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Abstract

SCALASCAis a performance toolset that has been specifically desigreathlyze parallel
application execution behavior on large-scale systenwffdts an incremental performance-
analysis procedure that integrates runtime summariesimtiepth studies of concurrent be-
havior via event tracing, adopting a strategy of succeblsiedined measurement configura-
tions. Distinctive features are its ability to identify watates in applications with very large
numbers of processes and combine these with efficiently arined local measurements. In
this article, we review the current toolset architecturapkasizing its scalable design and
the role of the different components in transforming raw sueament data into knowledge
of application execution behavior. The scalability ancefifveness o6CALASCA are then
surveyed from experience measuring and analyzing reddvapplications on a range of
computer systems.

1 Introduction

World-wide efforts of building parallel machines with pemfnance levels in the petaflops range
acknowledge that the requirements of many key applicattanonly be met by the most advanced
custom-designed large-scale computer systems. However,paerequisite for their productive
use, theHpPc community needs powerful and robust performance-analggils that make the
optimization of parallel applications both more effectaed more efficient. Such tools can not
only help improve the scalability characteristics of stifemcodes and thus expand their potential,
but also allow domain experts to concentrate on the unaeylstience rather than to spend a major
fraction of their time tuning their application for a partiar machine.

As the current trend in microprocessor development coatinthis need will become even stronger
in the future. Facing increasing power dissipation and Vifitle instruction-level parallelism left
to exploit, computer architects are realizing further perfance gains by using larger numbers of



moderately fast processor cores rather than by incredsengpieed of uni-processors. As a conse-
guence, supercomputer applications are required to leamesh higher degrees of parallelism in
order to satisfy their growing demand for computing poweithvin exponentially rising number
of cores, the often substantial gap between peak perfornamd that actually sustained by pro-
duction codes [10] is expected to widen even further. Rmalcreased concurrency levels place
higher scalability demands not only on applications bub alis parallel programming tools [15].
When applied to larger numbers of processes, familiar witds cease to work satisfactorily (e.qg.,
due to escalating memory requirements, limitenlbandwidth, or renditions that fail).

Developed at Julich Supercomputing Centre in cooperatitin the University of Tennessee as
the successor af0JAK [16], SCALASCA is an open-source performance-analysis toolset that has
been specifically designed for use on large-scale systethgling i1BM Blue Gene and CraxT,

but is also well-suited for small- and medium-scakec platforms.SCALASCA supports an incre-
mental performance-analysis procedure that integratesma summaries with in-depth studies
of concurrent behavior via event tracing, adopting a sfsat# successively refined measurement
configurations. A distinctive feature is the ability to idiénwait states that occur, for example,
as a result of unevenly distributed workloads. Especialhemwtrying to scale communication-
intensive applications to large processor counts, suchsiates can present severe challenges to
achieving good performance. Compare®twAK, SCALASCA can detect such wait states even in
very large configurations of processes using a novel patediee-analysis scheme [5].

In this article, we review the currer#CALASCA toolset architecture, emphasizing its scalable
design. After covering related work in Section 2, we give aargiew of the different functional
components in Section 3 and describe the interfaces bettheem In Sections 4, 5, and 6, we
highlight individual aspects, such as application insteatation, measurement and analysis of
performance data, and presentation of analysis resultssiwvey the role 08CALASCA in the
analysis of real-world applications on a range of leaderghind smallerHpPc computer systems
in Section 7, before presenting ongoing and future aa@wiin Section 8.

2 Related Work

Developers of parallel applications can choose from a tyanéperformance-analysis tools, of-

ten with overlapping functionality but still following disctive approaches and pursuing different
strategies on how to address today’s demand for scalaklerpemce solutions. From the user’s
perspective, the tool landscape can be broadly categdrimechonitoring tools which present per-

formance analysis during measurement versus those pngvgistmortem analysis. On a tech-
nical level, one can additionally distinguish between diri@strumentation and interrupt-based
event measurement techniques.

