
Performance Evaluation and Optimization of Parallel Grid Computing

Applications

Daniel Becker1,2, Wolfgang Frings1 and Felix Wolf1,2

{d.becker, w.frings, f.wolf} @fz-juelich.de

1 Forschungszentrum Jülich, Jülich Supercomputing Centre (JSC), 52425 Jülich, Germany

2 RWTH Aachen University, Department of Computer Science, 52056 Aachen, Germany

Abstract

The combination of independent and potentially hetero-

geneous parallel machines creates a powerful metacom-

puter. Such a metacomputer can be used to run a single

parallel application if a single machine does not provide

enough CPUs. However, achieving satisfactory application

performance on such a metacomputer is difficult since in-

stances of grid-related as well as non grid-related perfor-

mance properties may introduce various wait states during

communication and synchronization. In our earlier work,

we have introduced an extension to the SCALASCA tool

set for recording event traces of metacomputing applica-

tions and searching them automatically for patterns of inef-

ficient behavior related to wide-area communication. Here,

we show how this extension in combination with statistical

analyses and time-line visualization provided by VAMPIR

can be applied to evaluate and optimize the performance

of a multi-physics production code running on a heteroge-

neous and geographically dispersed metacomputer.

Keywords: Performance tools, grid computing, meta-

computing, event tracing.

1 Introduction

The solution of critical numerical problems may require

more processing power and memory capacity than is avail-

able on a single parallel machine. Often, coupling multiple

independent parallel machines (i.e., metahosts) to form a

more powerful metacomputer is the only method to increase

the available resources for a single application.

However, although applications can benefit from the in-

creased parallelism offered by a metacomputer, achieving

satisfactory application performance is difficult. Algorithm

design has to adapt to hierarchies of latencies and band-

widths in addition to the heterogeneous hardware architec-

tures found in such environments. Hence, performance op-

timization is a crucial but non-trivial task that needs ade-

quate tool support.

In our earlier work [1], we have shown that automatic

pattern search in event traces is a suitable method to iden-

tify wait states that appear as a result of using a meta-

computer consisting of multiple geographically dispersed

metahosts. There, we have extended the trace-analysis tool

SCALASCA [10] so that it can be used in metacomputing

environments. Challenges addressed by our extension in-

clude performing the pattern analysis in the absence of a

shared file system between metahosts, the synchronization

of time stamps in hierarchical networks, and the definition

of grid-specific patterns that target communication and syn-

chronization across metahost boundaries.

In this paper, we demonstrate that not only performance

evaluation but also performance optimization of applica-

tions running on a heterogeneous and geographically dis-

persed metacomputer are feasible. Using the grid-enabled

tracing and analysis capabilities of the SCALASCA tool set,

we determine relevant performance properties and demon-

strate how this information can be used to significantly im-

prove the performance of MetaTrace [5], a grid-enabled

multi-physics application that simulates the transport of pol-

lutants in groundwater.

Starting point of our study are event traces generated us-

ing the enhanced SCALASCA measurement infrastructure.

First, we evaluate how the bandwidth and latency require-

ments of our application are met by the wide-area connec-

tion in our grid testbed using the statistical trace-analysis

capabilities of VAMPIR [8]. Second, we show how the lo-

calization, classification, and quantification of wait states

performed by the SCALASCA trace analyzer assists us in

eliminating a major fraction of waiting times, leading to

a significant improvement of the overall performance. Fi-



nally, by running the application on a homogeneous cluster

and comparing the results with those obtained on the meta-

computer, we verify that some of the performance problems

we have identified are indeed the consequence of using a

metacomputer.

The outline of this article is as follows: We start in Sec-

tion 2 with a short description of VIOLA, the metacomputer

testbed we used for our experiments, and the application

MetaTrace. In Section 3, we describe the methods and tools

used during the optimization process. Then, in Section 4,

we summarize our network analysis followed by an outline

of the incremental optimization process. Finally in Sec-

tion 5, we conclude our paper.

