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Abstract

SCALASCA is a performance toolset that has been specifically designedto analyze parallel
application execution behavior on large-scale systems. Itoffers an incremental performance-
analysis procedure that integrates runtime summaries within-depth studies of concurrent be-
havior via event tracing, adopting a strategy of successively refined measurement configura-
tions. Distinctive features are its ability to identify wait states in applications with very large
numbers of processes and combine these with efficiently summarized local measurements. In
this article, we review the current toolset architecture, emphasizing its scalable design and
the role of the different components in transforming raw measurement data into knowledge
of application execution behavior. The scalability and effectiveness ofSCALASCA are then
surveyed from experience measuring and analyzing real-world applications on a range of
computer systems.

1 Introduction

World-wide efforts of building parallel machines with performance levels in the petaflops range
acknowledge that the requirements of many key applicationscan only be met by the most advanced
custom-designed large-scale computer systems. However, as a prerequisite for their productive
use, theHPC community needs powerful and robust performance-analysistools that make the
optimization of parallel applications both more effectiveand more efficient. Such tools can not
only help improve the scalability characteristics of scientific codes and thus expand their potential,
but also allow domain experts to concentrate on the underlying science rather than to spend a major
fraction of their time tuning their application for a particular machine.

As the current trend in microprocessor development continues, this need will become even stronger
in the future. Facing increasing power dissipation and withlittle instruction-level parallelism left
to exploit, computer architects are realizing further performance gains by using larger numbers of



moderately fast processor cores rather than by increasing the speed of uni-processors. As a conse-
quence, supercomputer applications are required to harness much higher degrees of parallelism in
order to satisfy their growing demand for computing power. With an exponentially rising number
of cores, the often substantial gap between peak performance and that actually sustained by pro-
duction codes [10] is expected to widen even further. Finally, increased concurrency levels place
higher scalability demands not only on applications but also on parallel programming tools [15].
When applied to larger numbers of processes, familiar toolsoften cease to work satisfactorily (e.g.,
due to escalating memory requirements, limitedI /O bandwidth, or renditions that fail).

Developed at Jülich Supercomputing Centre in cooperationwith the University of Tennessee as
the successor ofKOJAK [16], SCALASCA is an open-source performance-analysis toolset that has
been specifically designed for use on large-scale systems including IBM Blue Gene and CrayXT,
but is also well-suited for small- and medium-scaleHPC platforms.SCALASCA supports an incre-
mental performance-analysis procedure that integrates runtime summaries with in-depth studies
of concurrent behavior via event tracing, adopting a strategy of successively refined measurement
configurations. A distinctive feature is the ability to identify wait states that occur, for example,
as a result of unevenly distributed workloads. Especially when trying to scale communication-
intensive applications to large processor counts, such wait states can present severe challenges to
achieving good performance. Compared toKOJAK, SCALASCA can detect such wait states even in
very large configurations of processes using a novel parallel trace-analysis scheme [5].

In this article, we review the currentSCALASCA toolset architecture, emphasizing its scalable
design. After covering related work in Section 2, we give an overview of the different functional
components in Section 3 and describe the interfaces betweenthem. In Sections 4, 5, and 6, we
highlight individual aspects, such as application instrumentation, measurement and analysis of
performance data, and presentation of analysis results. Wesurvey the role ofSCALASCA in the
analysis of real-world applications on a range of leadership (and smaller)HPC computer systems
in Section 7, before presenting ongoing and future activities in Section 8.

2 Related Work

Developers of parallel applications can choose from a variety of performance-analysis tools, of-
ten with overlapping functionality but still following distinctive approaches and pursuing different
strategies on how to address today’s demand for scalable performance solutions. From the user’s
perspective, the tool landscape can be broadly categorizedinto monitoring tools which present per-
formance analysis during measurement versus those providing postmortem analysis. On a tech-
nical level, one can additionally distinguish between direct instrumentation and interrupt-based
event measurement techniques.

