
Scalasca Parallel Performance Analyses of PEPC

Zoltán Szebenyi1,2, Brian J. N. Wylie1, and Felix Wolf1,2

1 Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH, Germany
2 Aachen Institute for Advanced Study in Computational Engineering Science,

RWTH Aachen University, Germany
{z.szebenyi,b.wylie,f.wolf}@fz-juelich.de

Abstract. PEPC (Pretty Efficient Parallel Coulomb-solver) is a
complex HPC application developed at the Jülich Supercomputing Cen-
tre, scaling to thousands of processors. This is a case study of chal-
lenges faced when applying the Scalasca parallel performance analysis
toolset to this intricate example at relatively high processor counts. The
Scalasca version used in this study has been extended to distinguish iter-
ation/timestep phases to provide a better view of the underlying mech-
anisms of the application execution. The added value of the additional
analyses and presentations is then assessed to determine requirements
for possible future integration within Scalasca.

Keywords:Parallel/distributed systems, performance measurement &
analysis tools, application tracing & profiling.

1 Introduction

PEPC [7] is a 3-dimensional particle simulation code which employs a hierar-
chical, parallel tree algorithm implemented using MPI to compute the forces
on the particles. The code is presently used for various applications in plasma
physics and astrophysics. According to the author of the code, potential bottle-
necks lie in the domain decomposition routine, tree construction and tree ‘walk’,
the last of which requires significant point-to-point communication of multipole
information between processors, and is thereby sensitive to load imbalance.

This work presents Scalasca measurements and analyses of the application on
the IBM BlueGene/P system of the Jülich Supercomputing Centre. The Scalasca
toolset [1,2] is a highly scalable performance analysis toolset capable of both tak-
ing runtime summaries or collecting and automatically analyzing event traces.
The latter can be searched for complex event patterns which may indicate im-
portant performance bottlenecks. Scalasca performs trace analysis in parallel on
the same number of processors that was used to originally take the measurement.

In this work PEPC is analyzed using an extended version of Scalasca [6], pro-
viding the additional capability of phase instrumentation. This means that after
manually identifying the main time-stepping loop of the application and insert-
ing markers around the loop body, subsequent Scalasca measurements become
aware of individual iterations and support the analysis of the time-dependent

E. César et al. (Eds.): Euro-Par 2008 Workshops, LNCS 5415, pp. 305–314, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

306 Z. Szebenyi, B.J.N. Wylie, and F. Wolf

behavior or of individual iterations, which corresponds to dynamic phases in
TAU [4]. After considering examples of such PEPC execution analyses and pre-
sentations, these are assessed to determine requirements for the potential future
integration of the corresponding capabilities with Scalasca.

2 Experimental Results

A 1024-way test case, which was run for 1,300 timesteps on a BlueGene/P sys-
tem, is used here as an example to show what we have learned about the perfor-
mance characteristics of the application using the tools provided by the extended
Scalasca toolset. This example was chosen as it shows not only interesting pat-
terns of time-varying behavior, but also performance problems, like serious load
imbalance growing rapidly over time.

Figures 1&2 show an example of the usefulness of having analysis data in-
dividually for all the iterations instead of having just a summary of the whole
program execution. Figure 1 shows the case where the iterations are not distin-
guished and only aggregate metrics are available. When looking at the point-to-
point communication metric, a few processes appear as hot-spots in the topology
pane, showing that there is some imbalance. This is important to recognize, how-
ever, additional insight can be extracted from the extended, phase-instrumented
analysis. When selecting in turn the individual iterations distinguished in Fig. 2,
the execution behavior can be observed evolving over time. During the first it-
erations, the communication is relatively balanced and there are no extreme
hot-spots visible. Over time some hot-spots appear and become increasingly
pronounced, and they move at different rates from one MPI rank to the next.
The number of hot-spots diminishes towards the end of the 1,300 steps, however,
the severities of the highest ones are increasing rapidly.

Figure 3 shows four different views of the same metric, point-to-point com-
munication count (i.e., the number of sends and receives), to compare the dif-
ferent kinds of information they provide. The Phase graph (upper left) gives an
overview of the evolution of the values over time. The meaning of the different
colors is as follows: for each timestep, the value for the process with the largest
time is shown in red, the median is shown in blue, and the smallest is shown in
green. Looking at this graph it is obvious that there is a serious communication
imbalance in the application, as the minimum and median values are relatively
low and constant throughout the execution, but the maximum value is growing
rapidly, and it rises many times higher than the minimum or median values.
This means that within each timestep most of the processes are behaving in a
relatively balanced fashion, but that there are a few processes being involved in
many more communications.

