Scalable performance analysis of large-scale parallel applications
on Cray XT systems with Scalasca

Brian J. N. Wylie, David Bohme, Wolfgang Frings, Markus Geimer, Bernd Mohr, Zoltan Szebenyi
Jiilich Supercomputing Centre, Forschungszentrum Jiilich, Jiilich, Germany
Daniel Becker, Marc-André Hermanns, Felix Wolf
German Research School for Simulation Sciences, Aachen, Germany

ABSTRACT: The open-source Scalasca toolset (available from www.scalasca.org) supports integrated runtime summarization

and automated trace analysis on a diverse range of HPC computer systems.

An HPC-Europa2 visit to EPCC in 2009 re-

sulted in significantly enhanced support for Cray XT systems, particularly the auxilliary programming environments and hybrid
OpenMP/MPI. Combined with its previously demonstrated extreme scalability and portable performance analyses comparison ca-
pabilities, Scalasca has been used to analyse and tune numerous key applications (and benchmarks) on Cray XT and other PRACE
prototype systems, from which experience with a representative selection is reviewed.

KEYWORDS: OpenMP/MPI, parallel/distributed systems, performance measurement and analysis tools, scalability

1 Introduction

Scalasca is an open-source toolset for analysing the execution
behaviour of applications based on the MPI and/or OpenMP
parallel programming interfaces supporting a wide range of cur-
rent HPC platforms [5]. It combines compact runtime sum-
maries, that are particularly suited to obtaining an overview
of execution performance, with in-depth analyses of concur-
rency inefficiencies via event tracing and parallel replay. With
its highly scalable design, Scalasca has facilitated performance
analysis and tuning of applications consisting of unprecedented
numbers of processes [[13]].

The predecessor of the Scalasca toolset, KOJAK, supported
measurement and automatic trace analysis on Cray T3E, X1,
XD1 and XT systems, and Scalasca inherited those capabilities,
however, increasing usage and demand warranted targeted en-
hancement of support for the latest Cray XT systems. With the
support of the HPC-Europa2 Transnational Access programme
of the European Union, a visit to EPCC in 2009 with access to
the HECToR system was arranged, allowing face-to-face inter-
action with local performance analysts and application devel-
opers to determine specific requirements and desires, as well as
an opportunity to assist them in exploiting performance analysis
and optimisation opportunities. [12]]

This paper provides an overview of the Scalasca toolset and
its usage on Cray XT systems, covers the recent enhancements
(many of which also apply to other systems), and reviews expe-
rience using Scalasca with a variety of applications.

2 Scalasca overview

Scalasca supports measurement and analysis of MPI applica-
tions written in C, C++ and Fortran on a wide range of cur-
rent HPC platforms [[11} [14]. Hybrid codes making use of basic

OpenMP features in addition to message passing are also sup-
ported. Figure|l|shows the Scalasca workflow for instrumenta-
tion, measurement, analysis and presentation.

Before performance data can be collected, the target appli-
cation must be instrumented and linked to the measurement li-
brary. The instrumenter for this purpose is used as a prefix to the
usual compile and link commands, offering a variety of man-
ual and automatic instrumentation options. MPI operations are
captured simply via re-linking, whereas a source preprocessor is
used to instrument OpenMP parallel regions. Often compilers
can be directed to automatically instrument the entry and ex-
its of user-level source routines, or the PDToolkit source-code
instrumenter can be used for more selective instrumentation of
routines [4]. Finally, programmers can manually add custom
instrumentation annotations into the source code for important
regions via macros or pragmas which are ignored when instru-
mentation is not activated.

The Scalasca measurement and analysis nexus configures
and manages collection of execution performance experiments,
which is similarly used as a prefix to the parallel execution
launch command of the instrumented application executable
(i.e., aprun on Cray XT systems) and results in the generation
of a unique experiment archive directory containing measure-
ment and analysis artifacts, including log files and configuration
information.

Users can choose between generating a summary analysis
report (‘profile’) with aggregate performance metrics for each
function callpath and/or generating event traces recording run-
time events from which a profile or time-line visualization can
later be produced. Summarization is particularly useful to ob-
tain an overview of the performance behaviour and for local
metrics such as those derived from hardware counters. Since

Cray User Group 2010 Proceedings

Optimized measurement configuration

5 1
Y 5 1
Measurement 5
library »| Summary =
KL, report = Analysi
Instrumente : L HWC | = nalysis
executable tnstr.t 1 g report
Bl I AN explorer
application q Local > Parallel Pattern . E i
»| event traces »| pattern search report &
Instrumenter/ = T 14
compiler/linker
SOUICE TN AR > bTrace
module rowser

Figure 1: Schematic overview of Scalasca instrumentation, measurement, analysis and presentation.

measurement overheads can be prohibitive for small routines
that are executed often and traces tend to rapidly become very
large, optimizing the instrumentation and measurement config-
uration based on the summary report is usually recommended.
When tracing is enabled, each process generates a trace con-
taining records for its process-local events: by default separate
files are created for each MPI rank, or SIONIib can be used to
improve file handling by transparently mapping task-local files
into a smaller number of physical files [3]]. After program termi-
nation (and with the same partition of processors), the Scalasca
nexus automatically loads the trace files into main memory and
analyzes them in parallel using as many processes as have been
used for the target application itself. During trace analysis,
Scalasca searches for wait states and related performance prop-
erties, classifies detected instances by category, and quantifies
their significance. The result is a wait-state report similar in
structure to the summary report but enriched with higher-level
communication and synchronization inefficiency metrics.

Both summary and wait-state reports contain performance
metrics for every measured function callpath and process/thread
which can be interactively examined in the provided analysis re-
port explorer. Prior to initial presentation, raw measurement re-
ports are processed to derive additional metrics and structure the
resulting set of metrics in hierarchies. Additional processing to
combine reports or extract sections produces new reports with
the same format. Scalasca event traces may also be examined
directly (or after conversion if necessary) by various third-party
trace visualization and analysis tools.

3 Scalasca enhancements for Cray XT

Initial Scalasca support for Cray XT3 systems was limited to
the PGI programming environment and dual-core Opteron com-
pute nodes running Catamount, but otherwise supported the
full range of Scalasca instrumentation, measurement and anal-
ysis functionality at the time. This included appropriate con-
figuration of runtime libraries and components that run on the
compute nodes as well as instrumentation, post-processing and
presentation components for login and service nodes. Since

Cray compute nodes don’t have globally synchronized high-
resolution clocks, timestamps on events in traces need to be
adjusted for logical event order consistency during analysis [2].

Capturing the mappings of application processes to proces-
sors in the Cray XT physical torus was incorporated relatively
early, allowing investigation of associations between perfor-
mance and the placement of processes. This additional ‘topol-
ogy’ information is inserted in Scalasca analysis reports during
their post-processing using node mappings available from vari-
ous XT utilities. Since an application typically uses only a sub-
set of the entire XT system, and the partition allocated often
consists of disjoint processors, the GUI for interactive analysis
report exploration can trim unused sections of hardware from
its presentation of the physical topology for a more compact
view. As XT systems with quad-core and six-core compute
nodes have become available, this approach has required only
minor extensions.

Migration from Catamount to Compute Node Linux (CNL),
and associated changes of MPI library, also involved only small
changes to the Scalasca measurement libraries and how these
are linked with instrumented application executables.

