state is
a wait state that does not propagate any further and is, thus,
positioned at the end of the causation chain. In Figure 2, the
wait states of process C would be terminal wait states because
they do not induce any follow-up wait states. In contrast,
propagating wait states are those which cause further wait
states later on. In the example, the wait state of process B is
a propagating wait state because it is responsible for one of
the wait states of process C. Both classification schemes fully
partition the set of wait states, but each in different ways. For
instance, a terminal wait state can be direct or indirect, but it
can never be propagating.

b) Delay: A delay is the original source of a wait state,
that is, an interval or a set of intervals that cause a process
to arrive belatedly at a synchronization point, causing one

5

or more other processes to wait. In this context, the noun
delay refers to the act of delaying as opposed to the state of
being delayed. A delay is not necessarily of computational
nature and may also cover communication. For example,
the decomposition of irregular domains can easily lead to
excess communication when processes have to talk to different
numbers of neighbors. However, a delay does not include any
wait states. Instead, such wait states would be classified as
propagating wait states in our taxonomy. In Figure 2, delay
appears on the time line of process A in region comp(). This
delay is responsible for the direct wait state in R1 on process B
and for the indirect wait state in R2 on process C. In addition,
some delay is introduced by the actual message receipt in the
receive operation R1.

c) Costs: To identify the delay whose remediation will
yield the highest execution-time benefit, we need to know the
amount of wait states it causes. This notion is expressed by
the delay costs: The costs of a delay are the total amount of
wait states it causes. Since the delay costs define a perspective
from the beginning of the causation chain, we believe that
the following refinement is most useful: Short-term costs
cover the direct wait states, whereas long-term costs cover
the indirect wait states. (Due to their established meaning
in business administration, we deliberately avoid the terms
direct or indirect costs.) The total delay costs are simply the
sum of the two. In Section V, we will see that the long-term
delay costs can be much higher than the short-term costs, a
distinction that our analysis facilitates. A separation of the
delay costs in terms of propagating and terminal wait states is
also possible in theory but according to our experience only
of minor value for the user. As we will see, the result of our
delay analysis is a mapping of the costs of a delay onto the
call paths and processes where the delay occurs, offering a
high degree of guidance in identifying promising targets for
load or communication balancing.

B. Scalable Delay Detection and Cost Accounting

To ensure scalability, the delay analysis follows the same
parallelization strategy as the pure wait state analysis does,
leveraging the principle of a parallel replay of the commu-
nication recorded in the trace. However, other than the pure
wait-state analysis, the delay analysis requires an additional
backward replay over the trace. A backward replay processes
a trace backwards in time, from its end to its beginning, and
reverses the roles of senders and receivers. Starting at the
endmost wait states, this allows delay costs to travel from
the place where they materialize in the form of wait states
back to the place where they are caused by delays. Overall,
the analysis now consists of two stages:

1) A parallel forward trace replay that performs the wait
state analysis and annotates communication events with
information on synchronization points and waiting times
incurred.

2) A parallel backward trace replay that for all wait states
detected during the forward replay identifies the delays
causing them. This stage also divides wait states into the
classes propagating vs. terminal and direct vs. indirect.

time

p
ro

ce
ss

es

A

B

~ts ~ws

~tr

~ws

~ts − ~tr

comp1 comp2

comp1 comp2

R1 R2

R3

S3

S1

Propagating

wait time

Delay

~tr

Synchronization interval

Late-sender wait state

Fig. 3. Delay detection for a late-sender wait state via backward replay.
Original messages are shown as solid arrows, whereas messages replayed in
reverse direction are shown as dashed arrows.

In the following, we explain our delay analysis in greater
detail, for simplicity initially concentrating exclusively on
point-to-point communication. During the forward stage, the
analysis processes annotate (i) each wait state with the amount
of waiting time they measure and (ii) each synchronizing
communication event with the rank of the remote process
involved. A communication event of synchronizing nature is
called a synchronization point. The annotations will be needed
later to identify the communication events and synchronization
intervals where delay occurred.