Which processes are responsible for the imbalance? On the Process graph (up-
per right), the x-axis shows the different process ranks, so the different colors
now distinguish the minimum, median and maximum value during the different
timesteps for the given process rank. It is not obvious which process is responsi-
ble as many processes show very high values, but again these can only be for a few

Scalasca Parallel Performance Analyses of PEPC 307

Fig. 1. Scalasca analysis report explorer showing a PEPC runtime summary with sig-
nificant imbalance in the number of point-to-point communications (selected in left
pane). The 1,024 application processes are arranged according to the BlueGene/P
physical network topology (right pane).

Fig. 2. Scalasca analysis report explorer showing a PEPC runtime summary with
timesteps distinguished via phase instrumentation (centre pane)

308 Z. Szebenyi, B.J.N. Wylie, and F. Wolf

Phase graph Process graph

Linear-scale map Histogram-equalized map

Fig. 3. Different analysis presentations of point-to-point communication count metric

timesteps, as the minimum and median values are low for all of them (except
for the first and last few ranks where the median is somewhat higher).

The case is getting increasingly confusing, and we still do not see what is going
on here with these high values, but the Linear-scale map on the lower left makes
it much clearer. On a linear-scale map, the x-axis shows the iteration number,
the y-axis the process rank, and the values are color-coded from light yellow
(for the lowest value) to dark red (for the highest value, here 9000). The map
shows that at the beginning all processes start off relatively balanced, however,
after a few hundred timesteps a low number of hot-spots gradually appear whose
values get much higher over time than the average. What is interesting about
these hot-spots is that they are not bound to any given process, but rather they
move to neighboring processes in a systematic and coordinated manner. As they
migrate some hot-spots appear to merge, so after around 700 timesteps only five
hot-spots remain, each consisting of a few processes.

This movement of the hot-spots is responsible for the confusing values seen in
the Phase and Process graphs, so understanding their behavior in more detail
is useful. Taking a closer look at the light yellow area of the Linear-scale map
reveals that the values in the background are not exactly the same. There are
also some patterns there, but they are not very easy to see as their differences

Scalasca Parallel Performance Analyses of PEPC 309

are small compared to the range of the graph. On the Histogram-equalized map,
light yellow and dark red still mean the same lowest and highest values as on
the Linear-scale map, but here the histogram of the map values is equalized so
that every color level is used for approximately the same number of points. This
produces the maximum contrast on the map and reveals previously invisible
details: there are many more systematic details down to the finest granularity
than there are visible on the Linear-scale map.

Figure 4 shows more metric graphs of the test case execution, including the
time taken by different activities and the number of bytes transferred in each
timestep. Where no explicit legend is given, the different colors have the same
meaning as before.

The Execution Time Breakdown graph uses a different coloring where yel-
low is the average time each process spent in pure computation (i.e. non-MPI
functions), the small green part is the useful time spent in MPI communication,
orange is the blocking time in situations like late sender, and magenta is synchro-
nization time at barriers. These values combine to the total execution time of
each timestep, averaged over all the processes. Execution time does not show any
differences between processes as execution times are synchronized every timestep
due to the collective communications.

The high peak values every 100th iteration are due to checkpointing. Also
notable on this graph is the evolution of the total execution time per iteration
along the 1,300 timesteps, gradually increasing more than twofold from around
5.5 seconds to more than 12 seconds. From the breakdown this is seen to be due
to the computational workload itself growing over time (as the pure computation
time is growing in the same way), however, MPI blocking and synchronization
times are growing as well.

On the Execution Time Proportions graph, the same data is normalized for
each iteration to show the fraction of execution time spent in each activity. This
graph shows that the proportion of pure computation time is shrinking from
around 78% down to 73%, while the proportion of MPI blocking time grows
from 3% to 6% and the proportion of MPI synchronization grows from 18% to
19%. MPI blocking time is therefore the fastest growing problem, even though
the time spent in synchronizations is still higher.

The Point-to-point Communication Time graph shows the load imbalance
very clearly, as the median and maximum times spent in point-to-point com-
munications are much higher than the minimum, and the median is around
halfway between the minimum and maximum. This means that the imbalance
in point-to-point communication time involves many or most of the processes.
Comparing with Point-to-point Late Sender Time, most of the time is actually
spent in situations where the receiver blocked waiting for the corresponding send
to be initiated, which suggests that some point-to-point messages are not sent in
time. This causes a majority of processes to spend more time in point-to-point
communication than is absolutely necessary (which is around the minimum value
shown in green).

