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Abstract

Keywords:

Many Grid infrastructures have begun to offer services t-esers during
the past several years with an increasing number of complextsfic applica-
tions and software tools that require seamless accesd¢oedif Grid resources
via Grid middleware during one workflow. End-users of théeatirc-driven
DEISA Grid infrastructure take not only advantage of Grid workflmanagement
capabilities for massively parallel applications to satwéical problems of high
complexity (e.g. protein folding, global weather predicij, but also leverage
software tools to achieve satisfactory application penfmce on contemporary
massively parallel machines (e.o3M Blue Gene/P). In this context, eventtracing
is one technique widely used by software tools with a broagspm of applica-
tions ranging from performance analysis, performanceigtied and modeling
to debugging. In particular, automatic performance amslyas emerged as an
powerful and robust instrument to make the optimizationavbfiel applications
both more effective and more efficient. The approach of aatanperformance
analysis implies multiple steps that can perfectly levertge workflow capabil-
ities in Grids. In this paper, we present how this approadmidemented by
using the workflow management capabilities of thacore Grid middleware,
which is deployed omEisA, and thus, demonstrate by using a Grid application
that the approach taken is feasible.

Middleware, workflow management, performance analysisC Hipplica-
tions.



1. Introduction

Grid infrastructures offer services to end-users with andasing number of
complex scientific applications and software tools. Duétoihcreased com-
plexity of contemporary High-Performance Computingr¢) systems, soft-
ware tools that are used to tune parallel applications gpeitant. Using these
rather complicated software tools can be significant siiregliby Grid mid-
dleware providing multi-step workflow capabilities. Whiewide variety of
Grid middleware systems exist (gLite [17], Globus Toolkitd]) today, only a
few systems incorporate massive workflow support, and acecklven byapc
needs.

One of those systems isNICORE, which is deployed omEgisaA [3]. This
Hprc-driven DEISA Grid infrastructure offers not only Grid workflow manage-
ment capabilities for massively parallel applicationsdtys critical problems
of high complexity (e.g. protein folding, global weatheegiction), but also
software tools to achieve satisfactory application penfamce on contemporary
massively parallel machines (e.gg3m Blue Gene/P).

In the area ofipc, event tracing is a popular technigue for software tools
with a broad spectrum of applications ranging from perfarogaanalysis, per-
formance prediction and modeling to debugging. Event sase helpful in
understanding the performance behavior of message-pgeagstications since
they allow in-depth analysis of communication and syncization patterns.
Graphical trace browsers, suchhvasvipir [20] and Paraver [16], allow the fine-
grained investigation of parallel performance behaviat provide statistical
summaries. By contrast, automatic trace analysis scams ggees of parallel
applications for wait states that occur when processeddaitach synchro-
nization points in a timely manner, e.g., as a result of arvenly distributed
workload.

The automatic performance analysis approach is a powerdiurldust instru-
ment to make the optimization of parallel applications lbrathre effective and
more efficient. For instancecarAascA, which has been specifically designed
for large-scale systems, searches event traces of pgradglams for patterns
of inefficient behavior, classifies detected instances bggoay, and quantifies
the associated performance penalty [7]. This allows d@eskoto study the per-
formance of their applications on a higher level of abstoaGtwhile requiring
significantly less time and expertise than a manual angl#8is

SCALASCA’s analysis approach implies multiple steps that can ptyfec
leverage the workflow capabilities in Grids. In this papee present how
this approach is implemented by using theicore workflow management
capabilities that are deployed o®risA and thus demonstrate by using a Grid
application thatthe approach takenis feasible. While vieraizesCALASCA'S
performance analysis workflow, we show that Grid workflow afalities in
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general, andiNICORES workflow engine in particular, efficiently support the
performance analysis processaic-driven Grid applications.

The outline of this paper is as follows: After describing thesics of Grid
middleware components in Section 2, we review the autontiée analysis
approaches in Section 3 including a brief description ofetent tracing tech-
nigue. In Section 4, we evaluate the feasibility of the applotaken using
the state-of-the-art massively parallel machines deplaye theprisa Grid
and show how automatic performance analysis is augmentatNGyoRE'S
workflow capabilities. Finally, after reviewing the reldtevork in Section 5,
we summarize our results and give an outlook on future wofkeation 6.