A more significant recent development has been the provision
of multiple programming environments (PrgEnvs) on Cray XT
systems, combined with support for ‘hybrid’ programming with
OpenMP within the MPI processes running on SMP compute
nodes. In addition to the default PGI environment, GNU, In-
tel, Pathscale and Cray’s own CCE have made different compil-
ers available. Since Scalasca already supported these compilers
(apart from CCE), including OpenMP and hybrid OpenMP/MPI
measurement, on a variety of systems, adaption for the Cray XT
programming environments was straightforward. In this pro-
cess, Scalasca support for PGI compilers was also enhanced
to support runtime filtering of events for instrumented user-
level source routines, thereby reducing measurement overhead
and improving overall Scalasca usability on Cray XT systems.
(Since newer versions of the PGI compilers support multiple
instrumentation interfaces, this was also addressed.)

Configuring support for Scalasca source instrumentation with

PDToolkit and measurement including access to hardware
counters with PAPI is the same for all programming environ-
ments. While a limited amount of interoperability is possible
between code compiled and instrumented with different com-
pilers, differences in OpenMP runtime systems require distinct
configurations and installations of Scalasca. (Since MPI of-
fers only source-level portability, multiple MPI library families,
such as MPICH and OpenMPI, also require separate Scalasca
installations.) The Cray XT programming environment mod-
ules abstract compile commands (such as ftn for Fortran com-
pilation) as a convenience for users, however, this required care-
ful dissociation during Scalasca installation, so that an appropri-
ate configuration was built. A user switching from the default
PGI programming environment to another therefore also needs
to ensure that a corresponding version of Scalasca is used when
instrumenting their application.

Typically that same version of Scalasca would also be used
for measurement and analysis of the instrumented application
execution. Since the Scalasca trace analyzer is also a paral-
lel application with dependencies on the shared libraries of the
programming environment, and it is automatically launched af-
ter measurement to analyse traces, it will generally fail to run in
a different programming environment. (Switching environment
to analyse already collected traces is also possible.)

Scalasca can be configured and installed along with its anal-
ysis report explorer GUI, CUBE3, however, this is generally
undesirable when there are multiple configurations, as with the
Cray programming environments. Since the GUI has no MPI
or OpenMP dependencies, yet requires the (same) Qt4 toolkit
libraries, each installation would be redundant at best. Since
each programming environment configures different libraries or
versions of libraries (e.g., for libgcc.so), these dependencies be-
come problematic when building Scalasca as the GUI may re-
quire a different version from that of the parallel components.
Fortunately, CUBES3 is also distributed separately and can be
configured using generic library versions, such that a single in-
stallation can be used by Scalasca with all programming envi-
ronments. Furthermore, since remote usage of GUI applications
can be troublesome, due to performance and security issues, of-
ten it is preferable to install CUBE3 on a local system, where it
can more conveniently be used to examine Scalasca experiment
archives transferred from remote supercomputers.

4 Scalasca measurement & analysis case studies

Scalasca has been used to analyse and tune the execution of
a range of parallel applications on Cray XT systems over the
years, from which illustrative examples will now be reviewed.

4.1 SMG2000

Immediately after the integration of the formerly separate XT3
and XT4 systems at Oak Ridge National Laboratory in mid-
2007, the Jaguar system consisted of 11,508 dual-core compute
nodes running a Catamount microkernel. The ASC SMG2000
semi-coarsening multigrid solver benchmark [1]] uses a com-

g2000_jag Lar_22528/tra

Flle View Help

Metrice Call Tree ‘ Flat Profile | System Tree Topology View

B

Root percert Selection percent /| [Peer percent

=] 0.0 Time B EED 0.0 HYPRE_StuctsMGSolve |-
—=—{0 34.8 Execution =] 0.0 hypre_SMGSalve
Lo oomm] 0.0 hypre_structiatrixDestn
=] 0.0 Cammunication 1] 0.0 hypre_StructvectarDest:
|43—4:| 0.0 Collective 1] 0.0 hypre_StructhatrixRes

{] 0.0 Early Reduce

}—D 0.0 Early Scan

] 0.0 Late Broadeast

‘—D 24 Wait at N xnl

‘ [J 0.0 mx N Completi

=] 145 Point-to-point
—@—{d 48.3 Late Sender
‘ {1 0.0 Late Receiver

@[] 0.0 Synchronization

{1 0.0 MPI KO

L[0.0 IniwEsxit

L[] 0.0 Overhead

@ 1000 Visits

-=—{l 100.0 Communications

-=—{] 0.0 Synchranizations /

L] 0.0 hypre_StructvectarRef

-] 0.0 hypre_StructinnerProd

1] 0.0 hypre_SMGRelaxSetRet

L] 0.0 hypre_SMGRelaxSeta;

1] 0.0 hypre_SmGRelaxsetZer

-2 0.0 hypre_SmGRelax

-] 0.0 hypre_SMGRelaxSet

—] 16.5 hypre_SMGResidual

- 46.5 hypre_SMGSolve

[0.0 hypre_SMGSetStruct:

5.6 hypre_sMGResidual

1.3 hypre_SemiRestrict

30.2 hypre_Semilnterp

0.0 hypre_structApy L

L] 0.0 hypre_SMGAxpy 7 14
T

1 P
91,140,454 (36.3%) | ERRELTC

- =~
1.887e+05| (42345535 (465%) |

[ez528 %7 | |

Figure 2: Scalasca analysis report explorer presentation of
an SMG2000 trace experiment with 22,528 processes on the
Jaguar Cray XT3/4 showing percentages of “Late Sender”
time in a recursive hypre_SMGSolve callpath distributed by
process on the application’s three-dimensional grid. (Metric
values in the trees and topology views are colour-coded ac-
cording to the scale at the bottom of the window.)

plex communication pattern with a lot of non-nearest neighbour
MPI point-to-point communication in a three-dimensional prob-
lem decomposition, and is considered a tough case for trace-
based performance analysis tools. With an early version of
Scalasca, source code routine instrumentation was generated by
the PGI compiler, and the instrumented executable run with a
64 < 64 x 32 problem size per process on 22,528 (22k) processes
arranged in a 32x32x22 grid. [[14]

At this time, runtime filtering of compiler-instrumented rou-
tines was not implemented for the PGI compiler adapter in the
Scalasca measurement library, such that up to 328 MB of trace
event data was collected for some processes and 5 TB in total.
At the end of measurement, writing these trace files and asso-
ciated metadata took 20 minutes followed by an additional 16
minutes for the trace analysis on the same processors.

From the trace analysis, half of the total execution time was
determined to be waiting time of early receivers blocked on
senders yet to initiate message transfers, i.e., “Late Sender”
time, as shown in Figure[2] (This metric is explained more fully
in the next example.) Although not distinguishable in the figure
due to the large number of processes, the distribution of waiting
time per process indicated that certain processes in the interior
of the grid were most responsible.

This was the largest experiment collected and analysed with
Scalasca at the time which demonstrated the general viability
of the toolset and its approach, however, it also helped identify
scalability and performance issues that needed to be addressed.
For example, targeted optimization of definition identifier unifi-
cation immediately resulted in a six-fold improvement.

4.2 Sweep3D

As HPC systems have grown, scalability to what was formerly
considered extreme scales has become essential both for appli-
cations and associated performance measurement and analysis
tools. Recently experiments with the latest version of Scalasca
on Jaguar with Sweep3D were undertaken to investigate mea-
surement and analysis scalability.

The extensively studied ASCI Sweep3D benchmark code [[7]
solves a 1-group time-independent discrete ordinates neutron
transport problem, calculating the flux of neutrons through each
cell of a three-dimensional grid (i, j, k) along several directions
(angles) of travel. Angles are split into eight octants, corre-
sponding to one of the eight directed diagonals of the grid. It
uses an explicit two-dimensional decomposition (i, j) of the
three-dimensional computation domain, resulting in point-to-
point communication of grid-points between neighbouring pro-
cesses, and reflective boundary conditions. A wavefront process
is employed in the i and j directions, combined with pipelining
of blocks of k-planes and octants to expose parallelism.