Based on postmortem analysis presentation of direct measurements, that are traced or summarized
at runtime,SCALASCA is closely related toTAU [12]. Both tools can interoperate in several modes:
calls to theTAU measurementAPI can be redirected to theSCALASCA measurement system, mak-
ing TAU ’s rich instrumentation capabilities available toSCALASCA users. Likewise,SCALASCA’s
summary and trace-analysis reporting can leverageTAU ’s profile visualizer and take advantage
of the associated performance database framework. Compared to TAU ’s architecture,SCALASCA



Trace
browser

   Measurement 
            library

Instr.                
target               
application        Local

event traces
Pattern
report

Parallel 
pattern search

Merge

Global
trace

Sequential 
pattern search

Pattern
report

Property
trace

Conversion
Exported

trace

R
ep

or
t m

an
ip

ul
at

io
n

Optimized measurement configuration

Report
explorer

Report
explorer

HWC

Summary 
report

Source
module

Instrumenter/
compiler/linker

Instrumented
executable

Figure 1: Schematic overview of the performance data flow inSCALASCA. Grey rectangles denote
programs and white rectangles with the upper right corner turned down denote files. Stacked
symbols denote multiple instances of programs, files or dataobjects running or being processed in
parallel. Hatched boxes represent optional third-party components.

advocates a closer integration of summarization and tracing capabilities in a single instrumented
executable and measurement experiment, and unifying localdefinition identifiers used in both
summaries and traces in a uniform manner.

Furthermore, trace file converters connectSCALASCA to trace browsers, such as Paraver [7] and
Vampir [9]. Like SCALASCA, the VampirServer architecture improves scalability through parallel
trace access mechanisms, albeit targeting a ‘serial’ humanclient in front of a graphical trace
browser rather than fully automatic and parallel trace analysis as provided bySCALASCA. Paraver,
in contrast, favors trace-size reduction using a system of filters that eliminates dispensable features
and summarizes unnecessary details using a mechanism called soft counters.

On the other hand, HPCToolkit [8] is an example of a postmortem analysis tool that generates
statistical profiles from interval timer and hardware-counter overflow interrupts. Its architecture
integrates analyses of both the application binary and the source code to allow a more conclusive
evaluation of the profile data collected. Monitoring tools,such as Paradyn [11] and Periscope [2]
perform dynamic instrumentation and evaluate performancedata while the application is still run-
ning. To ensure scalable communication between tool backends and frontend, their architectures
employ hierarchical networks that facilitate efficient reduction and broadcast operations.

3 Overview

The current version ofSCALASCA supports measurement and analysis of theMPI, OpenMP and
hybrid programming constructs most widely used in highly-scalableHPC applications written in
C/C++ and Fortran on a wide range of currentHPC platforms [17]. Fig. 1 shows the basic analy-
sis workflow supported bySCALASCA. Before any performance data can be collected, the target



application must be instrumented. When running the instrumented code on the parallel machine,
the user can choose to generate a summary report (‘profile’) with aggregate performance metrics
for individual function call-paths, and/or event traces recording individual runtime events from
which a profile or time-line visualization can later be produced. Summarization is particularly
useful to obtain an overview of the performance behavior andfor local metrics such as those
derived from hardware counters. Since traces tend to rapidly become very large, scoring of a
summary report is usually recommended, as this allows instrumentation and measurement to be
optimized. When tracing is enabled, each process generatesa trace file containing records for its
process-local events. After program termination,SCALASCA loads the trace files into main mem-
ory and analyzes them in parallel using as manyCPUs as have been used for the target application
itself. During the analysis,SCALASCA searches for characteristic patterns indicating wait states
and related performance properties, classifies detected instances by category and quantifies their
significance. The result is a pattern-analysis report similar in structure to the summary report but
enriched with higher-level communication and synchronization inefficiency metrics.