2. Grid Middleware

Today, large-scale scientific research often relies ontiheesl use of a Grid
with computational or storage related resources. One dittdamental ideas
of modern Grids is to facilitate the routine interaction ofestists and their
workflow-based applications with advanced problem soltirods such as Grid
middleware systems. Many of these systems have been eviolted past,
typically influenced by the nature of their deployments. Tovile an exam-
ple, the gLite middleware [17] deployed in tmeEE infrastructure [4] was
specifically optimized to handle large data-sets, whiletlecore middle-
ware [11] deployed in therrsa infrastructure [3] is rather designed to satisfy
the requirements iAPC environments.

Since our approach of supporting the performance analysisagsively
parallel applications with Grid-based workflow capalsktirelies on aipc
environments, we used key concepts of tire-driven Grid middleware/Ni-
CORE. Other Grid middleware systems (i.e. Globus Toolkits [1#By also
provide similar capabilities, but the inherently providedrkflow functional-
ities of UNICORE are also fundamental to our approach and thus we choose
UNICORE.

The unicork Grid middleware has been developed since the late 1990s to
support distributed computing applications in Grids ingah and massively
parallelnpc applications in particular. The vertically integratedidegrovides
components on each tier of its layered architecture as slmowigure 1. The
UNICORE 5 architecture [22] mainly consists of proprietary compuseand
protocols, while the more recently developesiicORE 6 architecture is based
onopen standards such as the Web services resource frakr{@meorr) [5] and
thus relies on the concept of Service-Oriented Archites§oAs).

In more detailuNICORE 6 conforms to the Open Grid Services Architecture
(oGsA) of the Open Grid ForumdGF) and several projects such as thair-
Europe project [6] augmented it with open standards dutiedgdst couple of
month. The loosely coupled Web services connection teodgyagbrovides a
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perfect base to meet the common use case within Grid thabianb oGsa
thus allowing dynamic interaction dispersed in concepturtitutional, and
geographical space. The approach presented in this pdesr advantage of
this service-oriented concept by using key charactesistitheunicore Grid
middleware. These characteristics are basic job submissid data manage-
ment functionalities using theNICORE Atomic Services (As) [21], and the
workflow capabilities of thesnicORE workflow engine and service orchestra-
tor.

Theuas consists of a set of core services such as the TargetSysteicese
(Tss) that represents a computational resource (e.g. supetrgenspor clus-
ters) in the Grid. While the TargetSystemFactorgy) can be used to create
an end-user specific instance ofrss, the Tss itself is able to execute jobs
defined in the Job Submission and Description Languager [12]. Each
submitted job is represented as another resource alignbdheiTss and can
be controlled with the Job Management Services). Finally, different flavors
of the FileTransferServices(s) can be used for data transfer.

While theuas and its services (i.eTss, JMS, FTS, etc.) operate on the
service level, they are supported by a strong executiondsatkamed as the
enhanced Network Job Supervisan(s), which uses the Incarnation Database
(1pB) to map abstract job descriptions to system-specific diefirsit In terms
of security, theuas are protected via theNiCOrRE Gateway [18], which does
authentication. This means it checks whether the cerifichtan end-user
has been signed by a trusted Certificate Authoxity)( that its still valid, and
not revoked. For authorization thas, relies on thesNICORE User DataBase
(uupB) service and checks policies based on Extensible Accegsdbtarkup
LanguageXacwmr) [19]. The roles and general attributes of end-users as well
as their group and project membership are encoded usingiyeaasertion
Markup LanguagesaML) [13] assertions.

Typically, scientists use thenicore middleware to reduce their manage-
ment overheads in usual scientific workflows to a minimum automize parts
of their workflow. Without Grid middleware, the workflows afientists often
start with the manual creation of a Secure Shedh) connection to a remote
system such as a supercomputer via username and passwesd aokfigured
before. The trend towards service-oriented Grids allowsfore flexibility
and orchestration of services and thus makes it easier tbeeend-users with
multi-step workflow capabilities. While there are many witow-related tools
in Grids (e.g. TAVERNA [8], ASKALON [2], TRIANA [10]), we shortly de-
scribe the functionalities afNICORE that are later intensively used to verify
our approach.

To satisfy scalability requirements, the overall workflaapabilities ofunt-
CORE are developed using a two layer architecture. The Workflogitieis
based on the Shark open-soursgepL engine. In addition, plug-ins allow for
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domain-specific workflow language support. The Workflow aadgs respon-
sible to take Directed Acyclic GrapmAc)-based workflow descriptions and
map them to specific steps.