Based on postmortem analysis presentation of direct memasunts, that are traced or summarized
at runtime SCALASCAI s closely related toau [12]. Both tools can interoperate in several modes:
calls to theTAu measurememPI can be redirected to theeCALASCA measurement system, mak-
ing TAU'’s rich instrumentation capabilities available3GALASCA users. LikewiSeSCALASCA'S
summary and trace-analysis reporting can levereggs profile visualizer and take advantage
of the associated performance database framework. Cothfzarau’s architecture SCALASCA
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Figure 1. Schematic overview of the performance data flodoaLASCA. Grey rectangles denote
programs and white rectangles with the upper right corneretli down denote files. Stacked
symbols denote multiple instances of programs, files oralajtects running or being processed in
parallel. Hatched boxes represent optional third-partpmanents.

advocates a closer integration of summarization and acapabilities in a single instrumented
executable and measurement experiment, and unifying tbefiition identifiers used in both
summaries and traces in a uniform manner.

Furthermore, trace file converters connsCiALASCA to trace browsers, such as Paraver [7] and
Vampir [9]. Like SCALASCA, the VampirServer architecture improves scalability tigto parallel
trace access mechanisms, albeit targeting a ‘serial’ huchant in front of a graphical trace
browser rather than fully automatic and parallel traceysiglas provided bgCALASCA. Paraver,

in contrast, favors trace-size reduction using a systenttefdithat eliminates dispensable features
and summarizes unnecessary details using a mechanism saftecounters.

On the other hand, HPCToolkit [8] is an example of a postnmoréamalysis tool that generates
statistical profiles from interval timer and hardware-deuroverflow interrupts. Its architecture
integrates analyses of both the application binary anddhece code to allow a more conclusive
evaluation of the profile data collected. Monitoring toagch as Paradyn [11] and Periscope [2]
perform dynamic instrumentation and evaluate performaiata while the application is still run-
ning. To ensure scalable communication between tool baskand frontend, their architectures
employ hierarchical networks that facilitate efficientwetion and broadcast operations.

3 Overview

The current version o§CALASCA supports measurement and analysis ofnire, Opemmp and
hybrid programming constructs most widely used in higldgdableHPC applications written in
C/C++ and Fortran on a wide range of curremc platforms [17]. Fig. 1 shows the basic analy-
sis workflow supported bgCALASCA. Before any performance data can be collected, the target



application must be instrumented. When running the instnied code on the parallel machine,
the user can choose to generate a summary report (‘profildl)aggregate performance metrics
for individual function call-paths, and/or event tracesamrgling individual runtime events from
which a profile or time-line visualization can later be proed. Summarization is particularly
useful to obtain an overview of the performance behavior fandocal metrics such as those
derived from hardware counters. Since traces tend to fapiebome very large, scoring of a
summary report is usually recommended, as this allowsumsntation and measurement to be
optimized. When tracing is enabled, each process genexdtase file containing records for its
process-local events. After program terminatisBALASCA loads the trace files into main mem-
ory and analyzes them in parallel using as manys as have been used for the target application
itself. During the analysissCALASCA searches for characteristic patterns indicating waiestat
and related performance properties, classifies detecttanices by category and quantifies their
significance. The result is a pattern-analysis report ainiil structure to the summary report but
enriched with higher-level communication and synchraimizeinefficiency metrics.

Both summary and pattern reports contain performance esdtr every function call-path and
process/thread which can be interactively examined init@ged analysis report explorer or with
third-party profile browsers such asu’s ParaProf. In addition to the scalable trace-analysis, it
still possible to run the sequentiabJiak analysis after merging the local trace files. The sequen-
tial analysis offers features that are not yet availableha parallel version, including extended
MPI and OpempP analyses, and the ability to generate traces of patterarioss, i.e., so-called
performance-property traces. As an alternative to thenaatic pattern search, the merged traces
can be converted and investigated using third-party traioessers such as Paraver or Vampir,
taking advantage of their time-line visualizations anth statistical functionality.

Fig. 2 shows a layered model of tseALASCA architecture, highlighting the interfaces between
the different parts of the system. The vertical axis reprss¢he progress of the performance
analysis procedure, starting at the top with the insertioneasurement probes into the application
and ending at the bottom with the presentation of resultscfifgion on the left). On the right, the
procedure is split into phases that occur before, duringter axecution. The horizontal axis is
used to distinguish among several alternatives on each.stgors divide the system into groups
of components with related functionality, with hatchedsafboxes representing the user providing
source-code annotations and components provided by thitaep.

4 Instrumentation and Measurement

4.1 Preparation of Application Executables

Preparation of a target application executable for measeméand analysis requires that it must be
instrumentedo notify the measurement library of performance-relevex#cution events when-
ever they occur. On most systems, this can be done complaeteébmatically using compiler
support; for all systems manual and automatic instrumiemtahechanisms are offered. Instru-
mentation configuration and processing of source files areeaed by prefixing selected compi-
lation commands and the final link command with @ LASCA instrumenter, without requiring
other changes to optimization levels or the build process.