The actual delay analysis is performed during the backward
stage, which traverses all the process-local traces simultane-
ously in backward direction. Whenever the annotations indi-
cate a wait state identified during the forward stage, the algo-
rithm determines the corresponding synchronization interval,
identifies the delays and propagating wait states causing the
waiting time, and calculates the short-term and long-term delay
costs. A synchronization interval covers the time between two
consecutive synchronization points of the same two ranks,
where runtime differences can cause wait states at the end of
the interval. Whereas the communication event associated with
the wait state marks the end point of the interval, its beginning
is defined by the previous synchronization point involving
the same pair of ranks. As the communication operations
are reenacted in backward direction in the course of the
algorithm’s execution, the costs are successively accumulated
and transferred back to their source.

Figure 3 illustrates the delay analysis for a late-sender
wait state. The example exhibits a delay in region (i.e., call
path) instance comp2() and a propagating wait state induced
by some influence external to the scene in region instance
R2 of the sender (i.e., process A). This causes a late-sender
wait state in region instance R3 of the receiver (i.e., process
B). To identify the delay during our analysis, both sender
and receiver calculate their so-called time vectors ~ts and
~tr for the synchronization interval in the figure, with each
vector element representing the accumulated time spent in
a given call path between the two synchronization points
– the communication operations at the end of the interval
excluded. In addition, the sender also determines its waiting-

6

time

p
ro

ce
ss

es

A

B

C

ωB = , γB =

ωC =

comp1 comp2R1

R2 R3

R4

S3

S1 S4

S2

Delay costs

Long-term cost

variable γB

Synchronization interval A,B

Synchronization interval B,C

Fig. 4. Source-related accounting of long-term costs via backward replay
and successive accumulation of indirectly induced waiting time. The waiting
time ωC fist travels to its immediate cause, wait state R3 on process B, from
where it is propagated further to its ultimate cause, the delay on process A.

time vector ~ws, which contains the amount of waiting time
in each (communication) call path visited during the interval.
This is necessary to distinguish delay from propagating wait
states. The receiver sends its time vector ~tr via the reversed
communication (dashed arrow) to the sender, which calculates
the difference vector ~d = ~ts − ~ws − ~tr. For every call path,
the difference vector contains the differences in execution time
(excluding waiting time) between sender and receiver. Under
certain circumstances, some elements of the difference vector
may be negative. This can happen if a smaller excess load
of the waiting process in some call paths is overridden by a
larger excess load of the delaying process in other call paths.
Since only positive time differences can contribute to waiting
time, we set negative elements to zero. The remaining positive
entries represent call paths with delay.

In the next step, the algorithm determines the short- and
long-term costs of the detected delay and maps them onto
the (call path, process) tuples where the delay occurred. The
short-term costs simply correspond to the amount of direct
waiting time incurred by process B in R3. The amount of
direct waiting is obtained by dividing the overall waiting time
in R3, which is transferred to process A during the backward
replay, into direct and indirect waiting time at the ratio of the
amount of delay in ~d versus the amount of waiting time in ~ws,
respectively. The short-term costs are then mapped onto the
delaying call paths by distributing the amount of direct waiting
time proportionally across all call paths involved in the delay.
Likewise, propagating waiting time is mapped onto the call
paths suffering wait states in the synchronization interval on
process A by proportionally distributing the amount of indirect
waiting time across the call paths in ~ws.

To calculate the long-term costs of the detected delay, we
need to know the total amount of waiting time that was
indirectly caused via propagation. Therefore, communication

events where waiting time was detected are further annotated
with a long-term cost variable γ, which represents the costs
indirectly caused by this wait state later on. These cost
variables are initialized with zero and updated in the course
of the backward replay. The long-term costs are propagated
backwards by transmitting the cost variable of a wait state
back to the delaying process, where it is used to calculate long-
term delay costs and to update the cost variables of wait states
present in the synchronization interval. In this way, the delay
costs are successively accumulated as they travel backward
through the communication chain until they reach their root
cause(s). Hence, we can accurately incorporate distant effects
into the calculation of the overall delay costs in a highly
scalable manner.