The Service Orchestrator on the other hand, is respongsibliné job sub-
mission and monitoring of workflow steps. While the exeautsite can be
chosen manually, the orchestrator also supports brokéasgd on pluggable
strategies. In addition, it supports callback functiongheoworkflow engine.

Finally, all the above described services can be seamlassgssed using the
graphicalunicore Rich Client based on Eclipse. End-users are able to create
DAGS of different services that typically invoke different dipations including
necessary data staging elements. In addition, the Tra@ngc® of UNICORE
allows for monitoring of each execution step obaicorE workflow, which
can be easily followed in the client.

= UNICORE UNICORE scientific
. Rich Client Command applications
Cz:’:t Platform Line Interfaces & clients
X
job submit & management using
WS-RF/SOAP & JSDL via Web services
=—oocooooo Soocoocooooonooooooooo firewall
setgf’ | Enhanced UNICORE Gateway | o

X

Service
Orchestrator

UNICORE WS-RF
Hosting Environment

XACML
Entity

job control

UNICORE Target System Interface

Resource Management System
(e.g. Torque, LoadLeveler, PBSPro, LSF)

scientific jobs

Figure 1. UNICORE's layered architecture with workflow functionalities.
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3. Automatic Performance Analysis

In this section, we illustrate the automatic performancalyeis workflow
including instrumentation, measurement, analysis, asultreisualization used
to optimize parallel applications running on thousandsrotpsses. After a
general description of the event tracing technique anded teiscription of the
graphical trace browserampir [20], we especially focus on thecaLAscA
tool set [7] and its workflow requirements.

Often, parallel applications which are free of computadlogrrors need to
be optimized. This requires the information which comparadrthe program
is responsible for what kind of inefficient behavior. Penfiance analysis is the
process of identifying those parts, exploring the reasontheir unsatisfactory
performance, and quantifying their overall influence. Tahle, performance
data are mapped onto program entities. A developer can nastigate appli-
cation’s runtime behavior using software tools. Thus, tieetbper is enabled
to understand the performance behavior of his applicafitre process of gath-
ering performance data is called performance measuremeifibans the basis
for subsequent analysis.

configuration
Summary

target report rosip [
application

it h i
Meaﬁ; rement Local Parallel Pattern

oy ‘ event traces pattern search report rostp!
T T :

|

Profile
browser

Third-party
Merge & Global trace
conversion trace browser

Figure 2. scaLasca’s performance analysis process.

Event tracing is one technique widely used for post-mort@riogpmance
analysis of parallel applications. Time-stamped events) 8s entering a func-
tion or sending a message, are recorded at runtime and adafterwards with
the help of software tools. The information recorded for @eng includes at
least a time stamp, the location (e.g., the process or nokejeithe event hap-
pened and the event type. Depending on the type, additiofahiation may
be supplied, such as the function identifier for functiorl eaénts. Message
event records typically contain details about the mesdagerefer to (e.g., the
source or destination location and message tag).

Graphical trace browsers, suchwasvpir, allow the fine-grained, manual
investigation of parallel performance behavior using azable time-line dis-
play and provide statistical summaries of communicatidmalo®r. However,
in view of the large amounts of data generated on contemp@anallel ma-
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chines, the depth and coverage of the visual analysis dffieyea browser is
limited as soon as it targets more complex patterns notdeclun the statistics
generated by such tools.

process
0

MPI _Send() B ——

waitin
9 [J enter event

F—[] MPI_Recv() [ p— B exit event

time

Figure 3. Late Sender pattern.

By contrast, the basic principle of tteaLASCA project is the summa-
rization of events, that is, the transformation of an eviénefsn into a compact
representation of execution behavior, aggregating mesdtiges associated with
individual events across the entire execution. On a motenteal level, the
trace analyzer of thecALASCA tool set automatically searches event traces
for patterns of inefficient behavior, classifies detectextances by category,
and quantifies the associated performance penalty [15].0Tiid efficiently
at larger scales, the traces are analyzed in parallel bayig the original
communication using the same hardware configuration andahe number
of cpus as have been used to execute the target application itself.

As an example of inefficient communication, we consider thiatpto-point
patternLate SendefFigure 3). Here, a receive operation is entered by one
process before the corresponding send operation has lzg@ddy the other.
The time lost waiting due to this situation is the time diffiece between the
enter events of the twmp1 function instances that precede the corresponding
send and receive events.