To investigate scaling behaviour of Sweep3D for a large
range of scales, the benchmark input was configured with a
fixed-size 32 x32x 512 subgrid for each process. The bench-
mark performs 12 iterations, with flux corrections (referred to
as ‘fixups’) applied after 7 iterations. Built on Jaguar with the
default PrgEnv-pgi 10.2 Fortran compiler using the -03 opti-
mization flag, the executables were run using all six available
COres per processor.

Execution times reported for the timed Sweep3D kernel for
a range of process counts up to 196,608 (192k) processes are
shown in Figure 3| with diamonds, showing a progressive slow-
down which is not uncommon when weak-scaling applications
over such a large range. To understand the execution per-
formance behaviour, the Scalasca toolset was employed using
automatic instrumentation of source routines by the compiler.
Since the elapsed times reported for the benchmark kernel of the
uninstrumented version were within 3% of those when Scalasca
measurements were made, instrumentation and measurement
dilation were acceptable and refinement was not needed.

From the runtime summary profiles, it was found that the
computation time (i.e., execution time excluding time in MPI
operations) was 18 seconds, independent of scale, but the MPI
communication time in the sweep kernel grew to over 100 sec-
onds. (MPI communication time is not shown in Figure 3] as it
is indistinguishable from MPI waiting time on the logarithmic
scale.)

Even with all user routines instrumented and events for all
MPI operations, scoring of the summary profile analysis report
determined that the size of trace buffer required for each pro-
cess was only 2.75 MB. Since this is less than the Scalasca de-
fault value of 10 MB, and the majority of this space was for MPI
events, trace collection and analysis required no special config-
uration of trace buffers or filters. Storing trace event data in a
separate file for each process, Scalasca trace analysis proceeds
automatically after measurement is complete using the same

94— Total Execution
Computation

o—a MPI processing

100 m—a MPI waiting

)
g 10
| /_—f
1
| | | | | | | | |
1,024 2,048 4,096 8,192 16,384 32,768 65,636 131,072 262,144
Processes
Figure 3: Scaling of Sweep3D execution time on Jaguar
Cray XTS5 with breakdown of computation and message-
passing costs from Scalasca summary and trace analyses.
94— Total Execution
Trace analysis (including 1/0)
©---& - Timestamp correction
100 - Parallel trace replay / 1011
o’/ ¢ 2
— s c
12 4 [
‘o o 0
g 10 et 10" @
£ g
e -
o 7 s
o //’/
1 - 10°
| L-” \ \ | \ \ \

1,024 2,048 4,096 8,192 16,384 32,768 65,636 131,072 262,144
Processes

Figure 4: Scaling of Sweep3D trace analysis time on Jaguar
Cray XTS5 with breakdown of times for timestamp synchro-
nization and parallel event replay. (Dashed line is the total
number of trace event records.)

configuration of processes to replay the traced events in a scal-
able fashion. Figure [d] shows that trace analysis times (squares)
remain modest, even though total sizes of traces increase lin-
early with the number of processes to 526 GB for 39¢e10 traced
events (dashed line). The time required for timestamp correc-
tion varies considerably according to the number and type of
logical consistency violation encountered, such that the trace
from 24k processes which had many violations required more
processing than that from 48k which was fortunate to have none
at all.

Scalasca trace analysis distinguishes various MPI block-
ing and waiting conditions from basic message processing (as
shown in the upper left of Figure[5). While the basic MPI pro-
cessing time charted in Figure [3] is found to increase from 1
to almost 10 seconds, MPI communication time is dominated
by increasingly onerous waiting time (filled squares) that gov-

[X © cube 3.3 at: epik_sweep3d_196608_trace/trace.cube.gz

File Display Topology Help

Absolute v

Calltree | Flat view

Peer distribution

System tree Topology 0 Topolog

Absolute v
Metric tree
£+] 0.00 Time 0
B} [5.53e6 Execution
= 1.35 MPI

B [0.00 Synchronization

B} [42 44 Collective
[1.26e4 Wait at Barrier
[] 22.28 Barrier Completion

[] 0.00 driver -

[] 0.00 task_init

[] 0.00 read_input
[] 0.00 decomp

-} [J 0.00 inner_auto

£+ []0.00 inner

y 1 Topology 2

@ @ ®

[] 0.00 initialize

= [J 0.00 Communication & [J 0.00 barrier_sync ER R P Pt A R F R F A
(1 1.98e5 Point-to-point L [0.00 MPI_Barrier
[1.40e7 Late Sender [] 0.00 timers_
[1.68e6 Late Receiver [] 0.00 source
[3121.35 Collective = [0.00 sweep £ A SIS
[] 0.00 Early Reduce [] 0.00 octant
[] 0.00 Early Scan] 0.00 rcv_real
[] 4600.19 Late Broadcast L [1.40e7 MPI_Recv AR e
[4.60e6 Wait at N x N [] 0.00 snd_real
[385.98 N x N Completion L[] 0.00 MPI_Send i AT R i T P AR L T B
&+ [0.00 File /O £+ [0.00 global_int_sum
L [5.62e6 Init/Exit L [0.00 MPI_Allreduce
+ [7.34e7 Overhead &+ [0.00 flux_err
— [1.57e10 Visits £ [0.00 global_real_max
& (B 5.90e5 Synchronizations L[] 0.00 MPL_Alireduce e
&+ [l 7.84e9 Communications =+ [J 0.00 global_real_sum
&+ [7.64e13 Bytes transferred L 7 0.00 MPI_Allreduce
1 [l 8.93e5 Computational imbalance ~ || & [J 0.00 task_end — e —
<[Ne> < L J<> <[<>
0.00 1.40e7 (44.23%) 3.17e7 ‘0.00 1.40e7 (100.00%) 1.40e7 ‘0.00 0.00 100.00
A © Performance properties ® ® [X O cube 3.3 Qt: epik_sweep3d_196608_trace/trace.cube.gz

Late Sender Time

Description:
Refers to the time lost waiting caused by a blocking
receive operation (e.g.. MPI_Recv OF MPI_Wait)
that is posted earlier than the corresponding send

operation.
g
vl e
Y f
I '
a
oS
1t Rew ! —

time

If the receiving process is waiting for multiple
messages to arrive (e.g., in an call to MPT_waitall),
the maximum waiting time is accounted, i.e., the
waiting time due to the latest sender.

Unit:
Seconds

Diagnosis:
Try to post sends earlier, such that they are available
when receivers need them. Note that outstanding
messages (i.e., sent before the receiver is ready) will
occupy internal message buffers.

Parent:
MP!I Point-to-point Communication Time

Children:

Late Sender, Wrong Order Time

Late Sender, Wrong Order Time

Description:

A Late Sender situation may be the result of
messages that are received in the wrong order. If a
process expects messages from one or more
processes in a certain order, although these
processes are sending them in a different order, the
receiver may need to wait for a message if it tries to
receive a message early that has been sent late.

