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Abstract
Many Grid infrastructures have begun to offer services to end-users during

the past several years with an increasing number of complex scientific applica-
tions and software tools that require seamless access to different Grid resources
via Grid middleware during one workflow. End-users of the ratherhpc-driven
deisa Grid infrastructure take not only advantage of Grid workflowmanagement
capabilities for massively parallel applications to solvecritical problems of high
complexity (e.g. protein folding, global weather prediction), but also leverage
software tools to achieve satisfactory application performance on contemporary
massively parallel machines (e.g.,ibmBlue Gene/P). In this context, event tracing
is one technique widely used by software tools with a broad spectrum of applica-
tions ranging from performance analysis, performance prediction and modeling
to debugging. In particular, automatic performance analysis has emerged as an
powerful and robust instrument to make the optimization of parallel applications
both more effective and more efficient. The approach of automatic performance
analysis implies multiple steps that can perfectly leverage the workflow capabil-
ities in Grids. In this paper, we present how this approach isimplemented by
using the workflow management capabilities of theunicore Grid middleware,
which is deployed ondeisa, and thus, demonstrate by using a Grid application
that the approach taken is feasible.
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1. Introduction

Grid infrastructures offer services to end-users with an increasing number of
complex scientific applications and software tools. Due to the increased com-
plexity of contemporary High-Performance Computing (hpc) systems, soft-
ware tools that are used to tune parallel applications are important. Using these
rather complicated software tools can be significant simplified by Grid mid-
dleware providing multi-step workflow capabilities. Whilea wide variety of
Grid middleware systems exist (gLite [17], Globus Toolkits[14]) today, only a
few systems incorporate massive workflow support, and are also driven byhpc

needs.
One of those systems isunicore, which is deployed ondeisa [3]. This

hpc-drivendeisa Grid infrastructure offers not only Grid workflow manage-
ment capabilities for massively parallel applications to solve critical problems
of high complexity (e.g. protein folding, global weather prediction), but also
software tools to achieve satisfactory application performance on contemporary
massively parallel machines (e.g.,ibm Blue Gene/P).

In the area ofhpc, event tracing is a popular technique for software tools
with a broad spectrum of applications ranging from performance analysis, per-
formance prediction and modeling to debugging. Event traces are helpful in
understanding the performance behavior of message-passing applications since
they allow in-depth analysis of communication and synchronization patterns.
Graphical trace browsers, such asvampir [20] and Paraver [16], allow the fine-
grained investigation of parallel performance behavior and provide statistical
summaries. By contrast, automatic trace analysis scans event traces of parallel
applications for wait states that occur when processes failto reach synchro-
nization points in a timely manner, e.g., as a result of an unevenly distributed
workload.

The automatic performance analysis approach is a powerful and robust instru-
ment to make the optimization of parallel applications bothmore effective and
more efficient. For instance,scalasca, which has been specifically designed
for large-scale systems, searches event traces of parallelprograms for patterns
of inefficient behavior, classifies detected instances by category, and quantifies
the associated performance penalty [7]. This allows developers to study the per-
formance of their applications on a higher level of abstraction, while requiring
significantly less time and expertise than a manual analysis[23].

scalasca’s analysis approach implies multiple steps that can perfectly
leverage the workflow capabilities in Grids. In this paper, we present how
this approach is implemented by using theunicore workflow management
capabilities that are deployed ondeisa and thus demonstrate by using a Grid
application that the approach taken is feasible. While we automizescalasca’s
performance analysis workflow, we show that Grid workflow capabilities in
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general, andunicores workflow engine in particular, efficiently support the
performance analysis process ofhpc-driven Grid applications.

The outline of this paper is as follows: After describing thebasics of Grid
middleware components in Section 2, we review the automatictrace analysis
approaches in Section 3 including a brief description of theevent tracing tech-
nique. In Section 4, we evaluate the feasibility of the approach taken using
the state-of-the-art massively parallel machines deployed on thedeisa Grid
and show how automatic performance analysis is augmented byunicore’s
workflow capabilities. Finally, after reviewing the related work in Section 5,
we summarize our results and give an outlook on future work inSection 6.