2 The VIOLA metacomputer

VIOLA [4] is a project funded by the German Ministry

for Education and Research, which provides a testbed for

advanced optical network technology. A major focus is the

enhancement and test of advanced grid applications.

2.1 Network topology and hardware ar-
chitecture

The network behind the VIOLA grid consists of a 10

Gbps backbone network with connections to workstations

and compute clusters located at various sites in Germany in-

cluding Sankt Augustin, Jülich, Bonn, Nürnberg, and Erlan-

gen. The nodes of the connected compute clusters are linked

to the backbone with 1 Gbps adapters. The high bandwidth

of the backbone can only be used if the data transmission

between the clusters is done in parallel.

These components form a very heterogeneous metacom-

puter layout with a hierarchy of different network latencies

and varying characteristics of the compute clusters, which

differ with respect to their operating systems (different ver-

sions of Linux) and compilers. It can be expected that the

high latency of inter-machine communication as well as the

heterogeneous hardware may adversely affect application

performance.

2.2 Middleware

Running a parallel application on such a metacomputer

needs middleware components for application startup and

a wide-area communication library for the transfer of data

between application processes residing on geographically

dispersed metahosts. The middleware interacts with local

resource managers to co-schedule jobs on different clus-

ters. The communication library should support transparent

high-bandwidth and low-latency message transfers between

all nodes of the attached clusters.

The co-scheduling of jobs on different clusters in the

VIOLA grid is managed by the grid middleware UNI-

CORE [7] which has been enhanced by adding a meta-

scheduler for the simultaneous allocation of compute and

network resources. Bierbaum et al. [2] describe this

UNICORE-based infrastructure supporting the co-allocation

of metacomputing resources in more detail, with special

emphasis on the intricate task of coordinating network al-

location with application startup.

Moreover, VIOLA uses MetaMPICH [3], the MPICH-

based MPI-implementation developed at RWTH Aachen

University, to establish direct connections to the external

network from each node. MetaMPICH supports these direct

connections through a multi-device architecture that allows

external communication within the VIOLA-testbed with the

maximum bandwidth of 1 Gbps per node across the wide-

area network without the involvement of dedicated router

processes.

2.3 Applications

Applications on the VIOLA grid cover various research

disciplines including environmental research, the design of

complex technological systems like biosensors and crystal

growth for microchip wafer production, and structural me-

chanics in engineering.

MetaTrace, one of the applications running on the

VIOLA-testbed, simulates the transport of pollutants in

groundwater. MetaTrace is a combination of two paral-

lel simulation submodels, Trace and Partrace. Whereas

Trace simulates water flow in porous media, Partrace com-

putes the transport of solutes in this water flow. Trace

applies a three-dimensional domain decomposition (in our

case 192×32×32 m3) with nearest-neighbor communica-

tion, whereas Partrace tracks individual particles. For sim-

ulating pollutant transport in non-steady flows, the simulta-

neous execution of both submodels is crucial. MetaTrace

couples the two submodels through a parallel connection

between the two submodels. This connection is mainly

used in one direction for the transfer of the distributed three-

dimensional velocity field from Trace to Partrace whenever

Trace completes a simulation step. The unidirectional com-

munication scheme makes MetaTrace suitable to run effi-

ciently on a computational grid. Running each submodel

on a single metahost allows the internal communication to

benefit from the low-latency network whereas only syn-

chronization as well as data exchange between the two sub-

models have to use the high-latency network. The unidirec-

tional and low-frequency communication between the two

submodels is done synchronously over the VIOLA backbone

network through the node-local network adapters. After re-

ceiving the data, Partrace replicates the received velocity

field on each node by synchronously distributing it across



all Partrace nodes using a systolic loop.

3 Performance measurement and analysis

Event tracing is a frequently applied technique for

post-mortem performance analysis of parallel applications.

Time-stamped events, such as entering a function or sending

a message, are recorded at runtime and analyzed afterwards

with the help of software tools.