Insertion of / : User Source code )
probes Linker Compiler preprocessor Preparation

Compiler-hooks POMP

PMPI wrapper

Source regions POMP
wrapper
Event Runtime event management Hardware counter access
measurement & Execution
collection Measurement acquisition for individual processes & threads

Definition management and unification

Event tracing

Runtime

Event summarization - " Sequential trace
o MESE] :
summarization & Y abstraction
- nchronization
analysis
Parallel pattern Sequential A
attern searc
search P Postmortem

Presentation Report manipulation i

visualization

Interactive report exploration

Instrumentation Measurement system Trace utilities Report tools

Figure 2: Layered model of theCALASCA architecture.

Simply linking the application with the measurement lilgransures that events relatedMe!
operations are properly captured via the stan@ardi profiling interface. For Opanp, a source
preprocessor is used which automatically instrumentsiiwes and pragmas for parallel regions,
etc., based on aowmp profiling interface developed for this purpose, and most gitaTs are
capable of adding instrumentation hooks to every functiorootine entry and exit. Finally, pro-
grammers can manually add their own custom instrumentatioiotations into the source code for
important regions (such as phases or loops, or functions tieis not done automatically): these
annotations are pragmas or macros which are ignored whisnrmsntation is not configured.

4.2 Measurement and Analysis Configuration

ThescaLASCA measurement system [22] that gets linked with instrumeapgdication executa-
bles can be configured via environment variables or configurdiles to specify that runtime
summaries and/or event traces should be collected, alahgwiional hardware counter metrics.
During measurement initialization, a unique experimenhie directory is created to contain all
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Figure 3: Detailed flow of definitions and performance datadiotime summarization (top), trace
collection and parallel pattern search in traces (bottammjfication of definition identifiers and
generation of identifier maps is common to both. White boxils mounded corners denote data
objects residing in memory.

of the measurement and analysis artifacts, including cordigon information, log files and anal-
ysis reports. When event traces are collected, they arestdsed in the experiment archive to
avoid accidental corruption by simultaneous or subsequesisurements.

Measurements are collected and analyzed under the comteohexus that determines how the
application should be run, and then configures measuremdraralysis accordingly. When trac-
ing is requested, it automatically configures and exectieparallel trace analyzer with the same
number of processes as used for measurement. This alomsasca analysis to be specified as
a command prefixed to the application execution commargj-Whether part of a batch script or
interactive run invocation.

In view of thel/o bandwidth and storage demands of tracing on large-scalemsgsand specif-
ically the perturbation caused by processes flushing thegetdata to disk in an unsynchronized
way while the application is still running, it is generallggirable to limit the amount of trace data
per application process to not exceed the size of the al@itabmory. This can be achieved via
selective tracing, for example, by recording events onhycfmde regions of particular interest or
by limiting the number of timesteps during which measuretsiégike place.

Instrumented functions which are executed frequentlyjevbmly performing a small amount of
work each time they are called, have an undesirable impacheasurement. The overhead of
measurement for such functions is large compared to thaiBmadime of the (uninstrumented)
function, resulting in measurement dilation, while redogdsuch events requires significant space
and analysis takes longer with relatively little improverim quality. This is especially important
for event traces whose size is proportional to the total remobevents recorded. For this reason,
SCALASCA offers a filter mechanism to exclude certain functions fromasurement. Before
starting trace collection, the instrumentation shouldegally be optimized based on a visit-count
analysis obtained from an earlier summarization run.

4.3 Definition Unification and Analysis Collation

Measured event data refer to objects such as source codmsegall-paths, or communicators.
Motivated by the desire to minimize storage requirementsaoid redundancy in traces, events



reference these objects using identifiers, while the objgmEmselves are defined separately. To
avoid extra communication between application processgagimeasurement acquisition, each
process may use a different local identifier to denote theesalbject. However, to establish a
global view of the program behavior during analysis, a gla& of unique object definitions
must be created and local identifiers replaced with globattifiers that are consistent across all
processes. This procedure is callgudficationand shown in Fig. 3.

Separate collection buffers on each process are used foitiefiand event records, avoiding the
need to extract the definitions from a combined trace lateméasurement finalization, each rank
in turn sends its definition buffers to rank zero for unifioatinto a set of global definitions and

an associated identifier mapping.