The current version afCALASCA can be used foxipi programs written in
C/C++ and Fortran. Figure 2 shows the basic analysis worldlgpported by
SCALASCA. Before any performance data can be collected, the targéitap
tion must beanstrumentedthat is, it must be modified to record performance-
relevant events whenever they occur. On some systems inglidue Gene,
this can be done completely automatically using compilppsut; on other sys-
tems a mix of manual and automatic instrumentation mechemnis offered.

When running the instrumented code on the parallel machstafsummary
report (aka profile) with aggregate performance metricanfdividual function
call paths is generated and subsequently event traces raeeatgd to record
individual runtime events. The former is useful to obtaincaerview of the
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Figure 4. Exemplary trace analysis report: The tree in the left parmsgbldys pattern of

inefficient performance behavior arranged in a speciatindtierarchy. The numbers left of the

pattern names indicate the total execution time penaltyenoent. In addition, the color of the

little square provides a visual clue of the percentage toldyiguide the user to the most severe
performance problems. The middle tree shows the distohudf the selected pattern across the
call tree. Finally, the right tree shows the distributiortled selected pattern at the selected call

path across the hierarchy of machines, nodes, and processes

performance behavior and also to optimize the instrumiemntdor later trace
generation. Since traces tend to become very large, thisstzucial before

starting event tracing. When tracing is enabled, each peogenerates a trace

file containing records for all its process-local events.

After performance measuremest,ALASCA loads these trace files into main
memory and analyzes them in parallel using as marys as have been used

for the target application itself. During the analysisaLAscA searches for
characteristic patterns indicating wait states and rélpéeformance properties,
classifies detected instances by category and quantifigsstpeificance for
every function-call path and system resource involved. fElalt is a pattern-
analysis report similar in structure to the summary repattémriched with
higher-level performance metrics.



Grid-Based Workflow Management 9

After performance analysis, both the summary report as agethe pattern
report can be interactively explored in a graphical profilenwser (Figure 4)
after a postprocessing phase. As an alternative to the atitosearch, the event
traces can be converted and investigated using third-pratg browsers such
as Paraver [16] ovAMPIR [20], taking advantage of their powerful time-line
visualizations and rich statistical functionality.

4. Experimental Results

In this section, we present the experimental results of ppraach of sup-
porting the performance analysis of massively paralleliegfons with Grid-
based workflow capabilities. AutomizingcaLascA’s performance analy-
sis workflow, we show that Grid middleware components effitjesupport
SCALASCA'S pattern search. Finally, we point out that the manageroeei-
head is reduced to a minimum and explain the basic perforeamalysis results
detected by the automatic perform.

For our measurements, we used a second generatioBlue Gene system,
the Blue Gene/Pj(GENE) installed at Research Centre Julich. The massively
parallel JUGENE system is a 16 racks system including 32 nodecards with 32
compute nodes each. While each compute node has a 4mm@processor,
each coreis a 32-bit Powlef> processor core running at 850 MHz. The network
architecture of the Blue Gene/P is very similar to that oflthrmodel. That is,
the network exhibits a three-dimensional torus, a glolesd,tand a 10 Gigabit
Ethernet network. Ranked as no. 2 in the current Top5009|st)GENE is
one of the most powerful high-performance computing systemthe world
and especially designed to run massively parallel apjiicat

To evaluateyNICORE's workflow capabilities, we analyzed the performance
of the Asc sMG2000 benchmark, a parallel semi-coarsening multigrid solver
that uses a complex communication pattern and performsga tammber of
non-nearest-neighbor point-to-point communication apens. Applying a
weak scaling strategy, a fixéd x 64 x 32 problem size per process with five
solver iterations was configured. In our measurements, @@ b2 processes
per program run as a prove of concept, while typically a petida run uses
significant more processors.

Figure 5 shows a snapshot of theicorg Rich Client Platform. On the left
side of the GUI, we can see the Grid browser showing the dgtaeailable
services of the infrastructures as well as the status ddicesctivities. On the
right side, we see the runtime summarization of the entifopaance analysis
workflow. In more detail, both the profiling phase and postpssing phase
(see Figure 2) of themc2000 benchmark parallel application is shown. While
profiling is enabled, the execution of the pre-compiled ammatically in-
strumented executable generates a runtime summary. Thisilgisummary is
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Figure 5. UsinguNicorg's workflow capabilities for profiling a parallel applicatio

subsequently postprocessed via certain preconfiguredinggto be displayed
properly to the end-user as shown in Figure 6.