<[] <>

A File Display Topology Help
Peer distribution

Systemtree Topology 0 Topology 1 Topology 2

FE

<L

~

<>

<>

0.00 0.00

100.00

<>

Selected "3.21e6 sweep"

Figure 5: Scalasca analysis report explorer presentations of a Sweep3D trace experiment with 196,608 processes on the Jaguar Cray XT5
system. On top “Late Sender” time in MPI_Recv and its distribution by process shown with the machine physical topology (where
unallocated nodes are shown grey), and below it an additional view of the exclusive “Execution” time corresponding to local computation
in the sweep routine shown with the application’s 512 x 384 virtual topology which is the primary origin of the imbalance.

ern the performance of Sweep3D at larger scales. Most waiting
time is found to be “Late Sender” conditions, where a receive
is early and must block until its associated send operation is
initiated. (Hyperlinked explanatory descriptions and diagnosis
tips for metrics are available in a separate performance prop-
erties window.) In the case of the 196,608-process experiment
shown in Figure 5] “Late Sender” time is 44% of the total exe-
cution time. The distribution of “Late Sender” time according
to process location in the Cray XT physical topology shows no
clear pattern (upper right), though the location of service nodes
and unallocated compute nodes can be clearly distinguished.
Using the application’s two-dimensional virtual grid topology
(lower right), however, reveals several pronounced characteris-
tics which can be tracked back to a significant imbalance in the
sweep computation when applying flux corrections: foremost is
a central rectangular region with less time for local computation
and correspondingly higher waiting time, surrounded by an in-
tricate pattern of sharp oblique lines radiating from the central
region to the edges. In combination with the wavefront nature
of the diagonal sweeps, the otherwise relatively minor compu-
tational imbalance (with a range of values that is 22% of the
mean, and standard deviation of 3%) amplifies message waiting
times at larger scales.

While the same computational imbalance exists at smaller
scales (and on other platforms), Scalasca measurement and
analysis at large scale proved insightful for its characterization
and understanding of its impact on overall execution perfor-
mance [13]]. Furthermore, Scalasca has thereby been able to
demonstrate its operation at previously unprecedented scale.

4.3 NPB-MZ-MPI BT

Although message passing is still the predominant program-
ming paradigm used in HPC, increasingly applications lever-
age OpenMP to exploit more fine-grained process-local par-
allelism, while communicating between processes using MPI.
Scalasca extended runtime summarization and trace analysis
support OpenMP/MPI hybrid applications by producing call-
path profiles for each thread, calculating OpenMP-specific met-
rics and presenting these alongside serial and MPI metrics in
integrated analysis reports.

While Scalasca trace analysis currently remains restricted
to fixed-size teams of OpenMP threads, runtime summariza-
tion identifies threads that have not been used during paral-
lel regions. The associated time within the parallel region
is distinguished as a “Limited parallelism” metric from the
“Idle threads” time which includes time outside OpenMP par-
allel regions when only the master thread executes. This
matches the typical usage of dedicated HPC resources such as
Cray XT which are allocated for the duration of the parallel
job, or threads which busy-wait occupying compute resources
in shared environments. The number of OpenMP threads in-
cluded in the measurement can be explicitly specified, default-
ing to the number of threads for an unqualified parallel region
when measurement commences: a warning is provided if sub-

*. Cube 3.3 Qt: epik_bt-mz_B_32x12_sum/summary.cube.gz ~
Eile Display Topology Help

Absolute ~| [Absolute -] [Peer percent
Metric tree Calltree | Fiat view emtree | Topology0 | Topology 1 |«
7000 Time] 1000 exch_abe_ OO I T T T . -
[421.10 Execution (1393 copy_x_face_
1003 MPI 1344 copy_y_face_
& [] 0.00 Synchronization [£ 0.00 MPL_jsend CEEEEEED)
(0441 Collective [0 0.00 MPLIrecy TTEEEEEER
[0.00 Remote Memory Access L 01 0.00 MPI_Waitall
& [] 0.00 Communication 1000 adi_
[176.45 Point-to-point []0.00 compute_rhs_
(30,05 Collective & []0.00 Somp parallel @rhs.f:28
[0.00 Remote Memory Access - £10.00 1Somp do @rhs.f:37
(0,00 File 110 0.0 iSomp do @rhs.£:62
1185 InitiExit L[115.28 1Somp ibarrier @rhs.f:72
[J0.00 OMP |- 010,00 1Somp master @rhs.f:74 | | | OO LTI T EEEEECELEL]
[J0.00 Flush I 0 0.00 1Somp do @rhs.f:80 EEEEEEEER
[34.54 Management - (] 0.00 1Somp master @rhs.f:183
L [183.78 Fork {0000 somp do @rhsfiter || | CCCCELIITITIEEEEEEEEE
[J0.00 Synchronization - 010,00 1Somp master @rhs.:293
: EEEEEEEER]
[J0.00 Barrier 3182 'Somp do @rhs.f:301
[0.00 Explicit [Doootsomp do @hs£:389 | || | FECC T T TECEEEEEED
[1348.06 Implicit - 00,00 1Somp do @rhs.f:372
(10,00 Critical - 010,00 1$omp do @rhs.:384 EEEEEEEER
0,00 Lock AP L C10.001Somp do @rhs.f:400 | | | LTI T -EEEEEEELR]
I 0077 Overhead 1012 'Somp do @rhs.f:413 EEEEEEEER
(0198552 ldle threads - 010,00 1$omp master @rhs.f:424
L[] 48.60 Limited parallelism - 010,00 1Somp do @rhs.f:428
| B 8.14e6 Visits L 3451 1Somp ibarrier @rhs.f:430 —
64 Synchronizations Oersaxsove. || CCCCLICLITTLECEEEEEED]
84804 Communications T 7210y_solve_ MMM
1.85e9 Bytes transferred I [0 56.49 z_solve_ 2 | COTCICCETFEEEEEEEER in
248.23 Computational imbalance & CI814add_ & @
a o ci)| (G)
’E.oo 348,06 (17.36%) 2005.18 ‘o.ao

15.28 (4.39%) 343.ﬂ [0.00 100.00 100.00|

Online description —

'OpenMP Implicit Barrier Synchronization Time 11

Description:

Time spent in implicit (i.e.,
Unit:

Seconds
Diagnosis:

enddo Examine the time that each thread spends waiting at each implicit bartier, and if

enddo there is a significant imbalance then investigate whether a schedule clauseis |
appropriate. Note that dynamic and guided schedules may require more
OpenMP Thread Management time than st at ic schedules. Consider whether it
is possible to employ the nowai t clause to reduce the number of implicit barrier
synchronizations. S

ated) OpenMP barrier
=1, 5

rhs(m, i,3,k)=Forcing{m,i,3,k)
enddo

| SOMP MASTER

© Read only Save Save as .
gl D)

Figure 6: Scalasca summary analysis report explorer display
of a hybrid OpenMP/MPI NPB3.3 BT-MZ benchmark Class B
execution on 32 Cray XTS5 twin six-core compute nodes of
Kraken, showing OpenMP “Implicit Barrier Synchronization”
time for a parallel loop in the compute_rhs routine (from lines
62 to 72 of file rhs. £ in the source viewer) broken down by
thread. Void thread locations in the topology pane are dis-
played in gray or with dashes.

sequent omp_set_num_threads calls or num_threads clauses
result in additional threads not being included in the measure-
ment experiment.

Figure [f] shows a Scalasca summary analysis report from
a hybrid OpenMP/MPI NAS NPB3.3 Block Triangular Multi-
Zone (BT-MZ) benchmark [10] Class B execution in a Kraken
Cray XTS5 partition consisting of 32 compute nodes, each with
two six-core Opteron processors. An instrumented executable
was built using PrgEnv-gnu GCC compilers, and measurement
done with one MPI process started on each of the compute
nodes and OpenMP threads run within each SMP node. In
an unsuccessful attempt at load balancing by the application,
more than 12 OpenMP threads were created by the first 6 MPI
ranks (shown at the top of the topological presentation in the
right pane), and 20 of the remaining ranks used fewer than
12 OpenMP threads. While the 49 seconds of “Limited paral-
lelism” time for the unused cores represent only 2% of the allo-
cated compute resources, half of the total time is wasted by “Idle
threads” while each process executes serially, including MPI
operations done outside of parallel regions by the master thread
of each process. Although the exclusive “Execution” time in
local computation is relatively well balanced on each OpenMP
thread, the over-subscription of the first 6 compute nodes mani-