2. Grid Middleware

Today, large-scale scientific research often relies on the shared use of a Grid
with computational or storage related resources. One of thefundamental ideas
of modern Grids is to facilitate the routine interaction of scientists and their
workflow-based applications with advanced problem solvingtools such as Grid
middleware systems. Many of these systems have been evolvedin the past,
typically influenced by the nature of their deployments. To provide an exam-
ple, the gLite middleware [17] deployed in theegee infrastructure [4] was
specifically optimized to handle large data-sets, while theunicore middle-
ware [11] deployed in thedeisa infrastructure [3] is rather designed to satisfy
the requirements inhpc environments.

Since our approach of supporting the performance analysis of massively
parallel applications with Grid-based workflow capabilities relies on ahpc

environments, we used key concepts of thehpc-driven Grid middlewareuni-

core. Other Grid middleware systems (i.e. Globus Toolkits [14])may also
provide similar capabilities, but the inherently providedworkflow functional-
ities of unicore are also fundamental to our approach and thus we choose
unicore.

Theunicore Grid middleware has been developed since the late 1990s to
support distributed computing applications in Grids in general, and massively
parallelhpcapplications in particular. The vertically integrated designprovides
components on each tier of its layered architecture as shownin Figure 1. The
unicore 5 architecture [22] mainly consists of proprietary components and
protocols, while the more recently developedunicore 6 architecture is based
onopenstandards such as the Webservices resource framework (ws-rf) [5] and
thus relies on the concept of Service-Oriented Architectures (soas).

In more detail,unicore 6 conforms to the Open Grid Services Architecture
(ogsa) of the Open Grid Forum (ogf) and several projects such as theomii-
Europe project [6] augmented it with open standards during the last couple of
month. The loosely coupled Web services connection technology provides a
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perfect base to meet the common use case within Grid that conform toogsa

thus allowing dynamic interaction dispersed in conceptual, institutional, and
geographical space. The approach presented in this paper takes advantage of
this service-oriented concept by using key characteristics of theunicore Grid
middleware. These characteristics are basic job submission and data manage-
ment functionalities using theunicore Atomic Services (uas) [21], and the
workflow capabilities of theunicore workflow engine and service orchestra-
tor.

Theuas consists of a set of core services such as the TargetSystemService
(tss) that represents a computational resource (e.g. supercomputers or clus-
ters) in the Grid. While the TargetSystemFactory (tsf) can be used to create
an end-user specific instance of atss, thetss itself is able to execute jobs
defined in the Job Submission and Description Language (jsdl) [12]. Each
submitted job is represented as another resource aligned with thetss and can
be controlled with the Job Management Service (jms). Finally, different flavors
of the FileTransferServices (fts) can be used for data transfer.

While theuas and its services (i.e.tss, jms, fts, etc.) operate on the
service level, they are supported by a strong execution backend named as the
enhanced Network Job Supervisor (xnjs), which uses the Incarnation Database
(idb) to map abstract job descriptions to system-specific definitions. In terms
of security, theuas are protected via theunicore Gateway [18], which does
authentication. This means it checks whether the certificate of an end-user
has been signed by a trusted Certificate Authority (ca), that its still valid, and
not revoked. For authorization thenjs, relies on theunicore User DataBase
(uudb) service andchecks policies based on Extensible Access Control Markup
Language (xacml) [19]. The roles and general attributes of end-users as well
as their group and project membership are encoded using Security Assertion
Markup Language (saml) [13] assertions.

Typically, scientists use theunicore middleware to reduce their manage-
ment overheads in usual scientific workflows to a minimum or toautomize parts
of their workflow. Without Grid middleware, the workflows of scientists often
start with the manual creation of a Secure Shell (ssh) connection to a remote
system such as a supercomputer via username and password or keys configured
before. The trend towards service-oriented Grids allows for more flexibility
and orchestration of services and thus makes it easier to enable end-users with
multi-step workflow capabilities. While there are many workflow-related tools
in Grids (e.g. taverna [8], askalon [2], triana [10]), we shortly de-
scribe the functionalities ofunicore that are later intensively used to verify
our approach.