The identifier mappings are returned to each process, sthilatan globalize their local analysis
results during the collation of a complete summary repoirst Fank zero (which has the unified
global definitions) prepares the report header, then itagaithe aggregated metrics for each call-
path from each process and appends these incrementatlyelmdsing the summary report [3].

When tracing is performed the global definitions and mapparg written to files, along with the
dumped contents of each trace buffer. These files are sutastyguead by the postmortem trace
analyzer to be able to translate local object identifiershattace files to global identifiers used
during analysis. After trace analysis is complete, calawf the analysis results and writing the
pattern report is performed in the same way as for the sumnagort.

Although unification is a predominantly sequential opemtithe distributed design takes advan-
tage of message communication to facilitate the exchangbjett definitions and the generation
of mapping information while reducing expensive file that would be otherwise prohibitive.

For cases where it is desired to do serial trace analysis (gstng thekOJAK sequential trace
analyzer) or convert into another trace format (e.g., feestigation in a time-line visualization),
a global trace file can be produced. The distributed tracg flileeach rank can be merged (using
the global definitions and mappings), adding a unique lonatentifier to each event record when
writing records in chronological order. While this can bagiical for relatively small traces, the
additional storage space and conversion time if often pitwe unless very targeted instrumen-
tation is configured or the problem size is reduced (e.g.ntp @ few timesteps or iterations).

5 Event Summarization and Analysis

The basic principle underlyingCALASCA performance analysis capabilities is the summarization
of events, that is, the transformation of an event streamadrtompact representation of execution
behavior, aggregating metric values associated with iddal events from the entire execution.
SCALASCA offers two general options of analyzing events streamsm(ediate runtime sum-
marization and (ii) postmortem analysis of event trace® Sthength of runtime summarization is
that it avoids having to store the events in trace buffersfaesl However, postmortem analysis
of event traces allows the comparison of timestamps acro$ifpie processes to identify various
types of wait states that would remain undetectable ottserviig. 3 contrasts both summarization
techniques with respect to the flow of performance data tiivrdhe system. A detailed discussion
is given below, paying attention to scalability challengesl how they have been addressed.



5.1 Runtime Summarization

Many execution performance metrics can be most efficiemtigutated by accumulating statistics
during measurement, avoiding the cost of storing them widnts for later analysis. For exam-
ple, elapsed times and hardware counter metrics for soegiens (e.g., routines or loops) can
be immediately determined and the differences accumul&ttbreas trace storage requirements
increase in proportion to the number of events (dependetitemeasurement duration), summa-
rized statistics for a call-path profile per thread have affisirage requirement (dependent on
the number of threads and executed call-patBEALASCA associates metrics with unique call-
paths for each thread, and updates these metrics (typigalccumulation) during the course of
measurement.

Call-paths are defined as lists of visited regions (stafftiagn an initial root), and a new call-path
can be specified as an extension of a previously defined atil{p the new terminal region. In
addition to the terminal region identifier and parent caltfpidentifier, each call-path object also
has identifiers for its next sibling call-path and its firstldltall-path. When a region is entered
from the current call-path, any child call-path and its isidp are checked to determine whether
they match the new call-path, and if not a new call-path iste and appropriately linked (to
both parent and last sibling). Exiting a region is then gtrdbrward as the new call-path is the
current call-path’s parent call-path.

Constructing call-paths in this segmented manner proddaesvenient means for uniquely identi-
fying a call-path as it is encountered (and creating it whesh éncountered), and tracking changes
during execution. Call-paths can be truncated at a confifeidepth (to ignore deep detail, e.g.,
for recursive functions), and will be clipped when it is natspible to store new call-paths. When
execution is complete, a full set of locally-executed gaths are defined, and these need to be
unified like all other local definitions as described pregigu

A new vector of time and hardware counter metrics is acquivitd every region enter or exit
event. This vector of measurements is logged with the evéehwracing is active, and used to
determine elapsed metric values to be accumulated witkeimtthtime summary statistics record
associated with the corresponding call-path. Whereaspedifl visit counts and message-passing
statistics (such as numbers of synchronizations and corneations, numbers of bytes sent and
received) can be directly accumulated, time and hardwanateo metrics require initial values
(on entering a new routine) for each active frame on thestattk to be stored so that they can be
subtracted when that frame is exited (on leaving the rojtikeeping separate call-path statistics
and stacks of entry metric vectors for each thread allowsieffi lock-free access to the values
required during measurement.