Cube 3.0 QT: epik_PEPC_4p1024_trace/trace.cube.gz
Eile Display Topology Help

own root percent |+| [Absolute ~| [Peer percent

Calltree | Flat view 2
[10.00 jube_kernel_run_ B
- [J 0.00 laser
[10.00 pepc_fields_p
IO 0.00 cput
[125.19 tree_domains
t-[J0.00 tree_build
[104.67 tree_branches
[J0.00 tree_fill
(262 tree_properties
[J0.00 tree_walk
[10.00 cput
[J 0.00 MPI_Barrier
4248.05 MPI_Allgather

Metric tree

[J0.00 Time []
[62.84 Execution
&+ [J0.00 MPI
[10.00 Synchronization
& [10.04 Collective
[0 33.37 Wait at Barrier
[10.04 Barrier Completion
[]0.00 Communication

[0.15 Point-to-point
TEI 0.04 Late Sender

System tree | Topology 0
£} [J- Cray XT (Jaguar) |
96.11 c29-3¢2s4n3
96.79 €29-3c2s5n0
96.55 ¢29-3c2s5n1
95.34 29-3c2s5n2

97.77 €29-3c2s5n3
94.84 29-3c256n0
97.33 €29-3c2s6n2
97.28 29-3c2s6n3
97.85 29-3c257n0
94,63 c29-3c2s7n1
96.41 €29-3c257n2
95.73 ¢29-3c257n3

[0.02 Messages in Wrong Order
[J0.00 Late Receiver
[1.16 Collective

[0 0.00 Early Reduce (349,33 MPI_Alltoall 94.78 c27-0c0s0N0 [0.00 Early Reduce [7.65 MPI_Alltoall 97.20 R12-M0-N3
[J0.00 Early Scan (1 0.00 MPI_irecv 93.84 ¢27-0c0s0n1 [J0.00 Early Scan [J 0.00 MPI_Irecv 97.84 R12-M0-N7
[0.00 Late Broadcast [0.00 indsort_ia 98.06 €27-0c0s0N2 [0.00 Late Broadcast [J0.00 _tree_utils_NMOD, 97.18 R12-M0-Nb
[0 1.80 waitat Nx N (1 0.00 MPI_Isend 94.99 ¢27-0c0s0N3 0120 waitatNxN [J0.00 MPI_Isend 96.77 R12-MO-Nf
[J0.36 Nx N Completion [0.00 MPI_Request_free 96.73 ¢27-0c0s1n0 [J0.02Nx N Completion [] 0.00 MPI_Request_free

- CJ 0.00 File 10 [J0.00 MPI_Waitany 94.20 c27-0c0s1n1] 0.00 File 10 [0.00 MPI_Waitany

~ (1 0.05 Init/Exit n [J 0.00 make_hashentry 96.36 €27-0c0s1n2 - 1 0.18 Init/Exit < - [J 0.00 sum_force = =

L [J0.14 overhead - [0.00 next_node = 93.67 ¢27-0c0s1n3 |7 [1.10 overhead la - O 371.96 MPI_Allreduce [~ ~
< IO | K1 K0 i D < I Kl IO K10
4248.05 (65.12%) .00 100.00| 973567 (72.33%) 13460.87|

" Cube 3.0 QT: epik_PEPC_dual1024_trace/trace.cube.gz —
FEile Display Topology Help

Own root percent ~| | Absolute ~| |Peer percent -

Metric tree

[10.00 Time (]
67.65 Execution
&[] 0.00 MPI
[10.00 Synchronization
£+ 0.00 Collective
[0 29.28 Wait at Barrier
(10.00 Barrier Completion
[J0.00 communication

[0.14 Point-to-point
T [10.02 Late Sender

Calltree | Flatview

[0.00 jube_kernel_run
(-] 0.00 laser
[10.00 pepc_fields_p
I 0.00 __utils_NMOD_cput
[152.36 tree_domains
-7 0.00 tree_build
[J 0.21 tree_branches
[J0.00 tree_fill
[0.04 tree_properties
[J0.00 tree_walk
[10.00 __utils_NMOD_cpu
[] 0.00 MPI_Barrier
9735.67 MPI_Allgather

Systemtree | Topology 0
| [&0]-1BMBGIP (JUGENE) -
99.64 R12:M0-NO
99.73 R12:M0-N4
100.00 R12-MO-N8
99.71 R12:M0-Nc
98.24 R12-M0-N1
98.12 R12:M0-N5
98.33 R12:M0-N9
98.17 R12-M0-Nd

»

97.80 R12:M0-N2
98.24 R12-M0-N6
97.93 R12:M0-Na
97.99 R12:M0-Ne

[0.00 Messages in Wrong Order
[0.00 Late Receiver
(1039 Collective

‘o.oo 1.80 100.00‘ ‘o.oo ssza.sn‘ X

|o.oo 120

100.00‘ ‘o.oo

Figure 7: Scalasca analysis report explorer presentations of PEPC trace experiments for 1,024 processes on the quad-core Jaguar
Cray XT4 (left) and Jugene IBM Blue Gene/P (right), comparing the percentage of time due to “Wait at N x N” waiting for the last
rank to enter MPI_Allgather collective communication for the tree walk used updating fields. (The system tree for Cray XT shows
individual compute nodes, whereas Blue Gene/P nodeboards consist of 32 quad-core processors).

fests as excessive “Implicit Barrier Synchronization” time at the
end of parallel regions (as well as additional OpenMP “Thread
Management” overhead), and higher “MPI Point-to-point Com-
munication” time on the other processes is then a consequence
of this. When over-subscription of cores is avoided, benchmark
execution time is reduced by one third (with “MPI” time re-
duced by 52%, “OMP” time reduced by 20% and time for “Idle
threads” reduced by 55%).

As hybrid OpenMP/MPI appications become more prevalent,
it can be expected that performance analysis tools that integrate
and correlate performance characteristics of both programming
models will become essential in optimizing execution perfor-
mance. Current Scalasca limitations and inefficiencies (particu-
larly with respect to handling of trace files) for such applications
will also need to be addressed accordingly.

4.4 PEPC

PEPC [6] is a three-dimensional particle simulation code de-
veloped by Jiilich Supercomputing Centre employing a parallel
tree-code for rapid computation of long-range Coulomb forces
for large ensembles of charged particles that is used for vari-
ous applications in plasma physics and astrophysics. As part of
DEISA and PRACE benchmarking activities, a benchmark ver-
sion of PEPC was run and its performance analysed on Cray XT,
IBM Blue Gene/P and other HPC systems.

Although the IBM XL compilers and MPI library on BG/P
are quite different from the PGI compilers and CNL used on
the Cray XT4, the procedure for building an instrumented ex-
ecutable and running it under the control of the Scalasca mea-
surement and analysis nexus are identical. Figure [7] compares
trace experiments from both systems with 1,024 MPI processes,
showing that roughly two-thirds of the time is spent in local
computation in each, although the Cray XT execution is three
times faster. Naturally, 2.3 GHz quad-core Opteron proces-

sors out-perform the quad-core PowerPC processors clocked at
850 MHz on computation, however, the BG/P torus/tree inter-
connect generally shows advantages in communication. This
version of PEPC uses MPI_Barrier extensively, resulting in
roughly one-third of time in “Wait at Barrier” for both. Most
of the collective communication time is also time waiting for
last ranks to enter MPI_Allgather and MPI_Alltoall, how-
ever, the imbalance for MPI_Allgather is twice as severe on
BG/P, however, almost 50 times less for MPI_Alltoall. “N
x N Completion” times for collective communication are also
notably longer on Cray XT.

While careful examination of the call-trees for both execu-
tions will identify that the IBM and PGI compilers performed
inlining and Fortran module name decoration differently, the
generic representation and implementation of Scalasca analy-
sis reports facilitate performance comparisons between archi-
tectures, compilers, optimization levels and algorithms.