Graphical trace browsers, such as VAMPIR, allow the

fine-grained, manual investigation of parallel performance

behavior using a zoomable time-line display and provide

statistical summaries of communication behavior. However,

in view of the large amounts of data generated on contem-

porary parallel machines, the depth and coverage of the vi-

sual analysis offered by a browser is limited as soon as it

targets more complex patterns not included in the statistics

generated by such tools.

By contrast, the trace analyzer of the SCALASCA tool

set [6] automatically searches event traces for patterns of in-

efficient behavior, classifies detected instances by category,

and quantifies the associated performance penalty. To do

this efficiently at larger scales and also to circumvent the

obstacles arising from the absence of a shared file system

in grid environments, the traces are analyzed in parallel by

replaying the original communication using the same hard-

ware configuration and the same number of CPUs as have

been used to execute the target application itself.

For our experiments presented in Section 4, we used the

SCALASCA tool set which has been extended to support the

automatic performance analysis of metacomputing applica-

tions. Goal of these extensions was (i) to enable automatic

trace analysis on a metacomputer and (ii) to help identify

metacomputing-specific performance problems in applica-

tions. On a technical level, capabilities have been added to

identify the metahost a process is running on, to synchro-

nize time stamps across a hierarchical network with dif-

ferent latencies, and to analyze traces in the absence of a

shared file system. In addition, special metacomputing pat-

terns have been added to the existing pattern base. The in-

terested reader can find a more detailed description in [1].

4 Performance evaluation and optimization

In this section, we present experimental results that show

the feasibility of evaluating relevant performance metrics

and of optimizing the performance of a real-world produc-

tion code in metacomputing environments.

4.1 Experiment description

To demonstrate that performance measurement in com-

bination with performance analysis can be used to identify

inefficient performance behavior, we analyzed the afore-

mentioned multi-physics application MetaTrace. For our

experiments we used the VIOLA sites at FH Bonn-Rhein-

Sieg Sankt Augustin (FH-BRS) and at Forschungszentrum

Jülich (FZJ) to execute MetaTrace. That is, the metacom-

puter used for our measurements includes two metahosts,

one at each site:

• A PC Linux cluster with 6 4-way AMD Opteron SMP

nodes at 2 GHz with a usock over Myrinet interconnect

located at FH-BRS.

• A Cray XD1 Linux cluster with 60 2-way AMD

Opteron SMP nodes at 2.2 GHz with a usock over Rap-

idArray interconnect located at FZJ.

In our first experiment, Partrace ran at FZJ, while Trace

was executed at FH-BRS. To enable a comparison between a

grid environment and a homogeneous cluster we performed

a second experiment on an IBM AIX POWER 4+ cluster at

Forschungszentrum Jülich. In both cases we used 24 pro-

cesses in total.

4.2 Experimental results

To generate the trace data needed to investigate the per-

formance behavior, the instrumented program was executed

on the VIOLA grid. MetaTrace was instrumented by man-

ually inserting directives which were automatically trans-

lated into appropriate SCALASCA measurement API calls by

a preprocessor. During the program run, the trace files were

generated in the EPILOG format. The trace data were ana-

lyzed by SCALASCA’s parallel analyzer to generate a pro-

file of high-level performance properties. From the anal-

ysis results we derived our decisions which optimization

we should apply to the application. For fine-grained visual

trace analysis, the EPILOG event trace was converted to the

OTF format.

4.2.1 Network characteristics of the VIOLA-testbed

For our initial performance measurement we used Meta-

Trace in the configuration described in Section 2. After ap-

plying an OTF converter to our EPILOG traces, we were able

to determine several performance metrics of the VIOLA-

testbed using VAMPIR’s statistical summary functionality.

Partrace and Trace simulate the spread of groundwater

pollution collaboratively, and thus, the two submodels ex-

change simulation data at synchronization points across the

external network. That is, the total amount of data sent

across the wide area network represents the use of VIOLA’s

infrastructure. Table 1 shows the total amount of data trans-

ferred across the internal and external network within the

VIOLA-testbed. As can be seen in our experiment, Trace at



Figure 1. Analysis results of metacomputer experiment: Late Sender problem inside Trace function
cgiteration() at FH-BRS.