Both summary and pattern reports contain performance metrics for every function call-path and
process/thread which can be interactively examined in the provided analysis report explorer or with
third-party profile browsers such asTAU ’s ParaProf. In addition to the scalable trace-analysis, itis
still possible to run the sequentialKOJAK analysis after merging the local trace files. The sequen-
tial analysis offers features that are not yet available in the parallel version, including extended
MPI and OpenMP analyses, and the ability to generate traces of pattern instances, i.e., so-called
performance-property traces. As an alternative to the automatic pattern search, the merged traces
can be converted and investigated using third-party trace browsers such as Paraver or Vampir,
taking advantage of their time-line visualizations and rich statistical functionality.

Fig. 2 shows a layered model of theSCALASCA architecture, highlighting the interfaces between
the different parts of the system. The vertical axis represents the progress of the performance
analysis procedure, starting at the top with the insertion of measurement probes into the application
and ending at the bottom with the presentation of results (description on the left). On the right, the
procedure is split into phases that occur before, during or after execution. The horizontal axis is
used to distinguish among several alternatives on each stage. Colors divide the system into groups
of components with related functionality, with hatched areas/boxes representing the user providing
source-code annotations and components provided by third parties.

4 Instrumentation and Measurement

4.1 Preparation of Application Executables

Preparation of a target application executable for measurement and analysis requires that it must be
instrumentedto notify the measurement library of performance-relevantexecution events when-
ever they occur. On most systems, this can be done completelyautomatically using compiler
support; for all systems manual and automatic instrumentation mechanisms are offered. Instru-
mentation configuration and processing of source files are achieved by prefixing selected compi-
lation commands and the final link command with theSCALASCA instrumenter, without requiring
other changes to optimization levels or the build process.
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Figure 2: Layered model of theSCALASCA architecture.

Simply linking the application with the measurement library ensures that events related toMPI

operations are properly captured via the standardPMPI profiling interface. For OpenMP, a source
preprocessor is used which automatically instruments directives and pragmas for parallel regions,
etc., based on aPOMP profiling interface developed for this purpose, and most compilers are
capable of adding instrumentation hooks to every function or routine entry and exit. Finally, pro-
grammers can manually add their own custom instrumentationannotations into the source code for
important regions (such as phases or loops, or functions when this is not done automatically): these
annotations are pragmas or macros which are ignored when instrumentation is not configured.

4.2 Measurement and Analysis Configuration

TheSCALASCA measurement system [22] that gets linked with instrumentedapplication executa-
bles can be configured via environment variables or configuration files to specify that runtime
summaries and/or event traces should be collected, along with optional hardware counter metrics.
During measurement initialization, a unique experiment archive directory is created to contain all



Global
definitions

Unify
Local

definitions

ID maps

Local
results Translate IDs Collate

Global
results

Local
event traces

Local trace
buffers

Local
event listsTranslate IDs Synchronize

Pattern
report

Collate
Global
results

Global
definitions

Global
ID maps

ID maps

Summary
report

Global
definitions

Instrumented
target application

Measurement
runtime library

Parallel pattern search

Parallel trace 
access layerTracing

Summarization
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of the measurement and analysis artifacts, including configuration information, log files and anal-
ysis reports. When event traces are collected, they are alsostored in the experiment archive to
avoid accidental corruption by simultaneous or subsequentmeasurements.

Measurements are collected and analyzed under the control of a nexus that determines how the
application should be run, and then configures measurement and analysis accordingly. When trac-
ing is requested, it automatically configures and executes the parallel trace analyzer with the same
number of processes as used for measurement. This allowsSCALASCA analysis to be specified as
a command prefixed to the application execution command-line, whether part of a batch script or
interactive run invocation.

In view of the I /O bandwidth and storage demands of tracing on large-scale systems, and specif-
ically the perturbation caused by processes flushing their trace data to disk in an unsynchronized
way while the application is still running, it is generally desirable to limit the amount of trace data
per application process to not exceed the size of the available memory. This can be achieved via
selective tracing, for example, by recording events only for code regions of particular interest or
by limiting the number of timesteps during which measurements take place.