To satisfy scalability requirements, the overall workflow capabilities ofuni-

core are developed using a two layer architecture. The Workflow Engine is
based on the Shark open-sourcexpdl engine. In addition, plug-ins allow for
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domain-specific workflow language support. The Workflow engine is respon-
sible to take Directed Acyclic Graph (dag)-based workflow descriptions and
map them to specific steps.

The Service Orchestrator on the other hand, is responsible for the job sub-
mission and monitoring of workflow steps. While the execution site can be
chosen manually, the orchestrator also supports brokeringbased on pluggable
strategies. In addition, it supports callback functions tothe workflow engine.

Finally, all the above described services can be seamlesslyaccessed using the
graphicalunicore Rich Client based on Eclipse. End-users are able to create
dags of different services that typically invoke different applications including
necessary data staging elements. In addition, the Tracing Service ofunicore

allows for monitoring of each execution step of aunicore workflow, which
can be easily followed in the client.

Figure 1. UNICORE’s layered architecture with workflow functionalities.
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3. Automatic Performance Analysis

In this section, we illustrate the automatic performance analysis workflow
including instrumentation, measurement, analysis, and result visualization used
to optimize parallel applications running on thousands of processes. After a
general description of the event tracing technique and a brief description of the
graphical trace browservampir [20], we especially focus on thescalasca

tool set [7] and its workflow requirements.
Often, parallel applications which are free of computational errors need to

be optimized. This requires the information which component of the program
is responsible for what kind of inefficient behavior. Performance analysis is the
process of identifying those parts, exploring the reasons for their unsatisfactory
performance, and quantifying their overall influence. To dothis, performance
data are mapped onto program entities. A developer can now investigate appli-
cation’s runtime behavior using software tools. Thus, the developer is enabled
to understand the performance behavior of his application.The process of gath-
ering performance data is called performance measurement and forms the basis
for subsequent analysis.
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target

application
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Parallel
 pattern search

Local
event traces

Pattern
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Summary
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Measurement 
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Figure 2. scalasca’s performance analysis process.

Event tracing is one technique widely used for post-mortem performance
analysis of parallel applications. Time-stamped events, such as entering a func-
tion or sending a message, are recorded at runtime and analyzed afterwards with
the help of software tools. The information recorded for an event includes at
least a time stamp, the location (e.g., the process or node) where the event hap-
pened and the event type. Depending on the type, additional information may
be supplied, such as the function identifier for function call events. Message
event records typically contain details about the message they refer to (e.g., the
source or destination location and message tag).

Graphical trace browsers, such asvampir, allow the fine-grained, manual
investigation of parallel performance behavior using a zoomable time-line dis-
play and provide statistical summaries of communication behavior. However,
in view of the large amounts of data generated on contemporary parallel ma-
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chines, the depth and coverage of the visual analysis offered by a browser is
limited as soon as it targets more complex patterns not included in the statistics
generated by such tools.
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Figure 3. Late Sender pattern.

By contrast, the basic principle of thescalasca project is the summa-
rization of events, that is, the transformation of an event stream into a compact
representation of execution behavior, aggregating metricvalues associated with
individual events across the entire execution. On a more technical level, the
trace analyzer of thescalasca tool set automatically searches event traces
for patterns of inefficient behavior, classifies detected instances by category,
and quantifies the associated performance penalty [15]. To do this efficiently
at larger scales, the traces are analyzed in parallel by replaying the original
communication using the same hardware configuration and thesame number
of cpus as have been used to execute the target application itself.

As an example of inefficient communication, we consider the point-to-point
patternLate Sender(Figure 3). Here, a receive operation is entered by one
process before the corresponding send operation has been started by the other.
The time lost waiting due to this situation is the time difference between the
enter events of the twompi function instances that precede the corresponding
send and receive events.

The current version ofscalasca can be used formpi programs written in
C/C++ and Fortran. Figure 2 shows the basic analysis workflowsupported by
scalasca. Before any performance data can be collected, the target applica-
tion must beinstrumented, that is, it must be modified to record performance-
relevant events whenever they occur. On some systems including Blue Gene,
this can be done completely automatically using compiler support; on other sys-
tems a mix of manual and automatic instrumentation mechanisms is offered.