Figure 2. Analysis results of metacomputer experiment: Difference experiment obtained by subtract-

ing the original version from the optimized version.

FH-BRS sent in total 547.8 MByte of data across the external

network to Partrace at FZJ. Thus, each Partrace process re-

ceived in average 68.5 MByte of data from Trace across the

external network. It should be mentioned that Partrace sent

only minor control and status information back to Trace.

Table 1. Total amount of data transferred
across the internal and external network in

the VIOLA-testbed in MByte.

FZJ FH-BRS

FZJ 4320.0 0.0

FH-BRS 547.8 1120.0

To clarify whether the data transfer used the full band-

width offered by VIOLA’s infrastructure, we determined the

maximum data rate of the internal and external commu-

nication as well. Our measurements summarized in Ta-

ble 2 show a maximum data transfer rate of 47.3 MByte/s

between two corresponding processes at FH-BRS and FZJ.

Each node at FH-BRS used a network link with the maxi-

mum bandwidth of 1 Gbps. Since we assigned 16 processes

to Trace and 8 processes to Partrace, only two Trace pro-

cesses on the same 4-way node could communicate in par-

allel with two corresponding Partrace processes during the

data exchange. Given that these two Trace processes shared

a single network link, each of the two could use half of the

bandwidth (62.5 MByte/s per process) offered by VIOLA’s

network links, and thus, our measurements show that Meta-

Trace almost fully utilized the VIOLA network bandwidth.

In addition, Table 3 illustrates the minimum duration

of the internal and external communication in the VIOLA-

testbed. In our configuration, the external message transfer

duration exceeded the internal message transfer duration by

almost two orders of magnitude. During the communication

between Trace and Partrace, the minimum message transfer

duration was 862.0 µs. Given that the sites at FZJ and FH-



BRS lie 100 km apart, the minimum message transfer time

of roughly 333.0 µs can be calculated based on the speed

of light. Hence, it can be concluded that the VIOLA net-

work indeed offered a low-latency wide area network link

between the sites used for our experiments.

Table 2. Maximum P2P communication rate
of the internal and external communication in

the VIOLA-testbed in MByte/s.

FZJ FH-BRS

FZJ 208.6 0.4

FH-BRS 47.3 511.7

Our measurements show that MetaTrace took advantage

of the state-of-the-art network capabilites offered by the

VIOLA grid. Solving larger input problems might necessi-

tate further improvements of the underlying network tech-

nology.

Table 3. Minimum duration of the internal

and external communication in the VIOLA-

testbed.

FZJ FH-BRS

FZJ 27.3 µs 879.0 µs

FH-BRS 862.0 µs 30.3 µs

4.2.2 Incremental performance optimization

To optimize the performance of MetaTrace, we used

SCALASCA to identify undesirable wait states hoping that

they can be easily removed. The optimization was carried

out in two cycles each consisting of a trace analysis using

SCALASCA and a subsequent source-code modification.

The analysis of the unoptimized version showed an over-

all execution time of 1837.40 seconds aggregated across all

processes, whereby a major fraction (72.1 %) was spent in

MPI function calls. This MPI fraction is composed of the

time used for actual communication (15.4 %) and the time

spent waiting (56.7 %) for a communication partner. Obvi-

ously, the waiting time clearly dominated the overall com-

munication behavior making it the most promising target

for our optimization efforts. Often, reasons for such wait

states can be found in the scheduling of communication op-

erations or in the distribution of work among the processes

involved.

Figure 1 shows a screen shot of SCALASCA’s trace anal-

ysis results. Apparently, the application suffered from grid-

specific Wait at Barrier situations (i.e., global) and non grid-

specific Late Sender and Wait at N×N situations (i.e., local),

when communicating or synchronizing. As the display indi-

cates, the global Wait at Barrier problem consumed 18.7 %

of the overall execution time. In addition, the local Late

Sender problem consumed 10.6 % of the overall execution

time. Finally, the local Wait at N×N problem caused 20.2 %

of the overall execution time. For a description of these pat-

terns, the reader may refer to [1].