310 Z. Szebenyi, B.J.N. Wylie, and F. Wolf

Execution Time Breakdown Execution Time Proportions

Collective Communication Time Communication Time Proportions

Point-to-point Communication Time Point-to-point Late Sender Time

Fig. 4. Graphs of time and bytes transferred in different communications in PEPC

The Collective Communication Time graph also shows an imbalance very
much like that seen on its point-to-point counterpart, however, with a much
higher minimum. Apparently, the minimum time for collective communication
in each timestep is longer than the corresponding point-to-point time, but every-
thing in excess of this minimum closely resembles the point-to-point late sender
time. The high peaks every 100th iteration are due to checkpointing activity in
those timesteps.

Scalasca Parallel Performance Analyses of PEPC 311

Point-to-point Time Point-to-point Late Sender Time

Collective Time Point-to-point Bytes Sent

Fig. 5. Maps of time and bytes transferred in different communications in PEPC

Figure 5 shows some maps that help clarify the nature of the communication
time imbalance. The Point-to-point Time map shows how the above mentioned
communication time imbalance is distributed among the processes in a very
specific and systematic way. Generally the higher the MPI process rank, the
more time it spends in point-to-point communication. There are some exceptions
to this rule, as the processes which send more point-to-point messages take
somewhat longer than their neighbors, particularly the hot-spots which all have
very high communication times.

The Point-to-point Late Sender Time map shows a rather similar distribution,
with one major difference being the hot-spots. These show very low waiting time
in late sender situations, but they have a very high amount of time spent in
point-to-point communication. This means that they really communicate a lot
and then do not spend much time waiting, while all the others that must wait
for them do.

The Collective Time map also shows something interesting. It seems to be the
inverse of Point-to-point time, in the sense that the order of MPI ranks is reversed
here.Thehigher theMPI rank, the less time it spends in collective communications.
This suggests that theprice of the communication imbalance inpoint-to-point com-
munications must be paid again in collective communications. First point-to-point

312 Z. Szebenyi, B.J.N. Wylie, and F. Wolf

Workload Particle Number

Fig. 6. Maps of application-specific metrics from log files written every 10th timestep

communication causes the processes to get out of balance, then the next collec-
tive communication synchronizes them again, and the processes which wait less in
point-to-point and are slightly ahead of the others have to wait more while the ones
that are later wait less. So in the end they accumulate the same amount of blocking
time, which, however, is distributed in reversed fashion across the processes.

This phenomenon is clearly shown in the Communication Time Proportions
graph in Fig. 4, which shows the process ranks on the x-axis, and the propor-
tion of MPI point-to-point communication time (yellow), point-to-point block-
ing time (green), collective blocking time (orange) and collective communication
time (magenta) on the y-axis. The most important aspect of this graph is the
diagonal border between point-to-point blocking time and collective blocking
time. The higher the MPI rank, the more point-to-point blocking time and the
less collective blocking time was diagnosed, with both waiting time categories
consuming around 80% of the total communication time. This highlights how
seriously this problem degrades communication efficiency.

But what causes the imbalance? Examining the Point-to-point Bytes Sent
graph in Fig. 5 it is clear that the hot-spot processes are sending much more
data than any other process. Point-to-point Bytes Sent and Received graphs (not
shown due to space restrictions) reveal that while all processes receive around the
same amount of data, the amount varies considerably between senders. Therefore
the hot-spot processes send much more data than other processes, and they send
data to all. This suggests that the hot-spot processes are the communication
bottleneck, as they send much more data than the others. Moreover, the data
are sent in process rank order, such that higher-ranked processes have to wait
for them to complete sending data to lower ranked processes before they receive
any data themselves.

Figure 6 shows maps of two application-specific metrics extracted from applica-
tion log files written every 10th timestep. On the Workload map we see the work-
load metric calculated by the application. According to the developers, PEPC
runs a workload-balancing algorithm every timestep where it balances this metric,
therefore it is no surprise that it really is balanced over the processes. It further

Scalasca Parallel Performance Analyses of PEPC 313

shows some growth over time which correlates to the growing computational part
of the execution time. On the Particle Number map we see the number of simu-
lated particles assigned to each process. This means that the workload-balancing
algorithm assigns a very large number of particles to the hot-spot processes which
in turn causes a communication bottleneck to appear on those processes and leads
to the communication imbalance.

The TAU Paraprof 3D visualizer [4] is a third-party tool able to visualize
Scalasca analysis reports. 3D visualization is a promising complement to 2D
maps, as it can be easier to compare scales of data at different positions by
comparing the height of bars as opposed to comparing the brightness of colors.

3 Conclusion

In our analysis of the PEPC execution on BlueGene/P we have identified some
complex performance patterns, and have found a good potential for communica-
tion performance improvement. The PEPC developer team is actively working
on finding the causes that led to the serious imbalance in particle numbers that
we identified as the root cause of the point-to-point communication problem.
They are also looking at ways to modify the workload-balancing algorithm to
avoid this situation.