5.2 Postmortem Trace Analysis

In message-passing applications, processes often reapgess to data provided by remote pro-
cesses, making the progress of a receiving process depemgen the progress of a sending
process. Collective synchronization is similar in thatatsnpletion requires each participating
process to have reached a certain point. As a consequerigejfecant fraction of the communi-

cation and synchronization time can often be attributed dad states, for example, as a result of



an unevenly distributed workload. Especially when tryingstale communication-intensive ap-
plications to large process counts, such wait states caepreevere challenges to achieving good
performance.SCALASCA provides a diagnostic method that allows their localizaticlassifica-
tion, and quantification by automatically searching eveatds for characteristic patterns. A list
of the patterns supported IsgALASCA including explanatory diagrams can be found on-line [6].

To accomplish the search in a scalable way, both distribotedhory and parallel processing
capabilities available on the target system are explolteztead of sequentially analyzing a single
global trace file, as done byoJAK, SCALASCA analyzes separate process-local trace files in
parallel byreplayingthe original communication on as maagus as have been used to execute the
target application itself. During the search processgpatinstances are classified and quantified
according to their significance for every program phase gatem resource involved. Since trace
processing capabilities (i.e., processors and memoryy gnoportionally with the number of
application processes, such pattern searches have begfeternat previously intractable scales.

To maintain efficiency of the trace analysis process as tmebeu of application processes in-
creases, our architecture follows a parallel trace acceskelvhich is provided as a separate ab-
straction layer [4] between the parallel pattern searchtlamdaw trace data stored on disk (Fig. 2,
center). Implemented asc+ class library, this layer offers random access to indiglcevents as
well as abstractions that help identify matching eventdcivis an important prerequisite for the
pattern search. The main usage model of the trace-acceasyldgssumes that for every process
of the target application an analysis process is created tmlguely responsible for its trace data.
Data exchange among analysis processes is then accordplisheri communication.

The library offers classes to represent process-locads$ramvents, and objects referenced by those
events (e.g., regions, communicators). When instangjaitrace object, the trace data are loaded
into memory while translating local into global identifiarsing the mapping tables provided by
the measurement system to ensure that event instancesdcfeain event records point to the
correct objects (Fig. 3). Having the entire event trace keptain memory during analysis thereby
enables performance-transparent random access to indivégents.

Higher-level abstractions provide the context in which went¢ occurs, such as the call-path or
communication peers. While special event attributes gtoveess-local context information, re-
mote event abstractions in combination with mechanismgdbange event data between analysis
processes allow tracking of interactions across procegadasies. The actual matching of com-
munication events is performed by exploitimg | messaging semantics during a parallel commu-
nication replay of the event trace.

Using the infrastructure described above, the parallelyaeatraverses the local traces in paral-
lel from beginning to end while exchanging information ahayronization points of the target
application. That is, whenever an analysis process seessenadated to communication or syn-
chronization, it engages in an operation of similar typenvebrresponding peer processes.

As an example of inefficient point-to-point communicati@onsider the so-calletate Sender
pattern (Fig. 4(a)). Here, an early receive operation igredt by one process before the corre-
sponding send operation has been started by the other. mibddst waiting due to this situation
is the time difference between the enter events of the Mwo function instances that precede
the corresponding send and receive events. During thelgamblay (Fig. 4(b)), the search is
triggered by the communication events on both sides. Wieraav analysis process finds a send
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Figure 4: Searching for the Late Sender pattern in pardllet situation described by this pattern
is shown on the left in a time-line diagram. How the differeménts are accessed and combined
to verify its occurrence is shown on the right.

event, a message containing this event as well as the asgbeiater event is sent to the process
representing the receiver using a non-blocking pointdwfpcommunication. When the receiver
reaches the corresponding receive event, this messagmigae. Together with the local receive
and enter events, laate Sendesituation can be detected by comparing the timestamps dfhe
enter events and calculating the time spent waiting for émeler.

Currently, the parallel trace analysis considers only asubfmpPI operations and ignoresri-2
RMA and Opemp parallel operations, which can alternatively be analyzedsequential trace
analysis of a merged trace. Finally, automatic trace arsabfsOpemip applications using dy-
namic, nested and guarded worksharing constructs is nqogsible.