Trace and Partrace synchronize at a global barrier before

Trace unidirectionally sends the velocity field to Partrace

for further processing. However, because Trace and Par-

trace are essentially two different programs, each submodel

invokes this barrier from a different function. As a result

both functions are diagnosed with the global Wait at Bar-

rier, although both occurrences are closely connected. Most

of the waiting time was attributed to the Partrace function

ReadFieldsFromTrace(), which had to wait until all pro-

cesses in Trace had reached the corresponding barrier call

in function printtolink(). That is, we detected an imbal-

ance between Trace and Partrace, since Partrace went ahead

of Trace. Moreover, Trace suffered from local Late Sender

and Wait at N×N situations, which together represent most

of the waiting time in internal communication.

The Trace-local Late Sender was concentrated in

cgiteration(). All Trace processes performed calcula-

tions inside cgiteration() and subsequently distributed

their local results to their nearest neighbors. Afterwards, a

dot product was calculated using MPI Allreduce(). Al-

though the domain decomposition assigned equally-sized

subdomains to every process, border processes were quicker

because they had fewer neighbors to exchange border cells

with. Given that these processes had fewer communica-

tion partners, they not only waited during the data exchange

phase for their peers in the center but they could also leave

the data exchange phase earlier. That is, this imbalance in-

troduced two performance problems. The first problem oc-

curred while all Trace processes were synchronizing in pairs

to exchange their local results, causing a local Late Sender

situation. The second problem occurred when Trace subse-

quently calculated the dot product, causing a local Wait at

N×N situation.

The goal of our first optimization was to make Trace

faster. More precisely, we assumed that reducing the Trace-

local Late Sender problem inside cgiteration(), would

allow Trace to reach the synchronization point with Par-

trace earlier, which would also decrease the barrier waiting

time between the two submodels. We therefore replaced the

synchronous communication operations in cgiteration()

with their asynchronous counterparts, allowing more vari-

ability for the nearest-neighbor data exchange. Now, pro-

cesses inside Trace would be able to process received results

earlier. In addition, the Trace-local Wait at N×N situation

would also be reduced, since processes in the center of the

domain could leave the data exchange phase earlier as well.

After our first optimization cycle, we measured an over-

all execution time of 877.90 seconds, corresponding to a

reduction by more than a factor of two. Now, only a frac-

tion of 42.0 % of the overall execution time was spent in

MPI function calls. In Figure 2, a screen shot of a difference



experiment [9] obtained by subtracting the original version

from the optimized one is depicted. Performance gains are

represented by sunken reliefs (negative numbers), perfor-

mance losses by raised reliefs (positive numbers). The num-

bers show the difference in execution time in percent rela-

tive to the unoptimized version. One can easily recognize

that the global Wait at Barrier as well as the Trace-local

Late Sender and Wait at N×N were significantly reduced.

For instance, the figure shows that the global waiting time

at the barrier inside ReadFieldsFromTrace was reduced

by roughly 14.1% of the total execution time.

Moreover, in the optimized version the global Wait at

Barrier problem consumed 8.6 % (18.7 % before) of the

overall execution time and the Trace-internal Late Sender

problem consumed 3.7 % (10.6 % before) of the overall ex-

ecution time. Finally, the Trace-local Wait at N×N prob-

lem caused 7.8 % (20.2 % before) of the overall execution

time. By means of asynchronous communication, we were

able to significantly reduce the Late Sender situation inside

Trace since Trace did not wait at synchronization points

inside cgiteration() during the internal data exchange.

In addition, Trace now needed less time for a single iter-

ation and so Trace reached the synchronization point with

Partrace earlier, which reduced the global Wait at Barrier

problem. Finally, the waiting time at the Trace-local Wait

at N×N situation was notably decreased as well, which was

caused by the elimination of synchronization points during

the preceeding data exchange phase.