When running the instrumented code on the parallel machine first a summary
report (aka profile) with aggregate performance metrics forindividual function
call paths is generated and subsequently event traces are generated to record
individual runtime events. The former is useful to obtain anoverview of the
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Figure 4. Exemplary trace analysis report: The tree in the left panel displays pattern of
inefficient performance behavior arranged in a specialization hierarchy. The numbers left of the
pattern names indicate the total execution time penalty in percent. In addition, the color of the
little square provides a visual clue of the percentage to quickly guide the user to the most severe
performance problems. The middle tree shows the distribution of the selected pattern across the
call tree. Finally, the right tree shows the distribution ofthe selected pattern at the selected call
path across the hierarchy of machines, nodes, and processes.

performance behavior and also to optimize the instrumentation for later trace
generation. Since traces tend to become very large, this step is crucial before
starting event tracing. When tracing is enabled, each process generates a trace
file containing records for all its process-local events.

After performance measurement,scalasca loads these trace files into main
memory and analyzes them in parallel using as manycpus as have been used
for the target application itself. During the analysis,scalasca searches for
characteristic patterns indicating wait states and related performance properties,
classifies detected instances by category and quantifies their significance for
every function-call path and system resource involved. Theresult is a pattern-
analysis report similar in structure to the summary report but enriched with
higher-level performance metrics.
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After performance analysis, both the summary report as wellas the pattern
report can be interactively explored in a graphical profile browser (Figure 4)
after a postprocessing phase. As an alternative to the automatic search, the event
traces can be converted and investigated using third-partytrace browsers such
as Paraver [16] orvampir [20], taking advantage of their powerful time-line
visualizations and rich statistical functionality.

4. Experimental Results

In this section, we present the experimental results of our approach of sup-
porting the performance analysis of massively parallel applications with Grid-
based workflow capabilities. Automizingscalasca’s performance analy-
sis workflow, we show that Grid middleware components efficiently support
scalasca’s pattern search. Finally, we point out that the managementover-
head is reduced to a minimum and explain the basic performance analysis results
detected by the automatic perform.

For our measurements, we used a second generationibm Blue Gene system,
the Blue Gene/P (jugene) installed at Research Centre Jülich. The massively
paralleljugene system is a 16 racks system including 32 nodecards with 32
compute nodes each. While each compute node has a 4-waysmp processor,
each core is a 32-bit PowerPCprocessor core running at 850 MHz. The network
architecture of the Blue Gene/P is very similar to that of theL model. That is,
the network exhibits a three-dimensional torus, a global tree, and a 10 Gigabit
Ethernet network. Ranked as no. 2 in the current Top500 list [9], jugene is
one of the most powerful high-performance computing systems in the world
and especially designed to run massively parallel application.

To evaluateunicore’s workflow capabilities, we analyzed the performance
of theasc smg2000 benchmark, a parallel semi-coarsening multigrid solver
that uses a complex communication pattern and performs a large number of
non-nearest-neighbor point-to-point communication operations. Applying a
weak scaling strategy, a fixed64 × 64 × 32 problem size per process with five
solver iterations was configured. In our measurements, we used 512 processes
per program run as a prove of concept, while typically a production run uses
significant more processors.

Figure 5 shows a snapshot of theunicore Rich Client Platform. On the left
side of the GUI, we can see the Grid browser showing the actually available
services of the infrastructures as well as the status of certain activities. On the
right side, we see the runtime summarization of the entire performance analysis
workflow. In more detail, both the profiling phase and postprocessing phase
(see Figure 2) of thesmg2000 benchmark parallel application is shown. While
profiling is enabled, the execution of the pre-compiled and automatically in-
strumented executable generates a runtime summary. This runtime summary is
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Figure 5. Usingunicore’s workflow capabilities for profiling a parallel application.

subsequently postprocessed via certain preconfigured mappings to be displayed
properly to the end-user as shown in Figure 6.

The strength of this runtime summarization is that it avoidsstoring the events
in trace buffers and files, since many execution performancemetrics can be most
efficiently calculated by accumulating statistics during measurement, avoiding
the cost of storing them with events for later analysis. For example, the point-to-
point communication time can be immediately determined andfinally displayed
as shown in Figure 6. Here, the runtime summary report shows alarge point-
to-point communication fraction distributed across the call tree and the system
hierarchy. Obviously, the point-to-point communication time clearlydominated
the overall communication behavior making it the most promising target for fur-
ther analysis efforts. That is, we configured the measurement system to record
especially those execution phases related to point-to-point communication and
adjusted the buffer sizes, manually.