The more complex example in Figure 4 illustrates the data
flow necessary to accomplish the source-related accounting of
long-term costs. Here, delays in region instances comp1() and
comp2() on process A cause a wait state in R3 on process B,
which in turn delays communication with process C, resulting
in another wait state in R4 on C. The backward replay starts
at the wait state in R4 on process C. The waiting time ωC

of this wait state is transmitted to process B via reverse
communication. There, the long-term cost variable γB of the
wait state in R3 in synchronization interval B,C is updated
to account for the amount of waiting time caused by its
propagation. Next, both R3’s waiting time ωB and the cost
variable γB are transferred to A, where they are mapped onto
the initial delay in comp1() and comp2() in synchronization
interval A,B. The waiting time ωB represents the short-term
costs, and the cost variable γB represents the long-term costs.

The general principle of our backward-replay based ac-
counting method also applies to collective operations, but with
some subtle differences. For n-to-1 and n-to-n communication
and synchronization operations, such as barrier, all-to-all or
(all)gather/(all)reduce, delay costs are assigned to the last
process that enters the operation. For 1-to-n communications
(broadcasts), delay costs are assigned to the root process of
the operation. In contrast to the point-to-point case, the time
vector of the delaying process is broadcast to all processes
participating in the operation. Now, every process determines
the delaying call paths and calculates the delay costs for the
amount of waiting time occurring locally on that process. The
individual cost contributions are then accumulated in a reduc-
tion operation and finally assigned to the delaying process.
For portability reasons, we do not make assumptions about the
underlying implementation of collective operations. Therefore,
our performance patterns for collective communication remain
as generic as possible and do not consider wait states which
might occur, for example, on intermediate processes in a
software broadcast.

V. EVALUATION

We evaluate our approach with respect to both scalability
and functionality. For this purpose, we conducted experiments
using three different MPI codes – the ASCI benchmark
Sweep3D [18], the astrophysics simulation Zeus-MP/2 [19],
and the plasma-physics code Illumination [20], [21]. All

7

Fig. 5. Sweep3D analysis result in the Scalasca report browser. The delay costs metric (left pane) identifies fixup sections as a major cause of wait states
(middle pane). As the sweep in the selected octant originates in the upper left corner of the virtual process grid, delays occur on the upper and left edge of
the underloaded rectangular inner region and along intricate line patterns of overloaded processes (right pane).

measurements were taken on the 72-rack IBM Blue Gene/P
supercomputer Jugene at the Jülich Supercomputing Centre.

A. Scalability

Because it is the most scalable code of our ensemble,
the scalability of the delay analysis is demonstrated using
Sweep3D. This code is an MPI benchmark performing the
core computation of a real ASCI application, a 1-group time-
independent discrete ordinates neutron transport problem. It
calculates the flux of neutrons through each cell of a three-
dimensional grid (i, j, k) along several possible directions
(angles) of travel. The angles are split into eight octants, cor-
responding to one of the eight directed diagonals of the grid.
Sweep3D uses an explicit two-dimensional decomposition
(i, j) of the three-dimensional computational domain, result-
ing in point-to-point communication of grid-points between
neighboring processes, and reflective boundary conditions. A
wavefront process is employed in the i and j directions,

 1

 10

 100

 1000

 256 512 1024 2048 4096 8192 16384 32768 65536

W
al

l t
im

e
(s

)

Processes

Uninstrumented execution
Combined wait-state and delay analysis

Pure wait-state analysis

Fig. 6. Comparison of Sweep3D application execution time, combined wait-
state and delay analysis time, and pure wait-state analysis time at various
scales.

combined with pipelining of blocks of k-planes and octants,
to expose parallelism.

To demonstrate the scalability of our approach, we per-
formed analyses of traces collected with up to 65,536 pro-
cesses, configured in weak scaling mode with a constant
problem size of 32× 32× 512 cells per process. The elapsed
times for the benchmark runs with all user and MPI routines
instrumented for trace collection were within 5% of the times
for the uninstrumented versions, which suggests an acceptably
small measurement dilation. Figure 6 compares the wall-clock
execution times of the combined wait-state and delay analysis
with (i) the uninstumented Sweep3D application and (ii) the
pure wait-state analysis. The 8-fold doubling in the number of
processes and the resulting large range of times necessitates a
log-log scale in the plot. Since it is not subject of this study,
the analysis times do not include loading the traces, which
took roughly 110 s at the largest scale. Although the combined
analysis needed appreciably more time than the pure wait-state
analysis, it scaled equally well. As expected when replaying
the original communication, both curves run in parallel to
the uninstrumented execution. We believe that the increase
in trace-analysis time can be tolerated even for configurations
larger than 65,536 – justified by the improved understanding
of wait-state formation, as demonstrated below.