Synchronization

with Trace

Internal data exchange

(systolic loop)
Computation... ...

Figure 3. Vampir display: Event traces of all

Partrace processes during one simulation cy-
cle.

However, the application still suffered from a global Wait

at Barrier situation apparent in the two functions mentioned

earlier. We decided to perform a second optimization cy-

cle. Trace has variable simulation time steps which depend

on the accuracy of the respective calculation whereas Par-

trace uses constant time steps independent of the accuracy.

Since the communication between the two submodels is es-

sentially unidirectional and asynchronous by nature, we re-

placed the synchronous communication operations between

Trace and Partrace including the barrier call with their asyn-

chronous equivalents to eliminate the global Wait at Barrier

problem. It is worth noting, that without the asynchronous

communication scheme, removing the barrier call would

cause waiting times during the data exchange. Also, al-

though in our case a decreased runtime of Partrace increases

the waiting time during the data transfer between Trace and

Partrace, we applied an optimization to Partrace as well.

Figure 3 visualizes the event traces of all Partrace processes

during one simulation cycle by showing a time line for each

process indicating its current execution state by color. Us-

ing VAMPIR’s zooming capability we examined the runtime

behavior further. Partrace used a systolic loop to distribute

its simulation data internally. We decided to replace the

original communication scheme with a collective commu-

nication since the collective operation MPI Allgather()

needs substantially less effort.

Table 4. Summary of performance measure-

ments of the unoptimized version and after

each optimization cycle.

Optimization

unoptimized 1 2

MPI fraction 72.1 % 42.0 % 34.4 %

Wait at Barrier 18.7 % 8.6 % 0.9 %

Late Sender 10.6 % 3.7 % 1.7 %

Wait at N×N 20.2 % 7.8 % 6.0 %

The results of our final performance measurement in-

cluding the aforementioned optimizations showed only a

fraction of 34.4 % of the overall execution time (771.50

seconds) spent in MPI function calls. Further, our analy-

sis results showed that the global Wait at Barrier problem

could be completely eliminated. Additionally, the Trace-

local Late Sender version only consumed 3.9 % of the over-

all execution time and the Trace-local Wait at N×N prob-

lem caused 6.0 % of the overall execution time. Hence,

the major performance problems were significantly reduced

and, thus, the performance behavior was significantly im-

proved. Table 4 summarizes the values of the respective

performance problem after each optimization cycle accord-

ing to the functions mentioned above.

Finally, we compared the application performance on the

VIOLA metacomputer achieved before and after our opti-

mizations with the performance when running on the ho-

mogeneous IBM AIX POWER 4+ cluster. While Figure 4 (a)

shows the the total execution time before and after one and

two optimization cycles, Figure 4 (b) shows the correspond-

ing percentage of the execution time spent in MPI function

calls. In addition, the respective MPI waiting time is de-

picted. As can be seen, the overall execution time as well

as its MPI fraction is smaller in each experiment performed

on the homogenous cluster than on the metacomputer. The

optimizations showed only minor influence on the applica-

tion performance in the homogeneous case. We were able to



significantly reduce the total execution time from 1837.40

seconds to 771.50 seconds on the metacomputer. Hence,

we were able to significantly reduce grid-specific perfor-

mance problems of a parallel computational grid applica-

tion by eliminating the major fraction of waiting times in

several optimization cycles.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

210

optimization cycle

ti
m

e
 [
s
]

Execution time on metacomputer

Execution time on homogeneous cluster

(a) The total execution time before the optimization and

after one and two optimization cycles.

0

10

20

30

40

50

60

70

80

210

optimization cycle

[%
]

MPI fraction on metacomputer

waiting time on metacomputer

MPI fraction on homogeneous cluster

waiting time on homogeneous cluster

(b) The percentage of the waiting time and execution

time spent in MPI calls before the optimization and af-

ter one and two optimization cycles.