Instrumented functions which are executed frequently, while only performing a small amount of
work each time they are called, have an undesirable impact onmeasurement. The overhead of
measurement for such functions is large compared to the execution time of the (uninstrumented)
function, resulting in measurement dilation, while recording such events requires significant space
and analysis takes longer with relatively little improvement in quality. This is especially important
for event traces whose size is proportional to the total number of events recorded. For this reason,
SCALASCA offers a filter mechanism to exclude certain functions from measurement. Before
starting trace collection, the instrumentation should generally be optimized based on a visit-count
analysis obtained from an earlier summarization run.

4.3 Definition Unification and Analysis Collation

Measured event data refer to objects such as source code regions, call-paths, or communicators.
Motivated by the desire to minimize storage requirements and avoid redundancy in traces, events



reference these objects using identifiers, while the objects themselves are defined separately. To
avoid extra communication between application processes during measurement acquisition, each
process may use a different local identifier to denote the same object. However, to establish a
global view of the program behavior during analysis, a global set of unique object definitions
must be created and local identifiers replaced with global identifiers that are consistent across all
processes. This procedure is calledunificationand shown in Fig. 3.

Separate collection buffers on each process are used for definition and event records, avoiding the
need to extract the definitions from a combined trace later. At measurement finalization, each rank
in turn sends its definition buffers to rank zero for unification into a set of global definitions and
an associated identifier mapping.

The identifier mappings are returned to each process, so thatthey can globalize their local analysis
results during the collation of a complete summary report. First rank zero (which has the unified
global definitions) prepares the report header, then it gathers the aggregated metrics for each call-
path from each process and appends these incrementally, before closing the summary report [3].

When tracing is performed the global definitions and mappings are written to files, along with the
dumped contents of each trace buffer. These files are subsequently read by the postmortem trace
analyzer to be able to translate local object identifiers in the trace files to global identifiers used
during analysis. After trace analysis is complete, collation of the analysis results and writing the
pattern report is performed in the same way as for the summaryreport.

Although unification is a predominantly sequential operation, the distributed design takes advan-
tage of message communication to facilitate the exchange ofobject definitions and the generation
of mapping information while reducing expensive fileI /O that would be otherwise prohibitive.

For cases where it is desired to do serial trace analysis (e.g., using theKOJAK sequential trace
analyzer) or convert into another trace format (e.g., for investigation in a time-line visualization),
a global trace file can be produced. The distributed trace files for each rank can be merged (using
the global definitions and mappings), adding a unique location identifier to each event record when
writing records in chronological order. While this can be practical for relatively small traces, the
additional storage space and conversion time if often prohibitive unless very targeted instrumen-
tation is configured or the problem size is reduced (e.g., to only a few timesteps or iterations).

5 Event Summarization and Analysis

The basic principle underlyingSCALASCA performance analysis capabilities is the summarization
of events, that is, the transformation of an event stream into a compact representation of execution
behavior, aggregating metric values associated with individual events from the entire execution.
SCALASCA offers two general options of analyzing events streams: (i)immediate runtime sum-
marization and (ii) postmortem analysis of event traces. The strength of runtime summarization is
that it avoids having to store the events in trace buffers andfiles. However, postmortem analysis
of event traces allows the comparison of timestamps across multiple processes to identify various
types of wait states that would remain undetectable otherwise. Fig. 3 contrasts both summarization
techniques with respect to the flow of performance data through the system. A detailed discussion
is given below, paying attention to scalability challengesand how they have been addressed.