B. Functionality

The functional capabilities of our approach, that is, the
insights it offers into the formation of wait states, are shown
using all three codes.

1) Sweep3D: This benchmark has been comprehensively
modeled and examined on a variety of systems and scales [22],
[23], and was also the subject of a recent scaling study [16]
on Jugene using Scalasca but without our delay analysis.
While the study generally confirmed the good scaling behavior

8

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

First Second Third Fourth

Ag
gr

eg
at

ed
 w

ai
tin

g
tim

e
(s

ec
on

ds
)

Communication phase

Direct
Indirect

Fig. 7. Composition of waiting time in different communication phases of
Zeus-MP/2.

of Sweep3D, it also identified computational load imbalance
and MPI waiting time growing with scale. By successively
refining the analysis with additional source code annotations,
the section of code applying ’fixup’ corrections was pinpointed
as the source of the load imbalance. To assess the influence
of the load imbalance on the formation of wait states, we
applied our delay analysis to a trace acquired during the
scaling study on 16,384 cores. In this configuration, 11% of
the total execution time was spent in late-sender wait states.

To advance the wavefronts across the two-dimensional
grid, Sweep3D employs a complex communication pattern
with blocking point-to-point communications that facilitate the
propagation of wait states. And indeed, our delay analysis
confirmed that almost 90% of the waiting time is indirect. To
isolate the locations of its root causes, we examined the delay
cost metric in the Scalasca report browser (Figure 5). The
results confirm delays in the fixup routines as primary causes
of wait states. Overall, these delays are responsible for almost
37% of the total waiting time, thus forming the largest singular
root cause. This is especially remarkable since the fixups are
only applied in 5 out of 12 iterations. Other major causes are
delays in the non-waiting parts of the communication functions
(responsible for 25% of the waiting time) and delays in the
remaining, only slightly imbalanced computation inside the
sweep() routine (responsible for another 31% of the overall
waiting time). These can be explained by the inability of a
process to satisfy horizontal and vertical neighbors at the same
time. The exchange of data first in horizontal direction assigns
a special role to the vertical border of the grid from where most
of this waiting time is spread (not shown).

All in all, the delay analysis proved the major role of the
imbalanced fixup in the formation of wait states. In spite of the
code’s challenging communication pattern with its far-reaching
wait-state propagation, the delay analysis was able to identify
different root causes and to quantify their contribution to the
performance problem. This allowed even the noticeable impact
of small computational delays within the sweep() routine to
be identified.

2) Zeus-MP/2: Our second case study is the astrophysical
application Zeus-MP/2. The Zeus-MP/2 code performs hydro-
dynamic, radiation-hydrodynamic (RHD), and magnetohydro-
dynamics (MHD) simulations on 1, 2, or 3-dimensional grids.
For parallelization, Zeus-MP/2 decomposes the computational
domain regularly along each spatial dimension and employs

 0

 2000

 4000

 6000

 8000

 10000

 12000

lorentz() i-loop j-loop k-loop

D
el

ay
 c

os
t (

se
co

nd
s)

Delay origin (call path)

Short-term cost
Long-term cost

Fig. 8. Short- and long-term costs of delays in four critical call paths of
Zeus-MP/2.

a complex point-to-point communication scheme using non-
blocking MPI operations to exchange data between neighbor-
ing cells in all active directions of the computational domain.
We analyzed the 2.1.2 version on 512 processes simulating
a three-dimensional magnetohydrodynamics wave blast, based
on the “mhdblast XYZ” example configuration provided with
the distribution. The number of simulated time steps was
limited to 100 in order to constrain the size of the recorded
event trace. As in the previous example, our analysis targets
the origins of wait states.