4.5 CENTORI

The UKAEA CENTORI Fortran/MPI diffusive plasma simula-
tion code [9]] for plasma transport and turbulence studies of fu-
sion reactors was analysed on the HECToR Cray XT4. After au-
tomatic instrumentation, a series of experiments were collected
running a short simulation with 1,024 MPI processes. From an
initial summary measurement, routines that do only purely local
computation were identified, and these were then specified in a
filter file to be excluded from subsequent measurements. Using
the filter not only reduced measurement overhead, but also trace
buffer requirements shrank from 1.4 GB to 41 MB per process.
A trace measurement of CENTORI running for 55 seconds ad-
ditionally required approximately 12 seconds to write the 40 GB
trace, followed by 35 seconds to analyse it (using the same pro-
cessors) and produce the trace analysis report.

Figure [8] shows views with the Scalasca analysis report ex-

Cube 3.0 QT: epik_centori_1024_trace/cut.cube.gz —

Cube 3.0 QT: epik_centori_1024_trace/cut.cube.gz —
File Display Topology Help

File Display Topology Help

& [] 0.00 Synchronization
£ [10.00 Collective
[] 0.00 Wait at Barrier
[] 0.00 Barrier Completion
£+ [0.00 Communication
i L] 6841.10 Point-to-point

£+ CJ 0.00 flux_surface_average_tom
& [0.00 fiux_surface_integral_tom

[] 0.00 MPI_Allreduce
(] 4.03 exchange_halo_spat_profile
0.00 curl
[4.8 exchange_halo_spat_vec_fld
12.07 exchange_halo_spat_vec_fld
0.00 update_local_phi

0.00 MPI_Scan

[16314.28 Late Sender
[0.00 Late Receiver
[3631.26 Collective
[]0.00 Early Reduce 5.78 exchange_halo_spat_sca_fld
0 div
0.00 exchange_halo_spat_sca_fld

2.
0
[m}
[m]
(] 1748.23 Early Scan 0.0
[m]
E [0.00 MPI_Isend
i

[0 421.21 Late Broadcast
[1634.57 Wait at N x N

EDH—rDDID

[639.04 N x N Completion
[0.00 File VO
[0.00 Init/Exit
L[] 0.00 Overhead
- [1.13e9 Visits
G}] 0 Synchronizations
[+ [J 0 Communications
6.48e8 Point-to-point
(] 4.89e7 Collective
[] 0 Bytes transferred
6.18e11 Point-to-point
[1.92e11 Collective
[l 243.98 Computational imbalance

(] 0.00 MP1_lrecv
(12039 MPI_Waitall |
[0.00 boundary_spat_sca_fld

18.26 exchange_halo_spat_sca_fld
0.00 boundary_spat_vec_fid
1.38 average_density
4.22 means

6.01 mean_square_tom
2.46 mean_squarev_t0m
o
0.
0.
o

66 volume_integral_tom
00 share_quantity_real

.00 plasma_beta

00 volume_integrate_profile_tom

0]

al 0N § 01

|Absolute ~| ‘Metric selection percent -| |Peer percent Absolute |+ [Metric selection percent -| |Peer percent
Metric tree | Call tree | Flat view pology 0 | Topology 1 | Topology 2 |« \ Metric tree Call tree | Flat view | pology 0 | Topology 1 | | Topology 2 |« \
£] 0.00 Time E [&00.00 evolve _plasma_quantities H = |[& T 0.00 Time | ['5 0] 0.00 evolve_plasma_quantities]
[[24800.13 Execution [J]0.00 g [[24800.13 Execution []0.00 grad
& []0.00 MPI 119, as exchange_halo_spat_vec_fld [0.00 MPI [] 0.00 exchange_halo_spat_vec_fld

=+ []0.00 Synchronization
C} [J0.00 Collective
(] 0.00 Wait at Barrier
("] 0.00 Barrier Completion
[+ [J0.00 Communication
i L] 6841.10 Point-to-point

] 0.00 flux_surface_average_tom
& [J0.00 fiux_surface_integral_tom
[] 0.00 MPI_Allreduce
=3 [0.00 exchange_halo_spat_profile
0.00 curt
[0.00 exchange_halo_spat_vec_fld
0.00 exchange_halo_spat_vec_fid
0.00 update_local_phi
68.92 MPL_Scan |

] 6314.28 Late Sender
[0.00 Late Receiver
[3631.26 Collective

GEH—rDDID

[0.00 Early Reduce [] 0.00 exchange_halo_spat_sca_fld
[]1748.23 Early Scan (] 0.00 div

[421.21 Late Broadcast [0.00 exchange_halo_spat_sca_fld
] 1634.57 Wait at N x N []0.00 MPI_Isend

1 639.04 N x N Completion - O 0.00 MPLIrecv

[] 0.00 File VO
[] 0.00 Init/Exit
L[] 0.00 Overhead
- [1.13¢9 Visits
5 [0 Synchronizations
& CJ 0 Communications
6.48¢8 Point-to-point
] 4.89¢7 Collective
3 [] 0 Bytes transferred
6.18e11 Point-to-point
[1.92e11 Collective
Bl 243.98 Computational imbalance

(] 0.00 MPI_Waitall
& [] 0.00 boundary_spat_sca_fld
00 exchange_halo_spat_sca_fid

00 boundary_spat_vec_fld
6.18 average_density
95 means

0.
0.

1

8.

0.00 mean_square_tom
0.00 mean_squarev_t0m

5.92 volume_integral_tom

0.00 share_quantity_real

0.01 plasma_beta

0.02 volume_integrate_profile_tom

DDDDDDDDDD

al))

’6.00 6314.28 (13.72%) 46029.82| 0.00
l0.00

X 0.00 1748.23 (3.80%)

46029.82 ’lTOO . 68.92 100 00 D 00
204.93 (68.92 2

Figure 8: Scalasca analysis report explorer presentations of CENTORI trace experiments with 1,024 processes on the HECToR Cray XT4
system, showing the most severe performance inefficiencies of the plasma evolution simulation phase. On the left is the “Late Sender”
time in MPI_Waitall of halo exchange, and on the right is the “Early Scan” time of MPI_Scan operations in update_local_phi.

plorer GUI, where the plasma evolution phase has been ex-
tracted to exclude the less interesting initialization and final-
ization phases. 54% of the total execution time is in purely lo-
cal computation, with the remainder MPI communication time.
Point-to-point communication constitutes the majority of this,
and almost half is identified as being due to “Late Sender” sit-
uations where receivers were blocked waiting for sends to be
initiated. The left view shows one-fifth of the “Late Sender”
time in exchange_halo_spat_sca_f1d called from the div
routine. Using the application’s 16 x 8 x 8 logical topology
reveals the distribution of metric values by process, where x-
planes have similar values but there are significant differences
for each x-plane (here stacked vertically). These are explained
by the absence of wraparound boundary conditions in the x-
dimension and correspondingly fewer communication opera-
tions for those faces. This planar performance variation is also
evident in collective operations, such as the MPI_Scan in the
update_local_phi routine of the right view, where the “Early
Scan” time metric shows that processes with higher ranks wait
longer for values from lower ranks. From these and other in-
sights provided by the Scalasca analyses, code performance
could be improved as part of the performance engineering col-
laboration between EPCC and the application developers.

4.6 GemsFDTD

The GemsFDTD computational electromagnetics code from
KTH-PSCI [8] solves the Maxwell equations using the finite-
difference time-domain method. A subset of this code com-
puting the radar cross-section of a perfectly conducting object
that was included in the SPEC MPI2007 benchmark suite (v1.1)
was found to perform particularly poorly at larger scales on
distributed-memory computer systems, and investigation with
the Scalasca toolset pinpointed aspects in the application’s ini-

tialization phase that limited scalability to only 128 processes
and made execution prohibitive with larger numbers. This in-
sight led the application developers to rework the initializa-
tion and further optimize the time-stepping loop, to realize sub-
stantial execution performance and overall scalability improve-
ments, ultimately resulting in an entirely updated version of the
benchmark (v2.0) which could be run with 2,048 processes and
scaled well to 512 processes.