5.1 Runtime Summarization

Many execution performance metrics can be most efficiently calculated by accumulating statistics
during measurement, avoiding the cost of storing them with events for later analysis. For exam-
ple, elapsed times and hardware counter metrics for source regions (e.g., routines or loops) can
be immediately determined and the differences accumulated. Whereas trace storage requirements
increase in proportion to the number of events (dependent onthe measurement duration), summa-
rized statistics for a call-path profile per thread have a fixed storage requirement (dependent on
the number of threads and executed call-paths).SCALASCA associates metrics with unique call-
paths for each thread, and updates these metrics (typicallyvia accumulation) during the course of
measurement.

Call-paths are defined as lists of visited regions (startingfrom an initial root), and a new call-path
can be specified as an extension of a previously defined call-path to the new terminal region. In
addition to the terminal region identifier and parent call-path identifier, each call-path object also
has identifiers for its next sibling call-path and its first child call-path. When a region is entered
from the current call-path, any child call-path and its siblings are checked to determine whether
they match the new call-path, and if not a new call-path is created and appropriately linked (to
both parent and last sibling). Exiting a region is then straightforward as the new call-path is the
current call-path’s parent call-path.

Constructing call-paths in this segmented manner providesa convenient means for uniquely identi-
fying a call-path as it is encountered (and creating it when first encountered), and tracking changes
during execution. Call-paths can be truncated at a configurable depth (to ignore deep detail, e.g.,
for recursive functions), and will be clipped when it is not possible to store new call-paths. When
execution is complete, a full set of locally-executed call-paths are defined, and these need to be
unified like all other local definitions as described previously.

A new vector of time and hardware counter metrics is acquiredwith every region enter or exit
event. This vector of measurements is logged with the event when tracing is active, and used to
determine elapsed metric values to be accumulated within the runtime summary statistics record
associated with the corresponding call-path. Whereas call-path visit counts and message-passing
statistics (such as numbers of synchronizations and communications, numbers of bytes sent and
received) can be directly accumulated, time and hardware counter metrics require initial values
(on entering a new routine) for each active frame on the call-stack to be stored so that they can be
subtracted when that frame is exited (on leaving the routine). Keeping separate call-path statistics
and stacks of entry metric vectors for each thread allows efficient lock-free access to the values
required during measurement.

5.2 Postmortem Trace Analysis

In message-passing applications, processes often requireaccess to data provided by remote pro-
cesses, making the progress of a receiving process dependent upon the progress of a sending
process. Collective synchronization is similar in that itscompletion requires each participating
process to have reached a certain point. As a consequence, a significant fraction of the communi-
cation and synchronization time can often be attributed to wait states, for example, as a result of



an unevenly distributed workload. Especially when trying to scale communication-intensive ap-
plications to large process counts, such wait states can present severe challenges to achieving good
performance.SCALASCA provides a diagnostic method that allows their localization, classifica-
tion, and quantification by automatically searching event traces for characteristic patterns. A list
of the patterns supported bySCALASCA including explanatory diagrams can be found on-line [6].

To accomplish the search in a scalable way, both distributedmemory and parallel processing
capabilities available on the target system are exploited.Instead of sequentially analyzing a single
global trace file, as done byKOJAK, SCALASCA analyzes separate process-local trace files in
parallel byreplayingthe original communication on as manyCPUs as have been used to execute the
target application itself. During the search process, pattern instances are classified and quantified
according to their significance for every program phase and system resource involved. Since trace
processing capabilities (i.e., processors and memory) grow proportionally with the number of
application processes, such pattern searches have been completed at previously intractable scales.

To maintain efficiency of the trace analysis process as the number of application processes in-
creases, our architecture follows a parallel trace access model which is provided as a separate ab-
straction layer [4] between the parallel pattern search andthe raw trace data stored on disk (Fig. 2,
center). Implemented as aC++ class library, this layer offers random access to individual events as
well as abstractions that help identify matching events, which is an important prerequisite for the
pattern search. The main usage model of the trace-access library assumes that for every process
of the target application an analysis process is created to be uniquely responsible for its trace data.
Data exchange among analysis processes is then accomplished via MPI communication.