The wave-blast simulation requires 188,000 seconds of CPU
time in total, 12.5% of which is waiting time. Most of this
waiting time can be attributed to late-sender wait states in
four major communication phases within each iteration of
the main loop, in the following denoted as first to fourth
communication phase. As Figure 7 shows, the dominant part
of the waiting time in these communication phases is indirect.
Regarding the root causes of the waiting time, our delay
analysis identified four call-path locations as major origins of
delay costs: the lorentz() subroutine and three computational
loops within the hsmoc() subroutine, which we refer to as i-
loop, j-loop and k-loop in the remainder of this paper. Within
the main loop, the lorentz() subroutine is placed before the first
communication phase, the i-loop before the second, and the
j-loop and k-loop before the third and fourth communication
phases, respectively. Figure 8 illustrates the mapping of short-
and long-term delay costs onto the call paths responsible for
the delay. Especially the lorentz() routine and the i-loop region
exhibit a high ratio of long- versus short-term delay costs,

(a) Computation (b) Waiting time (c) Delay costs

Fig. 9. Distribution of computation time, waiting time, and total delay costs
in Zeus-MP/2 across the three-dimensional computational domain.

9

(a) Delay costs (b) Direct waiting time in
1st comm. phase

(c) Indirect waiting time in
1st comm. phase

(d) Indirect waiting time in
2nd comm. phase

(e) Indirect waiting time in
3rd comm. phase

Fig. 10. Propagation of wait states caused by delays in the lorentz() subroutine. These delays cause direct wait states in the first communication phase,
which induce indirect wait states at the surrounding layer of processes and travel further outward during the second and third communication phase.

indicating that delays in these call paths indirectly manifest
themselves as wait states in later communication phases.

The visualization of the virtual process topology in the
Scalasca report browser allows us to study the relationship
between waiting and delaying processes in terms of their
position within the computational domain. Figure 9(a) shows
the distribution of workload (computational time, without time
spent in MPI operations) within the main loop across the three-
dimensional process grid. The arrangement of the processes
in the figure reflects the virtual process topology used to map
the three-dimensional computational domain onto the available
MPI ranks. Obviously, there is a load imbalance between ranks
of the central and outer regions of the computational domain,
with the most underloaded process spending 76.7% (151.5 s)
of the time of the most overloaded process (197.4 s) in
computation. Accordingly, the underloaded processes exhibit
a significant amount of waiting time (Figure 9(b)).

Examining the delay costs reveals that almost all the delay
originates from the border processes of the central, overloaded
region (Figure 9(c)). The distribution of the workload explains
this observation: Within the central and outer regions, the
workload is relatively well balanced. Therefore, communica-
tion within the same region is not significantly delayed. In
contrast, the large difference in computation time between the
central and outer region causes wait states at synchronization
points along the border.

Our findings indicate that the majority of waiting time
originates from processes at the border of the central topolog-
ical region. Indeed, visualizing direct and indirect wait states
separately confirms the propagation of wait states. Figure 10
shows how delay in the lorentz() subroutine at the border of
the central region causes direct wait states in the surrounding
processes during the first communication phase, which in turn
cause indirect wait states within the next layer of processes
and propagate further to the outermost processes during the
second and third communication phase.

3) Illumination: Our last case study is Illumination, a 3D
parallel relativistic particle-in-cell code for the simulation of
laser-plasma interactions [20], [21], where our method was
able to shed light onto an otherwise obscure performance

phenomenon. The code uses MPI for communication and I/O.
In addition, the Cartesian topology features of MPI simplify
domain decomposition and the dynamic distribution of tasks,
allowing the code to be easily executed with different num-
bers of cores. The three-dimensional computational domain
is mapped onto a two-dimensional logical grid of processes.
As in the case of Sweep3D, the logical topology can be
conveniently visualized in the Scalasca report browser.