To allow accurate trace analyses on systems without glolsgthchronized clockssCALASCA
provides the ability to synchronize inaccurate timestapgstmortem. Linear interpolation based
on clock offset measurements during program initializagmd finalization already accounts for
differences in offset and drift, assuming that the drift ofiadividual processor is not time de-
pendent. This step is mandatory on all systems without aagjldbck, such as CrayT and most
PC or compute blade clusters. However, inaccuracies and ditying over time can still cause
violations of the logical event ordering that are harmfutiie accuracy of our analysis. For this
reason,SCALASCA compensates for such violations by shifting communicaéieents in time as
much as needed while trying to preserve the length of inkervatween local events [1]. The
logical synchronization is currently optional and shouddderformed if the trace analysis reports
(too many) violations of the logical event order.

6 Report Generation, Manipulation, and Exploration

Summary and pattern reports amaL files, written to disk by a single process while gathering the
necessary information from the remaining application acéranalysis processes usvgi col-
lective communication. Since the size of the report may estdbe memory capacity of the writer
process, the report is created incrementally, alternatietgveen gathering and writing smaller
subsets of the overall data. Compared to an initial pro®iyfsCALASCA, the speed of writing
reports has been substantially increased by eliminatirgg laumbers of temporary files [3].



Reports can be combined or manipulated [13] to allow corspad or aggregations, or to focus the
analysis on specific extracts of a report. Specifically, ipl@treports can be merged or averaged,
the difference between two reports calculated, or a newtggenerated after eliminating uninter-
esting phases (e.g., initialization) to focus the analgsis selected part of the execution. These
utilities each generate new reports as output that can bieefumanipulated or viewed like the
original reports that were used as input. The library fodneg and writing thexMmL reports also
facilitates the development of utilities which procesathia various ways, such as the extraction
of measurements for each process or their statistical ggtio® in metric graphs.

To explore their contents, reports can be loaded into amatige analysis report explorer [3].
Recently, the explorer’'s capacity to hold and display data bas been raised by shrinking their
memory footprint and interactive response times have beduced by optimizing the algorithms
used to calculate aggregate metrics.

7 Survey of Experience

Early experience witlscALASCA was demonstrated with thesc benchmarksmc2000, a semi-
coarsening multi-grid solver which was known to scale welBtueGene/L (in weak scaling mode
where the problem size per process is constant) but posédeosisle demands ompPI perfor-
mance analysis tools due to huge amounts of non-local coneation. Although serial analysis
with the KOJAK toolkit became impractical beyond 256 processes, due fgsisdime and mem-
ory requirements, the initilCALASCA prototype was already able to complete its analysis of a
2048-process trace in the same time [5].

Encouraged by the good scalability of the replay-baseceteamalysis, which was able to effec-
tively exploit the per-process event traces without meyginre-writing them, bottlenecks in uni-
fying definition identifiers and collating local analysigpoets were subsequently addressed, and
trace collection and analysis scalability with tlssG2000 benchmark extended to 16,384 pro-
cesses on BlueGene/L and 22,528 processes onxQ1did [19, 21]. The latter traces amounted
to 4.9TB, and 18GB/s was achieved for the final flush of theetiadfers to disk, despite the need
to work around Lustre filesystem limitations on the numbdifile§ written simultaneously.

Identifier unification and map creation still took an unadably long time, particularly for run-
time summarization measurements where large traces adedybowever, straightforward serial
optimizations have subsequently reduced this time by afadftup to 25 (in addition to savings
from creating only two global files rather than two files peogqass). Furthermore, the number
of files written when tracing has been reduced to a single @iterank (plus the two global files),
which is written only once directly into a dedicated expesiharchive. Filesystem performance
is expected to continue to lag behind that of computer sysiargeneral, even when paraliéb

is employed, therefore elimination of unnecessary filesiges benefits that grow with scale and
are well-suited for the future.