Scalasca summary experiments with varying numbers of MPI
processes on the HECToR Cray XT4 with both versions of
GemsFDTD and the ‘ltrain’ dataset were collected, with the
analysis reports providing a breakdown of the total run time into

v1.1: Total time
v1.1: Execution time
v1.1: Coll synch time

GemsFDTD analysis v1.1: Coll comm time

1000]]]] [~ | — v1.1: P2P comm time []
—— v2.0: Total time
—— v2.0: Execution time
=~ — — v2.0: Coll synch time
\::\\\ v2.0: Coll comm time
100 RSN ::\ 2 —— v2.0: P2P comm time
@ TS—l el
© 10| @ ————_ e —_ _ ~.
g 10 et Tl .
[- TETo~ L -
1
0.1 | | | | | | |
32 64 128 256 512 1024 2048
Processes

Figure 9: Scalasca summary analysis breakdown of execu-
tions of GemsFDTD versions on the HECToR Cray XT4.

Cube 3.3 QT: epik_GemsFDTD_4p256_sum/summary.cube.gz)

File Display Topology Help

File Display Topology Help

[0.96 MPI_Barrier
[1 0.00 MPI_Comm_split
£+ [0.00 multiblock_distribute (10
95.09 MPI_Bcast
[1 0.00 block_distribute (100!
1 053 MPI_Bcast
[1 0.00 pec_distribute (10|
L[] 0.00 MPI_Send
&+ [] 0.00 multiblock_communicatg
L [3.43 MPI_Sendrecv
&+ [J 0.00 multiblock_concentraten
L 1 0.00 MPI_Reduce
[0.00 MPI_Finalize (0.00%)

£} [0.00 Synchronization
[1394.67 Collective
[0.00 Remote Memo
& [1 0.00 Communication
[] 5007.86 Point-to-pc
E 139605.14 Collect
[0.00 Remote Memo
[0.00 File 110
[1244.98 InivExit
[1 4.89 Overhead
1.09e7 Visits
[0 Synchronizations
[o0 Point-to-point
1272 Collective
[0 Remote Memory Access
[J 0 Communications
&+ [0 Point-to-paint
|: (] 16203 Sends
[16203 Receives
£+ [0 Collective
E [37469 Exchange

[1012 As source

9478647 As destination
[] 0 Remote Memory Access
[0 Bytes transferred
EF [0 Point-to-point

[6341140 Sent

[6341140 Received
8.60e8 Collective
[J 0 Remote Memory Access

[Ahsolu\e H IMemc selection percent H [Peer percent H [Absolute H [ME\I’IC selection percent H [Peer percent H
Metric tree [Call tree [Flat view \ System tree | Topology 0 | Topd «|» Metric tree ‘ Call tree { Flat view] System tree | Topology 0
[10.00 Time [« |1 0.00 gemsfdtd_mpi (100.00%) |~ i [] 0.00 Time [=1l I[J 0.00 gemsfdtd_mpi (0.00%)
[9172.36 Execution Et [] 0.00 parinitialize (0.00%) [6475.54 Execution [} [] 0.00 parinitialize (0.00%)
& 0.32 MPI L [J 0.00 MPI_Init (0.00%) &= [0.38 MPI L [0.00 MPI_lnit (0.00%)

Lt [0.00 Synchronization + [57.66 MPI_Barrier
[3546.40 Collective t [0.00 MPI_Bcast
[J 0.00 Remote Memo [0.00 MPI_Comm_split
£+ [] 0.00 Communication 1 [] 0.00 mbbroadcastglobals
[2537.52 Point-to-pg i L[] 0.00 MPI_Bcast
E [66.10 Collective -1 [] 0.00 multiblock_distribute (0.
[0.00 Remote Memo [1 0.00 MPI_Bcast
[10.00 File /O [1 0.00 materialg_distribute
[30.11 InivExit &+ [10.00 block_distribute
[5.82 Overhead [1.00 MPI_Bcast
2774952 Visits 1 0.00 MPI_Send
[] 0 Synchronizations [0.00 huygens_distributs
[0 Point-to-point [0.00 upml_distribute
2816 Collective [0.00 nft_distribute
[] 0 Remote Memory Access
[0 Communications [1 0.00 MPI_Recy
&+ [0 Point-to-point =t [0.00 multiblock_communicate
t [332445 Sends E [0.10 MPI_lsend

[0.00 material_distribute

[0 332445 Receives 1 0.12 MPI_Irecv
£+ 0] 0 Collective [41.04 MPI_Waitall
E [4218 Exchange [i [1 0.00 multiblock_concentraten:

[1020 As source [0.07 MPI_Reduce

B 1074570 As destination [J 0.00 MPI_Finalize (0.00%)
[] 0 Remote Memory Access
[] 0 Bytes transferred
£ [] 0 Point-to-point

[0 3.55e10 Sent

O 3.55e10 Received
[0 8.68e8 Collective
[J 0 Remote Memory Access

3311.67 Computational |mbalan-; ; = 2163.99 C >nal imbal ? ;

al () "I J[) P J [KIDE | c] D] o] I

0.00 146007.67 (93.34%) 156430.22| (0.00 343 100.00| 0.00 100.00 100‘00‘ 0.00 6150.02 (48.57%) 1.27e4| 0.00 41.26 100.00| [0.00 100.00 100‘00‘
_J _J

Figure 10: Scalasca analysis report explorer presentations of GemsFDTD summary experiments for 256 processes on HECToR Cray XT4
(v1.1 on left and v2.0 on right). MPI communication and synchronization times are selected from the metric trees in the leftmost panes,
and MPI communication operations inside the multiblock_communicate routine from the central call-tree panes, with the distribution
of times per process shown in the right panes with the Cray XT machine topology (which was different for the two executions).

pure (local) computation time and MPI time, and the latter split
into time for collective synchronization (i.e., barriers), collec-
tive communication and point-to-point communication, as de-
tailed in Figure[9] Both code versions show good scaling of the
computation time, with the new version demonstrating better
absolute performance (at any particular scale) and better scala-
bility overall.

The extremely poor scalability of the original code version is
due to the dramatically increasing time for collective communi-
cation, isolated to the numerous MPI_Bcast calls during initial-
ization. Collective communication in the revised version is seen
growing significantly at the largest scale, however, the primary
scalability impediment with it is the increasing time for explicit
barrier synchronization (which is not a factor in the original ver-
sion). Point-to-point communication time is notably reduced in
the revised version, but also scales less well than the local com-
putation, which it exceeds for 1,024 or more processes.

A closer comparison of the analysis reports from GemsFDTD
v1.1 and v2.0 experiments with 256 processes is possible by
studying Figure [T0] which is configured to hide non-MPI call-
paths. Pure computation time (shown as “Execution”) is im-
proved by more than 40%, however, there is an even more dra-
matic reduction in MPI time. While MPI collective synchro-
nization time increased by a factor of 2.5, collective communi-
cation which dominates the original version is almost entirely

eliminated. In particular, MPI point-to-point communication
time is halved to an average of 9.91 seconds from 19.55 seconds
by substituting non-blocking operations for the MPI_Sendrecv
originally in the multiblock_communicate routine. Notably,
improved performance was achieved by increasing the numbers
of point-to-point communications and bytes transferred.