Theunicore Rich Client Platform snapshot in Figure 7 shows again the
Grid browser with the actually available services of the infrastructures as well
as the status of the submitted tracing workflow. This tracingworkflow con-
sists of a tracing, trace analysis, and postprocessing phase. During the tracing
phase, the measurement system generates process-local event traces maintained
in an appropriate measurement archive (epik tracing). The subsequent trace



Grid-Based Workflow Management 11

Figure 6. Runtime summary report: Large point-to-point communication fraction distributed
across the call tree and the system hierarchy.

analysis starts the parallel trace analyzer, which automatically search those
event traces for patterns of inefficient performance behavior. The trace ana-
lyzer generates a trace analysis report which is finally postprocessed via certain
preconfigured mappings to be displayed properly to the end-user as shown in
Figure 8.

scalasca searches event traces of parallel programs for patterns of ineffi-
cient behavior (e.g., wait states), classifies detected instances by category, and
quantifies the associated performance penalty. Often, reasons for such wait
states can be found in the scheduling of communication operations or in the
distribution of work among the processes involved. Figure 8shows the trace
analysis report similar in structure to the summary report but enriched with
higher-level performance metrics. The report indicates that the large point-to-
point communication time manifests itself in a Late Sender situation distributed
across the call tree and the system hierarchy. Hence, the point-to-point com-
munication would be a prommissing target for performance optimization.

Finally, typical Grid applications execute their workflow steps on different
systems, while in our approach all steps (i.e. measurements) are taken on the
jugene system. This is due to the fact that we analyze the performance for one
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Figure 7. Usingunicore’s workflow capabilities for tracing a parallel application.

dedicated scientifichpc application on a distinct parallel machine. However,
using the same workflow on another system is easy to accomplish by just choose
another site within theunicore Rich Client Platform. Of course, the workflow
capabilities cover not only multi-step workflows, but also multi-site workflows
that are not substantial to accomplish the performance analysis in this context.

5. Related Work

There is a wide variety of related work in the field. First and foremost,
Taverna [8] enables the interoperation between databases and tools by providing
a toolkit for composing, executing and managing workflow applications. It’s
specifically designed to access local and remote resources as well as analysis
tools. In comparison to our worfklow approach, this tool is not seamlessly
integrated in a Grid middleware.

Another well-known workflow tool named asaskalon [2]. The fundamen-
tal goal ofaskalon is to provide simple, efficient, and effective application
development for the Grid. In focusses on workflows as well as parameter stud-
ies. It also allows for measurement, analysis and optimization of performance,
but also this tool is not closely aligned withhpc environments or anyhpc-
driven Grid middleware.
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Figure 8. Trace analysis report: Large point-to-point waiting time manifests itself in a Late
Sender situation distributed across the call tree and the system hierarchy.

Also, Triana [10] is a problem solving environment especially designed as a
Grid workflow tool. Developed by Cardiff University, Trianabasically abstracts
the core capabilities needed for service-based computing such asp2p, Web
services, or Grid Computing. While this approach is rather more oriented to
hpc in a way, we also find that the direct support for a Grid middleware was
missing.

Finally, also the A-Ware project [1] develops several workflow capabilities
specifically designed for service invocation of any kind. Compared to our
approach, this work is rather high-level and thus not directly usable forhpc-
based environments.

6. Conclusion

In this paper, we have shown that the approach of supporting the perfor-
mance analysis of parallelhpc applications can be significantly supported by
workflow capabilities within Grids. We have mapped thescalasca’s auto-
matic performance analysis approach of massively parallelapplications touni-

core’s workflow management capabilities. More precisely, by automizing
scalasca’s performance analysis workflow, we have shown that Grid middle-
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ware components simplify the overall process ofscalasca’s pattern search
even when executed on a single Grid resource. Finally, we have explained
the basic performance analysis results detected by the automatic performance
analysis.
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