We examined a benchmark run over 200 time steps on 1024
processors. The traditional wait-state analysis showed that the
application spent 55% of its runtime in computation and 44%
in MPI communication, of which more than 90% was waiting
time in point-to-point communication (Figure 11). In particu-
lar, a large amount of time – 91% of the waiting time, and 36%
of the overall runtime – was spent in late-receiver wait states,
in which a send operation is blocked until the corresponding
receive on the peer process has been posted. This can happen
during the transfer of voluminous messages, when buffer space
is scarce enough to demand synchronous exchange. There was
also a notable computational load imbalance in the program’s
main loop, as shown in Figure 12(a) by the distribution of

 0

 10000

 20000

 30000

 40000

 50000

 60000

Original Revised

W
al

lc
lo

ck
 ti

m
e

(s
ec

on
ds

)

Program version

Computation
Communication
Wait Collective

Wait P2P (direct)
Wait P2P (indirect)

Fig. 11. Runtime composition and quantitative comparison of the original
versus the revised version of Illumination. In the revised version, the indirect
waiting time was significantly reduced and wait states were partially shifted
from point-to-point to collective communication. A slight increase in compu-
tation time was caused by additional memory copies needed in context of the
switch to non-blocking communication.

10

(a) Computation (original) (b) Propagating wait states (orig-
inal)

(c) Propagating wait states (re-
vised)

(d) Total delay costs (revised)

Fig. 12. Comparing the original with the revised (i.e., optimized) version of Illumination by visually mapping computational load, propagating wait states,
and delay costs onto the two-dimensional virtual process topology.

computation time across the process grid, where processes
within a circular inner region obviously need more time than
those outside. The measured computation time varies between
16 and 22 seconds per process.

Using the delay analysis, we were able to determine the root
cause of the late-receiver wait states. Interestingly, the direct
influence of the overloaded region, as indicated by its short-
term delay costs, was negligible, whereas the dominant portion
of waiting time was caused by propagation. Accordingly, a
large number of the late-receiver wait states propagate them-
selves further. Figure 12(b) illustrates that with the exception
of the border processes, a significant amount of propagating
waiting time is present across all processes of the two-
dimensional grid. Only a blurred resemblance of the inverted
load-distribution pattern recalls the remote influence exerted
by the computational imbalance. These findings suggest that
the main problem was actually an inefficient communication
pattern as such: in a sense, the communication impeded itself.

When exchanging the blocking MPI communication rou-
tines in the code with their non-blocking counterparts and
using MPI Waitall to complete outstanding requests in an ar-
bitrary order, the waiting time is substantially reduced. Against
the background of our analysis, this seems now plausible
because wait states in one operation no longer delay sub-
sequent communication calls. We repeated our performance
analysis with the revised version of the code. As Figure 11
illustrates, this version indeed shows a significant performance
improvement. More than 80% of the program runtime is now
consumed by computation, 11% by wait states in collective
communication, and only 5% by wait states in point-to-point
communication. The computational load imbalance, however,
remains. Still, 62% of the waiting time is the result of
propagation, but mapping the propagating wait states onto the
responsible processes (Figure 12(c)) makes the load imbalance
appear to be a less remote and more direct cause.

We can validate this assumption by clearly identifying delay
within the computational part of the main loop as the major
source of the waiting time. Also, the topological distribution
of the delay costs across the process grid, as depicted in Figure
12(d), roughly delineates regions of equal load like level lines
on a geographical map – similar to our previous case study.
Hence, the delay analysis confirms the load imbalance as
the single root cause of the bulk of waiting time and, thus,

indicates that the waiting time cannot be significantly reduced
any further without actually resolving the load imbalance
itself. This, however, would require a major redesign of the
code, which is beyond the scope of this paper.

VI. CONCLUSION AND OUTLOOK

Wait states induced in the wake of load or communication
imbalance present a major scalability challenge for appli-
cations on their way to deployment on peta- and exascale
systems. Our work contributes towards a solution of the
problem by allowing delays responsible for the formation of
wait states both (i) to be identified and (ii) to be quantified in
terms of the wait states they cause – even if those wait states
materialize much later in the program. This cost attribution is
essential, since the resulting wait states may consume much
more resources than the delaying operation itself. Compared
to earlier work, our approach is based on a parallel replay of
event traces both in forward and in backward direction, which
allowed non-trivial insights into the wait-state propagation
occurring in three example codes running on up to 65,536
cores.