The depth of analysis we conducted in this case would not have been possible
without our prototype Scalasca extensions, namely phase instrumentation and
the different visualization techniques used to make the huge amounts of data
collected accessible to the user. During the course of the analysis, we have found
all the different kinds of visualization techniques (phase and process graphs,
linearly-scaled and histogram-equalized 2D maps, 3D visualization) useful in
many ways, as the insights they provide often complement each other.

We have also found that there are serious limitations concerning the visual-
ization of the huge amounts of data collected, as it can easily happen that on
the monitor or printer used for displaying the data, it is not possible to get suffi-
cient resolution to have one pixel for each process or iteration. Other groups also
identified this issue [8,9] and found different solutions, like zooming in on the
visualized data while also displaying a miniature map of the whole chart mark-
ing the zoomed region, or letting the user choose from different display options
when there is more than one data point for a single pixel, such as the maximum,
minimum, sum, or median of the values. These techniques can provide partial
solutions to the problem, but further investigation of this topic could also prove
to be valuable in the future.

Visualizing time-dependent behavior with an animation, where the user can
step through iterations to track changes of a metric over time, also seems to be an
interesting possibility that proved useful in understanding PEPC measurement
results. Furthermore, 3D visualization such as the one offered by TAU was found
to be extremely valuable and perhaps the most insightful of all the different
visualization techniques, but also the technically most challenging.

314 Z. Szebenyi, B.J.N. Wylie, and F. Wolf

References

1. Wolf, F., Wylie, B.J.N., Ábrahám, E., Becker, D., Frings, W., Fürlinger, K., Geimer,
M., Hermanns, M.-A., Mohr, B., Moore, S., Pfeifer, M., Szebenyi, Z.: Usage of the
Scalasca toolset for scalable performance analysis of large-scale parallel applica-
tions, in Tools for High Performance Computing. In: Proc. 2nd Int’l Workshop on
Tools for High Performance Computing, Stuttgart, Germany, pp. 167–181. Springer,
Heidelberg (2008)

2. Jülich Supercomputing Centre, Scalasca toolset for scalable performance analysis of
large-scale parallel applications, http://www.scalasca.org/

3. Wylie, B.J.N., Wolf, F., Mohr, B., Geimer, M.: Integrated runtime measurement
summarization and selective event tracing for scalable parallel execution perfor-
mance diagnosis. In: K̊agström, B., Elmroth, E., Dongarra, J., Waśniewski, J. (eds.)
PARA 2006. LNCS, vol. 4699, pp. 460–469. Springer, Heidelberg (2007)

4. Malony, A.D., Shende, S.S., Morris, A.: Phase-based parallel performance profiling,
In: Parallel Computing: Architectures, Algorithms and Applications. Proc. 11th
ParCo Conf., Málaga, Spain, October 2006. NIC Series, vol. 33, pp. 203–210. John
von Neumann Institute for Computing, Jülich (2006)

5. Fürlinger, K., Gerndt, M., Dongarra, J.: On using incremental profiling for the
performance analysis of shared-memory parallel applications. In: Kermarrec, A.-M.,
Bougé, L., Priol, T. (eds.) Euro-Par 2007. LNCS, vol. 4641, pp. 62–71. Springer,
Heidelberg (2007)

6. Szebenyi, Z., Wylie, B.J.N., Wolf, F.: Scalasca parallel performance analyses of
SPEC MPI2007 applications. In: Kounev, S., Gorton, I., Sachs, K. (eds.) SIPEW
2008. LNCS, vol. 5119, pp. 99–123. Springer, Heidelberg (2008)

7. Gibbon, P., Frings, W., Dominiczak, S., Mohr, B.: Performance Analysis and Visual-
ization of the N-Body Tree Code PEPC on Massively Parallel Computers. In: Proc.
11th ParCo Conf., Málaga, Spain, October 2006. NIC Series, vol. 33, pp. 367–374.
John von Neumann Institute for Computing, Jülich (2006)

8. Labarta, J., Giménez, J., Martinez, E., González, P., Servat, H., Llort, G., Aguilar,
X.: Scalability of Visualization and Tracing Tools. In: Proc. 11th ParCo Conf.,
Málaga, Spain, October 2006. NIC Series, vol. 33, pp. 869–876. John von Neumann
Institute for Computing, Jülich (2006)

9. Brunst, H., Nagel, W.E.: Scalable Performance Analysis of Parallel Systems: Con-
cepts and Experiences. In: Proc. 10th ParCo Conf., Dresden, Germany, September
2003, pp. 737–744 (2003)

http://www.scalasca.org/

	Scalasca Parallel Performance Analyses of PEPC
	Introduction
	Experimental Results
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