Figure 4. Optimization results on a homoge-

neous cluster and a metacomputer.

5 Conclusion

In this paper, we have shown that our extension to the

SCALASCA tool set in combination with statistical analyses

and time-line visualization provided by VAMPIR can be used

to evaluate and optimize the performance of a multi-physics

production code running on a heterogeneous and geograph-

ically dispersed metacomputer. Using the grid-enabled trac-

ing and analysis capabilities of the SCALASCA tool set, we

have determined relevant performance properties and have

experimentally demonstrated that this information can be

used to significantly improve performance.

First, we were able to verify that the bandwidth and la-

tency requirements of our application are met by the wide-

are connection in the VIOLA grid. Second, we presented a

detailed description of the performance optimizations ap-

plied to MetaTrace. While MetaTrace fully utilized the

entire network resources provided by the VIOLA grid, we

have shown in several optimization cycles that our modifi-

cations eliminated the major fraction of waiting times. In

addition, we compared results from a homogeneous cluster

with those obtained on the metacomputer, confirming that

some of the performance problems we identified are indeed

the consequence of using a metacomputer.

Given the fact that performance optimization for just a

single machine is already a non-trivial task that requires

substantial tool support, we argue that this is even more im-

portant for grid environments. With grid-enabled tools de-

velopers are able to optimize their applications to achieve an

appropriate performance level. Using MetaTrace as an ex-

ample, we have shown that grid-enabled performance tools

allow efficient execution of parallel applications in grid en-

vironments.

References

[1] D. Becker, F. Wolf, W. Frings, M. Geimer, B. Wylie, and

B. Mohr. Automatic trace-based performance analysis of

metacomputing applications. In Proceedings of the IEEE In-

ternational Parallel and Distributed Processing Symposium

(IPDPS), Long Beach, California, March 2007.

[2] B. Bierbaum, C. Clauss, T. Eickermann, L. Kirtchakova,

A. Krechel, S. Springstubbe, O. Wäldrich, and W. Ziegler.

Orchestration of distributed MPI-applications in a

UNICORE-based grid with metampich and metaschedul-

ing. In Proc. 13th European PVM/MPI Conference, Bonn,

Germany, September 2006. Springer.

[3] B. Bierbaum, C. Clauss, M. Pöppe, S. Lankes, and T. Be-

mmerl. The new multidevice architecture of MetaMPICH

in the context of other approaches to grid-enabled MPI.

In Proc. 13th European PVM/MPI Conference, Bonn, Ger-

many, September 2006. Springer.

[4] BMBF (Ministry for Education and Research). Vertically

Integrated Optical Testbed for Large Applications in DFN

(VIOLA). http://www.viola-testbed.de/.

[5] Forschungszentrum Jülich. Solute Transport in Heteroge-

neous Soil-Aquifer Systems. http://www.fz-juelich.

de/icg/icg-iv/modeling.

[6] M. Geimer, F. Wolf, B. J. N. Wylie, and B. Mohr. Scalable

parallel trace-based performance analysis. In Proc. 13th Eu-

ropean PVM/MPI Conference, Bonn, Germany, September

2006. Springer.

[7] S. Haubold, H. Mix, W. E. Nagel, and M. Romberg. The

UNICORE grid and its options for performance analysis.

pages 275–288, 2004.

[8] W. Nagel, M. Weber, H.-C. Hoppe, and K. Solchenbach.

VAMPIR: Visualization and analysis of MPI resources. Su-

percomputer, 12(1):69–80, 1996.

[9] F. Song, F. Wolf, N. Bhatia, J. Dongarra, and S. Moore.

An algebra for cross-experiment performance analysis. In

Proc. of the International Conference on Parallel Process-

ing (ICPP), Montreal, Canada, August 2004. IEEE Com-

puter Society.

[10] F. Wolf and B. Mohr. Automatic performance analysis of

hybrid MPI/OpenMP applications. Journal of Systems Ar-

chitecture, 49(10-11):421–439, Nov. 2003.