Unfortunately, the excess workload identified as a delay
usually cannot simply be removed. To achieve a better bal-
ance, optimization hypotheses drawn from a delay analysis
typically propose the redistribution of the excess load to
other processes instead. However, redistributing workloads
in complex message-passing applications can have intricate
side-effects that may compromise the expected reduction of
waiting times. Given that balancing the load statically or
even introducing a dynamic load-balancing scheme constitute
major code changes, they should ideally be performed only
if the prospective performance gain is likely to materialize.
It would therefore be desirable if the effects of redistributing
a given delay could be automatically predicted and the ex-
pected savings be determined without altering the application
itself. Since the effects of such changes are hard to quantify
analytically, we plan to combine our delay analysis with a
framework developed earlier by the authors [10], [24] that can
simulate these changes via a real-time replay of event traces
after they have been modified to reflect the redistributed load.
First results indicate both high accuracy and good scalability,
further application studies are in progress.

11

ACKNOWLEDGMENT

Financial support from the Deutsche Forschungsgemein-
schaft (German Research Foundation) through Grant GSC 111
and the Helmholtz Association of German Research Centers
through Grant VH-NG-118 is gratefully acknowledged.

REFERENCES

[1] J. Vetter (Ed.), “Report of the workshop on software development
tools for petascale computing,” August 2007, US Department of En-
ergy, http://www.csm.ornl.gov/workshops/Petascale07/sdtpc workshop
report.pdf.

[2] M. Geimer, F. Wolf, B. J. N. Wylie, and B. Mohr, “A scalable tool ar-
chitecture for diagnosing wait states in massively-parallel applications,”
Parallel Computing, vol. 35, no. 7, pp. 375–388, 2009.

[3] Z. Szebenyi, F. Wolf, and B. J. N. Wylie, “Space-efficient time-series
call-path profiling of parallel applications,” in Proc. of the ACM/IEEE
Conference on Supercomputing (SC09, Portland, OR), November 2009.

[4] W. Meira,Jr., T. J. LeBlanc, and A. Poulos, “Waiting time analysis and
performance visualization in Carnival,” in Proc. of the SIGMETRICS
Symposium on Parallel and Distributed Tools (SPDT’96). New York,
NY, USA: ACM, 1996, pp. 1–10.

[5] W. Meira,Jr., T. J. LeBlanc, and V. A. F. Almeida, “Using cause-effect
analysis to understand the performance of distributed programs,” in
Proc. of the SIGMETRICS Symposium on Parallel and Distributed Tools
(SPDT’98). New York, NY, USA: ACM, 1998, pp. 101–111.

[6] H. M. Jafri, “Measuring causal propagation of overhead of inefficiencies
in parallel applications,” in Proc. of the 19th IASTED International Con-
ference on Parallel and Distributed Computing and Systems, Cambridge,
MA, USA, November 2007, pp. 237–243.

[7] O. Morajko, A. Morajko, T. Margalef, and E. Luque, “On-line perfor-
mance modeling for MPI applications,” in Proc. of the 14th Euro-Par
Conference (Las Palmas de Gran Canaria, Spain), ser. Lecture Notes
in Computer Science, vol. 5168. Springer, August - September 2008,
pp. 68–77.

[8] M. Schulz, G. Bronevetsky, and B. R. de Supinski, “On the performance
of transparent MPI piggyback messages,” in Proc. 15th European
PVM/MPI Users’ Group Meeting (Dublin, Ireland), ser. Lecture Notes in
Computer Science, vol. 5205. Springer, September 2008, pp. 194–201.

[9] Z. Szebenyi, B. J. N. Wylie, and F. Wolf, “Scalasca parallel performance
analyses of SPEC MPI2007 applications,” in Proc. of the 1st SPEC Int’l
Performance Evaluation Workshop (SIPEW, Darmstadt, Germany), ser.
Lecture Notes in Computer Science, vol. 5119. Springer, June 2008,
pp. 99–123.