The library offers classes to represent process-local traces, events, and objects referenced by those
events (e.g., regions, communicators). When instantiating a trace object, the trace data are loaded
into memory while translating local into global identifiersusing the mapping tables provided by
the measurement system to ensure that event instances created from event records point to the
correct objects (Fig. 3). Having the entire event trace keptin main memory during analysis thereby
enables performance-transparent random access to individual events.

Higher-level abstractions provide the context in which an event occurs, such as the call-path or
communication peers. While special event attributes storeprocess-local context information, re-
mote event abstractions in combination with mechanisms to exchange event data between analysis
processes allow tracking of interactions across process boundaries. The actual matching of com-
munication events is performed by exploitingMPI messaging semantics during a parallel commu-
nication replay of the event trace.

Using the infrastructure described above, the parallel analyzer traverses the local traces in paral-
lel from beginning to end while exchanging information at synchronization points of the target
application. That is, whenever an analysis process sees events related to communication or syn-
chronization, it engages in an operation of similar type with corresponding peer processes.

As an example of inefficient point-to-point communication,consider the so-calledLate Sender
pattern (Fig. 4(a)). Here, an early receive operation is entered by one process before the corre-
sponding send operation has been started by the other. The time lost waiting due to this situation
is the time difference between the enter events of the twoMPI function instances that precede
the corresponding send and receive events. During the parallel replay (Fig. 4(b)), the search is
triggered by the communication events on both sides. Whenever an analysis process finds a send



time

pr
oc

es
s

waiting

MPI_Send()

MPI_Recv()

(a) Late Sender pattern.

... ...

... ...

Local trace

Local trace

(b) Parallel detection.

Figure 4: Searching for the Late Sender pattern in parallel.The situation described by this pattern
is shown on the left in a time-line diagram. How the differentevents are accessed and combined
to verify its occurrence is shown on the right.

event, a message containing this event as well as the associated enter event is sent to the process
representing the receiver using a non-blocking point-to-point communication. When the receiver
reaches the corresponding receive event, this message is received. Together with the local receive
and enter events, aLate Sendersituation can be detected by comparing the timestamps of thetwo
enter events and calculating the time spent waiting for the sender.

Currently, the parallel trace analysis considers only a subset ofMPI operations and ignoresMPI-2
RMA and OpenMP parallel operations, which can alternatively be analyzed via sequential trace
analysis of a merged trace. Finally, automatic trace analysis of OpenMP applications using dy-
namic, nested and guarded worksharing constructs is not yetpossible.

To allow accurate trace analyses on systems without globally synchronized clocks,SCALASCA

provides the ability to synchronize inaccurate timestampspostmortem. Linear interpolation based
on clock offset measurements during program initialization and finalization already accounts for
differences in offset and drift, assuming that the drift of an individual processor is not time de-
pendent. This step is mandatory on all systems without a global clock, such as CrayXT and most
PC or compute blade clusters. However, inaccuracies and drifts varying over time can still cause
violations of the logical event ordering that are harmful tothe accuracy of our analysis. For this
reason,SCALASCA compensates for such violations by shifting communicationevents in time as
much as needed while trying to preserve the length of intervals between local events [1]. The
logical synchronization is currently optional and should be performed if the trace analysis reports
(too many) violations of the logical event order.

6 Report Generation, Manipulation, and Exploration

Summary and pattern reports areXML files, written to disk by a single process while gathering the
necessary information from the remaining application or trace-analysis processes usingMPI col-
lective communication. Since the size of the report may exceed the memory capacity of the writer
process, the report is created incrementally, alternatingbetween gathering and writing smaller
subsets of the overall data. Compared to an initial prototype of SCALASCA, the speed of writing
reports has been substantially increased by eliminating large numbers of temporary files [3].