The strength of this runtime summarization is that it avsidsing the events
in trace buffers and files, since many execution performarateics can be most
efficiently calculated by accumulating statistics duringasurement, avoiding
the cost of storing them with events for later analysis. kaneple, the point-to-
point communication time can be immediately determinedfimadly displayed
as shown in Figure 6. Here, the runtime summary report shdarga point-
to-point communication fraction distributed across thiétoae and the system
hierarchy. Obviously, the point-to-point communicationg clearly dominated
the overall communication behavior making it the most psingj target for fur-
ther analysis efforts. That is, we configured the measuresystem to record
especially those execution phases related to point-tetgoimmunication and
adjusted the buffer sizes, manually.

The unicore Rich Client Platform snapshot in Figure 7 shows again the
Grid browser with the actually available services of theadsefructures as well
as the status of the submitted tracing workflow. This traciggkflow con-
sists of a tracing, trace analysis, and postprocessingepliaging the tracing
phase, the measurement system generates process-latdtases maintained
in an appropriate measurement archizgitk tracing). The subsequent trace
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Figure 6. Runtime summary report: Large point-to-point communaafiraction distributed
across the call tree and the system hierarchy.

analysis starts the parallel trace analyzer, which auticalht search those
event traces for patterns of inefficient performance bairavihe trace ana-
lyzer generates a trace analysis report which is finallyposessed via certain
preconfigured mappings to be displayed properly to the esed-as shown in
Figure 8.

SCALASCA searches event traces of parallel programs for pattermseti-i
cient behavior (e.g., wait states), classifies detectadross by category, and
guantifies the associated performance penalty. Oftenpmea®r such wait
states can be found in the scheduling of communication tipagaor in the
distribution of work among the processes involved. Figush8ws the trace
analysis report similar in structure to the summary repattdmriched with
higher-level performance metrics. The report indicates the large point-to-
point communication time manifests itself in a Late Sen@aagon distributed
across the call tree and the system hierarchy. Hence, tiné-foepoint com-
munication would be a prommissing target for performandapation.

Finally, typical Grid applications execute their workflotegs on different
systems, while in our approach all steps (i.e. measureinarggaken on the
JUGENE system. This is due to the fact that we analyze the perforsnfomone
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Figure 7. UsinguNicORE's workflow capabilities for tracing a parallel application

dedicated scientifieipc application on a distinct parallel machine. However,
using the same workflow on another system is easy to accdniplisist choose
another site within theNicoRrkg Rich Client Platform. Of course, the workflow
capabilities cover not only multi-step workflows, but alsoltisite workflows
that are not substantial to accomplish the performanceysisah this context.

5. Related Wor k

There is a wide variety of related work in the field. First aogemost,
Taverna [8] enables the interoperation between databadésals by providing
a toolkit for composing, executing and managing workflowlgagions. It's
specifically designed to access local and remote resousceglaas analysis
tools. In comparison to our worfklow approach, this tool & seamlessly
integrated in a Grid middleware.

Another well-known workflow tool named askALON [2]. The fundamen-
tal goal of ASKALON is to provide simple, efficient, and effective application
development for the Grid. In focusses on workflows as wellaaameter stud-
ies. It also allows for measurement, analysis and optineizaif performance,
but also this tool is not closely aligned witipc environments or anyipc-
driven Grid middleware.
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Also, Triana [10] is a problem solving environment espégidésigned as a
Grid workflow tool. Developed by Cardiff University, Triabasically abstracts
the core capabilities needed for service-based computiog asp2pr, Web
services, or Grid Computing. While this approach is ratheraroriented to
HPC in a way, we also find that the direct support for a Grid midéleswvas
missing.

Finally, also the A-Ware project [1] develops several wankflcapabilities
specifically designed for service invocation of any kind. n(pared to our
approach, this work is rather high-level and thus not diyagsable forapc-
based environments.

6. Conclusion

In this paper, we have shown that the approach of supportiagpérfor-
mance analysis of parallaipc applications can be significantly supported by
workflow capabilities within Grids. We have mapped HwLascA’s auto-
matic performance analysis approach of massively pagglglications taNi-
CORE’s workflow management capabilities. More precisely, by alitarg
SCALASCA’s performance analysis workflow, we have shown that Griddbeid
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ware components simplify the overall processsOR1L.ASCA’s pattern search
even when executed on a single Grid resource. Finally, we kaplained
the basic performance analysis results detected by thenatitoperformance
analysis.
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