[10] M.-A. Hermanns, M. Geimer, F. Wolf, and B. J. Wylie, “Verifying
causality between distant performance phenomena in large-scale MPI
applications,” in Proc. of the 17th Euromicro International Conference
on Parallel, Distributed, and Network-Based Processing (PDP, Weimar,
Germany). IEEE Computer Society, February 2009, pp. 78–84.

[11] J. K. Hollingsworth, “An online computation of critical path profiling,”
in Proceedings of the 1st ACM SIGMETRICS Symposium on Parallel
and Distributed Tools, May 1996, pp. 11–20.

[12] M. Schulz, “Extracting critical path graphs from MPI applications,” in
Proc. of the IEEE Cluster Conference, Boston, MA, USA, September
2005.

[13] M. Calzarossa, L. Massari, and D. Tessera, “A methodology towards
automatic performance analysis of parallel applications,” Parallel Com-
puting, vol. 30, no. 2, pp. 211–223, Feb. 2004.

[14] A. D. Malony, S. S. Shende, and A. Morris, “Phase-based parallel per-
formance profiling,” in Proc. of the Conference on Parallel Computing
(ParCo, Malaga, Spain), ser. NIC Series, vol. 33. John von Neumann
Institute for Computing, September 2005, pp. 203–210.

[15] T. Gamblin, B. R. de Supinski, M. Schulz, R. Fowler, and D. A.
Reed, “Scalable load-balance measurement for SPMD codes,” in Proc.
of the ACM/IEEE Conference on Supercomputing (SC08, Austin, TX),
November 2008.

[16] B. J. N. Wylie, D. Böhme, B. Mohr, Z. Szebenyi, and F. Wolf, “Perfor-
mance analysis of Sweep3D on Blue Gene/P with the Scalasca toolset,”
in Proc. 24th Int’l Parallel & Distributed Processing Symposium and
Workshops (IPDPS, Atlanta, GA). IEEE Computer Society, April 2010.

[17] D. Becker, R. Rabenseifner, F. Wolf, and J. C. Linford, “Scalable times-
tamp synchronization for event traces of message-passing applications,”
Parallel Computing, vol. 35, no. 12, pp. 595–607, 2009.

[18] Accelerated Strategic Computing Initiative, “The ASCI SWEEP3D
benchmark code,” http://www.ccs3.lanl.gov/pal/software/sweep3d/
sweep3d readme.html, 1995.

[19] J. C. Hayes, M. L. Norman, R. A. Fiedler, J. O. Bordner, P. S. Li, S. E.
Clark, A. Ud-Doula, and M.-M. MacLow, “Simulating radiating and
magnetized flows in multi-dimensions with ZEUS-MP,” Astrophysical
Journal Supplement, vol. 165, pp. 188–228, 2006.

[20] M. Geissler, J. Schreiber, and J. M. ter Vehn, “Bubble acceleration of
electrons with few-cycle laser pulses,” New Journal of Physics, vol. 8,
no. 9, p. 186, 2006.

[21] M. Geissler, S. Rykovanov, J. Schreiber, J. M. ter Vehn, and G. D.
Tsakiris, “3D simulations of surface harmonic generation with few-cycle
laser pulses,” New Journal of Physics, vol. 9, no. 7, p. 218, 2007.

[22] A. Hoisie, O. Lubeck, and H. Wasserman, “Performance analysis of
wavefront algorithms on very-large scale distributed systems,” in Pro-
ceedings of the workshop on wide area networks and high performance
computing, ser. Lecture Notes in Control and Information Sciences, vol.
249. Springer Berlin / Heidelberg, 1999, pp. 171–187.

[23] D. Sundaram-Stukel and M. K. Vernon, “Predictive analysis of a
wavefront application using LogGP,” in Proceedings of the 7th ACM
SIGPLAN Symposium on Principles and Practices of Parallel Program-
ming, vol. 34, no. 8, August 1999, pp. 141–150.

[24] D. Böhme, M.-A. Hermanns, M. Geimer, and F. Wolf, “Performance
simulation of non-blocking communication in message-passing applica-
tions,” in Proc. of the 2nd Workshop on Productivity and Performance
(PROPER, in conjunction with Euro-Par 2009), August 2009, (to
appear).