Reports can be combined or manipulated [13] to allow comparisons or aggregations, or to focus the
analysis on specific extracts of a report. Specifically, multiple reports can be merged or averaged,
the difference between two reports calculated, or a new report generated after eliminating uninter-
esting phases (e.g., initialization) to focus the analysison a selected part of the execution. These
utilities each generate new reports as output that can be further manipulated or viewed like the
original reports that were used as input. The library for reading and writing theXML reports also
facilitates the development of utilities which process them in various ways, such as the extraction
of measurements for each process or their statistical aggregation in metric graphs.

To explore their contents, reports can be loaded into an interactive analysis report explorer [3].
Recently, the explorer’s capacity to hold and display data sets has been raised by shrinking their
memory footprint and interactive response times have been reduced by optimizing the algorithms
used to calculate aggregate metrics.

7 Survey of Experience

Early experience withSCALASCA was demonstrated with theASC benchmarkSMG2000, a semi-
coarsening multi-grid solver which was known to scale well on BlueGene/L (in weak scaling mode
where the problem size per process is constant) but pose considerable demands onMPI perfor-
mance analysis tools due to huge amounts of non-local communication. Although serial analysis
with theKOJAK toolkit became impractical beyond 256 processes, due to analysis time and mem-
ory requirements, the initialSCALASCA prototype was already able to complete its analysis of a
2048-process trace in the same time [5].

Encouraged by the good scalability of the replay-based trace analysis, which was able to effec-
tively exploit the per-process event traces without merging or re-writing them, bottlenecks in uni-
fying definition identifiers and collating local analysis reports were subsequently addressed, and
trace collection and analysis scalability with thisSMG2000 benchmark extended to 16,384 pro-
cesses on BlueGene/L and 22,528 processes on CrayXT3/4 [19, 21]. The latter traces amounted
to 4.9TB, and 18GB/s was achieved for the final flush of the trace buffers to disk, despite the need
to work around Lustre filesystem limitations on the number offiles written simultaneously.

Identifier unification and map creation still took an unacceptably long time, particularly for run-
time summarization measurements where large traces are avoided, however, straightforward serial
optimizations have subsequently reduced this time by a factor of up to 25 (in addition to savings
from creating only two global files rather than two files per process). Furthermore, the number
of files written when tracing has been reduced to a single file per rank (plus the two global files),
which is written only once directly into a dedicated experiment archive. Filesystem performance
is expected to continue to lag behind that of computer systems in general, even when parallelI /O
is employed, therefore elimination of unnecessary files provides benefits that grow with scale and
are well-suited for the future.

As a specific example,SMG2000 using 65,536 processes on BlueGene/P has been analyzedwith
the latest (1.0) version ofSCALASCA. The uninstrumented version of the application ran in 17 min-
utes, including 12 minutes to launch this number of processes. From an initial runtime summary
of the fully-instrumented application, where execution time was dilated 25% to 6 minutes, a file



Figure 5:SCALASCA presentation of the solver extract of the trace analysis report for 64k-process
measurement ofSMG2000 on a 16-rack BlueGene/P, withLate Sendertime selected from the
metrics pane (left) amounting to 43% of total time (comparedto 42% forExecutiontime excluding
MPI). One third ofLate Sendertime is attributed to one MPIWaitall from the call-tree pane
(centre), and its distribution across the 65,536 processesshown on the BlueGene physical topology
(right). Metric values are colour-coded according to the scale at the bottom to facilitate distinction
of high (dark) and low (light) severities in both tree and topology displays.

listing a number of purely-computational functions to be filtered from the trace was determined.
Collection and analysis of the resulting 3.33TB trace took 100 minutes (two-thirds collection and
one-third analysis), including 30 minutes for the two launches. Unifying identifier definitions and
writing associated maps took 12 minutes, whereas writing the traces in parallel toGPFSachieved
6.2GB/s and took 10 minutes: the major bottleneck, however,was the 25 minutes required to
initially open and create one trace file per process. The solver section of the resulting 2.3GB anal-
ysis report was subsequently extracted, and Figure 5 shows the distribution of theLate Sender
metric for the call-path taking the longest time. With its 50% standard deviation there is clearly
a significant imbalance that closely corresponds to the physical racks of the BlueGene/P system.
Furthermore, only 0.2% of the total number of late senders are on this call-path that requires one-
third of the totalLate Sendertime, so there is potentially a great benefit from addressingthis
localized inefficiency, e.g., using a better mapping of processes to processors.