The comprehensive analyses provided by the Scalasca toolset
were instrumental in directing the developer’s performance
engineering of a much more efficient and highly scalable
GemsFDTD code. Since these analyses show that there are still
significant optimization opportunities at larger scales, further
engineering improvements may be investigated in future.

5 Conclusions

A wide variety of applications have been analysed with the
Scalasca toolset on a number of Cray XT and other HPC plat-
forms, from which a selection have been reviewed in this paper.
Performance analysts and application developers have thereby
benefited from new insights into performance problems and
have been able to exploit optimization opportunities to improve
their codes.

While the Scalasca performance analysis toolset was de-
signed for scalability from the outset, it has required regular re-
design and re-engineering of components where scalability im-
pediments were identified as system and application scales and

complexities have grown. Cray XT systems have been no ex-
ception, but have been able to benefit from improvements origi-
nally targeted at other platforms. Specific incorporation of sup-
port for the rich set of Cray programming environments, includ-
ing the OpenMP/MPI hybrid paradigm, ensures that Scalasca
remains a versatile and portable complement to Cray’s propri-
etary performance analysis tools.

Acknowledgements

This work would not have been possible without the assis-
tance of numerous application developers, performance ana-
lysts and support staff, from which Luiz de Rose, Jason Beech-
Brandt & Heidi Poxon (Cray Inc.), Ulf Andersson (KTH-PDC),
Lukas Arnold & Paul Gibbon (JSC), Tom Edwards, Xu Guo
& Joachim Hein (EPCC), Darren Kerbyson (LANL/PNNL),
Mahin Mahmoodi (PSC), Jean-Guillaume Piccinali (CSCS),
Sebastian van Alfthan (CSC) and Pat Worley (ORNL) warrant
particular mention.

Part of this work has been performed under the HPC-Europa2
project (number 228398) with the support of the European
Commission — Capacities Area — Research Infrastructures.
EPCC staff provided generous hospitality and valuable assis-
tance to use their Cray XT4 system (HECToR) in Edinburgh,
Scotland. Access to the Cray XT systems at CSC in Espoo,
Finland (Louhi) and CSCS in Manno, Switzerland (Rosa) was
provided through the PRACE project of the European Union.
This research was supported in part by the US National Science
Foundation through TeraGrid resources (Kraken) provided by
the National Institute for Computational Sciences under grant
number TG-ASCO80038N. This research also used resources
(Jaguar) of the National Center for Computational Sciences at
Oak Ridge National Laboratory, which is supported by the Of-
fice of Science of the US Department of Energy under contract
DE-AC05-000R22725.

References

[1] Accelerated Strategic Computing Initiative. The ASC SMG2000
benchmark code. http://www.1llnl.gov/asc/purple/
benchmarks/limited/smg/, 2001.

[2] D. Becker, R. Rabenseifner, and F. Wolf. Implications of non-
constant clock drifts for the timestamps of concurrent events. In
Proc. IEEE Cluster Conference (Cluster 2008, Tsukuba, Japan),

pages 59-68. IEEE Computer Society, September 2008.

[3] W. Frings, F. Wolf, and V. Petkov. Scalable massively parallel
1/0 to task-local files. In Proc. 21st ACM/IEEE SC Conference

(SC09, Portland, OR, USA). ACM, November 2009.

[4] M. Geimer, S. Shende, A. Malony, and F. Wolf. A generic and
configurable source-code instrumentation component. In Proc.
Int’l Conf. on Computational Science (ICCS, Baton Rouge, LA,
USA), volume 5545 of Lecture Notes in Computer Science, pages

696-705. Springer, May 2009.

M. Geimer, F. Wolf, B. J. N. Wylie, E. Abrahém, D. Becker,
and B. Mohr. The Scalasca performance toolset architec-

(5]

10

ture. Concurrency and Computation: Practice and Experience,
22(6):702-719, Apr. 2010.

Jiilich Supercomputing Centre. PEPC: A multi-purpose parallel
tree-code. http://www.fz-juelich.de/jsc/pepc/, 2005.

(6]

[7] Los Alamos National Laboratory. ASCI SWEEP3D v2.2b:
3-dimensional discrete ordinates neutron transport benchmark.

http://wwwc3.lanl.gov/pal/software/sweep3d/, 1995.

[8] Parallel & Scientific Computing Institute (PSCI), Sweden.
GEMS: General ElectroMagnetic Solvers project, 2005. http:

//www.psci.kth.se/Programs/GEMS/|

[9] A. Thyagaraja. Numerical simulations of tokamak plasma turbu-
lence and internal transport barriers. Plasma Physics and Con-

trolled Fusion, 42:B255-B269, 2000.

[10] R. F. Van der Wijngaart and H. Jin. NAS Parallel Benchmarks,
Multi-Zone versions. Technical Report NAS-03-010, NASA
Ames Research Center, Moffett Field, CA, USA, July 2003.

http://www.nas.nasa.gov/Software/NPB/,

F. Wolf, B. J. N. Wylie, E. Abrahém, D. Becker, W. Frings,
K. Fiirlinger, M. Geimer, M.-A. Hermanns, B. Mohr, S. Moore,
M. Pfeifer, and Z. Szebenyi. Usage of the Scalasca toolset
for scalable performance analysis of large-scale parallel appli-
cations. In Proc. 2nd HLRS Parallel Tools Workshop (Stuttgart,
Germany), pages 157-167. Springer, July 2008.

[11]

[12] B. J. N. Wylie. Improved Scalasca toolset support for perfor-

mance analysis of Cray XT systems. In Science and Supercom-
puting in Europe Report 2009. HPC-Europa2 Transnational Ac-
cess, CINECA, Casalecchio di Reno (Bologna), Italy. To appear.

[13] B. J. N. Wylie, D. Bohme, B. Mohr, Z. Szebenyi, and F. Wolf.

Performance analysis of Sweep3D on Blue Gene/P with the
Scalasca toolset. In Proc. 24th Int’l Parallel & Distributed Pro-
cessing Symposium, Workshop on Large-Scale Parallel Process-
ing (IPDPS-LSPP, Atlanta, GA, USA). IEEE Computer Society,
April 2010.

[14] B.J. N. Wylie, M. Geimer, and F. Wolf. Performance measure-
ment and analysis of large-scale parallel applications on leader-
ship computing systems. Scientific Programming, 16(2-3):167—

181, 2008.

About the authors

Brian J. N. Wylie is a research scientist in the team develop-
ing and supporting the Scalasca toolset at Jiilich Supercom-
puting Centre of Forschungszentrum lJiilich, Germany. He
has experience developing sophisticated parallel performance
measurement and analysis tools in both commercial and aca-
demic contexts, as well as exploiting them in numerous appli-
cation performance and scalability engineering teams. E-mail:
b.wylie@fz-juelich.de.

Scalasca is developed in a collaboration led by Felix Wolf
between Forschungszentrum Jiilich and the German Research
School for Simulation Sciences. Software and documentation
can be found at www. scalasca. organd the development team
can be reached at|scalasca@fz-juelich.de.

http://www.llnl.gov/asc/purple/benchmarks/limited/smg/
http://www.llnl.gov/asc/purple/benchmarks/limited/smg/
http://www.fz-juelich.de/jsc/pepc/
http://wwwc3.lanl.gov/pal/software/sweep3d/
http://www.psci.kth.se/Programs/GEMS/
http://www.psci.kth.se/Programs/GEMS/
http://www.nas.nasa.gov/Software/NPB/
b.wylie@fz-juelich.de
www.scalasca.org
scalasca@fz-juelich.de

	Introduction
	Scalasca overview
	Scalasca enhancements for CrayXT
	Scalasca measurement & analysis case studies
	SMG2000
	Sweep3D
	NPB-MZ-MPI BT
	PEPC
	CENTORI
	GemsFDTD

	Conclusions