As a specific examplesmc2000 using 65,536 processes on BlueGene/P has been analylzed
the latest (1.0) version &fCALASCA. The uninstrumented version of the application ran in 17-min
utes, including 12 minutes to launch this number of procesBeom an initial runtime summary
of the fully-instrumented application, where executiangiwas dilated 25% to 6 minutes, a file
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Figure 5:SCALASCA presentation of the solver extract of the trace analysisrtdpr 64k-process
measurement o§MG2000 on a 16-rack BlueGene/P, witlate Sendetime selected from the
metrics pane (left) amounting to 43% of total time (compaced% forExecutiortime excluding
MPI). One third ofLate Sendettime is attributed to one MPWaitall from the call-tree pane
(centre), and its distribution across the 65,536 processasn on the BlueGene physical topology
(right). Metric values are colour-coded according to theesat the bottom to facilitate distinction
of high (dark) and low (light) severities in both tree anddlmgy displays.

listing a number of purely-computational functions to beefiégd from the trace was determined.
Collection and analysis of the resulting 3.33TB trace to0& fninutes (two-thirds collection and
one-third analysis), including 30 minutes for the two laues Unifying identifier definitions and
writing associated maps took 12 minutes, whereas writiegrtdces in parallel tapFsachieved
6.2GB/s and took 10 minutes: the major bottleneck, howewas the 25 minutes required to
initially open and create one trace file per process. Thessaskction of the resulting 2.3GB anal-
ysis report was subsequently extracted, and Figure 5 shwmvdistribution of theLate Sender
metric for the call-path taking the longest time. With it¥b8@tandard deviation there is clearly
a significant imbalance that closely corresponds to theipalysacks of the BlueGene/P system.
Furthermore, only 0.2% of the total number of late sendexarthis call-path that requires one-
third of the totalLate Sendetime, so there is potentially a great benefit from addrestiig
localized inefficiency, e.g., using a better mapping of peses to processors.



Beyond relatively simple benchmark kerneds;ALASCA has also successfully been used to an-
alyze and tune a number of locally-important applicatiofifie XxNS simulation of flow inside

a blood pump, based on finite-element mesh techniques, vedyzad using 4,096 processes on
BlueGene/L, and after removing unnecessary synchrooizatfrom critical scatter/gather and
scan operations performance improved more than four-20{ [On the MareNostrum blade clus-
ter, thewRrRF2 weather research and forecasting code was analyzed u§A§ @rocesses, and
identified occasional problems with seriously imbalancdtsérom MP1Allreduce calls that sig-
nificantly degraded overall application performance [18].both cases, the high-level call-path
profile readily available from runtime summarization wag keidentifying general performance
issues that manifest at large scale, related to performprai@ems that could subsequently be
isolated and understood with targeted trace collectionaaadysis.

The spec MPR007 suite of 13 benchmark codes from a wide variety of stilgjexas have also
been analyzed witlscALASCA with up to 1,024 processes on &M SP2 p690+ cluster [14].
Problems with several benchmarks that limited their sélitlafsometimes to only 128 processes)
were identified, and even those that apparently scaled wathied considerable quantities of
waiting times indicating possible opportunities for penfi@ance and scalability improvement. Al-
though runtime summarization could be effectively apptetully-instrumented runs of the entire
suite of benchmarks, analysis of complete traces was ordgilple for 12 of the set, due to the
huge number of point-to-point communications done by tHed@2 benchmark: since execution
behavior was repetitive this allowed 2000 instead of 90@@s&teps to be specified for a represen-
tative shorter execution.

While large-scale tests are valuable to demonstrate skglamore important has been the ef-
fective use of thescALASCA toolset by application developers’ on their own codes, roftar-
ing hands-on tutorials and workshops, where the scale isaljyp relatively small but there is a
great diversity of computer systems (e.g., Altix, Soland &inux clusters, as well as leadership
HPC resources). Feedback from users and their suggestionsipsovements continue to guide
SCALASCA development.

8 Outlook

Our general approach is to first observe parallel execut@maior on a coarse-grained level
and then to successively refine the measurement focus aser@wrpance knowledge becomes
available. Future enhancements will aim at both furtheraving the functionality and scalability
of the sCALASCA toolset. Completing support for Oper and the missing features ofPI to
eliminate the need for sequential trace analysis is a pyimevelopment objective.

Using more flexible measurement control, we are strivingfteranore targeted trace collection
mechanisms, reducing memory and disk space requiremerilis rgtaining the value of trace-
based in-depth analysis. In addition, while the currentsuezment and trace analysis mecha-
nisms are already very powerful in terms of the number ofiappbn processes they support,
we are working on optimized data management and workflowtsihlaallow us to master even
larger configurations. These might include truly paraliigntifier unification, trace analysis with-
out file 1/0, and using parallel/o to write analysis reports. Since parallel simulations dteno



iterative in nature, and individual iterations can diffeitiheir performance characteristics, another
focus of our research is therefore to study the temporaluionl of the performance behavior as
a computation progresses.
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