Beyond relatively simple benchmark kernels,SCALASCA has also successfully been used to an-
alyze and tune a number of locally-important applications.The XNS simulation of flow inside
a blood pump, based on finite-element mesh techniques, was analyzed using 4,096 processes on
BlueGene/L, and after removing unnecessary synchronizations from critical scatter/gather and
scan operations performance improved more than four-fold [20]. On the MareNostrum blade clus-
ter, theWRF2 weather research and forecasting code was analyzed using 2,048 processes, and
identified occasional problems with seriously imbalanced exits from MPI Allreduce calls that sig-
nificantly degraded overall application performance [18].In both cases, the high-level call-path
profile readily available from runtime summarization was key in identifying general performance
issues that manifest at large scale, related to performanceproblems that could subsequently be
isolated and understood with targeted trace collection andanalysis.

The SPEC MPI2007 suite of 13 benchmark codes from a wide variety of subject areas have also
been analyzed withSCALASCA with up to 1,024 processes on anIBM SP2 p690+ cluster [14].
Problems with several benchmarks that limited their scalability (sometimes to only 128 processes)
were identified, and even those that apparently scaled well contained considerable quantities of
waiting times indicating possible opportunities for performance and scalability improvement. Al-
though runtime summarization could be effectively appliedto fully-instrumented runs of the entire
suite of benchmarks, analysis of complete traces was only possible for 12 of the set, due to the
huge number of point-to-point communications done by the 121.pop2 benchmark: since execution
behavior was repetitive this allowed 2000 instead of 9000 timesteps to be specified for a represen-
tative shorter execution.

While large-scale tests are valuable to demonstrate scalability, more important has been the ef-
fective use of theSCALASCA toolset by application developers’ on their own codes, often dur-
ing hands-on tutorials and workshops, where the scale is typically relatively small but there is a
great diversity of computer systems (e.g., Altix, Solaris and Linux clusters, as well as leadership
HPC resources). Feedback from users and their suggestions for improvements continue to guide
SCALASCA development.

8 Outlook

Our general approach is to first observe parallel execution behavior on a coarse-grained level
and then to successively refine the measurement focus as new performance knowledge becomes
available. Future enhancements will aim at both further improving the functionality and scalability
of the SCALASCA toolset. Completing support for OpenMP and the missing features ofMPI to
eliminate the need for sequential trace analysis is a primary development objective.

Using more flexible measurement control, we are striving to offer more targeted trace collection
mechanisms, reducing memory and disk space requirements while retaining the value of trace-
based in-depth analysis. In addition, while the current measurement and trace analysis mecha-
nisms are already very powerful in terms of the number of application processes they support,
we are working on optimized data management and workflows that will allow us to master even
larger configurations. These might include truly parallel identifier unification, trace analysis with-
out file I /O, and using parallelI /O to write analysis reports. Since parallel simulations are often



iterative in nature, and individual iterations can differ in their performance characteristics, another
focus of our research is therefore to study the temporal evolution of the performance behavior as
a computation progresses.
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Parallel Computing (PARA, Umeå, Sweden), Lecture Notes in Computer Science 4699, pages
398–408. Springer, June 2006.

[5] M. Geimer, F. Wolf, B. J. N. Wylie, and B. Mohr. Scalable parallel trace-based performance
analysis. InProc. 13th European PVM and MPI Conf. (EuroPVM/MPI, Bonn, Germany),
Lecture Notes in Computer Science 4192, pages 303–312. Springer, September 2006.
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Sweden), Lecture Notes in Computer Science 4699, pages 460–469. Springer, June 2006.


